W Strand

Workbooks
Introduction W-1
Use of the Workbooks Strand for Evaluation Purposes W-2
Content Overview W-3
Workbooks W-3
A Valentine Mystery W-3
The Hidden Treasure W-3
W-Lessons
W1 Selection of Problems \#1 (Lesson One) W-5
W2 Selection of Problems \#2 (Lesson Two) W-7
W3 A Valentine Mystery (Lesson One) W-17
W4 A Valentine Mystery (Lesson Two) W-21
W5 Selection of Problems \#2 (Lesson One) W-25
W6 Selection of Problems \#2 (Lesson Two) W-27
W7 Selection of Problems \#3 (Lesson One) W-37
W8 Selection of Problems \#3 (Lesson Two) W-39
W9 Selection of Problems \#4 (Lesson One) W-51
W10 Selection of Problems \#4 (Lesson Two) W-53
W11 The Hidden Treasure (Lesson One) W-63
W12 The Hidden Treasure (Lesson Two) W-69
W13 Selection of Problems \#5 (Lesson One) W-75
W14 Selection of Problems \#5 (Lesson Two) W-77
W15 Selection of Problems \#6 (Lesson One) W-87
W16 Selection of Problems \#6 (Lesson Two) W-89

WORKBOOKS INTRODUCTION

There are many opportunities for student to work individually during the course of the lessons described in the other content strands. In the Workbooks strand, however, it is this individualized work which becomes the chief end of the majority of lessons. The goal in this strand is to provide students with opportunities

- to review many of the ideas they have met in other content strands;
- to apply their acquired knowledge to new situations requiring various kinds of strategic thinking; and
- to learn how to read and use mathematics workbooks.

The following six workbooks are provided:

- Selection of Problems \#1
- Selection of Problems \#2
- Selection of Problems \#3
- Selection of Problems \#4
- Selection of Problems \#5
- Selection of Problems \#6
...and two storybooks.
- A Valentine Mystery
- The Hidden Treasure

Each workbook contains problems of varying levels of difficulty. Approximately the first ten pages of each workbook are easy problems, the next ten to twelve pages are average level difficulty, and the last ten pages are more challenging problems. For each workbook, we suggest that all students start work at the easiest level (i.e., on page 2) and then work through as many pages as they can handle during the two lessons scheduled for that workbook. We estimate that, in a typical class, about two-thirds of the students will correctly finish the first ten pages, about one-third will finish the first twenty pages, and a few will finish all or most of the workbook. These proportions will vary from class to class.

This guide contains an answer key for each workbook. The key follows an introduction to the workbook and a suggested collective lesson. The lesson either presents the workbook to the whole class or provides a warm-up activity on a problem similar to one found in the workbook.

The storybooks A Valentine Mystery and The Hidden Treasure provide problem-solving opportunities in a story context. These two booklets allow students to become deeply involved in an appealing fantasy as they struggle with difficult mathematics problems. The situations support topics and strategies developed in other strands.

Capsule Lesson Summary

Use a calculator relation to review patterns in both positive and negative integers through repeated subtraction of 5's. Begin the workbook Selection of Problems \#1. (This is the first of two lessons using this workbook.)

Materials			
Teacher	- Colored chalk	Student	- Selection of Problems \#1 Workbook - Calculator - Metric ruler - Colored pencils, pens, or crayons

Description of Lesson

Draw this arrow picture on the board.
T: \quad Put 76153 on your calculator. Press the keys $\square, ~ 5, ~ \square$ and then slowly press \square many times. Watch the numbers that appear on the display. What pattern do you notice?

S: \quad The ones digit alternates between 3 and 8.
T: If you keep pressing \boxminus, what are some numbers less than 100 that would eventually appear?

S: $\quad 98,93,88,78,73$, and so on.
$\mathrm{T}: \quad$ What is the least positive number that would appear?
S: 3.
Relabel the starting dot of the arrow on the board.
T: What negative numbers would appear?

Encourage students to predict some negative numbers that would appear bef3re pressing any more keys.

T: Put 3 on your calculator and again press $\square 5 \square \ldots$... What numbers appear?
S: $\quad \widehat{2}, \widehat{7}, \widehat{12}, \widehat{17}$, and so on. All of the negative numbers end in 2 or 7.
Repeat the above activity with one or both of the following arrow pictures.

Pattern: All positive numbers end in 7 or 2. All negative numbers end in 3 or 8 .

Pattern: All positive numbers end in 9 or 4. All negative numbers end in 1 or 6 .

Distribute copies of the workbook Selection of Problems \#1 and let the students work independently for the rest of the class period. You may need to work more closely with students new to CSMP or let those students work with veteran CSMP students for awhile. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

At the end of the lesson, collect the workbooks for your review. They will be used again in Lesson W2.

Writing Activity

You may like students to take lesson notes on some, most, or even all their math lessons. The "Lesson Notes" section in Notes to the Teacher gives some suggestions and refers to forms in the Blacklines you may provide to students for this purpose. In this lesson, for example, students may note problems in the workbook they found especially difficult or especially interesting. They may also like to create other problems similar to ones in the workbook for their classmates to solve or to give to a family member to solve.

Capsule Lesson Summary

Review using a circle model to add and subtract fractions. Continue individual work in the workbook Selection of Problems \#1. (This is the second of two lessons using this workbook.)

Materials

Teacher	- Colored chalk	Student	- Selection of Problems \#1 Workbook - Metric ruler - Colored pencils, pens, or crayons - Calculator

Description of Lesson

Draw six equal size circles and the following arrow road on the board.

Point to 3 and invite a student to color in three of the circles. Trace color in three of the circles. Trace
the blue arrow from 3 to \mathbf{b} as you ask,

T: What is $3+1 / 4$?
S: $\quad 3^{1 / 4}$.
T: How could we show this using the circles?

S: Color in one-fourth of another circle.
Put $31 / 4$ at \mathbf{b}. Then trace the red arrow to \mathbf{c} as you ask,
T: What is $3^{1 / 4}+1 / 2$?

S: $\quad 3^{3} / 4$. Color another half of the partially-colored circle.

Put $33 / 4$ at c. Continue to invite students to label the dots to the right of 3 and to use the circles to support the calculations.

Point to the dot to the left of 3 .
T: What number is here?
S: $\quad 2^{3 / 4}$.
T: Use the circles to convince us.

S: Go back to three colored circles. Then erase the coloring from one-fourth of the inside of one colored circle.

Label the dot for $23 / 4$. Invite students to finish labeling the dots in the arrow road, using the circles to support their calculations.

Distribute students' copies of the workbook Selection of Problems \#1. Ask students first to correct or complete pages from the previous weeks' work, and then to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in the workbook during a study time or to take it home as an assignment.

Assessment Activity

An individual student progress record for this workbook is available on Blackline W2(a). You may like to use this form to monitor student work.

Home Activity

If you choose to send workbooks home with students, you may want to include a letter (reminder) to parents/guardians. Blackline W2(b) has a sample letter.

Lambsteren rumter.
Clual
Lamit one ol thete nutter.

θ	
+	$=18$

Cluter

Whorlam? \qquad 21
§

Pu lhese nurtert in he wing plure.

 thent.

The 6_ bicesolite cute se numbered horder
$1, \frac{3}{6}, 10,15$, and_21.

 It
Ale montio change the game whal thist. 6he wowe wh the the Whe then s ruriter kew ihen_9_comet up, Then

Clusi

Telthinhth amonpliure. Listal the doth

Cluw

Telcoudbe 11 - 16 21, $\overbrace{-26}$
Clows
\qquad

Molsten ? 1

$$
{ }^{4.5}{ }_{3.8}{ }^{5.2}{ }_{4.75} 6_{4.05} 5.8{ }_{5.67}
$$

Lsted the dok and illimite bo mefor the arom.

15

Fin ibe bopetio mike thecakubliont corect

©

There se 50 wheth ithe Inied math

Exsi, As से

Puithere with hithe wing plure:
Cslomis Fixds Colorsto Kenukh.
 esthreyon

心

Capsule Lesson Summary

Begin the storybook A Valentine Mystery with a mysterious game played in the world of numbers in which each whole number sends exactly one valentine but receives ten. Discover that the rule for sending valentines involves dividing by 10 . Determine which numbers send a valentine to a given number and which number receives a valentine from a given number.

Description of Lesson

Prepare every student with the materials listed above before starting the lesson.
Pages 1-4
Read pages 1 through 4 together; encourage class discussion of the game Zero invented for the numbers to play. Restate the rule of the game written in the red box on page 3 .

Pages 5 and 6

Read pages 5 and 6 together.
Draw a red arrow starting at 79 on the board.

T: Study the poster on page 5. See if you can tell to whom 79 sends a valentine.
S: 7.
Continue by asking to whom 709 and 4037 send valentines. (Answers are in boxes.)

4037

Draw a red arrow ending at 62 on the board.
T: From whom could 62 receive a valentine?
S: 623.
T: Does 62 receive more than one valentine?
S: Yes, 62 receives valentines from 620, 621, 622, 623, 624, 625, 626, 627, 628, and 629. 62 receives exactly ten valentines.

T: Which numbers send valentines to 0?
S: $\quad 0,1,2,3,4,5,6,7,8,9$.

Pages 7 and 8
Ask the class to read these pages and to study the posters.
T: On your paper, draw a poster for 829. When you finish the poster for 829, do one also for 6025 also.

While students are working, draw this much of the posters on the board.

When many students have finished their posters, invite students to complete the posters on the board.
$829 \longrightarrow-829$
$829=820+9$
$829=(82 \times 10)+9$

$$
\begin{aligned}
& 6025 \longrightarrow 602 \\
& 6025=6020+5 \\
& 6025=(602 \times 10)+5
\end{aligned}
$$

Write this division problem on the board.
$\mathrm{T}: \quad$ What is the result of this division problem?
S: $\quad 82$ with a remainder of 9.
Write the solution on the board and note that 82 is the quotient.
T: The result of a division calculation is the quotient. In this calculation, the quotient is 82 and the remainder is 9 .

Pages 9 and 10
Ask the class to read these pages while you write these problems on the board.

T: Can you solve these division problems?
S: \quad For the first problem, the quotient is 238 and the remainder is 6.
S: For the second problem, the quotient is 0 and the remainder is 7.
S: \quad For the third problem, the quotient is 0 and the remainder is 0.
Record the solutions on the board.

Pages 11 and 12

Call on students to read these pages aloud. Note that the picture on page 12 is the completion of the poster on page 11 .

T: On your paper, draw a flower like the one on page 12. Then put 0 at the ending dot of the longest arrow and label the other dots appropriately.

As students work independently, draw this picture on the board.
T: What number could be at the center dot? (6, for example) Then from whom does 6 receive valentines? ($60,61,62, \ldots, 69$) Does everyone have the same solution?

S: \quad No, I put 8 at the center dot. The other dots are for 80 and 89.

T: How many different solutions are possible?
S: \quad Nine. The center dot could be for 1, 2, ..., or 9 since each of these numbers sends a valentine to 0.

Pages 13 and 14

Call on students to read the pages aloud.
T: On page 14, label all of the dots that are centers of flowers and some of the other dots.
While students are working independently, draw this picture on the board.

After a few minutes, direct the class's attention to the picture on the board.

T: \quad This is part of the picture on page 14. Who can label the dots?

Invite students to label the dots. The class should observe that many solutions are possible. One possible solution in shown here.

W3

Pages 15 and 16

Read these pages aloud.
T: Now close your storybooks. I will put another problem on the board.
Draw this arrow picture on the board, and ask students to copy it on their papers.

Invite students to label the other dots. The three dots on the right must be for 52,5 , and 0 respectively. There are many possibilities for the two dots on the left. The picture below shows one possible solution.

Collect students' copies of the storybooks for use again in Lesson W4.

Capsule Lesson Summary

Continue reading the storybook A Valentine Mystery. Find missing arrows for the relation "sends a valentine to" in an arrow picture. Discover that this game can be played with the whole numbers but not with people because there are infinitely many whole numbers.

Materials

Teacher	- A Valentine Mystery Storybook (in two parts, a and b)	Student	
	- A Valentine Mystery Storybook - Colored pencils, pens, or crayons - Paper		

Description of Lesson

Start the lesson with students having colored pencils and unlined paper. Have the copies of the storybook A Valentine Mystery ready to distribute the students in Exercise 3.

Exercise 1

\qquad
Ask a student to tell the story of A Valentine Mystery read thus far.
Draw an arrow starting at 76 on the board.
T: \quad To whom does 76 send a valentine?

S: 7.
T: Does 7 receive other valentines?
S: Yes, 7 receives exactly ten valentines-one each from 70, 71, 72, 73, 74, 75, 76, 77, 78, and 79.

Similarly, ask who sends valentines to 60 and to 405.

Repeat this activity using other numbers until students understand the rule for sending and receiving valentines.

Exercise 2

\qquad
Draw this picture on the board and ask students to copy it on their papers.

T: Who can label one dot?

S: \quad The dot with a loop must be 0 because 0 is the only number who sends a valentine to itself.

Label the dot for 0 and then ask students to label the other dots. Let your students work independently for a few minutes, then label the dots in the picture on the board. Suppose a student chooses to put 9 at \mathbf{p}.

S: I put 9 here, but any number from 1 to 9 could be here because they all send valentines to 0.

Invite students to label the other dots on the board. The class should notice that many solutions are possible. The picture below shows one possible solution.

Exercise 3

\qquad
Distribute students' copies of the Storybook A Valentine Mystery.

Pages 17 and 18

Call on students to read pages 17 and 18 aloud.

T: Label all of the center dots of flowers and some of the other dots on pages 17 and 18. Notice that one dot on page 18 (far right) is already labeled (5 643).

While students are working, draw this arrow picture on the board.
After several minutes, call the class's attention to the picture on the board.

T: This is part of the picture on pages 17 and 18. Who can label one of the dots?

Invite students to label dots until they are all labeled. The numbers less than 5643 must be $564,56,5$, and 0 . There are many possibilities for the other dots. Encourage students to read the numbers as they write them in the picture. One possible solution is shown here.

Pages 19-22
Read aloud and discuss these pages. Pages 19 and 20 give some hints on how to label the dots in the poster on pages 17 and 18. A full solution is on pages 21 and 22 .

Pages 23 and 24

Call on students to read pages 23 and 24 aloud.
T: The flowers on pages 23 and 24 can be connected by red arrows. To help figure out where to draw the red arrows, label the center dot of each flower. I suggest that you begin on page 24 because the numbers there are smaller.

Let students work on these pages for several minutes. Then tape IG-IV Workbook Poster \#1 on the board. This poster is in two pieces and should be displayed to look exactly like pages 23 and 24 in the storybook.

Call students' attention to the upper half of the right side of the poster.

T: \quad This poster is a copy of pages 23 and 24 of your storybook. Which number is this (point to \mathbf{b})?

S: $\quad 543$, because 5436 sends a valentine to 543.
T: Where could we draw a red arrow?
S: From 543 to 54.

Label the dot for 543 and draw a red arrow from 543 to 54 on the poster.

T: Can someone label another center dot?

\mathbf{S} (pointing to C): 57083 is here.
S: We can draw a red arrow from 57083 to 5708.
Continue in a similar manner until all of the missing red arrows have been drawn. Use the completed picture on pages 25 and 26 of the storybook as your answer key. Labeling the center dots of the flowers aids in finding the red arrows. Encourage your students to both write and read the numbers as they are put in the picture.

Pages 25-28
After completing the poster, tell students to look at the solution on pages 25 and 26 and then to read pages 25 through 28. Discuss the picture on pages 27 and 28.

T: Which number is in the center of the picture? (0)
Is the picture finished? (No)
Could we ever finish drawing this picture?
S: No. Each number receives valentines from ten different numbers, and then each of those numbers receives ten more valentines and so on forever.

Pages 29-30
Read and discuss these pages.
T: Why can this game be played by numbers but not by people?
S: \quad There are a limited number of people in the world, but there are always more and greater numbers.

Extension Actrivity

Some students may like to try to invent another similar game that the numbers could play. For example, ask students to describe a game where every number would send one valentine and receive 12.

Writing Activity

Suggest that students write a description of the valentine game and then explain to a friend how this game works with numbers, but does not work with people. Some students may compare this game to the idea behind chain letters.

Label the dot for 0 and then ask students to label the other dots. Let your students work independently for a few minutes, then label the dots in the picture on the board. Suppose a student chooses to put 9 at \mathbf{p}.

S: I put 9 here, but any number from 1 to 9 could be here because they all send valentines to 0.

Invite students to label the other dots on the board. The class should notice that many solutions are possible. The picture below shows one possible solution.

Exercise 3

\qquad
Distribute students' copies of the Storybook A Valentine Mystery.

Pages 17 and 18

Call on students to read pages 17 and 18 aloud.

T: Label all of the center dots of flowers and some of the other dots on pages 17 and 18. Notice that one dot on page 18 (far right) is already labeled (5643).

While students are working, draw this arrow picture on the board.
After several minutes, call the class's attention to the picture on the board.

T: \quad This is part of the picture on pages 17 and 18. Who can label one of the dots?

Invite students to label dots until they are all labeled. The numbers less than 5643 must be $564,56,5$, and 0 . There are many possibilities for the other dots. Encourage students to read the numbers as they write them in the picture. One possible solution is shown here.

Pages 19-22
Read aloud and discuss these pages. Pages 19 and 20 give some hints on how to label the dots in the poster on pages 17 and 18. A full solution is on pages 21 and 22.

Pages 23 and 24

Call on students to read pages 23 and 24 aloud.
T: The flowers on pages 23 and 24 can be connected by red arrows. To help figure out where to draw the red arrows, label the center dot of each flower. I suggest that you begin on page 24 because the numbers there are smaller.

Let students work on these pages for several minutes. Then tape IG-IV Workbook Poster \#1 on the board. This poster is in two pieces and should be displayed to look exactly like pages 23 and 24 in the storybook.

Call students' attention to the upper half of the right side of the poster.

T: This poster is a copy of pages 23 and 24 of your storybook. Which number is this (point to \mathbf{b})?

S: $\quad 543$, because 5436 sends a valentine to 543.
T: Where could we draw a red arrow?
S: From 543 to 54.

Label the dot for 543 and draw a red arrow from 543 to 54 on the poster.

T: Can someone label another center dot?

\mathbf{S} (pointing to \mathbf{c}): 57083 is here .
S: We can draw a red arrow from 57083 to 5708.
Continue in a similar manner until all of the missing red arrows have been drawn. Use the completed picture on pages 25 and 26 of the storybook as your answer key. Labeling the center dots of the flowers aids in finding the red arrows. Encourage your students to both write and read the numbers as they are put in the picture.

Pages 25-28
After completing the poster, tell students to look at the solution on pages 25 and 26 and then to read pages 25 through 28. Discuss the picture on pages 27 and 28.

T: Which number is in the center of the picture? (0) Is the picture finished? (No) Could we ever finish drawing this picture?
S: No. Each number receives valentines from ten different numbers, and then each of those numbers receives ten more valentines and so on forever.

Pages 29-30
Read and discuss these pages.
T: Why can this game be played by numbers but not by people?
S: \quad There are a limited number of people in the world, but there are always more and greater numbers.

Extension Activity

Some students may like to try to invent another similar game that the numbers could play. For example, ask students to describe a game where every number would send one valentine and receive 12.

Writing Activity
Suggest that students write a description of the valentine game and then explain to a friend how this game works with numbers, but does not work with people. Some students may compare this game to the idea behind chain letters.

Review the concepts of area and volume, mentioning that one unit for measuring area is a square centimeter and that one unit for measuring volume is a cubic centimeter.

Build a box shape (rectangular prism) with your set of cubes. Using a cube as the unit, the box should be 5 cubes by 2 cubes by 3 cubes. Display the structure where everyone in the class can see.

T: Pretend that each of these cubes is a cubic centimeter. What is the volume of this box? ($30 \mathrm{~cm}^{3}$) How do you know?

S: There are three layers with ten cubes in each.
S: \quad There are five layers with four cubes in each.
S: \quad There are two layers with 15 cubes in each.
Show one layer of a box 4 cubes by 3 cubes by 1 cube, laying it flat on the cardboard box.
T: If a box had exactly one layer like this, what would its volume be? (12 cm^{3})
Two layers? ($24 \mathrm{~cm}^{3}$)
Ten layers? ($120 \mathrm{~cm}^{3}$)
Twenty layers? $\left(240 \mathrm{~cm}^{3}\right)$
Forty layers? ($480 \mathrm{~cm}^{3}$)
Repeat the activity, starting with a layer 8 cubes by 2 cubes by 1 cube. Turn it so that it stands tall.
Display 28 cubes. Ask what size boxes can be built with all 28 cubes. Record the dimensions as students build some of them.
$28 \mathrm{~cm}^{3}$
1 cm by 1 cm by 28 cm
2 cm by 1 cm by 14 cm
4 cm by 1 cm by 7 cm 2 cm by 2 cm by 7 cm

W5

Distribute copies of the workbook Selection of Problems \#2 and let students work independently for the rest of the class period. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

At the end of the lesson, collect the workbooks for your review. They will be used again in Lesson W6.

Draw this arrow road on the board.
Label the starting dot with each of these numbers in turn and ask the class for the corresponding ending numbers. (Answers are in boxes.)

Draw a red arrow from the starting dot of the arrow road to its ending dot.

T: What is $10 \times$ followed by $8 \times$ followed by $\div 10$?

S: $\quad 8 \mathrm{x}$.
Label the red arrow and put 5.7 at the starting dot. Write the suggested multiplication problem near the arrow picture.
5.7
$\begin{array}{r}8 \\ \hline\end{array}$
Follow blue arrows and label corresponding ending dots as you ask,

$\mathrm{T}: \quad$ What number is 10×5.7 ? (57)
Now we need to multiply 8×57.
Write the problem next to the first multiplication problem. Invite a student to multiply 8 and 57 at the board.

T: What number is

$$
456 \div 10 ?
$$

After putting 45.6 at the ending dot, trace the red arrow and announce,
T: \quad So $8 \times 5.7=45.6$.
Record the answer to the first multiplication problem. Here blue arrows relate the two problems.

T: These two problems are related.

To multiply 8×5.7, we can

multiply 8×57 and then divide the answer by 10 since 57 is 10×5.7.

Repeat the activity to calculate 8×9.13.

Distribute students' copies of the workbook Selection of Problems \#2. Ask students first to correct or complete pages from the previous week's work, and then to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in the workbook during a study time or to take it home as an assignment.

Assessment Activity

An individual student progress record for the workbook is available on Blackline W6. You may like to use this form to monitor student work.

Cluti
Torlsone dithere numbers

Hofmykh bnger did, iou mike the tegnen? \qquad cm

Emenditilhe wamen und lith $14 . 今$ cmiong
\qquad

Ewnd tithine teymer und lits 1.6 cmiong
Honmukh bryer dis, ou muke the tegnen ? cm

Whith w wel number.
Cluti

Whothan 1 ?
5

Corplete bete nutter whencek.

$$
\begin{gathered}
37 \times 3=111 \\
37 \times 6=92 \\
37 \times 9=333 \\
37 \times 12=444 \\
37 \times 15=555 \\
\vdots \\
37 \times 27=999 \\
37 \times 30=1110
\end{gathered}
$$

6

Gut+ K Ky Frult

Whalth the knoth al the thonet roue bereen Eureks and K-htors ? _ 23 _

Phal the knghol the thonet roue bexcenkethens and hook din? -15
Mosit the knoth al the thonet roue bercen Eureks ind Toluis? \qquad

16

The ble latelt one ol thete:

Lset ithe wingh

17

Malsh tere nurtet

 ClusiXil lithe ending rumter of a rosd waning al I and und

Clutis

Whorx)
13

 Mnd Foremixk:

Mxh getr a poin.

Lith shirgame ? Emiln

Io Mxchgers pohn.
ves, both have fwo ch ances culot tour to 山h.

 Hant game Wh there inc coith.
hith shar game ? Eghth
Yes, both h rue tuo chances outolbur 10 win.

\rightarrow
H_{3}
$0{ }^{2}$

Lstel hedorson thch nurter Ine.

Then pu s reddet on esth helor 6.1sTs.

\leq

 to howeshol the numter,

$\stackrel{-1}{\omega \mid}=70$

\approx

Mblle ateren numter.

Chate
 chevery, one on esth bousd

Moll coudbe 24_- 4.8, or_8.8.
Clu*s

Whole Mel ? 2.4
\approx

Mit a name breach nuriter ung ensil, Iour it and
 olth st vir ith.

$$
+-() \times \div
$$

$(44-44=0$	$(4-4)+(4 \div 4)=1$
$(4 \div 4)+(4 \div 4)=2$	$(4+4+4) \div 4=3$
$(4-4) \times 4)+4=4$	$((4 \times 4)+4) \div 4=5$
$(4+4) \div 4)+4=6$	$(4+4)-(4 \div 4)=7$
$(4 \times 4)-4)-4=8$	$4+4+4+4=16$
$(4+4+4) 84=48$	$(4 \times 4)+(4 \div 4)=17$
$(4 \times 4 \times 4)-4=60$	$((4 \times 4)+4) \times 4=60$

s.

Manysolutions are possble.

Description of Lesson

Write these number sentences on the board.
T: An eraser gremlin has erased all of the decimal points in the results of my calculations. Try to determine where a decimal point should be placed in each result to make the number sentence correct.

As students announce where to put decimal points, ask for explanations and encourage use of estimation. For example:

$$
\begin{aligned}
2.35 \times 7 & =935 \\
1.935 \times 0.57 & =2505 \\
6.1-2.341 & =3759 \\
8-5.93 & =207 \\
17.3-9 & =83 \\
1.9 \times 43 & =817 \\
8.2 \times 7.53 & =61746 \\
0.2 \times 81 & =162
\end{aligned}
$$

S: $\quad 8-5.93=2.07$. Since 5.93 is close to 6 and $8-6=2$, the result should be close to 2 .
S: $\quad 1.9 \times 43=81.7$. Since 1.9 is close to 2 , the result should be close to $2 \times 43=86$.
Get class agreement on the placement of decimal points.

$$
\begin{aligned}
2.35 \times 7 & =9.35 \\
1.935 \times 0.57 & =2.505 \\
6.1-2.341 & =3.759 \\
8-5.93 & =2.07 \\
17.3-9 & =8.3 \\
1.9 \times 43 & =81.7 \\
8.2 \times 7.53 & =61.746 \\
0.2 \times 81 & =16.2
\end{aligned}
$$

Distribute copies of the workbook Selection of Problems \#3, and let students work independently for the rest of the class period. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

At the end of the lesson, collect the workbooks for your review. They will be used again in Lesson W8.

Capsule Lesson Summary

Play a decimal number line game with intervals to focus attention on decimals with a thousandths place. Continue individual work in the workbook Selection of Problems \#3. (This is the second of two lessons using this workbook.)

	Materials	
Teacher \quad - Colored chalk	Student	- Selection of Problems \#3
		Workbook
		Colored pencils, pens, or crayons
	- Metric ruler	
		- Calculator
		Double mirror

Description of Lesson

This warm up activity uses a decimal number line game called Intervals. The purpose of the game is to introduce the thousandths subgraduation. You need not choose the secret number until near the end of the game. As an example of how one may control the game and very quickly "home-in" on the thousandths subgraduations, dialogue of a possible game is included below.

Draw a line on the board.
T: I am thinking of a secret number between 0 and 10. Would someone like to guess what it is?

S: 6.

Put 6 on your number line.
T: Each time you guess, I will respond to your guess with a number; the secret number is somewhere between your guess and my response. My response to your guess is 9. This tells you that my secret number is between 6 and 9.

Put 9 on the number line and draw this red line segment.

T: The red segment is a reminder that the secret number is between 6 and 9. Another guess?
S: $\quad 7$.
T: 11 .

T: Now what do you know about my secret number?
S: It is between 7 and 11.
S: Yes, but it is also between 7 and 9.

T: I will record this on the number line.

T: Do you have another guess?
S: 8.
T: 7.
S: \quad The secret number is between 7 and 8 .

S: $\quad 7.5$.
T: 7.2.

S: \quad The secret number is between 7.2 and 7.5. I'll guess 7.4.
$\mathrm{T}: \quad$ 7.3. Let's magnify the number line.
Draw this magnified part of the number line.
S: $\quad 7.35$.
T: 7.36.

Now we know the secret number is between 7.35 and 7.36 . What is your next guess?
S: $\quad 7.353$.
T: Can you locate 7.353 on the number line?
S: \quad Divide the segment between 7.35 and 7.36 into ten smaller segments of the same length.
T: Let's magnify the number line again and locate 7.353. My response is 7.357 . Do you have another guess?

S: $\quad 7.355$.
T: That's it!
Distribute students' copies of the workbook Selection of Problems \#3. Ask students first to correct or complete pages from the previous week's work, and then to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in the workbook during a study time or to take it home as an assignment.

Assessment Activity

An individual student progress record for the workbook is available on Blackline W8. You may like to use this form to monitor student work.

Foll blecren rumber.

Cluel

Fols one dithetenumters.

GIWat

Mnor 70 : 125
5

Pu a Angt dich in exh bo 110 mall he calculybmecomect

36
$\begin{array}{r}+316 \\ \hline 978\end{array}$

2 目744
-4 囯 8
图34目4

Pa ithe numberylint wing picue．

$$
\begin{array}{lllllll}
2 & 3 & 5 & 100 & 36 & 61 & 66
\end{array}
$$

$2.73+5+0.037=7.767$
$116.73-1.691=115039$

$$
7-1.063=5.937
$$

$$
16.439-7=9.439
$$

$$
283 \times 0.9=2.54 .7
$$

$$
50.12 \times 2.9=14.5348
$$

 pothler numter uthy ithes sione.

$\frac{219}{5}^{\mathrm{F}-1}$
61315

II

$$
\begin{aligned}
& \text { 47 } 6 \\
& \text { 670 } \\
& \begin{array}{r}
\times 9 \\
\hline 4264
\end{array} \\
& \begin{array}{r}
\times 6 \\
\hline 4020
\end{array} \\
& 2 \text { 圂 } \\
& \times 8
\end{aligned}
$$

> 2439
> 2园 4019
> 47

 nequile checher.

Who fr Fik ? 18
13

m

6 bltatc

6b coudbe 0.5, 0.9 1.3, 16, 2_os. 1.

Clow

Kjo if aterce number.

GIus1

Kjo F one ol hete numberk

Clower
One ol therered dotr hlorkju Lsbedslol the redddik.

 Whal leith ditures Irom Arp is Dulst _63 -
 -Bp, Eanco, Gatb, Hit, end Gislt --

What bithe kreft st your|surnyt _114__Diter solubions
\Rightarrow arepossible.

Thispleure thite map of the iumett in a lage cauc. Isbu

Ethy low lisurandxmi, decidet wikh iumett wiolon

 oher mehod of wolve
oher method
Sn aded tor desdend Unshaded for ext

领

Description of Lesson

On the board, draw this arrow picture and list these numbers.

Invite students to label the dots with the given numbers. Do not specify which dot to label first. Ask students to explain their answers. They may refer to a number line. Correct locations of the numbers are shown here.

Erase the numbers from the picture and present a similar problem with these numbers.

To explain their answers, let students use any of several model; for example, money, a Minicomputer, or a number line. Correct locations of the numbers are shown here.

Distribute copies of the workbook Selection of Problems \#4, and let students work independently for the rest of the class period. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

Note: You may like to make square tiles available to students when working on page 21 of the workbook.

W9

At the end of the class period, collect the workbooks for your review. They will be used again in Lesson W10.

Capsule Lesson Summary

Review coloring a specified fraction of a rectangular grid. Continue individual work in the workbook Selection of Problems \#4. (This is the second of two lessons using this workbook.)

Materials

| Teacher | - Colored chalk | Student |
| :---: | :--- | :--- |\quad - Selection of Problems \#4

Description of Lesson

Draw this picture on the board.
T: How many rows of small rectangles are there? (Four) How many columns? (Five)

Color one column red and three columns blue.
$\mathrm{T}: \quad$ What fraction of the whole shape is red?
$\mathrm{S}: \quad 1 / 5$, since one of the five columns is red.
S: $\quad 4 / 20$, since the insides of four small rectangles are shaded red and there are 20 small
 rectangles altogether.

On the board, note that $1 / 5=4 / 20$.
T: What fraction of the whole shape is blue?
S : $\quad 3 / 5$, since three of the five columns are blue.
S: $\quad 12 / 20$, since the insides of 12 small rectangles are blue and there are 20 small rectangles altogether.

On the board, note that $3 / 5=12 / 20$.
T: What fraction of the whole shape is colored?
S: $\quad 4 / 5$ or $16 / 20$.
On the board, indicate that $1 / 5+3 / 5=4 / 5$ and $4 / 20+12 / 20=16 / 20$.

$\mathrm{T}: \quad$ What fraction of the whole shape is not colored?

S: $\quad 1 / 5$ or $4 / 20$.
Erase the picture and redraw the original rectangle.
Then color one row red and two rows blue.

Repeat the above activity with this coloring to reach the following results:
red: $1 / 4=4 / 16$
blue: $1 / 2=2 / 4=8 / 16$
Erase the board and then draw this picture.
T: How many rows are there? Columns?
S: There are three rows and four columns.
colored: $1 / 2+1 / 4=3 / 4=12 / 16$
not colored: $1 / 4=4 / 16$

Invite a student to color two-thirds of the whole shape red, for example:

Erase the picture and redraw the rectangle; then invite a student to shade three-fourths of the whole shape blue, for example:

Distribute students' copies of the workbook Selection of Problems \#4. Ask students first to correct or complete pages from the previous week's work and then to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in the workbook during a study time or to take it home as an assignment.

Assessment Activity

An individual student progress record for the workbook is available on Blackline W10. You may like to use this form to monitor student work.

Manysoluibns are possible.
\$

Peyls bteckinumber
Clwis
Peucan be thenon the thinkompukrboands b, isking oll chail, one checker.

	\dagger
ψ	\dagger

Whatrev? T- Tic
4

 colbred red

$\frac{6}{10}=\frac{3}{5}$
?

Gxonthetwerel munter．

Lstet the dyt．

 thethert：
（5）6］B（9）\square－\div ㅂ
 more ithen once．
lochtifeshime ouprensht．． $\mathrm{Tr}_{\mathrm{r}} \mathrm{N}$ whendku han the smoun thenen ior est number．
$\begin{array}{lll}\text { 回回回困 } 100 & \text {［84］}\end{array}$
回回回回 $1000[34]$

图口回口固回－7［04］

Menysolutions arepossible．
is

The blue labeth one of thets:

17

Mall bltckinumet.

Clusi

 ol liter checkerk

> (6) (6) \quad| 9 | |
| :--- | :--- |
| | + |

Whin cousbe 121, 89, $\overline{23}, 65$ _ 81,69 , 6.3.or 60

Cluse

Molitheris? 81 19

Pu itherenuritert hithe whig plare. One 15 dine lr , ofu

$$
\begin{array}{ccccc}
7 \div 3 & 18 \div 4 & 13 \div 2 & H \div 7 \\
& \frac{7}{2} & \frac{32}{5} & \frac{28}{10}
\end{array}
$$

3
 Hownsh, heol h, mitr r_{v} ? 1

 thise wh
... molhetal whmenr.
... burihetod whmenr.

... no he ol x , mmerr.

Other solutons are possible.
 thase wh
... ©nt Ine ol h, miners.

... no he ol

 Incont thanke．

8 붕 荌 8

Other solutions arepossble．
图 \div－ 5 － 5 －2

6］（20＋ 10 － 15.2

120 日 0 日

Another solution is possible．

3
 of then chelery．

$$
\Theta \odot \oplus \odot
$$

α	6
	$=21$

务

 wime populbion shltwort

 sesthsnktwort
Whe the numberol wate in twh reglin．

 $\stackrel{7}{c}$

月dis．
Clow 1

$$
0.6 \times 5+3
$$

HAcoult Cluate
 cheoters．

Hdcoulte 48，6．6．8，or 18 ．

Cluts

Fditinilitsmonqkire．

Capsule Lesson Summary

As part of a detective story about a stolen diamond medallion, count the number of shortest routes along streets between two points of a city. In the process, construct part of Pascal's Triangle.

| | | | |
| :--- | :--- | :--- | :--- | Materials

Advance Preparation: This lesson is described with use of an overhead projector and a transparency made from Blackline W11. IG-IV Workbook Poster \#2 may replace the transparency, but you may want to laminate a copy or to have a replacement copy for Exercise 2. Use Blackline W11 to make copies of the grid map for students

Description of Lesson

Note: Two lessons are based on the storybook The Hidden Treasure. In these lessons, we suggest you tell the story and present the problems. Then, after the problems have been solved, we suggest you distribute the storybooks. By reading the storybook at that point, students review the methods used in class to solve the problem. You may wish to read the storybook yourself before presenting the two lessons.

Exercise 1

\qquad
Display a copy of the grid map on Blackline W11 or the IG-IV Workbook Poster \#2. Distribute copies of the grid map for student use.

T: \quad This is the street map of a town. Here at H is the house of a famous detective, Spike. Thieves recently stole a diamond medallion from his house. He has a lead and thinks that the thieves hid the medallion at T. Spike needs better evidence, so he decides to look for clues by exploring the routes the thieves might have taken from H to T . Spike knows that the thieves used a getaway car and, therefore, that they stayed on the streets. Who can trace a route that the thieves might have taken?

Let several students trace and draw routes from \mathbf{H} to \mathbf{T}.
Tell students to draw three routes from \mathbf{H} to \mathbf{T} on their worksheets and to find the length of each route in blocks.
$\mathrm{T}: \quad$ What is the length of a shortest route from H to T ? (14 blocks)

Count the lengths of the routes already drawn on the board. Then invite students to draw several additional routes of length 14 from \mathbf{H} to \mathbf{T}. For example:

$\mathrm{T}: \quad$ Did anyone find a route from H to T that is longer than 14 blocks?

Invite students to draw one or two such routes on the board.
T: What do you notice about routes longer than 14 blocks? How can you tell, without counting, that the length of a route is more than 14 blocks?

S: \quad A route is longer than 14 blocks if it goes farther north or farther east than T.
S: \quad A route is longer than 14 blocks if it ever goes west or south (moves away from T.)
Conclude that when Spike travels only north and east from H to T, his route will be exactly 14 blocks long.

T: \quad Spike assumes that the thieves took a shortest route from H to T ; that is, a route of length 14. He plans to explore all such routes. We found a few of these routes already. How many possible routes do you think there are for Spike to explore?

Accept students' estimates, and record them on the board.
Let the class discuss methods for counting all the shortest routes from \mathbf{H} to \mathbf{T}. You may follow one or two suggestions, such as making a list or a tree diagram, until these methods become too complicated. Lead the class to consider a method involving first trying to solve a simpler but similar problem.

T: Often in mathematics it is a good strategy to first solve some similar but easier problems. Let's try to solve some simpler problems; then we can use their solutions to solve the original problem.

Exercise 2

Display a clean copy of the grid map, and provide students with a clean copy as well. Refer to intersection points closer to \mathbf{H}.

T: Before counting the number of routes from H to T , let's count the number of routes from H to some intersections closer to H . How many different routes are there from H to this point (diagonally opposite H).
S: Two.
Invite a student to trace the two routes, and put 2 near that corner.

In a similar manner, ask students to find the number of routes there are

- from \mathbf{H} to \mathbf{B} (Three)
- from \mathbf{H} to \mathbf{C} (Three)
- from \mathbf{H} to \mathbf{D} (Four)
- from \mathbf{H} to \mathbf{E} (Four)
- from \mathbf{H} to \mathbf{F} (Five)
- from \mathbf{H} to \mathbf{G} (Five)

T: What patterns do you notice?

Encourage students to identify and explain both the symmetry and the counting (2, 3, 4, 5) patterns. Extend the counting pattern by putting 6, 7, 8, and 9 by the appropriate corners.

Also note that there is only one shortest route to each intersection directly north or directly east of \mathbf{H}. As you label the intersections at the board, direct students to copy the numbers on their second copy of the grid.

T (pointing to \mathbf{U}): How many routes are there from H to this corner?

S: Six.

There may be disagreement, so invite students to defend their answers by tracing all of the routes from \mathbf{H} to \mathbf{U}. Encourage students to be systematic so as to find all six routes without duplication. Put 6 near the corner.

T: Can anyone convince me that there are six routes from H to this corner (U) without having to trace the routes?

Perhaps some students will notice that all of the routes from \mathbf{H} to \mathbf{U} must pass through \mathbf{B} to \mathbf{C}. Since there are three routes from \mathbf{H} to \mathbf{U} via \mathbf{B} and three routes from \mathbf{H} to \mathbf{U} via \mathbf{C}, there are six routes in all from \mathbf{H} to \mathbf{U}. If this explanation is not offered by students, use the following dialogue to lead them to this observation. The dialogue uses letters to indicate where you or students point on the grid.

T: How many roads from H to U pass through B ?

S: \quad Three, because there are three routes from H to B .
$\mathrm{T}: \quad$ How many routes from H to U pass through C ?
S: \quad Three, because there are three routes from H to C.
T : Are there any routes from H to U that do not pass through either B or C ?
S: No.
$\mathrm{T}: \quad$ So there are six routes from H to U : the three routes through B and the three routes through C.

Direct students to work on their own or with partners to find the number of routes from \mathbf{H} to \mathbf{V} and from \mathbf{H} to \mathbf{W}. Check that before they start they copy all of the numbers from the board onto their grids.

It is likely that some students will attempt to trace the routes and that they will have difficulty doing this. Suggest that they try to use the numbers of routes at corners \mathbf{U} and \mathbf{D}, or at \mathbf{U} and \mathbf{E}.

T: It's difficult to trace the routes and to be sure that all are counted but none are duplicated. Did anyone use a different method?

S: \quad All routes from H to V must pass through either D or U . There are four routes from H to D and six routes from H to U . Therefore, there are ten routes from H to V because $4+6=10$.

In a similar manner, lead the class to discover that there are ten routes from \mathbf{H} to $\mathbf{W}(10=6+4)$ and there are 20 routes from \mathbf{H} to $\mathbf{X}(20=10+10)$.

T: Why are there ten routes from H to V and also ten routes from H to W ?
S: Because V is three blocks east and two blocks north of H , while W is three blocks north and two blocks east of H .

As necessary, discuss other corners until students easily use the pattern. A solutions for part of the map is shown here.

At this time you may ask students if they wish to revise their estimates of the number of routes from \mathbf{H} to \mathbf{T}. Many of the original estimates may have been too low. Record new estimates.

Direct students to work individually or with partners to use the pattern discovered to find the number or routes from
 \mathbf{H} to \mathbf{T}. This will involve finding the number of routes to each intersection between \mathbf{H} and \mathbf{T}. Some students may want to use calculators to speed up the process.

After a few minutes, invite students to put correct numbers of routes on the grid on the board so as to gradually find the number of routes from \mathbf{H} to each corner. The complete solution is shown here. The class should find that there are 3003 routes from \mathbf{H} to \mathbf{T}. Compare the solution (3003) to students' estimates.

T: If T were five blocks east and four blocks north of H , how many shortest routes would Spike have to explore?

S: Only 126.

Let a student find the intersection five blocks east and four blocks north of \mathbf{H} to check that there are 126 shortest routes to that point.

In a similar manner, ask the number of routes to a few other intersections. Emphasize the following:

- that the class has found the number of routes not only from \mathbf{H} to \mathbf{T}, but also from \mathbf{H} to many other intersections; and
- the number of routes from \mathbf{H} to an intersection increases quickly as you get closer to \mathbf{T}.

Note: You may wish to mention that the array of numbers is part of Pascal's Triangle. Often Pascal's Triangle has the numbers arranged in this format:

Pascal lived in the sixteenth century in France. He used this array of numbers to solve many problems in algebra, probability, and combinatorics. This arrangement of numbers was discovered many centuries earlier, but Pascal popularized it by writing a treatise on its patterns and its applications. Pascal's Triangle is still widely used in the above fields of mathematics. CSMP students will encounter it again in sixth grade.

Capsule Lesson Summary

Review the story about a stolen diamond medallion and the problem concerning the number of routes between two locations in a city. Develop a $0-1$ binary code for recording routes on a grid of streets. Use the code to determine the number of six-element subsets in a fourteen-element set.

Materials			
Teacher	- Grid with numbers transparency or IG-IV Workbook Poster \#3 - Colored chalk - Blackline W12	Student	- Grid with numbers - Paper - Colored pencils, pens, or crayons
Advance Preparation: Use Blackline W12 to make a transparency of the grid with numbers of shortest routes, or use IG-IV Workbook Poster \#3. Make copies of the grid with numbers for students.			

Description of Lesson

Exercise 1

\qquad
Display the grid with numbers of shortest routes from \mathbf{H} to each intersection as generated in Lesson W11.

Ask a student to recall the story from last week about Spike the detective who decided to search all of the shortest routes from his house, \mathbf{H}, to the stolen treasure, \mathbf{T}. Review briefly how it was determined that there were 3003 such routes.

Point to an intersection.

T: What does this number tell us?

S: \quad There are that number of different shortest routes from H to that intersection.
T: What patterns do you notice in this grid of numbers?
Allow several minutes for students to locate and describe the patterns they observe, for example:

- $1,1,1, \ldots$ in the first row and first column
- $1,2,3, \ldots$ in the second row and second column $+2+3+4+5$
- $1,3,6,10,15$... in the third row and third column
- the basic additive pattern for labeling intersections that was discovered in the previous lesson.
- a line of symmetry along the diagonal with intersections has 2, 6, 20, 70, 252, and 924 shortest routes. That is, a point three blocks east and five blocks north has the same number of shortest routes as a point five blocks east and three blocks north of \mathbf{H}.

Point to the intersection seven blocks east and four blocks north of \mathbf{H}.

T: Where would 330 occur again if we extended the grid; i.e., where is the other corner with 330 shortest routes from H ?

S: Four blocks east and seven blocks north.

Repeat this question a couple times with another point off the diagonal and with one on the diagonal to emphasize the last pattern noted above.

Exercise 2

\qquad
Write this code word on the board.

10110000111000

T: \quad Spike travels from his house at H to the treasure at T many times. He decides to write a secret code in his notebook for each route he takes. One day Spike drives from H to T and writes 10110000111000 in his notebook.

Can anyone guess Spike's secret rule for writing code words? If you know the secret, keep it to yourself for the moment. Which route from H to T do you think Spike travels when he writes this code word?

Ask a student to trace a route but not to explain the rule yet. As soon as the student deviates from the correct path, let another student try. Spike is using two numbers, $\mathbf{1}$ and $\mathbf{0}$, for the two directions, north and east, that he travels to go from \mathbf{H} to \mathbf{T}. Some students may suspect this coding but not know which number is for which direction. Spike uses $\mathbf{0}$ to indicate that he goes one block north and $\mathbf{0}$ to indicate that he goes one block east.

The correct route is shown here.
Continue until a student traces the correct route. You may need to help the class finds this route. If necessary, trace the first few blocks of the route as you read the corresponding numbers of the code word. Then ask a student to complete the route.

Repeat this exercise by writing these code words on the board and asking a student to trace the route for each code word.

1100001010110000 010001010111

As you slowly trace a route from \mathbf{H} to \mathbf{T}, invite a student to write the appropriate code word. Check the student's answer. Repeat the activity one or two more times.

T: Who can explain the code?

S: Each 1 in the code word means to go one block north. Each 0 means to go one block east.
$\mathrm{T}: \quad$ Who can write a code word for another route from H to T ?
Let a student write a code word on the board, for example, 11000110010001.

T: Do you think that this code word represents a route from H to T ? Who can check it by tracing the route?

Let another student start at \mathbf{H} and trace the route indicated by the code word. Check whether the route ends at \mathbf{T}. Repeat this activity one or two more times.

T: How can we check whether a code word represents a route from H to T ?
S : Trace the route.
T: Can we check it without tracing the route?
S: Yes, each code word must have 14 digits.
S: \quad There must be exactly six 1 s and eight 0 s in each code word, because T is six blocks north and eight blocks east of H .

Write these code words on the board.

$$
\begin{aligned}
& 101010101010 \\
& 0000111100001111 \\
& 011011011010
\end{aligned}
$$

$\mathrm{T}: \quad$ Are each of these code words for a route from H to T ?
S: \quad The first code word has only 12 digits. It needs two more 0s.
T: \quad The middle code word is for a route from H to T because it has six 1 s and eight 0 s.
$\mathrm{S}: \quad$ The last code word is not for a route from H to T because it has nine 1 s and five 0 s
$\mathrm{T}: \quad$ If we traced the route indicated by the second code word, where would we finish?
$\mathrm{S}: \quad$ Nine blocks north and five blocks east of H ; it's off the grid on the poster.
T: How many code words could we write with six 1 s and eight 0s?
If necessary, give hints to lead to the following response.
S: 3 003; because there is one code word for each route from H to T , and we know that there are 3003 routes from H to T .

Students should observe that each code word with six $\mathbf{1 s}$ and eight 0 s describes a different route from \mathbf{H} to \mathbf{T}. Also, for each route from \mathbf{H} to \mathbf{T}, there is exactly one such code word. There are 3003 code words with exactly six $\mathbf{1 s}$ and eight $\mathbf{0}$ s.

Exercise 3

\qquad
On the board, draw a string with 14 dots inside it.
T: Spike learns that exactly six thieves stole the diamond medallion. He has 14 suspects and is sure that all six thieves are among his suspects. He feels that they will confess if he can interview all six thieves together. So he decides to interview the 14 suspects in groups of six.

Draw a red string around six of the dots in the string picture. Then, invite students to draw strings around two different sets of six suspects. For example:

T: How many groups of six do you think there are for Spike to interview?

Write students' estimates on the board. If many estimates are less than 10 , let students draw a few more strings for groups of six suspects in order to suggest that there are many possible groups.

T: \quad Spike decides to write a code word in his notebook for each group of six suspects that he interviews.

First, label the dots with letters. Then write the code word for the red string on the board. Write a $\mathbf{1}$ for any dot inside the red string and a $\mathbf{0}$ for any dot outside the red string. Do not describe Spike's rule for writing code words yet; just write the word and let the class discover the rule.

T: Spike writes this code word in his notebook when he interviews the six suspects in the
 red string. Does anyone think they know 10010011000011 his secret rule for writing code words? If you know his secret, keep it to yourself for the moment. On a piece of paper, write what you think the code word would be for the group of six suspects in the blue string.

Check several students' papers before letting a student write the code word for the blue string on the board. Continue by asking for the code word for the green string.

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	\mathbf{i}	\mathbf{j}	\mathbf{k}	$\mathbf{1}$	\mathbf{m}	\mathbf{n}
1	O	O	1	O	O	1	1	O	O	O	O	1	1
O	1	1	1	1	1	1	0						
1	1	1	1	O	1	1	O	O	O	O	O	0	0

T: Who can write a code word for another group of six suspects?
A student might suggest this:

$$
\begin{array}{llllllllllllll}
\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{e} & \mathbf{f} & \mathbf{g} & \mathbf{h} & \mathbf{i} & \mathbf{j} & \mathbf{k} & \mathbf{l} & \mathbf{m} & \mathbf{n} \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}
$$

T: Is this a correct code word for another group of six suspects? (Yes)
Invite a student to draw the string for the group. The string should include exactly the six dots for the six suspects marked with a 1 . This illustration shows a correct string for the preceding example.

T: Who can explain Spike's secret code?

S: \quad A 1 means that the suspect will be interviewed in this group of six.
0 means that the suspect will not be interviewed with this group.
T: Without drawing a string, how can we tell if a code word represents a group of six suspects to be interviewed?

S: \quad The code word must have fourteen digits: six 1 s and eight 0 s.

Erase all of the strings inside the original picture, leaving just the string with 14 dots inside the large white (black) string.

Invite a student to write another code word for a group of six suspects, and then ask another student to draw the corresponding string. Then reverse the problem by inviting one student to draw a string for six suspects and then asking another student to write the corresponding code word.

T: How many groups of six are there among the 14 suspects?

S: $\quad 3003$; since we know from the previous problem that there are 3003 code words with exactly six 1 s and eight 0 s.
S: Each road from H to T on Spike's map corresponds to a code word with six 1 s and eight Os. Each string for six suspects corresponds to a similar code word with six 1 s and eight Os. Since there are 3003 roads from H to T , there are 3003 groups of six suspects.

$\mathrm{S}: \quad$ The two problems have the same solution.

Compare the answer (3003) to the students' estimates.
Distribute copies of the storybook The Hidden Treasure. In the time remaining, let students read and discuss the story. Encourage students to read the storybook on their own if there is not time to finish it in class. The story reviews the two lessons about Spike, except that in the storybook the map of Spike's town is smaller (\mathbf{T} is only six blocks east and four blocks north of \mathbf{H}) and there are six thieves among only ten suspects. Thus, in the storybook there are 210 routes from \mathbf{H} to \mathbf{T} and there are 210 groups of six thieves among ten suspects. As the class reads the story, encourage students to comment on the similarities and the differences between the problem solved in class and the problem in the storybook.

Writing Activity

Suggest that students write about how the solution of one problem also solved a second problem in the storybook The Hidden Treasure.

Capsule Lesson Summary

Label the dots in an arrow road with +0.4 and -0.7 arrows. Notice the relationship between doubling sequences starting at $1,0.1$, and 0.01 . Begin the workbook Selection of Problems \#5. (This is the first of two lessons using this workbook.)

Materials

Teacher	- Colored chalk	Student	- Selection of Problems \#5 Workbook - Calculator - Colored pencils, pens, or crayons - Metric ruler

Description of Lesson

Draw this arrow road on the board, labeling the dot 8.5 . Ask the class to label the rest of the dots. (Answers are in boxes.)

Erase the board and then draw an arrow road with ten $2 x$ arrows. For this activity, use an order natural to the students' seating arrangement.

T: I'll start with 1. The first student will double 1, the second student will double that number, and so on. Let's begin. 1.

Label the first dot in your arrow road, and then label other dots as students respond. Continue until ten students have responded.

Next begin with 0.1 and repeat the activity with the next ten students. Record the numerals on the board. Finally begin with 0.01 and repeat the activity with the next ten students.

W13

Distribute copies of the workbook Selection of Problems \#5 and let students work independently for the rest of the class period. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

At the end of the lesson, collect the workbooks for your review. They will be used again in Lesson W14.

Capsule Lesson Summary

Discover the effect of reversing the numbers in a division problem. Review a division algorithm. Continue individual work in the workbook Selection of Problems \#5. (This is the second of two lessons using this workbook.)

Materials

Teacher • None Student	- Selection of Problems \#5	
	Workbook	
	- Calculator	
	- Colored pencils, pens, or crayons	
		Metric ruler

Description of Lesson

Pose the following problems to the class, and record number sentences about the solutions.
T: If we had to divide 6 candy bars among 3 people, how many would each person get? (2)
If we had to divide 3 candy bars among 6 people,

$$
\begin{aligned}
& 6 \div 3=2 \\
& 3 \div 6=1 / 2
\end{aligned}
$$ how much would each person get?

S: $\quad 1 / 2$; divide each candy bar into halves. There would be 6 halves; one for each of the 6 people.

T: If we had to divide 8 candy bars between 2 people, how many would each person get? (4)
If we had to divide 2 candy bars among 8 people, $8 \div 2=4$ how much would each person get?
S: $\quad 1 / 4$; divide each candy bar into 4 pieces.
T: If we had to divide 15 candy bars among 3 people, how many would each person get? (5)
If we had to divide 3 candy bars among 15 people, how much would each person get?

S: $\quad 1 / 5$; divide each candy bar into 5 pieces. Then there would be 15 pieces, one for each person.

$$
\begin{aligned}
& 15 \div 3=5 \\
& 3 \div 15=1 / 5
\end{aligned}
$$

You may wish to illustrate this last situation for the benefit of the class.

These number stories will be on the board.

W14

Review division of whole numbers with a problem such as $1873 \div 29$. For example:

$64 \mathrm{R}=17$	
29) 1873	
-870	30
1003	
-870	30
133	
$\begin{array}{r}-116 \\ \hline 17\end{array}$	4

Distribute students' copies of the workbook Selection of Problems \#5. Ask students first to correct or complete pages from the previous week's work and to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in their workbooks during a study time or to take them home as an assignment.

Assessment Activity

An individual student progress record for the workbook is available on Blackline W14. You may like to use this form to monitor student work.

Fims were nurter.

Clow

Fumcan be thom on thet Whisompuer boverth, remxing tasil, one cheiker.

Rumcoulte 186 , 236, $346,36, \% 34$

Glute

Mhols Fum ? 286
§

Lated ithe dor and Ill Inihe bo ilor thered amon

7

FI In the blarth.

Exh malluqusehstide+clengh_3_emesdi.
Thesresol tsch miluquselt 9 \qquad $\mathrm{cm}{ }^{2}$.
The aresol the largewarelt 81

10

Lutal hedowson ebch nurter Ine.

12

0 |
57 II
2228
77

1s

FIIM hebobeh

$$
\begin{aligned}
& 21 \div 3=\frac{21}{3}=7 \\
& 22 \div 3=\frac{22}{3}=7 \frac{1}{7} \\
& 23 \div 3=\frac{23}{3}=7 \div \\
& 24 \div 3=\frac{24}{3}=8 \\
& 25 \div 3=\frac{25}{3}=84 \\
& 26 \div 3=\frac{24}{3}=8 \frac{2}{3} \\
& 27 \div 3=\frac{27}{3}=9 \\
& 28 \div 3=\frac{28}{3}=9 \frac{1}{4} \\
& 32 \div 3=\frac{32}{3}=10 \div
\end{aligned}
$$

14

 pseshen
Lstel hedors Oneladone lor, ou

Drinindisted dow loritherepurchater reumh
$f b+5$
$04+8$
$4.54+3 p$
$7.54+8.5$

15

What 6arstrut on Prell thate.
Male Pmelat cuton bard lable.
Dofuteite plcurtio whe ith problem.

$$
\frac{3}{8}+\frac{5}{8}=\frac{1 \div}{4}+\frac{4}{4}=\frac{5}{4}-1 \frac{15}{4}-1 \frac{5}{4}
$$

 © 6

Fi, and Pso are were molenuriters. The, we in ith smonpkuresind litht wina ploure.

Mohtre? \qquad Whot Ps ? $\stackrel{\pi}{6}$

Pul asch number on thehindorripuerukny ensil, the chechert to the wida the bards.
(1) © $\square \square \square=8$
© 9

(c) (c) $\square \square \square=3$
(c) ()

σ ©

$\odot \infty$

\Leftrightarrow

Splasteren nutter.

 regisrcheckers

 -9. 010.

CKH2

Mowh W? 84
\$

Capsule Lesson Summary

Compute the area and perimeter of several rectangles. Given the lengths of some of the sides in a shape, determine the lengths of the other sides, and then compute the shape's perimeter and area. Begin the workbook Selection of Problems \#6. (This is the first of two lessons using this workbook.)

Materials

| Teacher | - Colored chalk | Student |
| :--- | :--- | :--- |\quad - Selection of Problems \#6

Description of Lesson

Draw three rectangles on the board with sides proportional to the following.

T: What is the area of a 2 cm by 3 cm rectangle? Why?
S: I multiplied $2 \times 3=6$. The area is $6 \mathrm{~cm}^{2}$.
S: $\quad 6 \mathrm{~cm}^{2}$; I divided the rectangle into little squares, each a centimeter square, and counted the squares.

T: What does perimeter mean?

$\mathrm{S}: \quad$ The distance around the shape, or the length of its border.
T: What is the perimeter of a 2 cm by $\mathbf{3 c m}$ rectangle? Why?
S: $\quad 10 \mathrm{~cm}$; I added the lengths of the sides.
S: $\quad I$ added 2 and 3 and then doubled that answer.
Record the area and perimeter of each rectangle on the board.

Area $\begin{array}{r}6 \mathrm{~cm}^{2} \\ \text { Perimeter } \\ 10 \mathrm{~cm}^{2}\end{array}{ }^{-}$.

Area$12 \mathrm{~cm}^{2}$ Perimeter cm^{2}

Draw this shape on the board and ask the students to supply the missing lengths. (Answers are in boxes.)

T: What is the perimeter of this shape?
S: $\quad 34 m$.
$\mathrm{T}: \quad$ What is the area of this shape?

If some students have difficulty with this question, partition the shape as shown here.

T: What is the length of a shorter side of the green rectangle?
S: $\quad 5 m$, because $7-2=5$.
T: Using these three rectangles, find the area of the shape.

S: \quad The area of the green rectangle is $40 \mathrm{~m}^{2}$
 because $5 \times 8=40$, the area of the red rectangle is $6 \mathrm{~m}^{2}$ because $2 \times 3=6$, and the area of the blue rectangle is $4 \mathrm{~m}^{2}$ because $2 \times 2=4.40+6+4=50$, so the area of the shape is $50 \mathrm{~m}^{2}$.

T: Can anyone see a different method we could use?

S: We could look at the shape as what is left after a $2 m$ by $3 m$ rectangle is taken out of a 7 m by 8 m rectangle. $7 \times 8=56,2 \times 3=6$, and $56-6=50$; so the area of the shape is $50 \mathrm{~m}^{2}$.

Distribute copies of the workbook Selection of Problems \#6 and let students work independently for the rest of the class period. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

At the end of class period collect the workbooks for your review. They will be used again in Lesson W16.

Description of Lesson

Write this record of a division computation on the board.
T: The eraser gremlin has struck again!
Can you tell me any of the digits that have been erased in this problem?

If students have difficulty getting started, assist them in determining the divisor (21) in the problem.

T (pointing to $2 \square \square$): What digits were erased here?

S: Two zeroes because 4200 ends in two zeroes.
T: Does this tell us what the divisor is?
S: \quad Yes, the divisor is 21 because $200 \times 21=4200$.
Continue asking students to supply the missing digits until all of the boxes are filled. Ask students to justify their suggestions.

Distribute students' copies of the workbook Selection of Problems \#6. Ask students first to correct or complete pages from the previous week's work and then to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

W16

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in their workbooks during a study time or to take them home as an assignment.

Assessment Activity

An individual student progress record for the workbook is available on Blackline W16. You may like to use this form to monitor student work.

Pry the lagh One is done lor 010

§

Lstal ine doth．

7

Pul esch rumber on hedrpla，ol a cskuswrulny yw thete herv：

（4） 5 －\square 区 \div

 more han onke．
 the smunit then lor esth number．

回回国回 21 ［ CH ］
国国国回 60 ［84］
回回回回 ${ }^{-6}$［84］
Manysolutions are possitie．

$$
\begin{array}{rr}
4882 \\
-745 & -2401 \\
\hline 3838 & 399
\end{array}
$$

 － 9 国 100
 日困界

 园国 4
 3）

Glusi

Cluw

Moltiled？＿24＿
II
his shre exh of the wdet ol ith whye．

Whal lithe perimex rol hith that？ 40 cm

Ophstratinutb
CKH2
Orp thin thes armonpluse．

Ches

Whot Op：

15

Pus thagk dith esch boin mike the casulaiknt corteci.

$$
\begin{array}{r}
376 \\
\times 8 \\
\hline 4380
\end{array}
$$

19

Whaltihe ares of eshlise ? 16 cm t

Mosltibe whert ol the atbe? $64 \mathrm{~cm}^{3}$

Oher maps are possible, buithe squares should be 3 cm on a slde.

Fill ite bopesind then latel the arom.

시
dol Imiliswing dicere.

compies.

$$
\begin{aligned}
& \lceil: \text { arsen commin ather } \\
& 12 \Pi 20=\xrightarrow[4]{4} \\
& 12 \boldsymbol{T}_{30}=6 \\
& 26 \Pi 20=\text { 2 }
\end{aligned}
$$

药

Lsidshategel number.

会

Whats atece runter.

Cluti

$$
60=12 \text { பYwa }
$$

Muscoult $5-60,30,20-15-10 \% 2$

Clow

Wholt 3 ns ?
\Leftrightarrow

