CSMP Mathematics for the Upper Primary Grades Part II

 Worksheets
What's In This Book?

This book contains all the worksheets you will need for CSMP for the Upper Primary Grades, Part il. Worksheets are labeled with the same letter and number as the lessons with which they are used. In this book, they are in the following order:

N Worksheets

N1	N15	N31
N2	N16	N32
N4	N17	N34
N6	N21	N36
N7	N25	
N10	N29	

L Worksheets
L1 L9 L11
G Worksheets

G2	G6	G9
G4	G7	G10
G5	G8	G13

W Worksheets
W3 W6

Name
N1 *

Complete.

$$
28-8=
$$

$$
28-20=
$$

$$
28-4=
$$

$$
28-10=
$$

$$
28-24=
$$

Name
N1 **

Complete.

$52-20=$

52- || =
$52-30=$

$52-21=$

$52-32=$

Name
N1 ***

Complete.

$110-80=$
$110-8=$ \qquad

$110-20=$

$110-88=$

$$
110-22=
$$

Name
N1 $* * * *$

Complete.

$$
555-80=
$$

$555-84=$

$555-88=$

$555-94=$

$555-75=$

Name
N2

Letter
Values
A- 1
C- 3
D- 4
E- 5
F- 6
Ge
He
I- 9
J- 10
K-11
L-12
M-13
N-14
O-15
P-16
Q-17
R-18
S-19
T-20
U-21
V-22
W-23
X-24
Y - 25
Z-26
Use a calculator to add the numbers for the letters in your name.

Name Value: \qquad
Write the letters of your name on the blanks. Below each letter write its value.

Name
N4 *

Draw an arrow road from 0 to 42 using +10 and +1 arrows.

$$
\begin{gathered}
+10 \\
+1
\end{gathered}
$$

Name
N4 **

Draw an arrow road from 5 to 62 using +10 and +1 arrows. 5 (

$+10$ $+$

Name
N6 *

Label the dots. Draw all the missing $\frac{1}{2} \mathrm{x}$ arrows.

Name
N6 * *

Label the dots. Draw all the missing $2 x$ arrows.

Name
N7 *

Label the dots.

$$
+10
$$

The greatest ending number is \qquad .

The least ending number is \qquad .

Name
N7 **

Label the dots.

$$
+10
$$

-1

The greatest ending number is
The least ending number is

Name
N10 *

Build an arrow road from 1 to 9 using $2 x$ and +1 arrows.

Name
N10 **

Build an arrow road from 0 to 15 using $2 x$ and +1 arrows. 2x $+1$

Name
N15 *
Label the dots. Draw -9 arrows in green.

$$
-10 \quad+1
$$

Complete.

$$
\begin{array}{rrrrr}
35 & 35 & 17 & 17 & 18 \\
-10 & -9 & -10 & \underline{-9} & \underline{-9} \\
& & & & \\
26 & 26 & 15 & 15 & 25 \\
-10 & -9 & -10 & -9 & -9
\end{array}
$$

Name
N15 **

Label the dots. Draw -9 arrows in green.

Complete.
66
56
47
27
-9
-9
-9
-9

20	30	42	65	100
-9	-9	-9	-9	-9

Name
N16 *

Complete.

$35-10=$

35-4 =

$35-20=$

$35-11=$

$35-24=$

Name
N16 **

Complete.

$56-20=$

56- || =
$56-22=$

$56-21=$

$56-32=$

Name
N16 ***

Complete.

$649-44=$

$649-121=$

$$
649-145=
$$

$649-524=$

Name
N16 $\boldsymbol{*} * * *$

Complete.

$150-8=$

$150-80=$

$150-30=$

$150-82=$

$150-68=$

Name

N17 *

Place the numbers from the string correctly in the arrow picture.

$$
\begin{aligned}
& +8 \\
& -5
\end{aligned}
$$

Name
N17 **

Place the numbers from the string correctly in the arrow picture.

Name
N21 *

What number is on the Minicomputer?

Name
N21 **

Put these numbers on the Minicomputer.

Name
N21 ***

Put these numbers on the Mincomputer.

Name
N21 ****

What number is on the Minicomputer?

Name
N25

Name

N29 *

Janet buys two different candies and spends exactly 10¢. Draw a red string around the prices of these two candies.

Mike buys two different balls and spends exactly 204. Draw a red string around the prices of these two balls.

Name
N29 **

Kenny buys two different cards and spends exactly 50 ¢. Draw a red string around the prices of these two cards.

Lisa buys two different toys and spends exactly 60¢. Draw a red string around the prices of these two toys.

Name
N29 ***

Robin buys two different books and spends exactly $\$ 1.00$. Draw a red string around the prices of these two books.

Roberto buys two different rings and spends exactly $\$ 1.00$. Draw a red string around the prices of these two rings.

Name

N29 ****

Daniel buys three different pieces of fruit and spends exactly $\$ 1.00$. Draw a red string around the prices of these three pieces of fruit.

Sandra buys three different flowers and spends exactly $\$ 1.00$. Draw a red string around the prices of these three flowers.

Name

N31 *

Start at 0. Draw a red arrow road to show +3 jumps and a blue arrow road to show +4 jumps.

$$
43 \text { \& }
$$

Label the dots in this string picture. Many answers are possible.

Name

N31 **

Start at 0. Draw a red arrow road to show +6 jumps and a blue arrow road to show +9 jumps.

$$
+6 \quad+9
$$

Label the dots in this string picture. Many answers are possible.

Name

\qquad
N32 *
Label the dots in both arrow roads.

How many +10 arrows are in this road? \qquad
How many +1 arrows are in this road? \qquad

How many +10 arrows are in this road? \qquad
How many +1 arrows are in this road? \qquad

Name
N32 **

Build an arrow road from 0 to 62 using +1 and +10 arrows.

$$
\begin{array}{r}
+1 \\
+10
\end{array}
$$

Name
N34 *

Label the dots.

Name N34 **

Build an arrow road from 1 to 19 using $2 x$ and +1 arrows. !

19

Name
N34 ***

Build an arrow road from 0 to 40 using $2 x$ and +1 arrows.
$2 x$
40
$+1$

0

Name
N34 ****

Build an arrow road from 0 to 100 using $2 x$ and +2 arrows.
$2 x$
+2

100
\bullet

Name
N36 *

Complete.

$$
\begin{array}{r|r}
2 \times 10= & 2 \times 20= \\
2 \times 2= & \\
2 \times 12= & \\
2 \times 21= \\
2 \times 20= & \\
2 \times 4= & \\
2 \times 10= \\
2 \times 3= \\
2 \times 24= & \\
2 \times 13=
\end{array}
$$

Name
N36 **

Complete.

$$
\begin{array}{r|r}
2 \times 20= & \begin{array}{l}
2 \times 10= \\
2 \times 5
\end{array}=- \\
2 \times 7= \\
2 \times 25 & =\square \\
2 \times 17= \\
2 \times 30 & =\square \\
2 \times 4= & \\
2 \times 100= \\
2 \times 13= \\
2 \times 113=
\end{array}
$$

Name
N36 ***

Complete.

Name

N36 ****

Complete.

Name

L1 *

Use any colors you wish to draw these paths.
Draw a path between A and B. What is the path distance between A and B ? \qquad
Draw a path between X and Y. What is the path distance between X and Y ? \qquad
Draw a path between S and T. What is the path distance between S and T ? \qquad

Name

\qquad L1 **

Find the longest possible path distance between two dots in this tree. Draw a path to show the longest possible path distance. What is this distance? \qquad

Name \qquad L9 (a)

Name

L9 (b)
Find the distance from the root (circled red) to each of the other dots in this tree. Write your answers in the circles. Some are done for you.

Name
L11 (a)

2	3	4	5	6	7	8	9	10	11	12

Name

									s					
										-				
		L												
											${ }^{\text {a }}$			
				N	-									

Name \quad G2 (b)

									-						
								N							

Name

G4 *

 How long is this zigzag path from A to B ? \qquad cm

Try to find a shorter path from A to B . Draw it. How long is your path? \qquad cm

Name
G4 $\quad * *$
How long is this zigzag path from A to B ? cm

Try to find a shorter path from A to B. Draw it. How long is your path? \qquad cm

Name
G4 $\boldsymbol{*}$ **
How long is this zigzag path from A to B ? cm

Name G4 ****

Draw a zigzag path from A to B that is longer than 50 cm .

- A

B
How long is your path? \qquad cm

									${ }^{\text {P }}$					
									-					
						N								

							${ }^{\text {M }}$					
							\bigcirc					
					N	-						

Name

G6 *

Color one-half of each shape and complete the number sentence.

$$
\frac{1}{2} \times 22=
$$

$$
\frac{1}{2} \times 26=
$$

Name

G6 $\quad * *$

Color one-half of each shape and complete the number sentence.

$$
\frac{1}{2} \times 24=
$$

$$
\frac{1}{2} \times 18=
$$

Color one-third of each shape and complete the number sentence.

$\frac{1}{3} \times 24=$
$\frac{1}{3} \times 18=$

Name
G6 ***

Color one-half of each shape red.

Color one-fourth of each shape blue.

G6 ****

Color one-half of this shape.

Color one-fourth of this shape.

$\frac{1}{2}$
Color one-eighth of this shape.

$\frac{1}{8}$

$\frac{1}{16}$

Name

G7

Color red all the shapes with the same area as this shape.

Color blue all the shapes with the same area as this shape.

Area: 2 S

Area: $1 \frac{1}{2} S$

Color red all the shapes with the same area as this shape.

Color blue all the shapes with the same area as this shape.

Area: 2 S

Area: $1 \frac{1}{2} \mathrm{~S}$

Name

G8 *

How long is this zigzag path from A to B ?

Try to find a shorter path from A to B . Draw it. How long is your path? \qquad cm

Name
G8 $\quad * *$
Draw a zigzag path from A to B. Try to make your zigzag path as short as possible.
${ }^{A}$

How long is your zigzag path?

Name G8 $\boldsymbol{*}$ **

Draw a zigzag path from A to B. Try to make your zigzag path shorter than 18 cm.

Name
Draw a zigzag path from A to B. Try to make your zigzag path as short as possible.

B

A

Name

Use Tangram pieces to build:

a triangle with area 4T

Name

G9 **

Use Tangram pieces to build:

a rectangle with area 3 S

a rectangle with area 6 S

G10 *

Color one-third of each shape and complete the number sentence.

$\frac{1}{3} \times 18=$

$\frac{1}{3} \times 9=$

$$
\frac{1}{3} \times 12=
$$

$$
\frac{1}{3} \times 15=
$$

Name

G10 **

Color one-half of each shape and complete the number sentence.

$$
\frac{1}{2} \times 24=
$$

Color one-third of each shape and complete the number sentence.

$\frac{1}{3} \times 24=$

$\frac{1}{3} \times 18=$

Name

G10 ***

Color one-third of each shape.

Color one-sixth of each shape.

Name

G10 ****

Color one-third of each shape.

Color one-ninth of each shape.

Name

G13 *

Use two tetrominoes to cover these shapes.

Name

G13 **

Use three tetrominoes to cover these shapes.

Name
Mo is a secret number.
Mo is in this arrow picture and in this string picture.
Who is Mo? \qquad

Name
W6 *

What number is on the Minicomputer?

Name

W6 **

What number is on the Minicomputer?

$=$

Name
Put these numbers on the Minicomputer using one positive and one negative checker. One is done for you.

$=8$

$=7$

$=\widehat{3}$

$=6$

$=2$

$=4$

Name

W6 ****

Put these numbers on the Minicomputer. Use at least one negative checker for each number.

