Name

$$
\begin{gathered}
\text { Collage } \\
\text { of } \\
\text { Problems \#2 }
\end{gathered}
$$

Fill in the boxes for the arrows and label the dots.

Find all of the places in this table where the entry is $\widehat{2}$. One is located for you.

Did you find the other six places where the entry is $\widehat{2}$?

Wipe-out

Fill in the boxes for the arrows.

4

Fill in each box with $<,>$, or $=$. Try to solve these problems without doing any calculation.

$$
\begin{aligned}
782+149 & \square 82+188 \\
621-17 & \square 621-84 \\
567+138+495 & \square 316+567+138 \\
71-25 & \square 73-27 \\
0.82 & \square 0.135 \\
0.94 \times 765 & \square 765 \\
\frac{1}{3} & \square \frac{1}{8} \\
\frac{5}{7} & \square \frac{2}{7}
\end{aligned}
$$

Draw arrows on each number line to show the solution to each problem.

$$
36 \div 9=
$$

$$
+9
$$

$$
4 \div \frac{1}{3}=
$$

$$
+\frac{1}{3}
$$

$5 \frac{1}{3} \div \frac{2}{3}=$

Using two lines, this circle is divided into four regions.

Use three lines to divide this circle into as many regions as you can.

How many regions? \qquad

Use three lines to divide this circle into as few regions as you can.

How many regions? \qquad

Show your work in the space provided.
Add.

$$
4.76+2.8
$$

Subtract.

$$
4.76-2.8
$$

Multiply.

$$
4.76 \times 2.8
$$

Circle each picture that shows a rectangle divided into sixths.

Complete.

$$
\begin{array}{lrl}
10 \% \text { of } 60 & =6 & 2 \% \text { of } 60
\end{array}=1.2
$$

Use the facts above to solve these problems.

$$
\begin{aligned}
60 \% \text { of } 60 & =
\end{aligned} \quad 35 \% \text { of } 60=.
$$

Majestro the Magician put a $\$ 100$ bill into one of these boxes. The other two boxes are empty.

Silver Box
Lead Box

Majestro correctly tells you that exactly one of the statements on the boxes is true.

Which box contains the $\$ 100$ bill? \qquad
Which box has the true statement written on it? \qquad

Complete these two division calculations.

$$
4 8 \longdiv { 6 4 0 3 }
$$

$$
2 1 \longdiv { 1 4 8 3 1 }
$$

1. One the map, what is the length of a line segment between Camp Kineo and Moose Lake Beach? \qquad cm What is the actual distance between Camp Kineo and Moose Lake Beach? \qquad km
2. If a hiker walks 4 km in one hour, how long should she take to walk from Camp Kineo to Moose Lake Beach? \qquad From Moose Lake Beach to the Indian Mounds? \qquad
3. Hogback Cave in Poplar Park is 6 km from Camp Kineo and 14 km from Beaver Camp. Find the location of Hogback Cave, draw a dot, and label it.

Lim is a secret number.

Clue 1

Lim is one of the dots on this number line. Label the dots.
3.1

Clue 2
Lim is one of these numbers.

Who is Lem?

Timely Questions

Show your work in the space provided.

1. Lloyd takes a 5 hour and 40 minute bus ride from Chicago to St. Louis to see a football game. If he leaves Chicago at 8:30 AM, what time will he arrive in St. Louis?
(Don't forget to indicate AM or PM.)
2. Your heart beats about 80 times per minute. About how many times does it beat in one day? one year? \qquad

Draw a quadrilateral (four-sided polygon) with at least one right angle and at least one obtuse angle.

Za and Zu are secret numbers.

Clue 1

Za and Zu are in this arrow picture. Label the dots.

Clue 2

Who is Za ? \qquad Who is Zu ? \qquad

A Pair of Problems

1. There are 120 sixth graders in Jackson Middle School. If there are 12 more girls than boys in the sixth grade, how many girls are there? Boys? \qquad
2. On a summer day in Tuscaloosa, there are 9 hours more of daylight than of darkness. On that day, how many hours of daylight are there? \qquad Of darkness? \qquad

What percent of each shape is colored blue?

_ $\%$

Use four lines to divide this circle into as many regions as you can.

How many regions? \qquad

Use four lines to divide this circle into as few regions as you can.

How many regions? \qquad
20

Label the dots and fill in the boxes for the arrows.

Zim is a secret number.
Clue 1
Zim can be put on this Minicomputer by adding one regular checker.

Zim could be \qquad , \qquad
\qquad
\qquad
\qquad
\qquad
\qquad or \qquad .

Clue 2

Zim is one of the dots on this number line. Label the dots. (Use a ruler.)

Who is Zim? \qquad

Sib and Nib are secret numbers.

Ask your teacher to check your answers on pages 7 and 20. Use correct answers to fill in the boxes in this table:

Number of line segments	1	2	3	4	5	6
Maximum number of regions	2	4	\square	\square		

Do you see a pattern? \qquad Predict the largest number of regions into which you can divide a circle using five line segments. \qquad
Check your prediction by using five line segments to divide this circle into as many regions as you can.

How many regions? \qquad Was your prediction correct? \qquad
Using the same pattern, predict the largest number of regions into which you could divide a circle using six line segments. \qquad

Fill in the boxes for the arrows.

Complete.

$$
\begin{array}{rr}
40 \div \frac{8}{5}= & 40 \div \frac{5}{8}= \\
56 \div \frac{8}{5}= & 100 \div \frac{5}{8}= \\
\frac{5}{6} \div \frac{8}{5}= & \frac{5}{6} \div \frac{5}{8}=
\end{array}
$$

Build an arrow road from 1.3 to 8.25. Each arrow must be for ,,$+- \mathbf{x}$, or \div a one-digit whole number. Use at most four arrows.
1.3
-
8.25

Complete the tables and circle the entries that belong to the blue segment.

These are the maps of two number cubes.

Roger and Beth play a game with these two cubes; higher number wins. Roger rolls the red cube and Beth rolls the blue cube.

Use this square to calculate the probability that Roger rolls the higher number.

What is Roger's probability of winning? \qquad
Who is favored in this game, Roger or Beth? \qquad

The red label is one of these:

Multiples of 3
Multiples of 4
Multiples of 5
Odd numbers
Positive prime numbers
Positive divisors of 12
Positive divisors of 18
Positive divisors of 20
Positive divisors of 24
Positive divisors of 27

The blue label is one of these:

Multiples of 3
Multiples of 4
Multiples of 5
Odd numbers

Positive prime numbers

Positive divisors of 12
Positive divisors of 18
Positive divisors of 20
Positive divisors of 24
Positive divisors of 27

Label the strings.

$$
\operatorname{Lin}+\operatorname{Lon}<\widehat{3}
$$

Shade a region on the grid to indicate all pairs that (Lin, Lon) could be.

It is impossible to make two of these shapes (without dents).
A: A triangle with at least two right angles.
B: A five-sided shape with exactly one right angle and at least two acute angles.

C: A five-sided shape with at least four acute angles.
D: A five-sided shape with five obtuse angles.

Circle the letters of the two shapes that are impossible to make.
A B C D

Draw the other two shapes.

One symbol is chosen at random from each string to form the name of a number, for example, $\frac{5}{4}-\frac{1}{6}$. Choose Pif so that the probability of the number being in the blue segment is exactly $\frac{1}{2}$.

You may use the tables below to help you find who Pif could be. There are many possible choices for Pif.

Pif could be \qquad .

