CSMP Mathematics for the Intermediate Grades Part III

 Worksheets
What's In This Book?

This book contains all the worksheets you will need for CSMP for the Intermediate Grades, Part III. Worksheets are labeled with the same letter and number as the lessons with which they are used. In this book, they are in the following order:

N Worksheets

N1	N12	N21	N30
N2	N13	N22	N31
N3	N14	N23	N32
N4	N15	N24	N33
N5	N16	N25	N34
N8	N17	N27	N35
N9	N19	N28	N36
N11	N20	N29	

L Worksheets
$\begin{array}{lll}\text { L2 } & \text { L8 } & \text { L11 } \\ \text { L4 } & \text { L9 } & \text { L12 }\end{array}$
L5
G Worksheets

G2	G6	G10
G3	G7	G11
G4	G8	G12
G5	G9	

P Worksheets

P1	P3	P6
P2	P4	P7

W Worksheets
W2

Name \qquad N1 *

What number is on the Minicomputer?

Name \qquad
$\begin{array}{lllllllll}28 & 54 & 56 & 64 & 68 & 180 & 320 & 380 & 720\end{array}$

Put six of these numbers on the Minicomputer using exactly one of these checkers:
(2) (3)
(4)
(5)
(6)
(7)
(8)
(9)

Name \qquad N1 ***

Put each number on the Minicomputer using one (10)-checker and exactly one of these checkers:
(2) (3)
(4)
(5)
(6)
(7)
(8)
(9) ©

$=40$

Put 1000 on the Minicomputer using all of these checkers, each of them exactly once. Try to find at least three solutions.
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

$=1000$

$=1000$

$=1000$

Name

Label the gray arrows.

10 and 11 are in this arrow picture. Find and label their dots.

35 and 50 are in this arrow picture. Find and label their dots.

Name
N2 ***

Fill in the boxes for the gray arrows.

$$
+7 \quad+4
$$

20 and 80 are in this arrow picture. Find and label their dots.

$$
+11 \quad-40 \quad-1
$$

2 and 14 are in this arrow picture. Find and label their dots.

$$
+9 \quad-15 \quad+4
$$

Name

Fill in the boxes for the arrows and label the dots.

Name

Fill in the boxes for the arrows and label the dots.

Name
Jo is a secret number.
Clue 1
One of the symbols,,$+- x$, belongs in each blank of this calculator sentence. The same symbol may be used in both blanks.

$$
7 \square 3 \square 2 \square \text { л }
$$

Jo could be \qquad , \qquad , \qquad , \qquad , \qquad
\qquad , or \qquad .

Clue 2

Jo is in this arrow picture. Label all of the dots.

Jo could be \qquad Or \qquad .

Clue 3

Jo is a prime number.
Who is Jo? \qquad

Name

N4 **

Lou is a secret number.

Clue 1

One of the symbols $-, x, \div$ belongs in each blank of this calculator sentence. Each symbol may be used only once.

Lou could be \qquad , \qquad , \qquad , \qquad , or \qquad .

Clue 2
Lou is in this arrow picture. Label all of the dots.

Who is Lou? \qquad

Name
Kir is a secret number.

Clue 1

One of the symbols,$+ \div$ belongs in each blank of this calculator sentence. The same symbol may be used in all three blanks.

Kir could be \qquad ——, , _ , , \qquad , \qquad , \qquad _, or \qquad .

Clue 2
is less than
20.3

Who is Kir?

0 Dividers

List the rectangles \qquad
How many rectangles?
A

1 Divider

List the rectangles
How many rectangles?
A
B

2 Dividers

List the rectangles \qquad

How many rectangles?

4 Dividers
List the rectangles
\qquad

How many rectangles?

Name

Check your answers on N5(a). Use the answers to complete this table.

Number of Dividers	0	1	2	3	4	
Number of Rectangles				10		

What pattern do you see in the second row of numbers? \qquad

Use your pattern to predict the number of rectangles formed when 5 dividers are used. \qquad rectangles

5 Dividers

List the rectangles. \qquad

How many rectangles? \qquad Was your prediction correct? \qquad
Use your previous answers and a pattern to complete this table.

Number of Dividers	0	1	2	3	4	5	6	7	8	9
Number of Rectangles				10						

Do you recognize the sequence of numbers in the second row?
What do we call these numbers? \qquad

Name
Label the dots. Label each arrow + some whole number.

Name
N8 **

Label the dots. Label each arrow + some whole number.

Name
NB $\quad * * *$

Label the marks using the blue scale.

Name
N8 ****

Label each mark two ways, once using the red scale and once using the blue scale.

Name

A zookeeper feeds three monkeys. Bobs eats two shares. Complete the number sentences.

A zookeeper feeds 35 bananas to five monkeys.

$$
\frac{1}{5} \times 35=\quad \frac{4}{5} \times 35=
$$

$$
\frac{3}{5} \times 35=\quad \frac{5}{5} \times 35=
$$

Name
Na $\quad * *$

Complete.

$$
\begin{array}{ll}
\frac{3}{4} \times 28= & \frac{3}{4} \times=42 \\
\frac{3}{4} \times 60= & \frac{3}{4} \times \quad=60
\end{array}
$$

Fill in the boxes for the blue and red arrows.

Complete.

$$
\begin{array}{ll}
\frac{5}{8} \times 24= & \frac{5}{8} \times 56= \\
\frac{5}{8} \times \ldots=45 & \frac{5}{8} \times \ldots=100
\end{array}
$$

Name
N9 $\quad * * *$

Label the dots and fill in the boxes for the arrows.

Name

$$
\text { N9 } \quad * * * *
$$

Pim is a secret number.
Clue 1
In this picture, all of the dots are for positive whole numbers.

Pim could be \qquad , \qquad
\qquad
\qquad
\qquad , \qquad
\qquad
\qquad
\qquad , \qquad , and so on.

Clue 2

Pim is a square number less than 1000.

Who is Pim? \qquad

Name

Nabu must place 390 bottles into cartons that hold 12 bottles each. Build an arrow road to calculate the number of cartons he can fill.

390

-12

How many cartons can Nabu fill?

How many bottles will be left over?

Name

N11 **

Use a ruler to divide each line segment into the indicated number of pieces all the same size.

Nabu must place 1120 bottles in cartons that hold 21 bottles each. Build an arrow road to calculate the number of cartons he can fill.

1120
-21

How many cartons can Nabu fill? \qquad

How many bottles will be left over?

Use your arrow road to fill in the boxes of this division problem.

$$
2 1 \longdiv { \square } \frac { \square } { 1 1 2 0 } R = \square
$$

Name
N11 ****

Use an arrow road to solve this problem.

$$
7 5 \longdiv { 2 5 8 9 0 }
$$

Fill in the boxes.

$$
7 5 \longdiv { \square 2 5 8 9 0 } R = \square
$$

Name
N12 *

Add one pair of parentheses to make each number sentence true.
$5+4 \times 7=33 \quad 5+4 \times 7=63$
$9-4+8=\widehat{3} \quad 9-4+8=13$
$I I-8 \div 2=1.5 \quad$ II $-8 \div 2=7$

Complete.
$((4 \times 6)-3)+5=\quad 4 \times(6-(3+5))=$
$(4 \times 6)-(3+5)=\quad(4 \times 6)-(3+5)=$
$(4 \times(6-3))+5=\ldots 4 \times((6-3)+5)=$

Name
N12 **
Add one pair of parentheses to make each number sentence true.

$$
\begin{aligned}
& (3 \times 6)+4 \times 4=88 \\
& (3 \times 6)+4 \times 4=34 \\
& 3 \times(6+4) \times 4=120 \\
& 3 \times 6+(4 \times 4)=66
\end{aligned}
$$

Add two pairs of parentheses to make each number sentence true.

$$
\begin{aligned}
& 2 \times 9+3 \div 10=2.4 \\
& 2 \times 9+3 \div 10=18.3 \\
& 2 \times 9+3 \div 10=18.6 \\
& 2 \times 9+3 \div 10=2.1
\end{aligned}
$$

Name

Label the dots and fill in the boxes for the arrows.

Name
N13 **

Label the dots and fill in the boxes for the arrows.

Name
N13 ***

Label the dots.

86 is the greatest number in this picture.

Name
Pif and Paf are two secret numbers.

Clue 1

Fill in the box for the arrow from Pif to Paf.

Clue 2

Name

Label the dots. Many solutions are possible.

Name

N14 **

Spot is the least number greater than 100 that could be here. Who is Spot? \qquad

Spoc is the greatest number less than 100 that could be here. Who is Spoc? \qquad

Span is the least number greater than 278.3 that could be here. Who is Span? \qquad

Spat is the least positive number that could be here. Who is Spat? \qquad

Name
N14 ***

Label the dots. Label each arrow x some number. Many solutions are possible.

$$
+\equiv \cdot \cdot
$$

Name
N14 ****

Label the dots. Label each arrow x some number. Many solutions are possible.

Name

Headquarters receives this message from Boris.
150 code 3

Put 150 on this base three abacus with two or fewer checkers on each board.

Draw arrows to show Boris's assignment.

Name

Base Three Abacus

Name
N15 **

This arrow picture shows how Boris assigns his six helpers to watch three bridges.

Show the assignment on this base three abacus.

Write the secret message Boris sends to Headquarters to tell them the assignment.
code 3

Today Boris has four bridges to observe. This arrow picture shows how he assigns his six helpers.

Because there are now four bridges, Boris must change his code. Can you change Boris's code to send this message secretly? Explain.

Write Boris's message here.

Name
Put each number on the base five abacus.

What number is on this base five abacus?

Name
N16 *

Natasha posts this spy assignment on the bulletin board.

Draw checkers to show this assignment on a base five abacus.

What number does Natasha send to Headquarters?

Name \qquad

N16 **

Headquarters receives this message from Natasha. Headquarters needs to know which spies are watching bridge 2 today.

1647 code 5

Put this number on the base five abacus.

Draw arrows in the picture below to show Natasha's spy assignment.

Which spies are watching bridge 2 ? \qquad

Name

Two numbers are joined by a blue cord if and only if their product equals 36. Label the dots. Many solutions are possible.

Name
N17 **

Complete. Watch for patterns to help you.

$$
\begin{array}{l|r}
8 \times 8= & 72 \div 8= \\
8 \times 16= & 720 \div 8= \\
8 \times 1.6= & 7200 \div 8= \\
8 \times 32= & 7256 \div 8= \\
8 \times 320= & 7.2 \div 8= \\
8 \times 3.2= & 736 \div 8= \\
8 \times 0.32= & 73.6 \div 8= \\
72.56 \div 8=
\end{array}
$$

$$
\begin{array}{rr}
27.5 \div 5= & 15.6 \times 4= \\
94.5 \div 9= & 21.3 \times 7= \\
8.16 \div 3= & 5.62 \times 6=
\end{array}
$$

Name N19 *

797 soldiers march in rows of 15 soldiers each. Use an arrow road to calculate the number of rows of soldiers.

797

Complete.

$$
1 5 \longdiv { 7 9 7 } \mathrm { R } = \square
$$

870 soldiers march in rows of 14 soldiers each. Use an arrow road to calculate the number of rows of soldiers.

870

Complete.

$$
1 4 \longdiv { \square 7 0 } \mathrm { R } = \square
$$

Name
$\begin{array}{lllllllll}14 & 15 & 24 & 28 & 30 & 40 & 48 & 54 & 64\end{array}$

Put six of these numbers on the ones board of the Minicomputer using exactly one of these checkers for each number.
(2) (3)
(4)
(5)
(6)
(7)
(8)
(9)
 one negative checker and exactly one of these checkers for each number.
(2)
(4)
(5)
(6)
(7)
(8)
(9)

Name
N20 ***

Solve this puzzle by moving exactly one checker.

Name

N20 ****

Solve this puzzle by moving exactly two checkers, one for each arrow.

Clue 1

Julia lives at 8. A cheapest bus ride from Theresa's house to Julia's house costs 204. Draw roads to show all of the possible address numbers that Theresa could have.

Julia
8 -

Theresa's address number could be \qquad
\qquad
\qquad
\qquad ,
\qquad
\qquad , or \qquad .

Name
N21(b)

Clue 2

Theresa's friend Roberto lives at 781. A cheapest bus ride from Theresa's house to Roberto's house costs 30¢. Build a road to find Theresa's address number.

Roberto
781

What is Theresa's address number?

Name

N22

Find all of the whole numbers exactly two cords from 61.

61

The eight numbers that are exactly two cords from 61 are \qquad ,
\qquad , _ , \qquad , _ \qquad
\qquad , and \qquad .

Name

Draw a road to show the greatest number exactly five cords from 692.

692

Draw a road to show the least whole number exactly five cords from 692.

Name
N23 *

What fraction of the whole shape is each region?

A C

F \qquad

Complete.

$$
\frac{1}{4}=\frac{\square}{8}
$$

$$
\frac{1}{4}=\frac{\square}{16}
$$

$$
\frac{1}{2}=\frac{\square}{8}
$$

What fraction of the whole shape is each region?

G H J

Complete.

$$
\frac{1}{3}=\frac{\square}{6}=\frac{\square}{9}=\frac{\square}{12}=\frac{\square}{15}
$$

N23 **

Complete.

$$
\begin{array}{ll}
\frac{3}{4}+\frac{1}{4}= & 1 \frac{1}{4}+3 \frac{3}{4}= \\
1-\frac{1}{4}= & 5-2 \frac{1}{4}= \\
\frac{3}{4}+\frac{1}{2}= & 1 \frac{3}{4}+2 \frac{1}{2}= \\
3 \times \frac{3}{4}= & \frac{1}{2} \div 2=
\end{array}
$$

Name
N23 ***

Label the dots.

$$
+\frac{2}{3}
$$

$+2$

Build an arrow road from 1 to 10 . Try to use fewer than seven of these red and blue arrows.

$\stackrel{\bullet}{10}$

Name
N24 **

Label the dots and fill in the boxes for the arrows.

Name

Ku is a secret number.
Clue 1
Ku is the ending number of an arrow road starting at 1.5 and using exactly two red arrows and two blue arrows.

1.5

Clue 2

Who is Ku?

Name
N24 ****

$$
+0.1 \text { or }-0.1
$$

Use at most three arrows or cords to build a road.

$$
\text { from } 0.7 \text { to } 20
$$

$0.7{ }^{\circ}$

- 20
from 0.8 to 10.8
0.8 •
- 10.8
from 0.15 to 13.1
$0.15 \bullet$

Name
N25 *

Label each arrow \times some whole number and label the dots. Many solutions are possible.

Name
N25 **

Label each arrow \times some whole number and label the dots. Many solutions are possible.

Name
N25 ***

Label each arrow \times some whole number and label the dots. Many solutions are possible.

Name

Click is a secret number.
Clue 1

Each red arrow is for \times some whole number greater than 1 .

Click could be \qquad , \qquad , or \qquad .

Clue 2

Who is Click? \qquad

Name
N27

Red \qquad
Gray \qquad
Blue
White

Name
N27

What fraction of the rectangle is each color?

Red \qquad
Blue \qquad

White
Gray \qquad

Red \qquad
Blue \qquad

White \qquad
Gray \qquad

Name
N27 **

Color two-thirds of this region red. Use a ruler.

What fraction of this rectangle is shaded? \qquad

What fraction of this rectangle is not shaded?

Name
N27 ***

Label the dots.

Name

Draw all of the possible red arrows in this picture. One is done for you.

Name

N28 **

Flip is a secret number.
Clue 1

Flip can be put on this Minicomputer board using exactly two regular checkers.

Flip could be \qquad , _, \qquad , or \qquad .

Clue 2

Flip could be \qquad or \qquad .

Clue 3

Positive divisors of Flip

Who is Flip? \qquad

Name
N28 ***

Label the dots. Many solutions are possible.

Name
N28 ****
Rick is a secret number.
Clue 1

Rick could be \qquad , \qquad , \qquad , \qquad , \qquad , __, \qquad , __, \qquad ,

Clue 2

$$
\text { | } 200 \text { < Rick < } 1220
$$

Name
N29

What number is on the binary abacus? Make trades if you wish.

Put each number on the binary abacus. Use at most one checker on a board.

Name
N30

What number is on the base three abacus?

Put each number on the base three abacus.

Name
N30 *

Do the calculations by making backward trades until all of the checkers are on one board.

$\frac{1}{3}+\frac{2}{27}=$| $\frac{1}{3}$ | | \bullet | | \bullet | $\frac{1}{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | $\frac{1}{81}$ | $\frac{1}{243}$ | |$=$| \square |
| :---: |
| 27 |

$\frac{1}{3}+\frac{2}{9}+\frac{1}{81}=$| $\frac{1}{3}$ | $\frac{1}{9}$ | $\frac{1}{27}$ | $\frac{1}{81} \frac{1}{243}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | \bullet | \bullet | | \bullet | |

$\frac{2}{9}+\frac{1}{27}+\frac{1}{243}=\square^{\frac{1}{1}}$| $\frac{1}{3}$ | $\frac{1}{9}$ | $\frac{1}{27}$ | $\frac{1}{81}$ | $\frac{1}{243}$ |
| :--- | :--- | :--- | :--- | :--- |
| | \bullet | \bullet | | \bullet |
| 243 | | | | |

Name

N30 **

 Represent $\frac{1}{4}$ on the base three abacus.

Write a name for $\frac{1}{4}$ suggested by the configuration on the base three abacus.
$\frac{1}{4}=$

Name

Zig and Zag are secret numbers.
Clue 1

Could Zig be 82 ? \qquad

Could Zig be 75 ? \qquad Could Zag be 115 ?

Could Zag be 120?

Could Zag be 1000000 ?
Could Zig be $\widehat{5}$? \qquad
Could Zag be 80 ? \qquad

Could Zig be 0 ? \qquad .

Name
N31(b)

Clue 2

Zig and Zag are the least two numbers in this picture. Label the dots for Zig and Zag.

Each red arrow is for \div some whole number. Label the arrows and the dots. All of the dots are for different numbers. Many solutions are possible.

Each red arrow is for \div some whole number. Label the arrows and the dots. All of the dots are for different numbers. Many solutions are possible.

Each red arrow is for \div some whole number. Label the dots and the arrows. All of the dots are for different numbers. Many solutions are possible.

Name
N32 ****

Grim is a secret number.

Clue 1

Each red arrow is for \div some whole number.

Grim could be \qquad
\qquad
\qquad
\qquad
\qquad , or \qquad

Clue 2

Who is Grim?

Name

N33(a)

Imagine a game in which a player gets points for triangles (Δ) and squares (\square). Four Δ s and four \square s give 100 points. Also, six $\Delta \mathrm{s}$ and one \square give 100 points.

Which shape gives more points in this game? \qquad

Find the number of points for some different combinations of $\Delta \mathrm{s}$ and $\square \mathrm{s}$.

In this game, a player gets
how many points for a \triangle ? \qquad
how many points for a \square ? \qquad

Jon bought a bag with 3 blue and 4 red marbles for 684. Jan bought a bag with 4 blue and 3 red marbles for 724 .

Which costs less, a blue or a red marble? \qquad

Find the cost for some other combinations of marbles.

Find the cost for one blue marble. \qquad
Find the cost for one red marble. \qquad

Name

Put one of the symbols $\mathbf{+}, \mathbf{x},-, \div$ in each blank box to make the calculator sentences true. A symbol may be used twice in the same sentence.

$$
\begin{aligned}
& 3 \square 7 \square 19 \square 40 \\
& 18 \square 3 \square \square=42
\end{aligned}
$$

$$
4 \square \square \square \square 0 \square 28
$$

$$
750 \square 10 \square \square \square 75
$$

Name \qquad N34 **

Complete.

$$
\begin{aligned}
& 2 \times \square=240 \quad 3 \times \square=120 \\
& 4 \times \square=240 \\
& 6 \times \square=120 \\
& 8 \times \square=240 \\
& 12 \times \square=120 \\
& 16 \times \square=24024 \times \square=120 \\
& 32 \times \square=24048 \times \square=120 \\
& 64 \times \square=24096 \times \square=120 \\
& 7 \times \square=1823 \times \square=405 \\
& 14 \times \square=182 \\
& 9 \times \square=405 \\
& 28 \times \square=182 \quad 27 \times \square=405 \\
& 56 \times \square=18281 \times \square=405
\end{aligned}
$$

Name
N34 ***

Put one of the symbols $\mathbf{+}, \mathbf{x},-, \div$ in each blank box to make the calculator sentences true. A symbol may be used twice in the same sentence.

10

4

$\square 1.8$

Name

N34 ****

Put one of the symbols $\mathbf{+}, \mathbf{x}, \mathbf{-}, \div$ in each blank box to make the calculator sentences true. A symbol may be used more than once in the same sentence.

Name
N35 *

Name
N35 **

Label the dots.

Name
N35 ***

Label the dots.

Name

Label the dots.

Name
Nick is a secret number.
Clue 1

Nick could be \qquad , LU, \qquad
\qquad , \qquad , \quad,
\qquad , \qquad , _ , \qquad , \qquad
\qquad , ___, , and so on.

Clue 2

Nick can be put on this Minicomputer board using exactly one of these checkers:
(2) (3)
(4)
(5)
(6)
(7)
(8)
(9)

Nick could be \qquad , \qquad , \qquad , or \qquad .

Clue 3

Nick is a square number.
Who is Nick?

Name

N36 **

Nack is a secret number.
Clue 1

Nack could be \qquad , \qquad
\qquad , \qquad , \qquad , \qquad
\qquad ,
\qquad , _ , \qquad , \qquad
\qquad
\qquad , \qquad , , and so on.

What do you notice about the numbers that Nack could be?

Clue 2

Who is Nack? \qquad

Name

N36 ***

Neck is a secret number.
Clue 1

Neck could be \qquad , \qquad , \qquad , \qquad , \qquad , \qquad , \qquad ,
\qquad
\qquad
\qquad , and so on.

Clue 2

Neck could be \qquad , \qquad , or \qquad .

Clue 3

$$
-4=
$$

Neck $\longrightarrow \longrightarrow{ }^{-7}$

Who is Neck?

Name

N36 ****

Nock is a secret number.
Clue 1

-7 ${ }^{-1} \cdot{ }^{\prime}$

Nock could be \qquad , _ , \qquad
\qquad , ——, \qquad
\qquad ——, ,
\qquad , \qquad , \qquad , \qquad , \qquad , \qquad , \qquad , \qquad , and so on.

What do you notice about the numbers that Nock could be?

Clue 2
Nock is in this arrow picture.

Who is Nock? \qquad

Name

Draw all of the possible gray arrows and loops.

Name \qquad
Draw all of the possible gray and black arrows, loops, and cords.

Name \qquad
L2 ***

Complete the table.

\bigcirc	\bigcirc	$\bigcirc \bigcirc$	$0=0$
	-13		
$5 x$	48		
$3 x$		68	
	-7		-4
$8 \times$		48	
you are my son	you are my sister		
		you are my maternal grandfather	
		you are my friend's brother	
you are 5 years older than I am	you are 3 years younger than I am		
you are older than I am	you are the same age as I am		

Name

\oplus : addition with 10 -friends \otimes : multiplication with 10 -friends

Complete.
$2 \oplus 4 \oplus 6 \oplus 8=$ \qquad
$2 \otimes 4 \otimes 6 \otimes 8=$ \qquad
$1 \oplus 3 \oplus 5 \oplus 7 \oplus 9=$
$1 \otimes 3 \otimes 5 \otimes 7 \otimes 9=$
$3 \oplus 4 \oplus 5 \oplus 6=$ \qquad
$3 \otimes 4 \otimes 5 \otimes 6=$

What could the number in the box be?

$$
\begin{aligned}
& \square \otimes 7=3 \\
& 4 \otimes \square=2 \\
& 5 \otimes \square=5
\end{aligned}
$$

$$
\ldots \text { or }
$$

Name

\otimes : multiplication with 10 -friends
Complete.
$3^{1}=3$
$3^{2}=3 * 3=$
$3^{3}=3 \otimes 3 \otimes 3=$
$3^{4}=3 \otimes 3 \otimes 3 \otimes 3=$
$3^{5}=\quad 3^{9}=$
$3^{6}=\quad 3^{10}=$
$3^{7}=3^{11}=$
$3^{8}=\quad 3^{12}=$

$$
3^{25}=
$$

$$
3^{47}=
$$

$$
3^{100}=
$$

Name
L5(a)

Name
L5(b)

Name

\square

Cross out the labels that the strings cannot have. Some are done for you.

Label the strings.

Red	Blue
Multiples of 2	Multiples of 2
Multiples of 3	Multiples of 3
Multiples of 4	Multiples of 4
Multiples of 5	Multiples of 5
Multiples of 10	Multiples of 10
Carams	Qa
Positive Prime Numbers	Positive Prime Numbers
Grea 50	Grean 50
Tesoun 50	Teser 50
Greatel 10	Greater 10
Less than $\widehat{10}$	Less than $\widehat{10}$
Positive Divisors of 12	Positive Divisors of 12
Positimars of 18	Positur of 18
Positivers 20	Positiver of 20
Positiver 24	Positiverive 24
Positived of 27	Positiver 27

Put these numbers in the string picture.
$\begin{array}{llllllllll}\widehat{55} & \widehat{15} & 0 & 6 & 7 & 8 & 20 & 27 & 99 & 105\end{array}$

Name

L8

 **Cross out the labels that the strings cannot have.

The label for the red string is

The label for the blue string could be

Red	Blue
Multiples of 2	Multiples of 2
Multiples of 3	Multiples of 3
Multiples of 4	Multiples of 4
Multiples of 5	Multiples of 5
Multiples of 10	Multiples of 10
Odd Numbers	Odd Numbers
Positive Prime Numbers	Positive Prime Numbers
Greater than 50	Greater than 50
Less than 50	Less than 50
Greater than $\widehat{10}$	Greater than $\widehat{10}$
Less than $\widehat{10}$	Less than $\widehat{10}$
Positive Divisors of 12	Positive Divisors of 12
Positive Divisors of 18	Positive Divisors of 18
Positive Divisors of 20	Positive Divisors of 20
Positive Divisors of 24	Positive Divisors of 24
Positive Divisors of 27	Positive Divisors of 27

Exactly four of the numbers below cannot be put in the string picture because the label of the blue string is not known. Circle these four numbers. Put all of the other numbers in the string picture.
$\begin{array}{llllllllll}\widehat{80} & \widehat{15} & 2 & 3 & 7 & 24 & 50 & 60 & 99 & 105\end{array}$

Name

L8 ***

Cross out the labels that the strings cannot have.

The label for the red string is

The label for the blue string could be

Red	Blue
Multiples of 2	Multiples of 2
Multiples of 3	Multiples of 3
Multiples of 4	Multiples of 4
Multiples of 5	Multiples of 5
Multiples of 10	Multiples of 10
Odd Numbers	Odd Numbers
Positive Prime Numbers	Positive Prime Numbers
Greater than 50	Greater than 50
Less than 50	Less than 50
Greater than $\widehat{10}$	Greater than $\widehat{10}$
Less than $\widehat{10}$	Less than $\widehat{10}$
Positive Divisors of 12	Positive Divisors of 12
Positive Divisors of 18	Positive Divisors of 18
Positive Divisors of 20	Positive Divisors of 20
Positive Divisors of 24	Positive Divisors of 24
Positive Divisors of 27	Positive Divisors of 27

It is your turn in The String Game. You want to find the label of the blue string.

1) You can find the label for the blue string by playing exactly one of these numbers, even if you get a NO answer. Circle the number that you should play.
3
105
60
7
2
2) Repeat problem (1) but with these numbers.

$$
\begin{array}{llll}
20 & 100 & 6 & 55
\end{array}
$$

Name

L8 $\boldsymbol{*}$ ***

Cross out the labels that the strings cannot have.

The label for the red string could be

The label for the blue string could be \square or \square.

Red	Blue
Multiples of 2	Multiples of 2
Multiples of 3	Multiples of 3
Multiples of 4	Multiples of 4
Multiples of 5	Multiples of 5
Multiples of 10	Multiples of 10
Odd Numbers	Odd Numbers
Positive Prime Numbers	Positive Prime Numbers
Greater than 50	Greater than 50
Less than 50	Less than 50
Greater than $\widehat{10}$	Greater than $\widehat{10}$
Less than $\widehat{10}$	Less than $\widehat{10}$
Positive Divisors of 12	Positive Divisors of 12
Positive Divisors of 18	Positive Divisors of 18
Positive Divisors of 20	Positive Divisors of 20
Positive Divisors of 24	Positive Divisors of 24
Positive Divisors of 27	Positive Divisors of 27

Some of these numbers cannot be put in the string picture because the string labels are not known. Circle them. Put the others in the string picture.

$\widehat{55}$	$\widehat{15}$	2	3	4	8	9	10	24	105

It is your turn in The String Game. Assume the strings have different labels. By playing exactly one of these numbers you can find both of the string labels, even if you get a NO answer. Circle the number you should play.

20100
 6
 55
 ィ

Name

L9(a)

Write the code word for this arrow picture.

d b a f h c ge

Draw the arrow picture for this code word.

Name

Decode this message from Mr. Huffman.

Name

L11 **

Use this tree to write a 0-1 message for Boris to send to Mr. Huffman.

Name \qquad

L12
 *

Cross out the labels that the strings cannot have. Some are done for you.

Red	Blue
Multiples of 3	Multiples of 3
Multiples of 5	Multiples of 5
Multiples of 10	Multiples of 10
Odd Numbers	Odd Numbers
Positive Prime Numbers	Positive Prime Numbers
Greater 40	Greater 50
Greater than $\widehat{10}$	Greater than $\widehat{10}$
Less than $\widehat{10}$	Less than $\widehat{10}$
Positive Divisors of 12	Positive Divisors of 12
Positive Divisors of 18	Positive Divisors of 18
Positiverivers of 20	Positive?ivisers of 20
Positive Divisors of 24	Positive Divisors of 24
Positive Divisors of 27	Positive Divisors of 27

For each statement, circle one of the following: T (True)

F (False)
CT (Can't Tell)

1. The red string is for Less than $\widehat{\mathbf{1 0}}$.

T F CT
2. The blue string is for Positive Prime Numbers. T F CT
3. The red string is for Odd Numbers.

T F CT
4. The blue string is for Odd Numbers.

T F CT
5. The red string is for Multiples of 5.

T F CT
6. The blue string is for Positive Divisors of 27. T F CT
\square
Cross out the labels that the strings cannot have. Some are done for you.

The label for the red string is

The label for the blue string could be \square or \square.

Red	Blue
Multiples of 2	Multiples of 2
Multiples of 3	Numb
Multiples of 4	Multiples of 4
Multiples of 5	Multiples of 5
Multiples of 10	Multiples of 10
Cerners	Qamers
Positive Prime Numbers	Positive Prime Numbers
Greater than 50	Greater than 50
Less than 50	Less than 50
Greatel 10	Grater 10
Less than $\widehat{10}$	Less than $\widehat{10}$
Positive Divisors of 12	Positive Divisors of 12
Positivers of 18	Positivers of 18
Positive Divisors of 20	Positive Divisors of 20
Positive Divisors of 24	Positive Divisors of 24
Positimors of 27	Positive Divisors of 27

In the string picture, four regions are labeled: A, B, C, D. For each statement, circle one of the following: T (True)

F (False)
CT (Can't Tell)

1) $\widehat{15}$ is in region \mathbf{A}. $\quad \mathrm{F}$ F CT 5) 20 is in region \mathbf{D}. $\mathrm{T} F \mathrm{~F} C T$
2) 1 is in region \mathbf{C}. $\quad \mathrm{T} \quad \mathrm{F} \quad \mathrm{CT} \quad 6) 9$ is in region B. $\quad \mathrm{T} \quad \mathrm{F} \quad \mathrm{CT}$
3) 0 is in region \mathbf{B}. T F CT
4) 105 is in region \mathbf{D}. T F CT
5) 20 is in region \mathbf{A}. T F CT 8) 27 is in region \mathbf{A}. T F CT

Draw two different designs for the aquarium. Try to include as many glass panels as possible.
number of panels:

Name

G2(b)

Draw designs for an aquarium.
Try to include as many glass panels as possible.
What is the maximum number of places that posts could be put?

$$
\begin{array}{rrrrrr}
1 & - & - & -1 & - & - \\
1 & 1 & 1 & 1 \\
1 & -1 & - & 1 & - & 1 \\
1 & - & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & -1 & - & -1 & - & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
- & - & - & - & - & - \\
1
\end{array}
$$

number of panels: \qquad
number of posts: \qquad

$$
\begin{array}{ccccc}
1 & - & - & -1 & - \\
1 & 1 & 1 & 1 \\
1 & - & 1 & -1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & - & -1- & -1 & - \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
- & - & - & 1
\end{array}
$$

number of panels: \qquad number of posts: \qquad

Name
Draw three different designs for an aquarium.
Try to include as many glass panels as possible.
What is the maximum number of places that posts could be put?

number of panels:
number of posts: \qquad

number of panels:
number of posts: \qquad

Name

G3(a)

Draw designs for these aquariums.
Try to include as many glass panels as possible.

number of panels: \qquad number of posts: \qquad

$$
\begin{aligned}
& 1--1-\frac{1}{1}-\frac{1}{1}--\frac{1}{1}-\frac{1}{1}-\frac{1}{1} \text { number of panels: } \\
& \text { ! }
\end{aligned}
$$

$$
\begin{array}{cccc}
- & -1 & - & - \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & - & -1 & - \\
1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & -1 & - & 1 \\
1 & 1 & 1 \\
1 & - & -1 & - \\
1 & 1 & 1 \\
1 & 1 & 1 \\
- & - & - & -
\end{array}
$$

number of panels: \qquad
number of posts: \qquad
 number of panels:
number of posts:

Name
Draw designs for these aquariums.
Try to include as many glass panels as possible.

number of panels:
number of posts:
\qquad
\qquad
number of panels: \qquad
number of posts:
F

number of panels:

$$
G \begin{array}{rrrrrrrrr}
1 & - & 1 & -1 & - & 1 & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$ number of posts: \qquad

Name

G4(a)

Use a mirror to solve these problems.

Can you see a full moon? \qquad

Can you see a boat with three sails? \qquad

Can you see the dancer jump? \qquad

Can you fix the flat tire?

Can you see a stick-figure holding two flags? \qquad

Can you see the boy smile? \qquad

Can you read Boris's message? \qquad

חIVL しUUL DUUN JO

Use these patterns and a mirror to see each of the designs on Worksheet G4(c)

Name \qquad G4(c)
Use the patterns on Worksheet G4(b) and a mirror to see each of these designs.

Name

G4(d)

Use this triangle and a mirror to see the designs on Worksheets G4(e), (f), and (g).

Name
G4(e)
Which of these designs can be seen using a mirror and the triangle on Worksheet G4(d)?

Name

G4(f)

Which of these designs can be seen using a mirror and the triangle on Worksheet G4(d)?

Name

G4(g)

Which of these designs can be seen using a mirror and the triangle on Worksheet G4(d)?

Name \qquad

G5
 *

These designs can be seen using a triangle and a mirror.
Draw a line segment to show where the mirror would be in each of these designs. Use a mirror to check your work.

Name
These designs can be seen using a triangle and a mirror. Draw a line segment to show where the mirror would be in each of these designs. Use a mirror to check your work.

Which of these designs can be seen using a mirror and one of the patterns above?

1. Clamshell \qquad
2. Daisy \qquad
3. Spiral
4. Full Sun \qquad
5. Mouse \qquad
6. Snowman \qquad
7. Hand Fan \qquad
8. Snowflake \qquad
9. Sunset \qquad
10. Joker's Face \qquad

Name

\qquad

Use a mirror placed on the red line to reflect；then draw the bat＇s other wing．

								－	\cdots									
									－									
									－				，					
									7	－								
									\checkmark				\bigcirc	F				
														\bigcirc				
										\sum				0				
														\rightarrow				
										7								
									\bigcirc									
								－		－	\bigcirc			7				
								\cdots	－$=1$		－			＊				
								－$=$	C－ 5	＝	水－1							
								－	ESE	二韦二－	淙		1	－				
								\％	－	或	昗							
								－	＝	－								
								－										

Name

Use a mirror placed on the red line to reflect; then draw the car.

Name
G6 $\quad * * *$

Use a mirror placed on the red line to reflect; then draw the owl.

							\square											
					,	\checkmark												
					-													
					7	d												
							6											
				-	β		P											
					-		D											
				1	\bigcirc													
					'													
			,															
			P															
			,															
			${ }^{\circ} 1$															
					-													
					\checkmark	1	7											
					,	,	V											
					7	,												
					$\sqrt{7}$	1	1											
							77											

G6 $\boldsymbol{*} * * *$

Use a mirror placed on the red line to reflect; then draw the lion.
P|

Name
G7

Draw the lines of symmetry of each shape. Check your work with a mirror.

Draw the lines of symmetry of each shape. Check your work with a mirror.

Draw the reflection of each of the triangles below. Check your work with a mirror.

Draw the lines of symmetry of each picture. Check your work with a mirror.

There is more than 1 .

There are more than 2.
There are more than 3.

Name

G7 $\quad * *$
Draw the reflection of each of the triangles below. Check your work with a mirror.

Draw the reflection of each of the triangles below. Check your work with a mirror.

G8(a)

Use these dots and a double mirror to answer these questions.

- Can you make a design with 5 red dots? \qquad
- Can you make a design with 5 blue dots? \qquad
- Can you make a design with 4 red dots and 4 blue dots? \qquad
- Can you make a design with 3 red dots? \qquad
- Can you make a design with 7 blue dots? \qquad

Name
G8(b)

Name G8(c)

Name

Name

G8(e)

ABCDEFGHIJKLMN OPQRSTUVWXYZ

Classify each letter.

Different images in all four regions	Same images in regions 1 and 2	Same images in regions 1 and 3	Same images in regions 1 and 4	Same images in regions $1,2,3$, and 4

Name

G9(a)

Use blue paper, red paper, and a double mirror to see each of these designs.

Use blue paper, red paper, and a double mirror to see each of these designs.

Name

G9(b)

Use blue paper, red paper, and a double mirror to see each of these designs.

Use blue paper, red paper, and a double mirror to see each of these designs.

Place the double mirror on the red lines. Draw on this worksheet exactly what you see in the mirrors.

	-																			
													7							
	1																			
												V								
																				1

Name
Place the double mirror on the red lines. Draw on this worksheet exactly what you see in the mirrors.

		6											N						
		\%											\bigcirc						
			-										\bigcirc						
		W											*						
													$*$						
													4						
													-						
		ψ											\bigcirc						

Name

G10

What is the largest possible area? \qquad

O		Area
20 m	30 m	$600 \mathrm{~m}^{2}$

Use the other side to record other solutions.

\section*{perimeter 100 m \square} | $\bigcirc \bigcirc$ | $\bigcirc \bigcirc$ | Area |
| :--- | :--- | :--- |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

Name

G11

What is the largest possible area? \qquad

\bigcirc	\bigcirc	Area
20 m	60 m	$1200 \mathrm{~m}^{2}$

Use the other side to record other solutions.

Name
G12(a)

What is the largest possible area? \qquad

		Total Area
10 m	60 m	$600 \mathrm{~m}^{2}$

Use the other side to record other solutions.

$0 \bigcirc \bigcirc$	\bigcirc	Total Area

Name
G12(b)

What is the largest possible area? \qquad

0		Total Area

Use the other side to record other solutions.

Name
G12(c)

What is the largest possible area? \qquad

0	55 m	Total Area
15 m		$825 \mathrm{~m}^{2}$

Name
G12(d)

What is the largest possible area? \qquad

		Total Area
10 m	40 m	$400 \mathrm{~m}^{2}$

Name
P1(a)

Draw a bar graph to show the frequency of each sum. One is done for you.

Name

P1(b)

Complete. Two squares are filled in for you.

Draw a bar graph to show the frequency of each difference.

How many ways does Helen have to win? How many ways does Bruce have to win?
\qquad How many ways does Victor have to win?
\qquad
\qquad

Name

Use the information on Worksheet P1(a) to answer these questions.

What is the probability that the sum is $6 ?$
What is the probability that the sum is not $6 ?$ \qquad
What is the probability that the sum is more than $6 ?$ \qquad
What is the probability that the sum is less than $6 ?$ \qquad
When Bruce goes home, Helen and Victor decide to continue playing the sum game. They wish to play a fair game. List the sums each person could take to make the game fair.

Helen \qquad

Victor \qquad

Explain why your solution produces a fair game.

Name

P1 **

Use the information on Worksheet P1(b) to answer these questions.

What is the probability that the difference is $1 ?$ \qquad
What is the probability that the difference is not 1 ? \qquad
What is the probability that the difference is 0 ? \qquad
What is the probability that the difference in not 0 ?
When Helen goes home, Bruce and Victor decide to continue playing the difference game. They want to play a fair game. List the differences each person could take to make a game fair.

Bruce \qquad

Victor \qquad

Explain why your solution produces a fair game.

Name

\square

Use a ruler, if you wish, to answer these questions.

How many squares of this size

fit into the red region? \qquad

How many squares of this size

fit into the blue region? \qquad

Name

The king has another maze near the castle. If Reynaldo goes through this maze, find his probability of entering the room with the princess.

Use this square to help you solve the problem.

What is Reynaldo's probability of finding the princess? \qquad
What is Reynaldo's probability of finding the tigers? \qquad

Name
P3
Alice, Bruce, and Carl agree to play the following game.

1. Spin this spinner.

2. Select two marbles at random from the appropriate cup.

Winners: Alice wins if two red marbles are chosen.
Bruce wins if one red marble and one blue marble are chosen.
Carl wins if two blue marbles are chosen.

Use cords to show the winning combinations for cup H .

Use this square to show each player's probability of winning.
\square

Alice \qquad Bruce \qquad Carl \qquad

Name
P4(a)

Decode this message.																								
W	E			J	E		J	X	U			S	H	U	U	A		D	U	Q	H			
J	X	U	U		B	Q	1	J		J	J	H	Q	Y	D		1	J	Q	J	Y	E	D	
M	X	U	U	H	U		Q		J	H	H	U	U		X	Q	1		V	Q	B	B	U	D
E	L	U	U	H		J	X	U			M	Q	J	U	H		Y	D	1	Y	T	U		
J	X	U	U		J	H	U	U			0	E	K		M	Y	B	B		V	Y	D	T	
Q		V	V	E	H	C	K	B	Q			V	E	H		Q		1	U	S	H	U	J	
F	E	\checkmark	J	Y	E	D		M	Y		J	X		J	X	Y	1		F	E	J	Y	E	D
M	U			M	Y	B	B		H		K	B	U		J	X	U		M	E	H	B	T	

Name
P4(b)

Determine the number of times each letter appears in the message.

P6

Distribute 3 red marbles and 3 blue marbles into the two cups. Use all 6 marbles and put at least one marble in each cup.

Use the square below to calculate the probabilities of winning with this distribution of marbles.

Bruce wins
Player wins

What is Bruce's probability of winning? \qquad
What is the player's probability of winning?
Who is favored, Bruce or the player?

Distribute 3 red marbles and 3 blue marbles into the two cups. Use all 6 marbles and put at least one marble in each cup.

Use the square below to calculate the probabilities of winning with this distribution of marbles.

- Bruce wins
- Player wins

What is Bruce's probability of winning? \qquad
What is the player's probability of winning? \qquad

Who is favored, Bruce or the player?

Name
Label each picture with its code number.

256	128	64
32	16	8
4	2	1

\qquad

Name

Color the pictures that have these code numbers.

12

20

75

50

100

300

Name

40 and 100 are both on this arrow road. Label their dots.

$$
\begin{aligned}
& 5 x \\
& 2 x \\
& \frac{1}{4} x
\end{aligned}
$$

Name
W2 **

40 and 100 are on the same arrow road with arrows for plus some whole number.

Find at least eight possibilities for the red arrows.

Name
W2 ***

Use the composition rules above to find 40 and 100 in the picture below.

