Name
Arcade of

Put each of these numbers in the string picture.

$$
\begin{array}{lllll}
3 & 4 & 5 & 7 & 10
\end{array}
$$

Put each of these numbers in the string picture.

$$
\begin{array}{lllll}
8 & 12 & 15 & 18 & 36
\end{array}
$$

Put any number you wish on the Minicomputer using exactly one negative checker and exactly one of these checkers:
(2)
(4)
(5)
(6)
(7) 8
(9)
(10)

Label the arrows; try to label some arrows in two ways. One is done for you.
Many solutions are possible.

Color one-third of each shape blue. Write another name for $\frac{1}{3}$ as suggested by the picture.

Pair the tags.

The eraser gremlin has erased the decimal point in each result. Put in decimal points so that the calculations are correct.

$$
\begin{gathered}
3.73+9+0.37=131 \\
297.7-2.977=294723 \\
13-1.673=11327 \\
28.3 \times 0.93=26319 \\
35.9 \times 60.12=2158308
\end{gathered}
$$

Complete this design with a compass and red crayon so that you get a six-pointed red flower.

Label the dots and fill in the boxes for the arrows.

Nar is a secret number.

Clue 1

Nar is in this arrow picture.

Clue 2

Nar could be \qquad , \qquad , or \qquad .

Clue 3

Who is Nar? \qquad

Put a one-digit number in each box to make the calculations correct.

Build an arrow road from 10 to 11. Each arrow must be for one of these relations.
$+2 \times 8 \quad-2 \quad-8 \times 2 \times 8 \quad \div 2 \div 8$
10

Plot the points below and then connect them in order. The first three points are done for you.
$(1, \widehat{5}),(0, \hat{5}),(\hat{2}, \widehat{3}),(\widehat{2}, \widehat{2}),(2,2),(1,3),(0,3),(\hat{1}, 2),(\widehat{2}, 2)$,
($\widehat{3}, 3),(\widehat{3}, 5),(\widehat{2}, 6),(1,7),(5,7),(4,6),(3,3),(3, \widehat{1}),(5, \widehat{3})$,
$(3, \widehat{5}),(3, \widehat{7}),(4, \widehat{8}),(\widehat{1}, \widehat{8}),(1, \widehat{7}),(2, \widehat{6}),\left(\frac{1}{2}, \widehat{4 \frac{1}{2}}\right)$.

Ruck Bogers is a famous intergalactical explorer. On the planet of Ort, the people love to play on the teeter-totters. Ruck of course, not wanting to be rude, decides to play with them.

How many Teehees will it take to balance Ruck Bogers? \qquad What combination of at least two kinds of creatures will it take to balance Ruck?

Fill in the boxes for the arrows.

Put a one-digit number in each box to make the calculations correct.

16

Pair the tags.

The red label is one of these:

Multiples of 2
Multiples of 3
Multiples of 4

Positive divisors of 12
Positive divisors of 18
Positive divisors of 20
Positive divisors of 24

The blue label is one of these:

Multiples of 2
Multiples of 3
Multiples of 4
Positive divisors of $\mathbf{1 2}$
Positive divisors of $\mathbf{1 8}$
Positive divisors of $\mathbf{2 0}$
Positive divisors of $\mathbf{2 4}$

Label the strings.

When these people jump from the building to escape the fire, they will fall along a path perpendicular to the street. Use your compass to show where the firemen should put their nets to catch the falling people. Mark each spot with a blue dot.

Rio is a secret number.

Clue 1

Rio is one of these numbers.

Clue 2
Rio is one of these dots. Label the dots.

Who is Rio?

Show all of the different necklaces with six white and three red beads.

You may not need to use all of the necklaces drawn.

What is the maximum number of 32ϕ stamps you can buy for $\$ 10.00$? Explain your answer.

A local newspaper costs 25¢ a day except Sunday, and the Sunday paper cost $\$ 1.50$. A subscription costs $\$ 35.00$ quarterly (for one-fourth of a year). Does a subscription save money? Explain your answer. Yes

Taha is a secret number.
Clue 1
Taha is in this arrow picture.

Clue 2
Taha is one of these numbers.
\rceil : Greatest common divisor
$12 \square 28=$
$10 \square 21=$ \qquad

Who is Taha? \qquad
\square : Least common multiple
$15 \bigsqcup 6=$
$10 \bigsqcup 8=$ \qquad

Locate these numbers in the string picture. One is done for you.

$$
\begin{array}{rll}
6 \times 7 & 13 \times 5 & 12 \times 18 \\
13 \times 7 & 13 \times 20 & 12 \times 15 \\
18 \times 7 & 13 \times 17 & 11 \times 15 \\
30 \times 7 & 13 \times 30 & 11 \times 17
\end{array}
$$

24

Using a ruler, find the distance on the map above from

1) Los Angeles to Chicago \qquad cm
2) St. Louis to New York \qquad cm
3) Chicago to Miami \qquad cm

If $1 \mathrm{~cm}=350 \mathrm{~km}$, what is the actual distance for each of the above?

1) \qquad
2)
3) \qquad
If a plane averages 800 km per hour, about how long would the flying time be from Los Angeles to Chicago to Miami? \qquad

Label the dots and fill in the box for the red arrows.

$$
+7
$$

Put a single digit in each box so that these numbers are all multiples of 9 .
$5 \square 4,302$
2,37 $\square, 428$
$87 \square, 769$
$42,307,8 \square 8$

Put each of these numbers in the string picture.

$$
\begin{array}{cc}
123,456,789 & 777,222,000 \\
7,777,777 & 303,303 \times 567,765
\end{array}
$$

Mu is a secret number.
Clue 1
Mu can be written by adding two pairs of parentheses to this expression.

$$
8 \times 7-4+6
$$

Mu could be \qquad , \qquad
\qquad , or \qquad .

Clue 2
Mu is one of these numbers.
П: Greatest common divisor
20 П $12=$
6 ப $10=$
$12 \sqcup 4=$
$12 \sqcap 35=$
$5 \sqcup 8=$

Who is Mu? \qquad

The red label is one of these:

Multiples of 2
Multiples of 3
Multiples of 4

Multiples of 5
Less than 20
Greater than $\widehat{10}$
Positive divisors of 24

The blue label is one of these:

Multiples of 2
Multiples of 3
Multiples of 4
Multiples of 5
Less than 20
Greater than $\widehat{\mathbf{1 0}}$
Positive divisors of $\mathbf{2 4}$

Label the strings.

Sim is a secret number.

Who is Sim? \qquad

Pom is a secret number.
Clue 1

$$
\text { Pom } \square \mathrm{IO}=30
$$

Pom could be \qquad , \qquad , or \qquad .

Clue 2

$$
\text { Pom } \sqcap 18=3
$$

Pom could be \qquad or \qquad .

Clue 2
Pom can be put on this Minicomputer by adding exactly one of these checkers:
(4) (6) (8)

Who is Pom? \qquad

Red and white beads are strung with a pattern.

How many total beads are hidden in the bag? \qquad
How many red beads are in the bag? \qquad How many white beads are in the bag? \qquad

Red and white beads are strung with a different pattern.

How many total beads are hidden in the bag?
How many red beads are in the bag? \qquad
How many white beads are in the bag? \qquad

