## CSMP Mathematics for the Intermediate Grades Part IV

Worksheets

## What's In This Book?

This book contains all the worksheets you will need for CSMP for the Intermediate Grades, Part IV. Worksheets are labeled with the same letter and number as the lessons with which they are used. In this book, they are in the following order:

N Worksheets

| N2 | N10 | N23 |
| :--- | :--- | :--- |
| N3 | N12 | N24 |
| N4 | N14 | N26 |
| N5 | N15 | N27 |
| N6 | N16 | N30 |
| N7 | N19 | N31 |
| N8 | N20 | N34 |
| N9 | N22 | N35 |

L Worksheets

| L1 | L4 | L7 |
| :--- | :--- | :--- |
| L3 | L6 | L10 |

G Worksheets
G2 G4
G3 G6
P Worksheets

| P4 | P7 | P9 |
| :--- | :--- | :--- |
| P5 | P8 |  |

Name $\qquad$

In each example, first do the multiplication problem on the right, fill in the boxes for the arrows, and then use these answers to do the multiplication problem on the left.


Name


A family of four uses 2.57 liters of milk a day on average. How much milk will they consume in January?

Maia spends 1.48 hours a day on average eating meals. How many hours will she spend eating in a year (365 days)?

Each day Gus spends $\$ 1.65$ on lunch at school. How much will Gus spend on lunch during the school year if he buys lunch 170 days?

## Name

$\qquad$
Flop is a secret number.
Clue 1


Flop could be
$\qquad$ , $\longrightarrow$, $\qquad$
$\qquad$
$\qquad$ , $\qquad$ , ___, and so on.

What do you notice about Flop?
Clue 2


Flop could be $\qquad$ , $\qquad$ , or $\qquad$ .

Clue 3


Who is Flop? $\qquad$

## Name



Is there any whole number that Tock cannot be?

Could Tock be -1? ___ -2 ? 3 ? $\quad-4 ?$ $-5 ? \quad-6 ?$

What do you notice about Tock?

Name


Label each dot and fill in the box for each blue arrow.


## Name



Flip and Flop are secret numbers.


Fill in this chart with pairs of numbers that Flip and Flop could be.


## Clue 2



Who is Flip?
Who is Flop?


Find some ways to fill in the boxes for the arrows. Many solutions are possible. Use this table to show some of them.


Name
N4 $\boldsymbol{*} * * *$

Label the dots.


Name $\qquad$

Female bee (2 parents)


Male bee (1 parent)


Complete the family tree to find the number of ancestors in each generation. Three generations are done for you.


## Name



Label the dots and fill in the boxes for the blue arrows.


Name


Label the dots and fill in the boxes for the blue arrows.


Name
N6 ***

Fill in the boxes for the arrows.


Name
N6 $\boldsymbol{*} * * *$

Label the dots.


Name

Add.
Subtract.

## 567 33285 +7848

Complete each problem. Put a single digit in each box to make the calculations correct.


Name


Multiply.

$$
\begin{array}{r}
6937 \\
\times \quad 87 \\
\hline
\end{array}
$$

Complete each problem. Put a single digit in each box to make the calculations correct.


Name

## N8 <br> *

Label the dots on the number lines.

(Be careful!)

Name
N8 **
Pair each red tag with a blue tag. One is done for you.


Name
Write the solution to each of these division problems in mixed form, a whole number and a fraction. One is done for you.

$$
8 \div 3=2 \frac{2}{3} \quad 50 \div 7=
$$

(Remember: $8 \div 3=\frac{8}{3}=2 \frac{2}{3}$ )
$10 \div 7=$
$60 \div 8=$
$38 \div 4=$
$49 \div 6=$

Circle each number with the color of the line segment in which it belongs. One is done for you.

$50 \div 7$
$43 \div 5$
$62 \div 9$
$55 \div 8$
$43 \div 6$
$62 \div 10$
$20 \div 3$
$35 \div 4$

Name
NB ****

Label the dots with these numbers. Two labels may be for the same dot.

$$
\begin{array}{crc}
8 \frac{5}{9} & \frac{56}{9} & 7 \frac{1}{3} \\
63 \div 9 & 80 \div 9 & 6 \frac{2}{3} \\
70 \div 9 & \frac{66}{9} & 77 \div 9
\end{array}
$$



Name
Na *

## $a * b=(3 \times a)-b$

Fill in the boxes.

$$
\begin{array}{rl}
5 * 4=11 & 5 * \square=12 \\
4 * 5=\square & 6 * \square=14 \\
10 * 4=\square & 7 * \square=16 \\
4 * 10=\square & 8 * \square=18 \\
7 * 6=\square & 9 * \square=20 \\
6 * 7=\square & \square * 5=7 \\
9 * 9=\square & \square * 8=10 \\
15 * 5=\square & \square * 10=14 \\
5 * 15=\square & \square * 12=18
\end{array}
$$



Label the dots.
5


Name
Na $\quad * * *$

## $a * b=a+(b \div 3)$

Fill in the boxes.

$$
\begin{array}{rr}
12 * 15=\square & 2 * \square=7 \\
60 * 27=\square & 0 * \square=7 \\
27 * 60=\square & 1 * \square=10 \\
0.6 * 1.5=\square & 5 * \square=20 \\
3.4 * 3.6=\square & 8 * \square=8 \\
\square * 24=15 & 3 * \square=0 \\
\square * 42=20 & \widehat{3} * \square=0 \\
\square * 72=30 & \widehat{12} * \square=\widehat{2}
\end{array}
$$

Name
Label the starting dot and the ending dot of each arrow. Label the arrows with + or - some number.


Fill in the boxes for equivalent fractions.


$$
\frac{1}{2}=\frac{\square}{8}
$$


$\frac{1}{3}=\frac{\square}{24}$

$\frac{3}{\square}=\frac{12}{28}$

$\frac{\square}{4}=\frac{12}{16}$


1. What fraction of the rectangle is colored
red?
blue? $\qquad$
white? $\qquad$
black? $\qquad$
striped? $\qquad$
2. What fraction of the rectangle is not red? $\qquad$
What fraction of the rectangle is not blue? $\qquad$
What fraction of the rectangle is not black? $\qquad$
3. What fraction of the rectangle is colored red or blue? $\qquad$ What fraction of the rectangle is colored black or blue? $\qquad$

## N10 ****



What fraction of the rectangle is colored gray? $\qquad$
blue? $\qquad$
black? $\qquad$
red?


What fraction of the rectangle is colored red?
blue?


What fraction of the square is colored gray? $\qquad$
blue? $\qquad$
red?

Name
N12 *

What number is on Nabu's abacus? You may make trades if you wish.


## Name

On each abacus, show the trades Nabu could make to determine the number of boxes he could fill.

Nabu must pack 615 pencils into boxes. Each box holds nine pencils.


Nabu could fill $\qquad$ boxes and have $\qquad$ pencils left over.

Nabu must pack 6728 pencils into boxes. Each box holds nine pencils.


Nabu could fill $\qquad$ boxes and have $\qquad$ pencils left over.

## Name

## N14 <br> *

Nick is a secret number.
Clue 1


Nick could be $\qquad$
$\qquad$ , $\qquad$ , $\qquad$ , and so on.

Clue 2
Nick can be put on the ones board of the Minicomputer using exactly one of these checkers:
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)


Nick could be $\qquad$ , , or $\qquad$ .

Clue 3


Who is Nick? $\qquad$

## Name

## N14 **

Nack is a secret number.
Clue 1


Nack could be $\qquad$ , $\qquad$ , $\qquad$ , $\qquad$ , $\qquad$ , $\qquad$ , $\qquad$ ,
$\qquad$ , $\qquad$ , $\qquad$ , and so on.

Clue 2
Nack is a multiple of 5 .
Nack could be $\qquad$ , _ , $\qquad$ , $\qquad$ , $\qquad$ , and so on.

Clue 3


Who is Nack?

Name
Pair each arrow with the correct label. One label will not be used.


$$
+11.6
$$



$$
+8.5
$$



$$
+4.3
$$

$$
+3.3
$$



$$
+6.5
$$



$$
+6.8
$$

## Name

## N15 **

Label the arrows; then label the dots.


Name
N15 ***

Tod is a secret number.
Clue 1
Tod is in this arrow picture.


Clue 2
Tod is in this string picture.


Who is Tod? $\qquad$

## Name



Label the dots and fill in the boxes for the arrows.


Name
N16 **


Complete the charts.


Name
N16 ***

Label the unlabeled arrows. Each arrow should be $\boldsymbol{+}, \mathbf{x}$, or $\div$ some whole number.


## Name

N16 ****

Label the unlabeled arrows. Each arrow should be $\boldsymbol{+}, \mathbf{x}$, or $\div$ some number.


Name


Label the dots.


## Name

## N19 **

Multiply.

$$
\begin{array}{r}
68 \\
\times 42 \\
\hline
\end{array}
$$

Complete each problem. Put a single digit in each box to make the calculations correct.


## Name

N19 ***

$$
16 \times 24=384
$$

Complete.

$$
\begin{aligned}
& 17 \times 24=384+\square= \\
& 15 \times 24=384-\square= \\
& 16 \times 25=384+\square= \\
& 16 \times 23=384-\square= \\
& 26 \times 24=384+\square= \\
& 16 \times 34=384+\square= \\
& 116 \times 24=384+\square= \\
& 16 \times 124=384+\square=
\end{aligned}
$$

Shade one-fourth ( $\frac{1}{4}$ ) of Sara's cake.


Shade two-fifths ( $\frac{2}{5}$ ) of Amelia's cake.


Make Sara's cuts on Amelia's cake.
Make Amelia's cuts on Sara's cake.

Use the pictures to solve this problem.

$$
\frac{1}{4}+\frac{2}{5}=
$$

## Name

Shade two-thirds ( $\frac{2}{3}$ ) of Sara's cake.

Sara

$\frac{2}{3}$

Shade two-fifths ( $\frac{2}{5}$ ) of Amelia's cake.


Make Sara's cuts on Amelia's cake.
Make Amelia's cuts on Sara's cake.

Use the pictures to solve this problem.

$$
\frac{2}{3}+\frac{2}{5}=
$$

## N20 ***

Shade the fractional part of each square region.
Then use the pictures to complete the number stories.


$$
\frac{1}{4}+\frac{1}{6}=
$$


$\frac{2}{5}$


$$
\frac{2}{5}+\frac{1}{3}=
$$


$\frac{5}{6}$

$\frac{3}{5}$

$$
\frac{5}{6}+\frac{3}{5}=
$$

## Name

N20 ****
Match each red box with a blue box.

$$
\frac{1}{2}+1 \frac{1}{4}
$$

$$
\frac{2}{3}+\frac{4}{3}
$$

$$
\frac{2}{3}+\frac{1}{6}
$$


$\frac{2}{5}+\frac{1}{2}$
$\frac{3}{4}+\frac{3}{4}$
$\frac{5}{6}$

Name

Shade one-half $\left(\frac{1}{2}\right)$ of Sara's cake.


Shade two-thirds ( $\frac{2}{3}$ ) of Amelia's cake.


Make Amelia's cuts on Sara's cake.
Make Sara's cuts on Amelia's cake.

Use the pictures to solve these problems.

$$
\begin{aligned}
& \frac{1}{2}+\frac{2}{3}= \\
& \frac{1}{2}+\frac{1}{3}=
\end{aligned}
$$

Name
Shade three-fourths ( $\frac{3}{4}$ ) of Amelia's cake.


Make Amelia's cuts on Sara's cake.
Make Sara's cuts on Amelia's cake.

Use the pictures to solve these problems.

$$
\begin{aligned}
& \frac{1}{3}+\frac{3}{4}= \\
& \frac{2}{3}+\frac{1}{4}=
\end{aligned}
$$

Name

Divide this square region into four columns. Shade one of them.

$\frac{1}{4}$

Divide this square region into six rows. Shade five of them.

$\frac{5}{6}$

Use the pictures to solve these problems.

$$
\begin{aligned}
& \frac{1}{4}+\frac{5}{6}= \\
& \frac{3}{4}+\frac{1}{6}=
\end{aligned}
$$

## Name

N23(a)

Label the dots on the grid. One is done for you.


Draw and label dots for these purchases.

$$
\begin{array}{llc}
5 a+1 p & 2 a+3 p & 2 a+1.5 p \\
4 a+7 p & 0 a+5 p & 3.5 a+4.5 p
\end{array}
$$

## Name

N23(b)

## $p(1 a)=40 \$ \quad p(1 p)=80 ¢$

 List $\$ 4.00$ purchases.Draw a dot on the grid for each $\$ 4.00$ purchase you have found.


What do you notice about the dots?

Draw and label the dots on the grid for these purchases.
$8 a+3 p \quad 2 a+4 p \quad 5 a+0 p \quad 2.5 a+3 p \quad 8.25 a+5.5 p$


## Name

N24(b)

Draw and label dots for these purchases.
$3 a+4 p \quad 3 a+\widehat{4} p \quad \widehat{2} a+1 p \quad \widehat{4} a+\widehat{4} p \quad \widehat{3} a+0 p$

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Name

## N24(c)

## $p(a)=40 ¢$ <br> $p(1 p)=80 ¢$

Calculate the cost of each purchase.

$$
\begin{array}{ll}
p(3 a+5 p)= & p(8 a+\widehat{3} p)= \\
p(7 a+3 p)= & p(\widehat{5} a+6 p)= \\
p(1.5 a+4.5 p)=\square & p(\widehat{3.5} a+2.5 p)=
\end{array}
$$

## $\$ 1.60$

Complete to make each purchase cost $\$ 1.60$.
$2 \mathrm{a}+$ $\qquad$ p
$\ldots \quad a+0.5 p$
$\ldots \quad a+\hat{1 p}$
$8 \mathrm{a}+$ $\qquad$

Draw dots on the grid on Worksheet N24(b) for these $\$ 1.60$ purchases. Connect the six dots with a line.

## Name

Label the dots on the grid. One is done for you.


Draw and label dots for these purchases.

$$
\begin{array}{lc}
2 a+4 p & 5 a+0 p \\
5 a+4.5 p & 2.5 a+3.5 p
\end{array}
$$

## Name



1. Arlene always purchases exactly 4 kg of apples. List four different purchases she could make.
$\qquad$
$\qquad$ $a+3.5 p \quad 4 a+$ $\qquad$ p ___a+0p

Draw a blue dot on the grid for each of these purchases. What do you notice? $\qquad$
2. Mr. Crab always purchases 2 more kilograms of apples than peaches. List four different purchases he could make.
$\qquad$
$\qquad$ $a+5 p \quad 5.5 a+$ $\qquad$ p $\qquad$

Draw a red dot on the grid for each of these purchases. What do you notice?


1. List four different $\$ 2.00$ purchases.

$$
4 a+\ldots \quad p \quad{ }^{2}+1.5 p \quad 2.5 a+\ldots \quad p
$$

Draw a blue dot on the grid for each $\$ 2.00$ purchase. Can you draw a straight line through the blue dots?
2. List four different $\$ 3.20$ purchases.

$$
\ldots \quad \text { _ } a+1.75 p \quad 5 a+\ldots \quad p
$$

Draw a red dot on the grid for each $\$ 3.20$ purchase. Can you draw a straight line through the red dots? $\qquad$ Use the graph to complete each of these $\$ 3.20$ purchases.
$3 \mathrm{a}+$ $\qquad$ p
$a+0.5 p$
$1.5 a+$ $\qquad$ p $6.5+$ $\qquad$

Name


Complete.
$50 \%$ of $40=\square$
$10 \%$ of $40=\square$
$25 \%$ of $40=\square$
$20 \%$ of $40=\square$
$75 \%$ of $40=\square$
$100 \%$ of $40=\square$

Use the above results to help solve these problems.

$$
\begin{aligned}
40 \% \text { of } 40=\square & \square \% \text { of } 40=12 \\
85 \% \text { of } 40=\square & \square \% \text { of } 40=24 \\
35 \% \text { of } 40=\square & \square \% \text { of } 40=32
\end{aligned}
$$

## Name

N27 **

Complete this table of test results for an 80 question true-false test.

| Student | Number Correct | \% Correct |
| :---: | :---: | :---: |
| Willy |  | $80 \%$ |
| Nancy |  | $50 \%$ |
| George |  | $55 \%$ |
| Ki Jong | 60 |  |
| Maria | 72 |  |
| Alphonso | 48 |  |

If $70 \%$ or better is a passing grade on this test, who passes? $\qquad$

How many questions must a person get correct to have a passing grade?

## Name

Label the dots and fill in the boxes for the arrows.


$$
\begin{array}{ll}
\frac{2}{5} \times \frac{3}{4}=\square & \frac{4}{9} \times \frac{1}{4}=\square \\
\frac{5}{7} \times \frac{1}{8}=\square & \frac{5}{6} \times \frac{11}{20}=\square
\end{array}
$$

## Name

Build an arrow road from 3.2 to 4 using $2 x$ and -0.3 arrows.

3.2

Did you use more than five arrows?
If your answer is yes, build another road using exactly five arrows.

## Name

Flip is a secret number.
Clue 1

Flip's name can be written using each of these symbols exactly once.

## $0.2 \quad 0.5 \quad 2$



Flip could be $\qquad$ , $\qquad$ , $\qquad$ , or $\qquad$ .

Clue 2

$\qquad$

## Name

Build an arrow road from 20 to 0.04 using $x 0.2$ and +0.2 arrows.


Name

## N31 <br> *

Complete.

$$
\begin{array}{rl|r}
100 \% \text { of } 16= & 50 \% \text { of } 80= \\
50 \% \text { of } 16= & 25 \% \text { of } 80= \\
150 \% \text { of } 16= & 10 \% \text { of } 80= \\
75 \% \text { of } 16= & 5 \% \text { of } 80= \\
25 \% \text { of } 16= & 15 \% \text { of } 80= \\
125 \% \text { of } 16= & 35 \% \text { of } 80=
\end{array}
$$

$$
10 \% \text { of } 60=
$$

$50 \%$ of $72=$

$$
5 \% \text { of } 60=
$$

$25 \%$ of 72 =

$$
15 \% \text { of } 60=
$$

$75 \%$ of 72 =

$$
20 \% \text { of } 60=
$$

$10 \%$ of $72=$

$$
40 \% \text { of } 60=
$$

$35 \%$ of $72=$

$$
45 \% \text { of } 60=
$$

$85 \%$ of $72=$

## Name

## N31 **

Label the black arrow.


Give two other names for the black arrow: $\square \times$ or $\square \times$

Complete.

$$
\begin{array}{ll}
40 \% \text { of } 15=\square & 40 \% \text { of } 34=\square \\
40 \% \text { of } 80=\square & 40 \% \text { of } 12=\square \\
40 \% \text { of } \square=80 & 40 \% \text { of } \square=12
\end{array}
$$

Name
N31 ***

Label the arrows.


Complete.

$$
\begin{array}{ll}
\frac{7}{20} \times 300=\square & 35 \% \text { of } 40=\square \\
35 \% \text { of } 300=\square & 35 \% \text { of } 14=\square \\
35 \% \text { of } \square=280 & 35 \% \text { of } \square=14
\end{array}
$$

## Name

N34 *

Label the dots and fill in the boxes for the arrows.


Name
N34 **


Complete the charts.

| $\longrightarrow$ | $\longrightarrow$ |
| :---: | :---: |
| +13 | +7 |
|  |  |
|  |  |
| -8 |  |
|  | -12 |
| -105 |  |
|  | +75 |


| $\vec{\rightarrow}$ | $\rightarrow$ |
| :--- | :--- |
| +7.5 |  |
|  | +12.8 |
| -2.4 |  |
|  | +30.5 |
| +8.75 |  |
|  | -3.25 |
| +1001 |  |

## Name

N34 ***
Label each arrow that is not labeled. Each arrow should be labeled,,$+- \times$ or $\div$ some whole number.


Name

Add a regular checker to each Minicomputer to get a multiple of 3 .


Name

## N35 **

By moving exactly one of these checkers to another square, find as many multiples of 4 as you can.


## Name

## N35 ***

Nick is a secret number.
Clue 1


Nick can be put on this Minicomputer by moving one of these checkers to the hundreds board or to the thousands board.

If you move the checker on the 2-square, Nick could be
$\qquad$ , Or $\qquad$ .

If you move the checker on the 8 -square, Nick could be
$\qquad$ , Or $\qquad$ .

Clue 2


Who is Nick?

## Name

N35 ****

Flip is a secret number.
Clue 1


Flip
Flip could be:
$\qquad$
$\qquad$ , $\qquad$ ,
$\qquad$
$\qquad$
$\qquad$
$\qquad$ , $\qquad$ , ——, $\qquad$
$\qquad$
$\qquad$ ,
$\qquad$
$\qquad$
$\qquad$ , or $\qquad$ .

Do you notice any interesting patterns?
Clue 2


Flip can be put on this Minicomputer by moving one checker to another square.

Flip could be $\qquad$ , $\qquad$ , $\qquad$ , or $\qquad$ .

Clue 3


Who is Flip? $\qquad$

1) Exactly 40 students in the school play soccer after school hours.
2) Exactly 22 of them play soccer on Mondays. Some of these students also play soccer on other days.
3) Exactly 16 of them play soccer on both Mondays and Tuesdays.
4) Exactly 8 students play soccer after school, but neither on Mondays nor on Tuesdays.

Use the clues to determine the number of students in each region inside the black string.


Name

1) There are exactly 100 cars on the parking lot.
2) Exactly 30 cars on the lot are not Fords and do not have air-conditioning.
3) Exactly 50 cars on the lot are Fords.
4) Exactly 60 cars on the lot have air-conditioning.

Use the clues to determine the number of cars in each region inside the black string.


Name
L3(a)

m

Name
L3(b)

Find the distance between each pair of points.

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ | $\mathbf{G}$ | $\mathbf{H}$ | $\mathbf{K}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{A}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{B}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{C}$ |  |  |  |  |  | 34 |  |  |  |
| $\mathbf{D}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{E}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{F}$ |  |  | 34 |  |  |  |  |  |  |
| $\mathbf{G}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{H}$ |  |  |  |  |  |  |  |  |  |
| $\mathbf{K}$ |  |  |  |  |  |  |  |  |  |

Name
L4(a)

m

Name
L4(b)

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ | $\mathbf{G}$ | $\mathbf{H}$ | $\mathbf{K}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | 0 | 3 | 5 | 12 | 32 | 33 | 22 | 18 | 11 |
| $\mathbf{B}$ | 3 | 0 | 2 | 9 | 29 | 32 | 19 | 15 | 8 |
| $\mathbf{C}$ | 5 | 2 | 0 | 7 | 27 | 34 | 21 | 17 | 6 |
| $\mathbf{D}$ | 12 | 9 | 7 | 0 | 20 | 41 | 28 | 24 | 13 |
| $\mathbf{E}$ | 32 | 29 | 27 | 20 | 0 | 61 | 48 | 44 | 33 |
| $\mathbf{F}$ | 33 | 32 | 34 | 41 | 61 | 0 | 13 | 17 | 28 |
| $\mathbf{G}$ | 22 | 19 | 21 | 28 | 48 | 13 | 0 | 4 | 15 |
| $\mathbf{H}$ | 18 | 15 | 17 | 24 | 44 | 17 | 4 | 0 | 11 |
| $\mathbf{K}$ | 11 | 8 | 6 | 13 | 33 | 28 | 15 | 11 | 0 |

Name
L4(c)


## Name

$\qquad$

## L6




## Name

$\qquad$

Label each dot in the string picture with one of these numbers.

$$
\begin{array}{llllllll}
0 & 1 & 5 & 7 & \text { II } & 22 & 28 & 77
\end{array}
$$



Which numbers, if any, belong in the middle region?

Name

## L7 **

Pic and Pac are secret whole numbers.
Clue 1


Clue 2


Multiples of 3

$\qquad$

## Name



## Prime Factor Relation

Label the dots. Many solutions are possible.


## Name

L10 **

## Prime Factor Relation

Label the dots. Many solutions are possible.


## Name



Find the largest cube that can be built with the given number of centimeter cubes. One problem is done for you.

| Number of <br> Centimeter Cubes | Dimensions | Volume |
| :--- | :--- | :--- |
| 132 centimeter cubes | 5 cm by 5 cm by 5 cm | $125 \mathrm{~cm}^{3}$ |
| 85 centimeter cubes |  |  |
| 324 centimeter cubes |  |  |
| 25 centimeter cubes |  |  |
| I13 centimeter cubes |  |  |
| 621 centimeter cubes |  |  |

## Name

## G2

 **Find the largest cube possible that can be built with 435 centimeter cubes. Then find the largest cube possible that can be built with the extra centimeter cubes. Keep doing this until no centimeter cubes are left over. The problem is started for you.

| Dimensions | Volume | Number of Centimeter <br> Cubes Available |  |
| :---: | :---: | :---: | :---: |
| 7 cm by 7 cm by 7 cm | $343 \mathrm{~cm}^{3}$ | 435 |  |
|  |  | 92 | $(435-343=92)$ |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

Find the largest cube possible that can be built with 664 centimeter cubes. Then find the largest cube possible that can be built with the extra centimeter cubes. Keep doing this until no centimeter cubes are left over.

| Dimensions | Volume | Number of Centimeter <br> Cubes Available |
| :--- | :--- | :--- |
|  |  | 664 |
|  |  |  |
|  |  |  |
|  |  |  |

## Name

## G2 ***

Find the largest cube possible that can be built with 1500 centimeter cubes. Then find the largest cube possible that can be built with the extra centimeter cubes. Keep doing this until no centimeter cubes are left over.

Find the largest cube possible that can be built with 2045 centimeter cubes. Then find the largest cube possible that can be built with the extra centimeter cubes. Keep doing this until no centimeter cubes are left over.

Name


The red lines show where to place the double mirror. Draw the shapes as they would be seen in the other three regions. Use a double mirror to check your work.

|  | - |  | - |  |  | - | - |  | - |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | ${ }^{\circ}$ | L |  |  |  |  |
|  | L |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $\checkmark$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Name

## G3 * *



This is the shape in region 1.


Region $\qquad$


Region

## Name

Complete this table to show the image that would be seen in each region.


| Image in Region 1 | Image in Region 2 | Image in Region 3 | Image in Region 4 |
| :---: | :---: | :---: | :---: |
| O |  |  |  |
|  | $\Delta$ |  |  |
|  |  | $\mathfrak{f}$ |  |
|  | $\dagger$ |  |  |
|  |  | $\bigcirc{ }^{\circ}$ |  |
|  |  |  |  |
|  |  | $\square$ |  |
|  | ( 0 |  |  |

Name
G4(a)



Name
G6(a)

Circle the configurations that are maps of a cube. Cross out those that are not maps of a cube.


Name
G6(b)

Circle the configurations that are maps of a cube. Cross out those that are not maps of a cube.


Name

Complete the labeling of each map to make a map of a die.


Name

Complete the labeling of each map to make a map of a die.


These maps are the same. Label them differently so that both are maps of a die.



This is a map of routes from Durango to Tampico. The numbers on each road give the possibility a traveler will survive one passage along the road.


There are three routes conquistadors can take from Durango to Tampico. One route (I) is shown below; draw the other two routes (II and III).


30 conquistadors start from Durango. For each route, calculate how many you would expect to arrive in Tampico. One is done for you.
Which route is safest? $\qquad$

## Name

$\square$

This is a map of routes from a Dungeon to an Exit. The arrows indicate one-way roads.


Draw each route an adventurer could take from the Dungeon to the Exit. Do not include routes that have roads that should definitely be avoided. There are six or fewer good routes.

| I |  | II |  |  | III |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dungeon <br> 6 6 | Exit <br> $\bigcirc$ | Dungeon (6) |  | $\bigcirc_{\bigcirc}^{\text {Exit }}$ | Dungeon (6) |  | $\bigcirc^{\text {Exit }}$ |
| IV |  | V |  |  | VI |  |  |
| Dungeon (6) | Exit <br> ○ | Dungeon (6) |  | $\bigcirc^{\text {Exit }}$ | Dungeon (6) |  | $\bigcirc^{\text {Exit }}$ |

60 warriors start from the Dungeon. For each route, calculate the number that you would expect to survive.
Which route is the safest? $\qquad$

Name
P5(a)

Measurements of the depth of the water below a bridge are taken at 2, 6, 10, and 14 meters from the lake shore. The mean average depth is 2 meters. Draw a possible profile of the lake below the bridge.


Distance from the shore in meters


Name

## P5(b)

This is the data the park ranger provided for the depth of the water below the bridge.

8 measurements<br>Mean: 2 meters<br>Mode: 1 meter<br>Range: 1 to 8 meters

What could the eight measurements have been?
$\qquad$ m, $\qquad$ m, $\qquad$ m, m, m, m, $\qquad$ m, $\qquad$ m Measurements were taken at $1,3,5,7,9,11,13$, and 15 meters from the lake shore. Based on the eight measurements you listed, draw a profile of the lake below the bridge.

Distance from the shore in meters

|  |  | 2 | (3) | (3) 4 | ( | 6 | 7 | ( | (9) 10 | (11) | 12 | (13) 14 | 4 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\stackrel{\text { ¢ }}{ } \stackrel{ }{\circ}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| .ㄷ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 듕 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\stackrel{\text { ® }}{ }$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Name

## Rita: 9 <br> Bruce: 8

Rita leads Bruce $9-8$ in a game to 10 points when they must stop playing. Use this square to calculate each player's probability of winning.

$$
9-8
$$

What is Rita's probability of winning? $\qquad$ Bruce's $\qquad$
If Rita and Bruce each put 50¢ into a pot, how should they share the $\$ 1.00$ when the game stops at $9-8$ ? Rita $\qquad$ Bruce $\qquad$

Name


Rita: $9 \quad$ Bruce: 9
Rita and Bruce are tied in a game to 10 points when they must stop playing. Use this square to calculate each player's probability of winning.

$$
9-9
$$



What is Rita's probability of winning? $\qquad$ Bruce's $\qquad$

## Rita: 9 <br> Bruce: 6

Rita leads Bruce 9-6 in a game to 10 points when they must stop playing. Use this square to calculate each player's probability of winning.

$$
9-6
$$

What is Rita's probability of winning? $\qquad$ Bruce's $\qquad$


