W Strand

Workbooks
Introduction W-1
Use of the Workbooks Strand for Evaluation Purposes W-2
Content Overview W-3
Workbooks W-3
Positional Systems W-3
W-Lessons
W1 Arcade of Problems \#1 (Lesson One) W-5
W2 Arcade of Problems \#1 (Lesson Two) W-7
W3 Arcade of Problems \#2 (Lesson One) W-17
W4 Arcade of Problems \#2 (Lesson Two) W-19
W5 Arcade of Problems \#3 (Lesson One) W-29
W6 Arcade of Problems \#3 (Lesson Two) W-31
W7 Positional Systems W-4 1
W8 Arcade of Problems \#4 (Lesson One) W-49
W9 Arcade of Problems \#4 (Lesson Two) W-51
W10 Election in the Number World W-61
W11 Arcade of Problems \#5 (Lesson One) W-65
W12 Arcade of Problems \#5 (Lesson Two) W-67
W13 Arcade of Problems \#6 (Lesson One) W-77
W14 Arcade of Problems \#6 (Lesson Two) W-79

WORKBOOKS INTRODUCTION

There are many opportunities for student to work individually during the course of the lessons described in the other content strands. In the Workbooks strand, however, it is this individualized work which becomes the chief end of the majority of lessons. The goal in this strand is to provide students with opportunities

- to review many of the ideas they have met in other content strands;
- to apply their acquired knowledge to new situations requiring various kinds of strategic thinking; and
- to learn how to read and use mathematics workbooks.

The following six workbooks are provided:

- Arcade of Problems \#1
- Arcade of Problems \#2
- Arcade of Problems \#3
- Arcade of Problems \#4
- Arcade of Problems \#5
- Arcade of Problems \#6
...and one storybook.

- Election in the Number World

Each workbook contains problems of varying levels of difficulty. Approximately the first ten pages of each workbook are easy problems, the next ten to twelve pages are average level difficulty, and the last ten pages are more challenging problems. For each workbook, we suggest that all students start work at the easiest level (i.e., on page 2) and then work through as many pages as they can handle during the two lessons scheduled for that workbook. We estimate that, in a typical class, about two-thirds of the students will correctly finish the first ten pages, about one-third will finish the first twenty pages, and a few will finish all or most of the workbook. These proportions will vary from class to class.

This guide contains an answer key for each workbook. The key follows an introduction to the workbook and a suggested collective lesson. The lesson either presents the workbook to the whole class or provides a warm-up activity, usually on a problem similar to one found in the workbook.

The storybook Election in the Number World touches some important areas of mathematics with the motivation of a story context. This booklet allow students to become deeply involved in an appealing fantasy as they struggle with difficult mathematics problems. The situations support topics and strategies developed in other strands.

Use of the Workbook Strand for Evaluation Purposes

The workbooks provide an excellent instrument to assess the progress of your students on a regular basis. You may not feel it is necessary to check every page and problem for each student, but you should develop a procedure for checking students' work with which you are comfortable. This may include checking one or more specific pages, discussing some particular mistakes with individual students and letting them correct their work, or just looking carefully at a few pages to be sure the students have understood the general idea of the problems in that particular workbook.

In the Blacklines, you will find a record-keeping tool for each workbook to help you assess student progress in the various strands. This tool may also assist you in parent conferences and in filling out periodic progress reports.

Here are some important points to bear in mind for workbooks.

- Always read the introductory material for each workbook and give the short introductory collective lesson(s).
- All students should start at the beginning of each workbook and progress as far as they can.
- All students should begin a new title on the same day, even if some students have not finished work on the previous title.
- Not all students should be expected to complete a given workbook. Only some students will reach the most challenging problems. Other students may succeed only in doing the easiest problems, although you should not assume this automatically - surprises are not at all uncommon.
- Students should be allowed to use calculators except on pages you specify beforehand.

Note: Some pages in a workbook have problems that are related to calculators or are best attacked with the support of calculators; however, there also are pages for which the use of calculators may not be appropriate. We encourage you to review a workbook before distributing copies of it and to inform the class beforehand on which pages your are not allowing the use of calculators. Certain pages you may wish to use for special evaluation purposes; other pages would not be effective if calculators were allowed, for example, pages that primarily focus on paper-and-pencil computation, "wipe-out" pages that involve subtraction of decimal numbers, pages where using patterns permits students to solve problems from previously solved problems, and pages where the problem is to insert missing decimal points in answers to calculations.

WORKBOOKS INTRODUCTION

Content Overview

Workbooks

The six Arcade of Problems workbooks both review and extend many of the ideas introduced in the content strands. The extensions occur through problems which require students to apply the mathematics to new situations or to synthesize their knowledge in new ways.

Lessons: W1, 2, 3, 4, 5, 6. 8.9, 11, 12, 13, and 14.

Positional Systems

The storybook Election in the Number World provides an introduction to the full decimal positional system of numeration. Special attention is given to the relationship between fractional and decimal names for numbers.

The first lesson on positional systems does not make use of the storybook, but rather discusses a variety of positional notations for numbers. For example, the lesson explores a base five and a base twelve system. Students find that in base twelve they must invent new names for ten and eleven.

Capsule Lesson Summary

Use a calculator relation to review patterns in both positive and negative integers through repeated subtraction of tens. Begin the workbook Arcade of Problems \#1. (This is the first of two lessons using this workbook.)

Materials

Teacher	- Colored chalk	Student	- Arcade of Problems \#1 Workbook - Calculator - Colored pencils, pens,

Description of Lesson

Draw this arrow picture on the board.
T: Put 6153 on your calculator. Press $\square 100$, and then slowly press \square many times. Watch the numbers
 that appear on the display. What pattern do you notice?

S: \quad The ones digit is always 3.
T: If you keep pressing \exists, what are some numbers less than 100 that would eventually appear?

S: $\quad 93,83,73$, and so on.
$\mathrm{T}: \quad$ What is the least positive number that would appear?
S: 3.

Relabel the starting dot of the arrow on the board.
T: What negative numbers would appear?

Encourage students to predict some negative numbers that would appear before pressing any more keys.

T: Put 3 on your calculator and again press $\square 10 \square \ldots$...
What numbers appear?
S: $\quad-7,-17,-27$, and so on. All of the negative numbers end in 7.

Repeat the above activity with one or both of the following arrow pictures.

Pattern: All positive numbers end in 7. All negative numbers end in 3 .

Pattern: All positive numbers end in 9 or 4 . All negative numbers end in 1 or 6 .

Distribute copies of the workbook Arcade of Problems \#1, and let students work independently for the rest of the class period. You may need to work more closely with students new to CSMP or let those students work with veteran CSMP students for awhile. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

At the end of the class period, collect the workbooks for your review. They will be used again in Lesson W2.

Writing Activity

You may like students to take lesson notes on some, most, or even all their math lessons. The "Lesson Notes" section in Notes to the Teacher gives some suggestions and refers to forms in the Blacklines you may provide to students for this purpose. In this lesson, for example, students may note problems in the workbook they found especially difficult or especially interesting. They may also like to create other problems, similar to ones in the workbook, for their classmates or a family member to solve.

Description of Lesson

Begin the lesson with some mental arithmetic for division. Suggested problems with student responses in boxes are given below.
$8 \longdiv { 7 0 }$
$8 \longdiv { 2 }$
$8 \longdiv { 7 2 }$
$72 R=1$
$8 \longdiv { 5 8 0 } R = 4$
73
$8 \longdiv { 5 7 7 }$
$8 \longdiv { 5 8 4 }$

T: Nabu has various packing jobs. Suppose he is assigned to pack balls into boxes of 12. How many balls will fill 2 boxes? (24) 3 boxes? (36) 30 boxes? (360) 31 boxes? (372)

One day he is given 8717 balls to pack. How many boxes can he fill?
S: \quad We need to divide 8717 by 12.
Write the problem on the board.
$1 2 \longdiv { 8 7 1 7 }$

T: Can he fill 1000 boxes? (No) 100 boxes? (Yes) 200 boxes? (Yes) 900 boxes? (No)
S: Let's try 500.
T: How many balls can Nabu put into 500 boxes?
S: $\quad 6000 ; 12 \times 500=6000$.
T: How many balls will he have left to pack after filling 500 boxes?
S: 2717.

$12 \lcm{8717}$	
-6000	500
2717	
-2400	200
317	
-240	20
777	
-72	6
5	

Continue letting students suggest how many boxes Nabu can fill at each step and then what is left to pack. Record the result in the division calculation. Observe that Nabu can fill a total of 726 boxes and there will be 5 balls left over.

Distribute students' copies of the workbook Arcade of Problems \#1. Ask students first to correct or complete pages from the previous week's work, and then to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in the workbook during a study time or to take it home as an assignment.

Assessment Activity

An individual student progress record for this workbook is available on Blackline W2(a). You may like to use this form to monitor student work.

Home Activity

If you choose to send workbooks home with students, you may want to include a letter to parents/ guardians about the workbook. Blackline W2(b) has a sample letter.

C-silshere numtr.
CNHET
Cadisone dithere numbers.

∞

Chut

Whotrcos?

Pu esch il ithere numtert h hesingpkure.

Pu esh ch ither numtert in hexingpkure.

 sorres.

Exarupts:

$\frac{1}{2}=\frac{3}{6}$

$\frac{1}{2}=\frac{8}{16}$
There are marif waps to color oneteal fof sa stepe.

 bles. One lidone lor, oul

Fowls trecki number.

Clutl

Fomithints.arxapkiurt.

Cluwe

MholtFom: \qquad
15

RII Ih ite bot bresch inven

16

 4thbochoste 16 g*med.

 Ithe tremer.

$$
\begin{array}{r}
79 \\
\times 16 \\
\hline 474 \\
790 \\
\hline 1254
\end{array}
$$

 is lid the triver.

Other calcula iors mop be ued.

$$
\begin{array}{ll}
\frac{2}{9} \times 18=4 & \frac{2}{9} \times 36=8 \\
\frac{2}{9} \times 90=20 & \frac{2}{9} \times 360=80 \\
\frac{2}{9} \times 54=12 & \frac{2}{9} \times 27=6
\end{array}
$$

18

Loxse thete numtert on the numberine.

$$
\frac{1}{2} \quad \frac{1}{4} \quad \frac{3}{4} \quad \frac{1}{8} \quad \frac{5}{8} \quad \frac{11}{8} \quad \frac{3}{2}
$$

Drimild themithay red aromettereen thete dith

4

Clunk

 mochechert

Broculd be 0.15, 0.3. 18, \% 3 -

Cluss

$$
4 \times(0,2+(0,5 \div 2))
$$

Molt Bt? \qquad
$\$$


```
*Oymu wif.
        + () < \div
```



```
(7-7)+(7\div7) =1 (7\div7)+(7\div7)=2
    (T+7+T)\div7 = 3 (T \divT)-7 = 4
```



```
(C+7)\div7)+7=9 (T-7)\div7 = = (0
(7+7)+(7\div7)=15 (7)\div7)+7 = = |
```



```
(7\timesT)-T-7 = 35 (T }\times7)+(7\div7)=5
```

 Oter solulionsare posibk.

Capsule Lesson Summary

Use an arrow picture to present mental arithmetic problems involving decimal numbers and the relation $\div 10$. Begin the workbook Arcade of Problems \#2. (This is the first of two lessons using this workbook.)

Materials

Teacher	- Colored chalk	Student	- Arcade of Problems \#2 Workbook - Calculator - Colored pencils, pens,

Description of Lesson

Draw this arrow picture on the board.
Put 65000 at \mathbf{b}. Invite students to find \mathbf{c} (6500) and \mathbf{d} (650).

Do not write the letters on the board. They are here just to make the description of the lesson easier to follow.

Present some of the following or similar problems. Label the indicated dot and let students label the other two dots. Discuss techniques for calculating $10 x$ and $\div 10$.

dot	number
\mathbf{b}	20800
\mathbf{b}	78
\mathbf{b}	590

dot	number
c	40300
c	8
c	0.64

Draw a blue arrow from \mathbf{b} to \mathbf{d}.

T: What could the blue arrow be for?
 $\mathrm{S}: \quad \div 100$.

If students suggest $\div 20$, check that this does not work when you label the dots.

T: \quad The arrow picture suggests that one way to divide a number by 100 is to divide it by 10 twice. What is $82 \div 100$?

S: $\quad 0.82 ; 82 \div 10=8.2$ and $8.2 \div 10=0.82$.
Present some of the following problems to the class. (Student responses are in boxes.)

$$
\begin{aligned}
960000 \div 100 & =9600 \\
470 \div 100 & =4.7 \\
492 \div 100 & =4.92
\end{aligned}
$$

$$
\begin{array}{r}
56 \div 100=0.56 \\
7 \div 100=0.07 \\
3.4 \div 100=0.034
\end{array}
$$

Distribute copies of the workbook Arcade of Problems \#2, and let students work independently for the rest of the class period. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

At the end of the class period, collect the workbooks for your review. They will be used again in Lesson W4.

Capsule Lesson Summary

Introduce calculator sentences, and look for numbers obtained as a result of putting operation keys in this expression: $9-3-5-2$ - \ddagger. Choose a possible resulting number, and find which operation keys need to be used to get that resulting number. Continue individual work in the workbook Arcade of Problems \#2. (This is the second of two lessons using this workbook.)

Teacher		
	Materials	
	Student	- Calculator
		- Arcade of Problems \#2
		Workbook
		- Colored pencils, pens, or crayons

Description of Lesson

Write this expression on the board.

T: On your calculator, press these keys in the order given here. What number is on the display?

S: $\quad 11$.
T: This is a calculator sentence for 11. We call it a calculator sentence because it is how a calculator does the operations in the order we press the keys.

Note: This description of a calculator sentence assumes that the calculator does the operations in the order of entry, that is, chain operations. See "Role and Use of Calculators" in Section One, Notes to the Teacher to learn more about such features of a calculator. If your calculators do not do chain operations, you will need to adjust the lesson description accordingly.

$$
[9]-3-5-2 \square
$$

Erase the operation symbols in the expression and ask,
T: If we put different operation keys in the sentence, what are some other numbers we could get?

There are many possibilities (more than 50), so accept several. Each time, ask the student to announce which operation keys he or she used. For example:

S: 19. I used all three \square keys $9 \square 3 \square 5 \square 2 \square 19$.
S: 6; $9 \div 3 \square 5 \square 2 \square 6$.
T: What is the greatest number we could get? (270)
What is the least number we could get? (-4)
As students work on finding the greatest and least possible numbers, you are likely to get some discussion about comparing decimals or comparing decimals to negative numbers. For example, 0.5 is more than -1 , and -1 is more than -4 .

W4

The greatest and least possible numbers result from the following choices of operations.

Choose a possible whole number that has not been mentioned, such as 15 , and ask,
T: What operation keys would we use to get a calculator sentence for 15 ?

$$
9-3-5-2 \square 15
$$

In this case there are two possible solutions.

Distribute copies of the workbook Arcade of Problems \#2. Ask students first to correct or complete pages from the previous week's work, and then to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in the workbook during a study time or to take it home as an assignment.

Assessment Activity

An individual student progress record for the workbook is available on Blackline W4. You may like to use this form to monitor student work.

Home Activity

 One latone br, du .
Mon, whimeswe portide.

$\begin{array}{lllll}31 & 35 & 36 & 42 & 60\end{array}$

 What ihe ambet dikie nutterEl wid be?
\qquad

4

Lstel hedost

Theori, matberol 4 hith polure sere an and \& 5

 one chither rebylinns

$$
+2+8 \quad-2-8 \times 2 \times 8 \div 2 \div 8
$$

7

Complate. The pliurer shour mb, help, in

$$
\begin{aligned}
& 3 \frac{2}{3}-2=\frac{1 \frac{1}{3}}{2 \frac{1}{3}-\frac{1}{3}=2} \\
& 2 \frac{1}{3}-\frac{2}{3}=\frac{1 \frac{1}{3}}{10} \quad 4-1 \frac{2}{3}=\frac{2}{3}
\end{aligned}
$$

 st Ithes ath deura.
(3) (3)

Mathl.		
$\begin{aligned} & \text { chas. } \\ & \text { 9 } 9 \longdiv { 9 4 0 } \mathrm { F } = 0 \end{aligned}$	$9 \widehat{3 T}^{3}=0$	$9 \frac{6.3 R}{} \frac{567}{7}=0$
$9 \sqrt{558}^{63}=1$	$9 \sqrt{570}_{63 \mathrm{~F}}^{6}$	$\text { 9) } \frac{63 \mathrm{~F}}{575}=3$
$9 \sqrt{548}^{578}=2$	$9 \sqrt{540}^{64} \mathrm{~F}=4$	$\text { q) } \frac{652}{585}=0$

Fololys were nulter.
Cluti

 Clus.

MholsFow? \quad 8
18

Ibuisd hamorny sn \& Irell The bellsn
 Inom Dousio Ptrl.

 Answith larght as $50 p$ tsus.

The Gerralke trad Fothenreveril ligetherls mit ith roved

 Dueymi, trd Pwit

 t th a ithe Itrest thullidede.

$$
\frac{10.25}{-10.50} 53 \times 3504 \frac{1.25}{7875}
$$

Rslos tere numter.

Cher 1

Malsoneol thene numbers.

$$
\begin{aligned}
& (7 \times(8-3))+9=44 \\
& 7 \times(8-3)+9)=-98 \\
& 7 \times(8-(3+9))=\underline{2} \\
& (7 \times 8)-3)+9=62 \\
& (7 \times 8)-(3+9)=44
\end{aligned}
$$

Chat

 Wist chers.
(6) (3)

Mort frs? \qquad
19

How you zirred montyor ket mernyit gaing

 ank lise peehem

the stereo, wouqain 3 10. The picture ebove stows ster ing with enamount ofmoneplisul (3i) end compleine esch rersescion b end with 320 more $(3) \mathrm{M}+20)$.

Acceptamp correcteaplanaion.

Losse thete nutiert hithe wing platur.

$$
\begin{array}{ccccc}
\frac{7}{2} & \frac{2}{3} & \frac{4}{3} & \frac{10}{3} & \frac{8}{5} \\
\frac{3}{10} & 0.6 & 4 \times 0.7 & 6 \times 0.3 \\
& \frac{5}{6}+\frac{1}{3} & & 0.5 \times 1.4
\end{array}
$$

A

$a^{-2 * 1}$

 1231718

Whothin?_133
$\$$

Mach esth bute wimble aredisy

Capsule Lesson Summary

Use estimation to determine the correct placement of missing decimal points in a list of calculations. Begin the workbook Arcade of Problems \#3. (This is the first of two lessons using this workbook.)

Materials

Teacher • None	Student	- Arcade of Problems \#3 Workbook - Compass - Metric ruler - Colored pencils, pens, or crayons - Calculator

Description of Lesson

Write the following list of problems on the board.

$$
\begin{aligned}
9 \times 3.73 & =1273 \\
1.793 \times 3.02 & =4813 \\
8-7.831 & =0169 \\
73.4-9.9734 & =634266 \\
1.7 \times 9.1 & =1547 \\
0.93 \times 8.234 & =765762 \\
0.3 \times 79 & =237
\end{aligned}
$$

T: The eraser gremlin erased the decimal point in the results of all these calculations. Where should we place the decimal point in each result to make the calculation correct?

Encourage students to use estimation in deciding where to place the decimal points. For example, in the first problem ask,

T: What whole number is closest to 3.73? (4)
What number should the result be close to?
S: $\quad 13 ; 9+4=13$.
T: Where should we place the decimal point in the result?
S: Between the 2 and the 7; 12.73 is close to 13.
Continue in the same manner, asking students where to place the decimal point in the remaining problems. Each time, ask students to explain their responses. Encourage students to give explanations that involve estimation.

The correct placement of decimal points for all of the problems is shown below.

$$
\begin{aligned}
9 \times 3.73 & =12.73 \\
1.793 \times 3.02 & =4.813 \\
8-7.831 & =0.169 \\
73.4-9.9734 & =63.4266 \\
1.7 \times 9.1 & =15.47 \\
0.93 \times 8.234 & =7.65762 \\
0.3 \times 79 & =23.7
\end{aligned}
$$

Distribute copies of the workbook Arcade of Problems \#3, and let students work independently for the rest of the class period. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

At the end of the class period, collect the workbooks for your review. They will be used again in Lesson W6.

Description of Lesson

Put this algorithm puzzle on the board, leaving the boxes empty.
Invite students to suggest how to fill in the boxes. Remind them that each box is for one missing digit. Encourage students to explain their responses. If many students have difficulty getting started, lead the discussion to determine that the divisor is 17 . The problem is solved when all the boxes are filled in, as shown here.

173	$R=9$
$1 7 \longdiv { 2 9 5 0 }$	
-170	100
125 0	
-680	40
570	
510	30
60	
- 51	3
9	

Distribute students' copies of the workbook Arcade of Problems \#3. Ask students first to correct or complete pages from the previous week's work and then to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in the workbook during a study time or to take it home as an assignment.

Assessment Activity

An individual student progress record for the workbook is available on Blackline W6(a). You may like to use this form to monitor student work.

Home Activity

This would be a good time to send a letter to parents/guardians about addition, subtraction, multiplication, and division practice. Blackline W6(b) has a sample letter.

(2)
(ㄷ) (1)
(3)
(3) (3)

72

Morip solu ionse ere possible.

One H dinelor, ou
Man, wilulons sep porble.

Other solutions are possble.

Patint isph

$$
3.73+9+0.37=13.1
$$

$$
297.7-2.977=294.723
$$

$13-1.673=11.327$
$28.3 \times 0.93=26.319$
$35.9 \times 60.12=2 \mid 58,308$

9

Folsh trien numbet

Clusi

Fblione dithere numbers.

Clunk

Fblione dithete doth Lateithe doth

00
 redbetidx

今1

6×7	13×5	12×18
13×7	13×20	12×15
18×7	13×17	11×15
30×7	13×30	11×17

4

 Ithe themet

1) 382 k k \quad 夕 1820 km . 2100 km

 Acoopt doso epproximekiond such as bokwoon 68, 4 and 7 hours处

 multorocy．

5 困 4,302	2,37 回，428
87 图，769	$42,307,8$ 困 8

Pu eshol thete numters in he ingiviure．

Mou le toral ramb－ur．
Cluw
 sifremikn

$$
8 \times 7-4+6
$$

Pombe encral ramb-ur.
Clusi
Porn $\square 10=30$

Pom suadty $3,-E,-15$, so 30
Cluse
Ротп $П 18=3$

Pom owidth_3_or_15

Clute

ol heme tridurk
(9) (3) (3)

Whos Le Pow \qquad

81

Capsule Lesson Summary

Using an abacus as support, discuss a base five and a base twelve system of numeration. Invent some symbols for ten and eleven to use in base twelve writing.

Materials			
Teacher	• Magnetic checkers (optional)	Student	• Worksheet W7

Description of Lesson

Note: Because there are several bases referred to in this lesson, it is necessary to be careful about how you read numerals. For this reason, we often indicate how to read a numeral.

Exercise 1

\qquad
Draw this abacus on the chalkboard. Put (draw) one checker on the ones board.

T: What number is on this abacus?

S: $\quad 1$.
Label the ones board and move the checker one board to the left.

T: What number could this be?

The choice is arbitrary. Let students suggest many whole numbers greater than 1. In fact, it could be a negative integer, but do not mention this if no one suggests it.

T: You can't know for sure what number it is until I tell you the rule for this abacus. The rule is that five checkers on a board trade for one checker on the next board to the left.

Demonstrate the rule by putting five checkers on the ones board and then making a trade.

Leave the checker on the abacus.

T: Now, what number is this?

S: $\quad 5$.
Label the appropriate board and move the checker one board to the left.

T: What number is this?

S: $\quad 25$, because $5 \times 5=25$.
S: 25, because according to the rule we can trade this checker for five checkers on the fives board.

Move the checker to the left one board at a time as you ask for the value of each board. When you have six or seven boards to the left of the bar labeled, put one checker on the board to the right of the bar.
T: What number is this?
S: $\quad 1 / 5$.
T: Why?

S: \quad Five checkers on that board trade for one checker on the ones board. So the value of one checker on that board is $1 / 5$.

Demonstrate this trade on the abacus.

Move the checker to the right one board at a time as you ask for the value of each board. Label three or four boards to the right of the bar.

T: This is a base five abacus. Who can put 100 on this abacus?

Accept any solution, but lead to a solution with at most four checkers on a board (see illustration below).

T: Who can write the base five name for 100?

Invite a student to write the number by aligning the digits of the base five number with the boards of the abacus.

Note: Read " 400 " in base five as "four, zero, zero, base five" instead of as "four hundred."
T: Why is this 100?
S: $\quad 4 \times 25=100$.

Begin this table on the board.
T: Who can put 333 on this abacus and write its base five name?

Decimal writing	Base five writing
100	400
333	

T: In our regular decimal writing of numbers we need ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. How many digits do we need in base five?

S: Five: 0, 1, 2, 3, and 4.
T: Why only five? What happens if I show a number by putting more than four checkers on a board of the abacus?

S: If there are five or more checkers on any board of the abacus, we can make a trade of five checkers for one checker on the next board to the left.

Add the following information to the table.
T (pointing to 302): Which decimal number is this?
S: $\quad 77$, because $(3 \times 25)+2=77$.
T (pointing to 21.3): Who can put this number on the abacus? Which decimal number is this?

Decimal writing	Base five writing
100	400
333	2313
	302
	21.3

S: $\quad 11^{3 / 5}$ or 11.6, since $1 / 5=0.2$ and $3 / 5=0.6$.

Add the information to the table.
Distribute copies of Worksheet W7 and direct students to complete it. When many students are finished, invite some students to present their solutions.

Decimal writing	Base five writing
100	400
333	2313
77	302
11.6	21.3

Exercise 2

Erase the labels from the abacus except for the ones board. Put one checker on the abacus on the board to the left of the ones place.

T: Suppose we change the rule: One checker on a board trades for ten checkers on the next board to the right. If this is the rule, what number is on the abacus?

S: $\quad 10$.
T: This is now a base ten abacus.
How many digits do I need to write numbers in base ten?

S: Ten: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
T: Will numbers written in base ten be familiar to you?
S: Yes, it's our usual way of writing numbers.
T: Base ten is another name for decimal.
Change the rule of the abacus again and indicate it in the following way.

T: \quad The new rule is this: One checker on a board trades for twelve checkers on the next board to the right. What number is on the abacus?

S: $\quad 144$, because $12 \times 12=144$.

Label that board, and begin a table on the board.

T: Who can put 100 on this abacus?

Decimal writing	Base twelve writing
144	100
100	

Note: Read " 84 " in base twelve as "eight, four, base twelve."
T: Why is this 100?
S: $\quad(8 \times 12)+4=100$.
Extend the table with another decimal number.

Decimal writing	Base twelve writing
144	100
100	84
46	

T: Who can put 46 on the abacus?

T: How can we write the base twelve name for 46?
Note: Students might suggest incorrectly 310, writing 3 beneath the twelves board and 10 beneath the ones board. If this occurs, ask the class how they would distinguish between the following two numbers written in base twelve. The first one is 46 and the second one is 444 ; they are different numbers.

T: What is the problem? Why is it difficult to write the base twelve name for 46?

Lead the class to observe that you cannot represent ten checkers on a board until you have a base twelve name for 10 .

T: How many digits do we need to write base twelve numbers?
S: Twelve.
T: Yes, but we have only ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. What numbers do we still need new symbols for?

S: 10 and 11.
T: Let's invent a new symbol for 10 to use in base twelve writing.
Invite several students to suggest new symbols for 10, and let other students express their opinions of the suggested symbols. The following symbols are ones like students might suggest.

^

(10)

After a few symbols have been drawn, present some desirable characteristics of the new symbol. For example:

T: The new symbol should be simple to write and not look too much like other mathematical symbols, such as the numerals 0 through 9 or the operation symbols,,$+- x$, or \div. Also, the symbol need not remind us of the numeral 10.

Write the numeral 6 on the board as you ask,
T: Our symbol does not have to suggest quantity; for example, does the way this symbol is written suggest six objects?

S: No, but we have learned to think "six" when we see that symbol.

T: Our new symbol for 10 need not remind us of 10 objects or of the numeral 10. It can be entirely new.

Using these criteria, let students discuss the symbols they have already suggested and invite them to suggest a few more symbols. Then ask the class to select the symbol they prefer. For example, suppose a class chooses λ.

T: Now who can write the base twelve name for 46?

Insist that students use the new symbol chosen by your class, for example:

Decimal writing	Base twelve writing
144	100
100	84
46	3λ

T: Who can put 71 on this abacus?
Can we write the base twelve name for 71?
S: Not yet; we need a new symbol for eleven.

Ask students to suggest symbols for eleven, and then let the class select one of their symbols, for example, \cap, as the base twelve name for eleven.
$\mathrm{T}: \quad$ Who can write the base twelve name for 71?

Decimal writing	Base twelve writing
144	100
100	84
46	3λ
71	$5 \cap$

Exercise 3 (optional)

This discussion of positional notation is optional. You may wish to include it in this lesson or at some future time.

T: Today we looked at a base five abacus and at a base twelve abacus. In other lessons you have used a base two abacus and a base three abacus. What is similar and what is different about these different bases?

One point you should discuss is that one checker on the first board to the left of the bar is always 1 .

The rule for the abacus is arbitrary. However, once the rule is chosen (for example, five checkers on a board trades for one checker on the next board to the left), the values of the boards are determined by the multiplication rule (e.g., $5,25,125,625,1 / 5,1 / 25$, and so on).

Also, students should observe that the rule chosen for the abacus determines the number of digits needed to write names for numbers on that abacus. For example, we need five digits $(0,1,2,3,4)$ to write base five names.

T: Why do you think we usually write base ten names for numbers instead of some other base?

In the discussion you may observe that people have ten fingers and that this may have led to a base ten method of writing numerals.

T: What bases do you think other earlier cultures may have used? Why?

After the class has suggested a few possibilities, mention that the Romans used a mixture of base five and base ten; that the Mayans of Central America used a mixture of base five and base twenty; and that the Babylonians used a mixture of base ten and base sixty, from which our method of keeping time originated (60 seconds $=1$ minute; 60 minutes $=1$ hour $)$.

Write this expression on the board.
T: Each of these ways of writing numbers is an example of positional notation. Why do you think we describe the notations as positional?
S: The position of a checker on an abacus determines its value.

Capsule Lesson Summary

Use rectangular regions to support addition and subtraction of fractions. Begin the workbook Arcade of Problems \#4. (This is the first of two lessons using this workbook.)

Materials		
Teacher	- Fraction manipulative (optional)	Student
	- Meter stick	- Arcade of Problems \#4
	- Colored chalk	Workbook
		- Colored pencils, pens, or crayons
		- Calculator

Description of Lesson

Note: If you have a fraction manipulative that would work well for this activity, you may prefer to use it rather than to draw and color rectangles.

Draw five 2-by-3 rectangles on the board, as in the next illustration.
Write this addition problem on the board.

$$
1 \frac{1}{2}+1 \frac{1}{3}=
$$

T: Let's see if we can use the rectangles to help us with the calculation.

Accept student responses. Then invite one student to mark in red $11 / 2$ rectangles and another student to mark in blue $1 / 3$ rectangles. For example:

T: What is $1^{1 / 2}+1^{1 / 3}$?
S: $\quad 15 / 6$.

Students may suggest putting the extra three red and two blue marks in one rectangle. For example:

W8

Present the following problems in a similar manner. Let students predict each sum before using the rectangles. (Answers are in boxes.)

$$
\frac{1}{3}+2 \frac{5}{6}=3 \frac{1}{6} \quad \frac{1}{6}+\frac{1}{2}=\frac{4}{6}=\frac{2}{3} \quad 2 \frac{2}{3}+1 \frac{1}{2}=4 \frac{1}{6}
$$

Pose this subtraction problem.

T: What is $2^{1 / 6-1 / 2}$?

After accepting students' answers, let one student mark $21 / 6$ rectangles in red, and let another student erase marks from $1 / 2$ rectangle.

T: What is $2^{1 / 6-1 / 2}$?
S: $\quad 14 / 6$ or $1^{2 / 3}$.
Present the following problems in a similar manner. (Answers are in boxes.)
$4-2 \frac{1}{3}=1 \frac{2}{3}$
$2 \frac{1}{2}-1 \frac{5}{6}=\frac{4}{6}=\frac{2}{3}$
$3 \frac{1}{6}-1 \frac{1}{2}=1 \frac{4}{6}=1 \frac{2}{3}$

Distribute copies of the workbook Arcade of Problems \#4, and let students work independently for the rest of the class period. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

At the end of the class period, collect the workbooks for your review. They will be used again in Lesson W9.

Capsule Lesson Summary

Continue individual work in the workbook Arcade of Problems \#4. (This is the second of two lessons using this workbook.)

Description of Lesson

Distribute students' copies of the workbook Arcade of Problems \#4. Ask students first to correct or complete pages from the previous week's work and then to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in the workbook during a study time or to take it home as an assignment.

Assessment Activity

An individual student progress record for the workbook is available on Blackline W9. You may like to use this form to monitor student work.

Potribe 1sph.

 sermed.

Md	ontrud.
$2 \frac{1}{4}+5 \frac{3}{4}+\frac{1}{2}$	$63 T, 0 T-83.8$
$8 \frac{1}{2}$	

1. Drue sole th Ithr surders

 0 millugititn-
Oster them thes.

7

 Hutel pallhumbtes

$$
\begin{gathered}
2.3 \times 4.6=10.58 \\
4.82+39.6=44.42 \\
59.7-49.81=9.89 \\
0.3 \times 98.7=29.61 \\
1.2-0.8=0.4
\end{gathered}
$$

Whaneden

How manh twe Kdinygdi

Fillibe botedor hesmen.

is

Galtswere nuter.

CNHL 1

Gsy canbe pu on fiththkompuer b, sadm ensil, one ol lhe thechers.

Gultiniltsatomplure.

MowhGal?
15

otroe your esic．
Profiton one dowen

$$
\begin{array}{r}
\text { Froiton 14 doren } \begin{array}{r}
24 \\
\times 14 \\
\hline 96 \\
240 \\
\hline 336
\end{array},
\end{array}
$$

 Es an aquere san ith oul lom it 48
Fomember $1 \mathrm{~m}=100 \mathrm{~cm}$

Oter mehods of solution erepossible．

38 图4
6666 图
9 团2

Otter soltjons

13

 Ifienquare bitrd Ithe prob－ckilly

What le Ithe proketilly st giling＋ply dsyul tord t tonsydsmis $\frac{2}{8}-\frac{1}{8}$
 line itral domil？

 the platers．
y

$$
\begin{array}{cccc}
3 \div 4 & 18+0.4 & 2-\frac{3}{5} \\
\frac{1}{3} \times \frac{2}{3} & \frac{3}{2} \times \frac{5}{3} & \frac{3}{2}-\frac{3}{4} & \frac{7}{10}+\frac{1}{2} \\
3.3-2.9 & 5 \times 0.5 & 3 \times 0.4
\end{array}
$$

\Leftrightarrow

Exampte $4^{3}=4 \times 4 \times 4=64$	
$7^{2}=49$	$5^{2}=\sim$
$7^{3}=3$	$5^{s}=125$
$20^{5}=8000$	$5^{+}=685$
$4^{(1)}=16$	$11^{2}=121$
$3^{\square}=81$	$30^{2}=900$
$2^{\text {- }}$ - 512	$5^{3}=216$
$\stackrel{4}{ }$	

Ralsh tere nulter.

| Cluw |
| :---: | :---: |

Aalsone dithere numbers.

Cluat

Mach exh redisg fith a tue isy.

\approx

 trad t sompeldr. Ho meryin his eurgysumd malter t WOF

Explth your wimer bulky
$\frac{8}{4} \times 200=190$
150 phopth sternd + wor
$\frac{8}{8} \times 200=80$

There win 150 p-spth h

$\frac{1}{2} \times 150=75$
7 pusptumditurion
os whimestu $\%$ phopth
upulther wof is left
Tritriens

50)
infraptinnurumd
27
 14p-4Tratwere

Gun++ My Falt+

$3 * 2=8$
$2 * 3=9$
$6 * 4=28$
$0 * 5=5$

7* $1=8$
Dearite the rikisp 1 .

$$
a * \mathrm{~b}=\{\times \mathrm{x}+\mathrm{b}+\mathrm{b}
$$

$7 * 6=$ *	$6 * 7=49$
$9 * 12=0$	3-8 $8=32$
$3 * 7.2=8$	$9 * 4.4=44$
11* $1.5=18$	$11 * \widehat{4}=$ 芴
$4.5 * 8=44$	$\widehat{8 *} \mathrm{q}=8$

Ohe dearipione of therule wre powithe.

Ewh steren numter.
awn 1
 Qubelter.

 116 $\% \overline{22}$.
aunk

Buccoubt 2. $2.12 .8, \underline{23} .6$ 41.6, or $\overline{7} .6$
\square
 to hite

$$
8 \times(4+(6 \div 5))
$$

Nown 日es? 41.6

 ard 5 radbetis in + poth 2582
 4 red b-tdesh 4 pole gisel ysur work

$$
\frac{210 \times 6}{5}=252
$$

8
8
8
8
8
8

21

LoH let encul volle ramber.
ChH^{1}
Loki $\sqcap 15=5$

Description of Lesson

Note: Because there are several bases referred to in this lesson, it is necessary to be careful about how you read numerals. For this reason, we often indicate how to read a numeral.

Wait to distribute copies of the storybook until after Exercise 1.

Exercise 1

\qquad

T: I'm going to put a number on the board, but I'm not going to tell you what kind of writing I'm using.

Write 213 on the board.

T: What number is this?

S: Two hundred thirteen.

T: It looks like two hundred thirteen, but could it be any other number?

Let the class discuss the question. 213 could name a number written in any base greater than three. If no one suggests that you could be writing in a base other than base ten, proceed as follows.

T: I'll give you a hint. Do you remember putting numbers on different kinds of abaci (abacuses)?

Your students should recall that they have used abaci for several bases; for example, base two, base three, base five, and base twelve. Then the class should realize that 213 could name several numbers depending upon which abacus or base writing is being used.

Draw an abacus on the board (see the next illustration).
T: Who can use checkers to put 213 (read as "two, one, three") on the abacus regardless of which kind of abacus it is?

W 10

Point to the board with three checkers.
$\mathrm{T}: \quad$ What is the value of this board?
S: One.

Label the ones board and point to the board with one checker.
T: Could the value of this board be five?
S: Yes.
T: If so, what would be the rule of the abacus?
S: Five checkers on a board trade for one checker on the next board to the left.
Label that board 5 and point to the board with two checkers.
$\mathrm{T}: \quad$ What is the value of this board for a base five abacus?
S: \quad Twenty-five, since $5 \times 5=25$.
Label the board 25.
T: Therefore, what decimal number is on the abacus?
S: $\quad 58$, since $(2 \times 25)+(1 \times 5)+(3 \times 1)=58$.
Display the equivalent base five and decimal names for the number.

Base five writing
Decimal writing
213
$=$
58

Erase the base five labels from the abacus. Again point to the board with one checker.
T: Could the value of this board be seven?
S: Yes.
In a similar manner as above, ask students to determine the decimal number equivalent to 213 (read as "two, one, three") in base seven.

Base seven writing
213 seven $=108_{\text {ten }}$

Repeat the activity with base twelve and obtain the following result.

Base twelve writing
Decimal writing
$213_{\text {twelve }}$
303

T: We've looked at 213 (read as "two, one, three") as a number written in base five, in base seven, and in base twelve. Could 213 be the name of a number written in any other base?

It could be the name of a number written in any base more than three. Accept several student suggestions and then ask,

T: Could 213 be the base two name for a number?
S: No, only 0 and 1 are used in writing base two names for numbers.
Similarly, conclude that 213 cannot be the base three name of a number since only 0,1 , and 2 are used in base three writing.

Write this expression on the board.

positional notation

T: Writing numbers in base five, in base seven, and in base twelve are all examples of positional notation. We call it positional because the position of a digit in a number or of a checker on an abacus determines its value.

Exercise 2

\qquad
Distribute copies of the storybook Election in the Number World.
Pages 1-2
Read pages 1 and 2, and write the following information on the board.

$$
\begin{array}{cc}
\text { Fractional writing } & \text { Positional writing } \\
1 \frac{2}{5}+3 \frac{1}{2} & 1.4+3.5
\end{array}
$$

T: On page 2, Nabu is considering the positional way of writing numbers and the fractional way. I have written two calculations on the board, one with fractions and one with decimal writing. Which calculation is easier to do?

Even without doing the calculations, students should agree that adding with the decimal writing of numbers is often easier than adding with fractions.

T: One advantage of a positional notation is that it is usually easier to add numbers with it.
Pages 3-7
Read pages 3 through 7 together.
T: Look at the arrow road on page 7. What could the blue arrows be for?
S: $\quad 10 \times$, because $10 \times 0.1=1 ; 10 \times 1=10 ; 10 \times 10=100$; and so on.
T: Find 1000 on the arrow road. Let's start at 1000 and read the numbers in order as we follow blue arrows.

Giving help when needed, invite students to read the numbers in order:
ten thousand, one hundred thousand;
one million $(1,000,000)$, ten million, one hundred million; one billion ($1,000,000,000$), ten billion, one hundred billion; one trillion $(1,000,000,000,000)$, ten trillion, one hundred trillion; one quadrillion $(1,000,000,000,000,000)$, and ten quadrillion.

Pages 8-9

Read page 8 . Then write these expressions on the board.
T: \quad The numbers are going to vote on which method of writing numbers they prefer. Let's take a vote in this
 class. If we were planning to use only one of these ways of writing numbers, which would you vote for? Why?

After a class discussion, take a class vote. Point out that the results from the numbers voting are on page 9 . Ask students to read page 9.

T: Which system received the most votes?

S: Decimal writing.
T: Who can explain these results: $95 \%, 4.7 \%$; and 0.3% ?
Encourage a discussion of the voting results. For example, the class may realize that in this situation 95% means 95 out of every 100 were for decimal writing.

Pages 10-21
As you and the class read pages 10 through 21, stop briefly to solve each problem by asking students to point to the answer in their storybooks.

Pages 22-31
Read pages 22 through 31 collectively. Briefly discuss the ideas as you wish, but try to finish the storybook in this one lesson.

Home Activity

You may like to allow students to take home copies of the storybook to read with family members.

Description of Lesson

Write these problems on the board.

$$
\begin{array}{r}
428.655 \times 36.935 \times 591.07=105666 \\
829.4-373.801=455599
\end{array}
$$

T: These calculations are correct except that a decimal point is missing from each result. Who can place a decimal point correctly?

Let students place the decimal points and explain their answers. Encourage the use of estimation. The correct results are 1056.66 and 455.599.

Write these two problems on the board.

$$
\begin{array}{r}
98.037 \times 627.44 \times 85 \times 0.9= \\
82.174-5.8=
\end{array}
$$

Ask students to copy these problems. First ask for estimates of each result. Students' estimates should be near 800 for the addition problem, and about 75 or 76 for the subtraction problem. Then instruct students to complete the calculations and to check their work by comparing their results to the estimates.

After a while, invite students to solve the problems at the board.

$$
98.037
$$

627.44
85.0

+0.9
811.377

Review the discussion from Lesson N20 Decimals \#4 about the need for aligning the decimal point when adding or subtracting decimal numbers.

Distribute copies of the workbook Arcade of Problems \#5, and let students work independently for the rest of the class period. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

At the end of the class period, collect the workbooks for your review. They will be used again in Lesson W12.

Description of Lesson

Begin with a discussion about adding fractions.

T: When are fractions easy to add and when are they hard to add?

S: They are easy to add when their denominators are the same. They are harder to add when their denominators are different.
T: What could we do to add fractions with unlike denominators?
S: Find other names for the fractions that have the same denominators.
Write this problem on the board.

$$
\frac{1}{2}+\frac{3}{5}
$$

T: \quad Why are we sure that $1 / 2+3 / 5$ is not equal to $4 / 7$?
S: $\quad 1 / 2+3 / 5$ is greater than 1, but $4 / 7$ is less than 1.
T: Let's find some other names for these fractions.
On the board, list equivalent fractions for $1 / 2$ and $3 / 5$ as students name them. Continue until names are given that have the same denominator, for example, $5 / 10$ and $6 / 10$. Using these names, complete the problem with the class.

$$
\frac{1}{2}+\frac{3}{5}=\frac{5}{10}+\frac{6}{10}=\frac{11}{10}+1 \frac{1}{10}
$$

Distribute students' copies of the workbook Arcade of Problems \#5. Ask students first to correct or complete pages from the previous week's work and to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in their workbooks during a study time or to take them home as an assignment.

W12

Assessment Activity

An individual student progress record for the workbook is available on Blackline W12. You may like to use this form to monitor student work.

Lbslas tece nurter.

 Clow
 reyis cherker.

Ups coudbe 옥 30 \qquad 0 - 36

Clutiz

WholtLlas? - 3
\star dithet relylkith

```
+4+6-4 -6 <4 <6 \div4 \div6
```


 \% ard 106 on hie Mrisemputer.

Oter solu fions are possible.
 58 mid $\%$ shith Mrismpuler.

Oter solu fions are possible.
5

Find ite ares of esch haure．
Find ite kngh ol one the of end wase．Whe aruler．

6arse	Rts $8 \mathrm{km1}$	Lengholone the 1 cm
6 mvil Elue	$4 \mathrm{~cm}^{2}$	2 cm
Gmblat	$8 \mathrm{~cm}^{2}$	Eसrevich
LayeElus	$16 \mathrm{~cm}^{2}$	4 cm
Larye Fed	$3 \mathrm{~cm}^{2}$	

Doerihe wime poitem hold brite knght ？ne
10

Chel

П：Gretha sommon Bier ப：Lead smonsimultit
$21 ワ 6=3$
$0 \square 4=20$
$20 ワ 9=1$
$3 \sqcup_{7}=\underline{21}$
$14 ワ 35=\frac{7}{7}$
$q \bigsqcup 6=18$

Chute
日回•••

Whas l Otws

11

 Ithe yurd stars Eruierr trad Dweg stril re \＆th hirn

0．ath： $1 \mathrm{~mm}=1 \mathrm{~m}$

 wh tuth oftrer．
$\mathrm{Unc}+6 \mathrm{~m}$

Comples．

$\frac{3}{4}=\frac{\text { 因 }}{15}$	$\frac{2}{5}=\frac{8}{20}$
$\frac{3}{4}=\frac{21}{\text { 粦 }}$	$\frac{2}{5}=\frac{18}{45}$
$\frac{3}{4}=\frac{\text { 回 }}{20}$	$\frac{2}{5}=\frac{40}{100}$

$$
\frac{3}{4}+\frac{2}{5}=\frac{15}{\frac{c}{20}}+\frac{s}{c 0}=\frac{\hat{c}_{s}}{c 0}=1 \frac{\hat{z}}{c 0}
$$

60
$34 /$

40 －

30.

70
15

CWNS

$20 E_{4} 3$	
$183 / 3 T \mid 3.4$	
-3600	200
113.4	
-108	6
$-s_{4} 4$	

Oxmplats

17

$$
\mathbf{a} * \mathbf{b}=(2 \times a)+\mathbf{b}
$$

Example $5 * 3=(2 \times 5)+3=13$
Osmptus

$$
\begin{array}{ll}
7 * 4=18 & 0.7 * 4=5.4 \\
\widehat{8} w 10=\widehat{6} & 35 * \widehat{4}=65 \\
6 w \boxed{3}=15 & 19 \text { w } \widehat{3}=35 \\
13+\widehat{5}=21 & 78+6=21.2
\end{array}
$$

H

3 Eerbels, 2 dornuts = 2 bartels, 4 doruls
3 berbelt $=2$ beatels, 2 dorna s 1 berbell = 2 dornst

Howmuch dsel \& t-at-d ((
 2
Merp other combinaions ere possible.
 Mons. ofluknt se powth.

Lstet he dix, bome dithe numberthisk monimet lyed wie boh nametior hose numtertbetbe ihtr dith.
$8 \div 9 \quad 3 \times 0.6 \quad 0.5 \times 1.2$
$1.8-1.43 \quad \frac{1}{10}+\frac{1}{2}$
$2-\frac{1}{3} \quad \frac{3}{4} \times \frac{1}{3} \quad \frac{2}{3} \times \frac{5}{3}$

*

EA Ard Est tre mord whoth rant-arg

$\mathrm{ClW}_{1} 1$

Cluw

Cluss

Pu tochnumiter on ithe herivompuer whe wisi, these wochelkth

$=6.2$
Anotier toluton has (9) on the $0.8 \rightarrow$ guare and (b)on the $0.1 \rightarrow q u a r e$.

$\stackrel{s}{2}$

Pollas فhok numberlewitan ito

The phome howrdusice rom lit of Pollt e

Rolcouldte $\frac{2}{2}, \underline{3}, 8,18,20, \underline{28}, 30,42$ $44,43,5 \hat{2}, 66,68, ~ 72, ~ 76, ~ 78, ~ \%-92$
\$

 Ithers eymb-is

$$
23+-x \div()
$$

Exmqut: $\underline{2}^{i-4}+2=2^{2}+2=64+2=\underline{66}$

> Cencraskilise in pionth.

Capsule Lesson Summary

Use fractional regions of a circle to support addition and subtraction of fractions. Begin the workbook Arcade of Problems \#6. (This is the first of two lessons using this workhonk)

Materials

Teacher • None Student • Arcade of Problems \#6 Workbook

- Colored pencils, pens, or crayons
- Compass
- Metric ruler
- Calculator

Description of Lesson

Draw four circles on the board and ask students to divide each of these circles first into halves, then into fourths, and finally into eighths. See the next illustration.

Write this addition problem on the board.

$$
1 \frac{3}{4}+1 \frac{3}{8}=
$$

T: Let's see if we can use the circles to help us with the calculation. What number is $13 / 4+13 / 8$?

Invite students to color (or mark) $13 / 4$ circles in red and $13 / 8$ circles in blue.

T: How many circles are colored?

S: $\quad 3^{1 / 8}$.
Complete the calculation on the board: $13 / 4+13 / 8=31 / 8$.
Repeat this activity with the following calculations. (Answers are in boxes.)

$$
1 \frac{1}{2}+1 \frac{3}{8}=2 \frac{7}{8} \quad 1 \frac{1}{2}-\frac{3}{8}=1 \frac{1}{8} \quad 3-1 \frac{3}{4}=1 \frac{1}{4}
$$

When doing a subtraction problem, you may wish to ask students only to mark regions with a color (rather than color entire regions) in order to make erasing easier.

Distribute copies of the workbook Arcade of Problems \#6 and let students work independently for the rest of the class period. If many students are having difficulty with a particular problem, you may wish to have a collective discussion about that problem.

W13

At the end of class period, collect the workbooks for your review. They will be used again in Lesson W14.

Capsule Lesson Summary			
Continue individual work in the workbook Arcade of Problems \#6. (This is the second of two lessons using this workbook.)			
Materials			
Teacher	- None	Student	- Arcade of Problems \#6 Workbook - Colored pencils, pens, or crayons - Compass - Metric ruler - Calculator

Description of Lesson

Distribute students' copies of the workbook Arcade of Problems \#6. Ask students first to correct or complete pages from the previous week's work and to continue working in their workbooks. You may wish to have a collective discussion about some problems that were difficult for many students the first week.

At the end of the class period, collect the workbooks for your review. After checking the workbooks, you may wish to ask some students to work further in their workbooks during a study time or to take them home as an assignment.

Assessment Activity

 What witions are porble.
 one cheder.

it could te $26,36,3,40, \%$ 45

Cluter

Wholrit ? _ 45

 st Ithercilalivat
$+2 \quad+7 \quad-2 \quad-7 \times 2 \times 7 \quad \div 2 \div 7$
I mintrationel lumber.
Cher 1
 Whe Mxi, thete Ino chelhers: Fand β

Chus

Whor Inme ? 49_- 5

 parcy．	
Hembersil 000 H	Frise
I	\＄0．45
2	\＄0．90
3	\＄135
4	浐安0
S	3225
（t dsman）\leqslant	\＄2．70
7	33.15
＊	\＄380
9	34.05
10	3450
II	34.95
（dsxat）12	35.40
10	

 185m 195．

Other solutions are posstie．
 1 and 슨

Oher solutons are posstile．
1人

Pu lhese numbertin the ming place.
$\begin{array}{lcccccc}0.09 & & 2.01 & 0.87 & 0.315 \\ & \frac{1}{8} & & \frac{4}{8} & & \frac{11}{8} & \\ \frac{7}{3} & & \frac{4}{5} & & \frac{4}{7} & & \frac{4}{9}\end{array}$

 How rowry tovisal reake erce Itrus Irsmpothl Als
porbles \qquad

今1

Weresels Ern $920 \mathrm{~km} 4 \times 2809$
Furlebevin $400 \mathrm{~km} 2 \times 2809$
Mirsh whinger 150 km ptr hear. Whan will il withe h

Prim ard Exnt_1tO6 PM
Acopk enawers bowison 11pm end 11: tsm.

Mollthetere nuter.
Clus1
Malladutble $b, 4$.
Mali $=2$ 이 $6203 \square 6$
Whis name can be compered dh.puing sonedgh numter hilhe bot
 $\%$ -

Cluwe

Multaduble bus.
Mal coullte $201,620,336$ - or 201600,376 .

Cluts

Mallanoldulth b_{V}.
Mohmal : 2 $01,690,36$
©

M年let mad whilenumber.

Clow

M4plekerthen os.
Cluné

$$
\mathbf{w}_{\boldsymbol{r}} \boldsymbol{\beta} \mid 8=3
$$

Cliws

Lster the witho

$$
\begin{aligned}
& \text { Tp }\lceil\text { Top }=10 \\
& \text { Tip } \sqcup \text { Top }=100
\end{aligned}
$$

 s $(10,100)$

Cluter

个	Tip	15
Top	Tip	Top
80	80	80

Whole πp° _ 50 —

*

Buy 1 by $-\frac{1}{2}$ off

This ingiral proces theraxisye arc

Whall ie the kured ank prisci $311 \$ 0$

