Name

$$
\begin{gathered}
\text { Collage } \\
\text { of } \\
\text { Problems \#5 }
\end{gathered}
$$

For each problem, list at least four whole numbers that could be in the box.

2

Complete the calculations. Show your work.

$$
\begin{array}{r}
8.70 \\
0.96 \\
+0.40 \\
\hline
\end{array}
$$

$0.08+7.153+64$
65.70
-8.46
326-89.7

Place these ordered pairs in the string picture.
$(21,7)$
$(42,12)$
$(40,8)$
$(25,8)$
$(100,5)$
$(29,9)$

Build an arrow road from 3.5 to 26 . Each arrow must be for $\boldsymbol{+}, \boldsymbol{-}$, \mathbf{x}, or \div a one-digit whole number. Use as few arrows as you can.
3.5

26
O

Probo is a secret number.

Clue 1

Probo is in this arrow picture. Label the dots.

Clue 2

Who is Probo? \qquad

Fill in the boxes with these numbers.

$$
\begin{array}{ccc}
\frac{8}{3} & \frac{9}{2} & \frac{5}{8} \\
\frac{5}{11} & \frac{13}{11} & \frac{37}{10}
\end{array}
$$

$0<\square<\frac{1}{2}<\square<1<\square<2$
$2<\square<3<\square<4<\square<5$

Fill in the boxes for the arrows.

Complete.

$$
\begin{array}{ll}
24 \% \text { of } 60= & 24 \% \text { of }=60 \\
124 \% \text { of } 60= & 24 \% \text { of }=36 \\
48 \% \text { of } 60= & 24 \% \text { of } 36=
\end{array}
$$

A farmer must carry a fox, a goose, and a basket of cabbage across a river. The farmer's rowboat is large enough for the farmer and only one item. The farmer cannot leave the goose and cabbage together because the goose will eat the cabbage. Also, the fox and goose cannot be left together (for obvious reasons). Describe how the farmer can get all three items across the river safely. Try to use as few trips as possible.

Above each arrow, write what the farmer carries. You may not need all the arrows.

First trip across
First return trip

Second trip across
Second return trip
Third trip across
Third return trip

Fourth trip across
Fourth return trip
Fifth trip across

Complete.

$$
\begin{array}{ll}
60 \times \ldots=420 & 60 \times \ldots=42 \\
60 \times \ldots=42000 & 60 \times \ldots=0.42
\end{array}
$$

Complete the calculations. Show your work.

Multiply.
37.6×0.06

Multiply.
63.8×1.49

Agaron Billiard Hall

If a ball is hit with no spin, angle \mathbf{B} will always equal angle \mathbf{A}. Use this fact to draw the path of the ball in the following picture of a pool table.

Which pocket does the ball enter?

Write each number as a product of positive prime numbers. One is done for you.

$$
280=2 \times 2 \times 2 \times 5 \times 7=2^{3} \times 5 \times 7
$$

$42=$

$$
90=
$$

$275=$
$392=$

Circle the two numbers above that are divisors of $2 \times 3^{3} \times 5^{2} \times 7^{2}$.

Put each of these numbers in the string picture.

$$
\begin{array}{lrr}
\frac{5}{3} & \frac{3}{7} & \frac{3}{5}+\frac{4}{5} \\
\frac{4}{3} \times \frac{7}{3}-\frac{1}{8} \\
0.8+0.4 & 50 \% \text { of } 1.8 & 10 \% \text { of } 3 \\
1.39-0.6 & 7 \times 0.4
\end{array}
$$

One region of the picture can be hatched. Hatch it.

The red string is for one of these relations.

is greater than
-2] ${ }^{\text {a }}$
-3 ${ }^{\text {a }}$..
-4 ${ }^{\text {a }}$..
-5] ...

The blue string is for one of these relations.

is greater than
$-2]$
$-3=\cdots$
$-4=\cdots$
$-5=\cdots$

Label the strings.

Write three division problems with the same answer as this division problem.

$$
18 \div 2.5
$$

Complete these calculations. You may change each problem into a problem with the same answer. Show your work.

Divide.

$$
18 \div 2.5
$$

Divide.

$43.586 \div 0.62$

Use the arrow picture to help solve each problem. Label the dots and arrows; then answer the questions.

1. Norma buys a skateboard marked $\$ 42$ and then pays 6% sales tax.

How much tax does Norma pay?
What is her total bill? \qquad
2. Ms. Hummel buys a bicycle for her son. With a 5% tax rate, she pays $\$ 4.50$ tax on the bicycle.

How much does the bicycle cost (without tax)? \qquad What is her total bill? \qquad

Put each number on the base $\widehat{2}$ abacus. Write the base $\widehat{2}$ name for each number. One is done for you.

Leticia enjoys running on the hiking trail (blue) from her home to the beach. Her brother, Tony, prefers riding his bicycle around the lake along the route marked in red.

Complete.

$$
\begin{array}{cc}
\text { Length of route } & \text { Actual distance } \\
\text { on map } & \text { traveled }
\end{array}
$$

Leticia (blue)
Tony (red)

\qquad \ldots km

Leticia runs an average of 10 km in one hour and Tony rides 20 km in one hour. About how long does it take Leticia to run on the hiking trail from her home to the beach? \qquad minutes

About how long does Tony take to ride his bicycle on the roads from his home to the beach? \qquad minutes
(Lif, Mif) is a secret ordered pair of numbers.

Lif could be \qquad
\qquad , \qquad
\qquad
\qquad ——, and so on.

Mif could be \qquad , \qquad
\qquad
\qquad , \qquad ——, _ and so on.

Clue 2

(Lif, Mif) is one of the dots on this grid.

(Lif, Mif) $=\left(_, \quad\right.$ ___ $)$.

Zen is a secret number.

Clue 1

Zen is in this arrow picture.

Clue 2

Zen can be put on this Minicomputer by adding just a (3)-checker.

Who is Zen? \qquad

EARL's Parking Lot \$0.30 for each $\frac{1}{4}$ hour

How much does it cost to park a car for 1 hour? \qquad
10 hours? \qquad
About how long was a car parked if the charge is $\$ 0.90$? \qquad \$3.00? \qquad
Sharon parked her car from 11:20 AM to 1:20 PM. How much must she pay? \qquad
Douglas parked his car from 5:45 PM to 7:00 PM. How much must he pay? \qquad
Carlos parked his car at 7:50 PM. When he left the lot, he had to pay $\$ 0.60$. About what time did he leave the lot? \qquad

The dots are for positive numbers.
Label the dots and fill in the boxes for the blue arrows.
is the square of

Place these numbers in the string picture.

$$
\begin{array}{ccc}
2 \times 3^{2} & 11^{3} & 3^{2} \times \|^{2} \\
{11^{2}}^{3^{4} \times 1^{3}} & 3^{3} \times \| \\
3^{4} & 3^{5} & 7 \times \|^{2}
\end{array}
$$

Positive divisors of $\mathbf{3}^{4} \times 11^{2}$

For each problem, list at least three whole numbers that could be in the box.

$$
a * b=\left(\frac{1}{2} \times a\right)-b
$$

Example: $6 * 5=\left(\frac{1}{2} \times 6\right)-5=3-5=\widehat{2}$ Complete.

$$
\begin{array}{ll}
12 * 3=\square & 2.5 * 0.5=\square \\
23 * 8=\square & 7 * 5=\square \\
10 * \square=1.5 & \square * 7=8 \\
26 * \square=3 & \square * 10=7 \\
\frac{2}{3} * \frac{1}{4}=\square & \frac{4}{5} * \square=\frac{\widehat{\imath}}{5}
\end{array}
$$

Label the dots and fill in the box for the gray arrows.

1. Toby is now three times as old as Leo. In eight years, Toby will be only twice as old as Leo. How old is Toby now? \qquad
Leo? \qquad
2.

State Theater
 Now playing: The Wild and Crazy Guys!

Adults: \$3.00
 Children: $\$ 2.00$

Theater Owner: How many customers did we have tonight?
Ticket Seller: Only 80.
Owner: How many adults?
Seller: I forgot to count how many.
Owner: Do you know how much money we received?
Seller: Yes, \$184.
Owner: Good; then I can calculate how many adults came.

How many adults came to the movie? \qquad How many children? \qquad

Label the dots and fill in the boxes for the arrows.

The red label is one of these:

Multiples of 3
Multiples of 4
Multiples of 5
Odd numbers
Positive prime numbers
Less than 10
Positive divisors of 18
Positive divisors of 24
Positive divisors of 40

The blue label is one of these:

Multiples of 3
Multiples of 4
Multiples of 5
Odd numbers

Positive prime numbers
Less than 10
Positive divisors of 18
Positive divisors of 24
Positive divisors of 40

Label the strings. Label the dots.

Holly and Molly are secret numbers.

(Holly, Molly) is (\qquad , ___).

Find the smallest positive integer N such that the product $\mathrm{N} \times 135$ is a square number.

Find the greatest square number that is a divisor of 64800 .

How many positive integers less than 100 have an odd number of positive divisors?

The product of two whole numbers is 1000000 . If neither of the two whole numbers is a multiple of 10 , what numbers are they?

Sly is a secret number.
Clue 1
Sly can be put on this Minicomputer using exactly one of these checkers: (3), ©9.

Sly could be
Clue 2

Sly could be \qquad , \qquad , or \qquad .

Clue 3

$$
\text { Sly } \quad 14=2^{3} \times 3^{2} \times 7
$$

Who is Sly?

