CSMP Mathematics for the Intermediate Grades Part V

Worksheets

What's In This Book?

This book contains all the worksheets you will need for *CSMP* for the Intermediate Grades, Part V. Worksheets are labeled with the same letter and number as the lessons with which they are used. In this book, they are in the following order:

N Worksheets

N12	N24
N14	N28
N15	N29
N16	N30
N18	N31
N20	N32
N22	N33
N23	N35
	N12 N14 N15 N16 N18 N20 N22 N23

L Worksheets

L2	L6	L12
L3	L10	L13
L5	L11	L15

G Worksheets

G3	G5	G12
G4	G9	

P Worksheets

P1	P3	P5
P2	P4	P8

W Worksheets

W7

N2

Fill in the boxes to label marks on the number lines.

Fill in the boxes for the arrows.

*

Name	N2	**
Pair the tags.		
0.6		•10
6×	$\frac{5}{6}$ ×	
÷IO	4×	
20×	+6.4	
+1.9	40×	
-0.35	+9.94	

Clue 1

Flip is the ending number of an arrow road starting at 256 and using exactly two \div 10 arrows and two -1 arrows.

N3

*

Complete these number sentences.

 $(8 \times 6) + (4 \div 2) =$ ____ $(8 \times 6) + (4 \div 2) =$ _____ $(8 \times (6 + 4)) \div 2 =$ ____ $((8 \times 6) + 4) \div 2 =$ ____ $8 \times ((6 + 4) \div 2) =$ $8 \times (6 + (4 \div 2)) =$

Rig is a secret number.

Parentheses are missing from this name for Rig.

Show all of the possible ways to put parentheses in this expression and find the numbers that Rig could be.

By moving exactly two of these checkers to other squares, you will find Rig.

Rig could be _____ or _____.

Clue 3

Rig is not a positive divisor of 200.

Who is Rig? _____

Pif is a secret number.

*

Place these numbers on the number line.

Complete. One is done for you.

N4

Complete.

Label the dots.

N6

Fill in the boxes for the arrows.

Name	N6

Complete.

Find the products and then write them in the preferred form.

$$\frac{2}{3} \times \frac{5}{4} =$$

$$\frac{1}{6} \times \frac{9}{4} =$$

$$\frac{12}{5} \times \frac{5}{3} =$$

$$\frac{6}{14} \times \frac{7}{3} =$$

$$\frac{2}{5} \times \frac{3}{4} \times \frac{2}{3} =$$

Fill in the boxes for the arrows.

Name	N6	***
Pair the tags.		
24 •	• •	● 20
$\frac{2}{3}$ ×	$\frac{5}{7}$ ×	
$\frac{3}{4}$ ×	$\frac{20}{9}$ ×	
$\frac{7}{6}$ ×	$\frac{5}{4}$ ×	
$\frac{3}{8}$ ×	+12.8	
$\frac{3}{10}$ ×	$\frac{10}{9}$ ×	

Name___

Small cubes are all of equal weight. Large cubes are all of equal weight.

A structure with 4 large and 8 small cubes weighs 10 pounds.

N7(a)

A structure with 3 small and 1 large cubes weighs 3 pounds.

Find the weights of some different combinations-structures-with small and large cubes.

How many small cubes would balance a large cube?

How much does each kind of cube weight? sr

N7(b)

The fabric store sells white and blue ribbon by the foot.

Dora spent \$3.92 on ribbon. She got 5 feet of white and He got 8 feet of white and 6 feet of blue ribbon.

Ted also spent \$3.92 on ribbon. 4 feet of blue ribbon.

Which color ribbon costs more per foot?

Find the cost of some other quantities of white and blue ribbon.

Find the cost of one foot of white ribbon.	
Find the cost of one foot of blue ribbon.	

Two hamburgers and two colas cost \$4.20.

Three orders of french fries and two colas cost \$3.19.

One hamburger, one order of french fries, and one cola cost \$2.65.

What is the individual cost of each item?

Hamburger_	
Cola	

French Fries_____

Some of the numbers in this string picture are missing a decimal point. Place a decimal point in each number so that it is in the correct region.

N8

*

Label the dots and fill in the boxes for the arrows.

Complete this table of possibilities for Su, Tu, and Vu.

Name_	

Pair the tags.

Fill in the boxes for the arrows.

Complete this table of possibilities for Klip and Klop.

Klip	Klop		
2			
5			
	30		
0.2			
1.5			
ÎÔ			
	5		

Fill in the box for an arrow from Klip to Klop.

Use the pictures and a ruler to help with this addition problem.

$$\frac{1}{3} + \frac{3}{4} = \frac{1}{12} + \frac{1}{12} =$$

$$\frac{1}{2} + \frac{2}{5}$$

Use the pictures and a ruler to help with this addition problem.

$$\frac{1}{2} + \frac{2}{5} = \frac{1}{10} + \frac{1}{10} =$$

$$\frac{2}{3} + \frac{3}{5}$$

Write at least three other fractional names for each fraction. Make sure you include names for $\frac{2}{3}$ and $\frac{3}{5}$ with the same denominator.

$$\frac{2}{3} + \frac{3}{5} = - + - = -$$

Write at least three other fractional names for each fraction. Make sure you include names for $\frac{1}{4}$ and $\frac{3}{10}$ with the same denominator.

$$\frac{1}{4} + \frac{3}{10} = - = -$$

One number in each number sentence is missing a decimal point. Put a decimal point in this number to make the equation true.

6.32 + 23.9 = 3 0 2 2
71.4 - 32.615 = 38785
209.68 × 3.38 = 7 0 8 7 1 8 4
5.85 + 674 = 6.524
38617 - 381.77 = 4.4
$7.5 \times 584 = 43.8$

Put decimal points in the numbers that are missing them to make the equations true.

 $2 | 6 \times 284 = 6 | .344$ $9 2 \times 85 = 7.82$

N12

**

Complete.

$$5 * 8 = 25 \quad 70 * 3 = 25$$

$$7 * 70 = 9 * 7 = 25$$

$$9 * 7 = 25$$

$$9 * 7 = 25$$

Name		N12		***		
Complete.			l			
Fractional Name		Decimal Name	Frac Na	ctiona ame	l	Decimal Name
<u>9</u> 10	=				=	0.7
<u>24</u> 10	=				=	6.2
<u>27</u> 100	=				=	0.87
<u>9</u> 100	=				=	4.31
<u>3</u> 5	=		2	<u> 3</u> 20	=	

N12 ****

Complete.

Put the same number in each box.

Label the dots. Many solutions are possible.

Label the dots. Many solutions are possible.

Name	N15	*
Complete.		
50% of 80 =	10% of 80 =	
25% of 80 =	20% of 80 =	
75 % of 80 =	100% of 80 =	

Use the above results to help solve these problems.

N15

Complete this table of test results for a 60 question true-false test.

Student	Number Correct	% Correct
Wanda	60	
Randy		50 %
Evan		60%
Khanh		80%
Brock	54	
Angela	42	

If 70% or better is a passing grade on this test, who passes? _____

How many questions must a person get correct to have a passing grade?

Complete. Two problems are done for you.

N16

**

Flip = 67 🗌 34 🛆

Clue 1

Flip is a multiple of 9.

List the numbers Flip could be.

Name_

Put a single digit in each box to complete this division calculation.

Divide.

67)1205.28

Name

Put a single digit in each box to complete this division calculation.

Divide.

125)3576.06

One number in each number sentence is missing a decimal point. Put a decimal point in this number to make the equation true.

0.798 + 256.3 + 9.462 = 2665686.37 - 27.826 = 58544346.718 + 22869 = 575.40841.164 - 3575 = 5.414 $83.05 \times 4.63 = 3845215$ $7.27 \times 3 \mid 92 = 232.0584$

Label the dots and fill in the boxes for the arrows.

Name	N20 ***
Add. 83 + 127.26 + 0.074	17.6 + 56.147 + 329.62
Subtract. 59.403 – 17.83	364.1 – 71.47

Label the dots with these numbers. One is done for you.

Some numbers have two names. Write both names near their dots.

5 × 0.3 0.5 × 0.3 2 × 0.8 0.2 × 0.8 $\frac{1}{2}$ × 0.3 30 × 0.05 $\frac{1}{2}$ × 1.5 3.1 - 1.5 2 - 1.84 10 × 0.05 20 × 0.14

 $\frac{a}{b} = \frac{c}{d} \qquad \begin{vmatrix} a & c \\ b & d \end{vmatrix} a \times d = b \times c$

Complete.

3	6
5	

5	
6	30

	9
14	21

6	
15	20

3	4
	12

5	
35	28

	15
12	18

Name	N22	**

Complete.

Find at least four names for each fraction.

Add.

$$\frac{4}{9} + \frac{7}{12} =$$

Flip and Flop are secret whole numbers.

The rule for this square is the same as on Worksheet N22*.

Draw and shade a shape that covers the given percent of each square.

Mr. Booker has a square cake cut into six pieces. He wants to collect a total of \$20 for the whole cake.

Label each piece of the cake to show:

- the fraction of the cake
- the cost it should be

Sara has \$7.50 to spend. What pieces could she buy? ______ What fraction of the cake will she get? _____

Amelia wants to get $\frac{5}{16}$ of the cake. What pieces could she get? _____

What will be the cost? _____

This rectangular cake costs \$25.

Label each piece of the cake to show:

- the fraction of the cake
- the cost it should be

Sara wants to buy one-half of the cake.

Which pieces could she get? _____

How much would one-half of the cake cost? _____

This Tangram cake costs \$40.

Label each piece of the cake to show:

- the fraction of the cake
- the cost it should be

Amelia wants to buy all the triangle pieces.

What fraction of the cake does she want? _____

How much would she have to pay? _____

Name_	N28	*

Place these numbers in the string picture. Some numbers are listed twice. Label dots for those numbers with both names.

There should be six dots in your picture.

Pair each blue tag with a red tag.

$$\frac{3}{4} + \frac{17}{12}$$

$$\frac{3}{5} \times \frac{5}{3}$$

$$\frac{1}{2} \times \frac{4}{7}$$

$$4 \times \frac{5}{12}$$

$$| - \frac{5}{7}$$

$$\frac{2}{3} + \frac{3}{2}$$

$$2 - \frac{1}{3}$$

$$3 \times \frac{3}{12}$$

$$\frac{6}{11}$$
 + $\frac{5}{11}$

Place these numbers in the string picture.

Label the dots. Many solutions are possible.

N29(b)

Label the dots.

Name	N30	*
Complete.		
50% of 120 =	100% of 32 =	
25% of 120 =	50% of 32 =	
10% of 120 =	150% of 32 =	
5 % of I20 =	75 % of 32 =	
15% of 120 =	25 % of 32 =	
35% of 120 =	125% of 32 =	
10% of 40 =	50 % of 68 =	
5 % of 40 =	25 % of 68 =	
15% of 40 =	75 % of 68 =	
20% of 40 =	10% of 68 =	
40% of 40 =	35 % of 68 =	
45% of 40 =	85% of 68 =	

Label the black arrow.

Name___

Complete.

20% of 15 = 20% of 35 = 20% of 42 = 42

|--|

N30 *******

Label the arrows.

Complete.

 $\frac{9}{20} \times 200 =$ 45% of 80 = 45% of 200 = 45% of 18 = 45% of = 270 45% of = 18

N31

There are 36 pies shown below. All the pies are used to put $\frac{3}{4}$ pie in each basket. How many baskets receive pie?

You may divide the pies in the picture or use another method to answer this question.

Zot is a secret number.

Zot is an even number and Zot's name can be completed by putting a single digit in the box.

For each number on the left check whether it is divisible by 2, 3, 4, 5, 6, 8, 9, or 10. For example, the Xs in the table show 5 560 is divisible by 2, 4, 5, 8, and 10.

is divisible by	2	3	4	5	6	8	9	10
5 560	Х		Х	Х		Х		Х
320 787								
82 386								
11881								
1080								
118 852								
12115								
21060								
102 246								
10 072								
394 581								

Flop = 56 08

Flop's name can be completed by choosing at random exactly one of the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 to put in the box.

Find the probability that:

- Flop is divisible by 3 _____
- Flop is divisible by 4 _____
- Flop is divisible by 5 _____
- Flop is divisible by 6 _____
- Flop is divisible by 7 _____
- Flop is divisible by 8 _____
- Flop is divisible by 9 _____
- Flop is divisible by 10 _____

Draw arrows on each number line to help do the calculation.

Label the dots and fill in the boxes for the arrows.

Name_

N33 *******

Label the dots.

Peg and Meg are secret whole numbers less than 75.

Complete the tables.

×	<u> </u> 2	<u>3</u> 4
2 3		
$\frac{3}{2}$		

÷	<u> </u> 2	<u>3</u> 4
2 3		
<u>3</u> 2		

+	<u> </u> 2	<u>3</u> 4
<u>2</u> 3		
<u>3</u> 2		

N35

Put all of the positive divisors of 20 and of 28 in this string picture.

Complete these number sentences.
Zim is a secret whole number.

Pom is a secret whole number.

Clue 1 Pom 7 28 = 7
Find a pattern for the numbers that Pom could be.
Pom could be,,,,,,,,
,,,, and so on.
Clue 2 $+10=\cdots$
─l ● → ● Pom
Find a pattern for the numbers that Pom could be.
Pom could be,,,,,, and so on.
Clue 3

In this list, Pom is the greatest number less than 1000.

Who is Pom? _____

Name_____

L3

Complete the grid and find the code number for each arrow picture.

L3

Complete the grid and draw the arrow picture for each code number.

Show all of the different necklaces with seven white and three red beads. (You will not need to color all of the necklaces here.)

Show all of the different necklaces with six white and four red beads. (You will not need to color all the necklaces here.)

Name	L6(b)

Record the number of white beads between the four red beads in each arrangement of Theophilus's necklace.

With the given information, list which of these operations could be *:

$\mathbf{T}_{D} \uparrow \downarrow \Gamma$	+	—	×
Information	Possib	oilities fo	r 米
6 * 3 = 3			
8 * 4 = 0			
2 * 2 = 0			
2 * 2 = 4			
6 * 6 = 6 and $3 * 2 = 1$			
9 * 6 ≠ 3			
8 * 6 ≠ 8			
* ≠			

L10

Nim appears in at least three places in this table for one of these operations:

 $\mathbf{T}_{\scriptscriptstyle D}$ \uparrow \downarrow \square + - ×

Which of these operations has these three entries the same? _____

Who is Nim? _____

Nam appears in at least four places in this table for one of the seven operations listed above.

Which of these operations has these four entries the same? _____

*		2	3	4
I				
2	Nam		Nam	
3		Nam		
4		Nam		

Who is Nam? _____

Each table is for one of these operations:

Label the tables.

	5	7		I	5
3	8	0	Ι	0	I
4	9	I	5	0	0

	2	5
3	I	Ι
7	I	I

Each table is for one of these operations:

Name_____

Т	- D	Τ _M		Т	- <	T₅
Γ	٦			\downarrow	•	\uparrow
	H	10		10	Х	10

Label the tables.

	1	3			I	4
6	I	I		2	2	8
7	I	0		5	5	0
		4			2	3
2	 2	4		3	2	3 0

Complete the grid picture for this arrow picture.

Draw the arrow picture for this grid picture.

Use the clues in the picture to cross out labels the strings cannot have. Then label the strings.

RED	BLUE
MULTIPLES OF 2	MULTIPLES OF 2
MULTIPLES OF 3	MULTIPLES OF 3
MULTIPLES OF 4	MULTIPLES OF 4
MULTIPLES OF 5	MULTIPLES OF 5
MULTIPLES OF 10	MULTIPLES OF 10
ODD NUMBERS	ODD NUMBERS
POSITIVE	POSITIVE
PRIME NUMBERS	PRIME NUMBERS
GREATER THAN	GREATER THAN
50	50
LESS THAN	LESS THAN
50	50
GREATER THAN	GREATER THAN
LESS THAN	LESSTHAN
10	10
POSITIVE	POSITIVE
DIVISORS OF 12	DIVISORS OF 12
POSITIVE	POSITIVE
DIVISORS OF 18	DIVISORS OF 18
POSITIVE	POSITIVE
DIVISORS OF 20	DIVISORS OF 20
POSITIVE	POSITIVE
DIVISORS OF 24	DIVISORS OF 24
POSITIVE	POSITIVE
DIVISORS OF 27	DIVISORS OF 27

Use the clues to cross out labels the strings cannot have. Then label the strings.

RED	BLUE	BLACK
MULTIPLES OF 2	MULTIPLES OF 2	MULTIPLES OF 2
MULTIPLES OF 3	MULTIPLES OF 3	MULTIPLES OF 3
MULTIPLES OF 4	MULTIPLES OF 4	MULTIPLES OF 4
MULTIPLES OF 5	MULTIPLES OF 5	MULTIPLES OF 5
MULTIPLES OF 10	MULTIPLES OF 10	MULTIPLES OF 10
ODD NUMBERS	ODD NUMBERS	ODD NUMBERS
POSITIVE	POSITIVE	POSITIVE
PRIME NUMBERS	PRIME NUMBERS	PRIME NUMBERS
GREATER THAN	GREATER THAN	GREATER THAN
50	50	50
LESS THAN	LESS THAN	LESS THAN
50	50	50
GREATER THAN	GREATER THAN 10	GREATER THAN
LESS THAN	LESSTHAN	LESS THAN
10	10	10
POSITIVE	POSITIVE	POSITIVE
DIVISORS OF 12	DIVISORS OF 12	DIVISORS OF 12
POSITIVE	POSITIVE	POSITIVE
DIVISORS OF 18	DIVISORS OF 18	DIVISORS OF 18
POSITIVE	POSITIVE	POSITIVE
DIVISORS OF 20	DIVISORS OF 20	DIVISORS OF 20
POSITIVE	POSITIVE	POSITIVE
DIVISORS OF 24	DIVISORS OF 24	DIVISORS OF 24
POSITIVE	POSITIVE	POSITIVE
DIVISORS OF 27	DIVISORS OF 27	DIVISORS OF 27

The table below is for one of these operations:

The Table Game						
+ ₁₀	— ₁₀	X ₁₀				
		1				
Τ _D	T _м	↓				
۲ _{<}	T >	T _P				

Label the table.

		2	3	4	5	6	7	8	9
I									
2						2			
3								4	
4									
5		0							
6									
7									
8									
9									

* is one of the operations in The Table Game.

The Table Game

+ ₁₀	— ₁₀	X ₁₀
		1
T₀	T _м	\rightarrow
۲ _{<}	T,	T _P

Clue 1

This table for * has exactly three 0s in it.

*	4	8
8		
4		

* could be _____

Clue 2

This table for * has exactly three 1s in it.

*	6	9
5		
7		

* is _____. -

* is one of the operations in The Table Game.

The Table Game

+ ₁₀	— ₁₀	X ₁₀
		1
T₀	T _м	↓
۲ _{<}	T>	T _P

Clue 1

No two entries in this table for * are the same.

*	3	4
2		
3		

* could be _____.

Clue 2

All four entries in this table for * are the same.

*	2	6
3		
6		

* is _____.

Ν	am	ne
---	----	----

Draw a perpendicular to each line segment at the indicated point. Remember, perpendicular line segments meet in a square corner.

Name.	
-------	--

Draw a perpendicular through each dot to the line segment of the same color. Remember, perpendicular line segments meet in a square corner.

Name	G4(a)

For each line segment, construct a pair of intersecting circles with the same radius and with centers at the blue dots. Color the intersection points in red and connect them with a red line segment.

Name_____

Use a compass and a straightedge to find the midpoint of each line segment.

Ν	а	m	ne	_
---	---	---	----	---

G4(c)

Draw a perpendicular to each line segment through the closest dot. Use your compass and straightedge. Do not use a square corner.

Draw a red parallelogram with sides parallel to and three times as long as the sides of this small parallelogram. One side is drawn for you.

How many small parallelograms fit into the large red parallelogram? _____

Show this on your drawing.

Draw a red triangle with sides parallel to and three times as long as the sides of this small triangle. One side is drawn for you.

How many small triangles fit into the large red triangle? _____ Show this on your drawing.

Use a compass and straightedge to construct four-sided shapes. Each side of a shape must have the same length as one of these segments.

Draw as many different four-sided shapes as you can.

Name_____

P1(a)

A •	В •	C ••	D •••	E •	F ••	G ••	H ● ● ●	 •	J ● ●
K •	L • •	M • •	N • • •	0 • •	P •• •	Q	R ••	S •	Т ••
U •	V • • •	X ••	Y • • • •	Z • •	and •• ••	for •• ••	Of ● ● ●	the	with
ch •	gh ● ●	sh ∙∙	th • • •	wh •	ed ••	er • •	ou • •	OW •	W

Name_

*

Sylvia must get to the ferry in 40 minutes.

Use a square to calculate her probability of arriving on time.

What is Sylvia's probability of getting to the ferry on time?

Mike is at **A**. He must travel to **F** in 60 minutes or less. Calculate his probability of success if he randomly chooses which paths to follow, but does not take the same path twice.

Name_____

P3(a)

For each picture, do the two knots form one long piece of rope? Circle your answer.

P3(b)

Name

P4(a)

P4(b)

Distance Dropped (cm)

Arnold	14	18	19	9	24	14	28	19	5	19
Lucy	18	15	17	16	16	7	13	19	17	18
Pierre	17	15	15	19	15	14	15	15	21	17
Michelle	16	12	16	28	16	28		13	12	3

Each of these students believes that he or she has the fastest reaction time. Try to find and explain each person's reason.

Arnold	
Lucy	
Michelle	
Pierre _	
- Who do Why?	you think has the fastest reaction time?

Name_____

P4(c)

Use the data you recorded on Worksheet P4(a) to find your best result, mean, mode, and median.

Your <u>best single result</u> is the shortest drop in the ten trials. Best single result:

Calculate your <u>mean</u>: add the ten results and divide the sum by 10.

Mean: _____

Your <u>mode</u> is the measurement that occurred most often. You may have more than one mode.

Mode(s): _____

Calculate your <u>median</u>: first order your ten results from shortest to longest.

Then add the two middle numbers and divide the sum by 2. Median: _____
Problem #1

Group: _____

Teacher selects the _____ cube.

Student selects the _____ cube.

Answer: p (_____, ___) = _____

Problem #2

Group: _____

Teacher selects the _____ cube.

Student selects the _____ cube.

Answer: p (_____, ___) = _____

Percent of Recommended Daily Allowance (RDA) (U.S. Department of Agriculture)

Nutribest		Brand X
5 grams	Protein	2 grams
0.24 grams	Sodium	0.15 grams

Name

P8(b)

Percent of RDA

P8(c)

These signs all advertise the same CDs.

Which has a better price: Omega Recordings or Dave's Disks? Explain why.

List the stores from lowest to highest according to the sale price per CD.

Lowest price

Highest price

