CSMP Mathematics for the Upper Primary Grades Part III

Worksheets
What’s In This Book?

This book contains all the worksheets you will need for *CSMP for the Upper Primary Grades, Part III*. Worksheets are labeled with the same letter and number as the lessons with which they are used. In this book, they are in the following order:

N Worksheets

N1 N19 N29
N6 N22 N33
N9 N24 N34
N16 N25 N36
N18

L Worksheets

L2 L11 L14
L7 L13 L16
L9

G Worksheets

G1 G5 G9
G2 G6 G10
G4 G7 G11

W Worksheets

W1 W15 W18
What number is on the Minicomputer?

_{N1} *
Put these numbers on the Minicomputer.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What number is on the Minicomputer?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>=</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>=</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>=</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>=</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>=</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>=</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Put each number on the ones board of the Minicomputer.

\[\begin{align*}
9 &= \square \square \\
16 &= \square \square \\
7 &= \square \square \\
10 &= \square \square \\
15 &= \square \square \\
12 &= \square \square \\
19 &= \square \square \\
25 &= \square \square \\
30 &= \square \square \\
51 &= \square \square \\
37 &= \square \square \\
55 &= \square \square
\end{align*} \]
Label the dots.

Complete.

\[
\begin{array}{cccccc}
64 & 34 & 94 & 124 & 244 \\
+10 & +10 & +10 & +10 & +10 \\
\end{array}
\]

\[
\begin{array}{cccccc}
17 & 53 & 41 & 105 & 128 \\
+10 & +10 & +10 & +10 & +10 \\
\end{array}
\]
Name __________________ N6 **

Label the dots. Draw +30 arrows in red.

Complete.

\[
\begin{array}{cccccc}
98 & +10 & 68 & +30 & 118 & +10 \\
88 & +30 & 198 & +10 & 75 & +20 \\
52 & +10 & 52 & +30 & 75 & +30 \\
\end{array}
\]
Complete.

\[8 + \hat{3} = ____\]

\[6 + \hat{9} = ____\]

\[\hat{8} + 8 = ____\]

\[15 + \hat{7} = ____\]

\[12 + \hat{5} = ____\]

\[\hat{10} + 3 = ____\]
Complete.

\[
\begin{align*}
59 + 18 &= ___ \\
37 + 25 &= ___ \\
96 + 14 &= ___ \\
63 + 42 &= ___
\end{align*}
\]
Complete.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

48 + 20 = ____
43 + 22 = ____
24 + 10 = ____
57 + 23 = ____
39 + 14 = ____
30 + 28 = ____

Complete.

\[
\begin{array}{c|c}
46 + 21 = ___ & 63 + 18 = ___ \\
\hline
59 + 24 = ___ & 70 + 26 = ___ \\
\hline
95 + 43 = ___ & 80 + 37 = ___ \\
\end{array}
\]
Silver Spring to Wells

1. Silver Spring to Ely to Wells is __________ km.

Show your work in this box.

2. Silver Spring to Carson City to Reno to Winnemucca to Wells is __________ km.

Show your work in this box.

3. Which route is shorter? ____________________________

How much shorter? ________________
Las Vegas to Wells

1. Las Vegas to Ely to Wells is __________ km.

 Show your work in this box.

Las Vegas to Silver Spring

2. Las Vegas to Tenopah to Silver Spring is __________ km.

 Show your work in this box.

3. Which city is closer to Las Vegas—Wells or Silver Spring? _____________ How much closer? _____________
Name ____________________

Label the dots.

Complete.

\[2 \times 15 = ____ \quad \frac{1}{2} \times 32 = ____\]

\[2 \times 25 = ____ \quad \frac{1}{2} \times 52 = ____\]

\[2 \times 35 = ____ \quad \frac{1}{2} \times 72 = ____\]
Complete. Use the box to show how you did the calculation.

\[
\begin{array}{c}
\frac{66}{\times 2} \\
\frac{1}{2} \times 38 = ___ \\
2 \times 78 = ___ \\
\frac{1}{2} \times 112 = ___ \\
\frac{155}{\times 2} \\
\end{array}
\]
Find the missing number.

\[
\begin{align*}
235 &+ 504 + 464 \\
&+ + + + \\
&= 377 568 832
\end{align*}
\]

\[
\begin{align*}
1,059 &+ 43 + 246 \\
&+ + + \\
&= 5,781 78 287
\end{align*}
\]

\[
\begin{align*}
58 &+ 425 + 1,294 \\
&+ + + \\
&= 94 541 1,853
\end{align*}
\]

\[
\begin{align*}
790 &+ 366 + 828 \\
&+ + + \\
&= 805 473 902
\end{align*}
\]
Name ________________________

Fill in the boxes.

\[
\begin{align*}
23 & \underline{+ 16} & 47 & \underline{+ 23} & 1,030 & \underline{+ 3,58} \\
\underline{359} & & \underline{698} & & \underline{4,67} & \\
\end{align*}
\]

\[
\begin{align*}
6 & \underline{+ 35} & 14 & \underline{+ 6} & 3 & \underline{+ 17} \\
\underline{100} & & \underline{08} & & \underline{532} & \\
\end{align*}
\]

\[
\begin{align*}
\underline{3} & \underline{+ 7} & \underline{5} & \underline{+ 6} & \underline{72} & \underline{+ 19} \\
\underline{548} & & \underline{71} & & \underline{40} & \\
\end{align*}
\]
Name ________________

Complete.

16 - 10 = ______ 10 - 10 = ______
11 - 10 = ______ 9 - 10 = ______
13 - 10 = ______ 5 - 10 = ______
17 - 10 = ______ 7 - 10 = ______
12 - 10 = ______ 6 - 10 = ______
Name ________________

Complete.

40 \(-\) 10 = _____ 28 \(-\) 10 = _____ 29 \(-\) 10 = _____

24 \(-\) 10 = _____ 27 \(-\) 10 = _____ 38 \(-\) 10 = _____

32 \(-\) 10 = _____ 26 \(-\) 10 = _____ 38 \(-\) 20 = _____

18 \(-\) 10 = _____ 25 \(-\) 10 = _____ 38 \(-\) 30 = _____

36 \(-\) 10 = _____ 21 \(-\) 10 = _____ 38 \(-\) 40 = _____
Label the dots. Fill in the box for each blue arrow.
Name ____________________

Label the dots. Fill in the box for each blue arrow.

-10 -5

132

-

-10 -7

214
Label the dots.
Label the dots.
Name __________________________
Label the dots.

3x

27
Name ____________________
Label the dots.

5x

12.5
What number is on the Minicomputer?
1. Find the number of soda bottles in three cartons. One carton has 24 bottles.

2. Find the number of cards in two decks. One deck has 52 cards.

3. Find the number of cookies in three packages. One package has 36 cookies.
What number is on the Minicomputer?

10 + 10 = ____

10 + 10 = ____

10 + 10 = ____

10 + 10 = ____

10 + 10 = ____
What number is on the Minicomputer?

1.

2.

3.

4.

5.

6.

= ______

= ______

= ______

= ______

= ______

= ______
Put three dimes and two pennies on the Minicomputer.

Put three quarters on the Minicomputer.

Put the pictured amount of money on the Minicomputer.
Put these numbers on the Minicomputer.

5.14 =

21.48 =

7.62 =

3.09 =

0.4 =
Add the prices in the string.

$6.30 $8.17 $10.45

Total ______

$7.32 $3.54 $4.08

Total ______

Menu

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotdog</td>
<td>$1.29</td>
</tr>
<tr>
<td>Drink</td>
<td>$0.65</td>
</tr>
<tr>
<td>Chips</td>
<td>$0.59</td>
</tr>
<tr>
<td>Ice Cream</td>
<td>$1.15</td>
</tr>
</tbody>
</table>

Darcy has $3.00 and buys a hotdog and a drink. How much money does Darcy have left? ______

Darcy wants to buy one more item. What could it be? ______
Then how much would Darcy have left? ______
Find the missing number.

\[
\begin{align*}
403 & \quad + \quad 136 & \quad + \quad 238 & \quad + \quad 425 \\
& \quad + \quad & \quad + \quad & \quad + \\
698 & \quad & 172 & \quad 789 & \quad 652 \\
\end{align*}
\]

\[
\begin{align*}
467 & \quad + \quad 530 & \quad + \quad 250 & \quad + \quad 592 \\
& \quad + \quad & \quad + \quad & \quad + \\
892 & \quad & 589 & \quad 304 & \quad 856 \\
\end{align*}
\]

\[
\begin{align*}
3,457 & \quad + \quad 1,576 & \quad + \quad 6,908 \\
& \quad + \quad & \quad + \\
5,084 & \quad & 2,301 & \quad 8,120 \\
\end{align*}
\]

Fill in the boxes.

\[
\begin{align*}
4 & \quad \underline{8} & \quad + \quad 13 & \quad + \quad 73 & \quad + \quad 5 & \quad + \quad 14 \\
& \quad \underline{98} & \quad & \underline{83} & \quad 906 & \quad 700 \\
\end{align*}
\]
Name ___________________ N33(b)

= 2 \times 19 = ____

= 3 \times 19 = ____

= 2 \times 79 = ____

= 2 \times 48 = ____

= 2 \times 29 = ____

= 3 \times 29 = ____
What is the shortest route from Williamsburg to Emporia?

Show your work in this box.

Williamsburg to Richmond to Emporia is __________ km.

Williamsburg to Norfolk to Emporia is __________ km.
Wytheville to Washington, D.C.
or
Wytheville to Norfolk

Which city is closer to Wytheville—Washington, D.C. or Norfolk?

Show your work in this box.
Name ________________

Build an arrow road from 70 to 38 using –10 and –1 arrows. Fill in the box for the gray arrow.

Write a calculation shown by the gray arrow.
Build an arrow road from 82 to 37 using –10 and –1 arrows. Fill in the box for the gray arrow.

Write a calculation shown by the gray arrow.
Build an arrow road from 200 to 88 using –100, –10, and –1 arrows. Fill in the box for the gray arrow.

Write a calculation shown by the gray arrow.
Build an arrow road from 503 to 288 using –100, –10, and –1 arrows. Fill in the box for the gray arrow.

Write a calculation shown by the gray arrow.
Label the dots.

Name ____________________________

L2(a)
Label the dots and draw red arrows.

L2(b)
Draw the missing red arrows. You should find six red arrows.
Name ___________________

L2 **

Draw the missing red arrows and loops.
Draw the three missing red arrows and the three missing green arrows.
Draw the missing red arrows and loops. Draw the missing green arrows and loops.
Put these numbers in the string picture.

3 8 12 15 24 25 30 35

- Less than 25
 5

- Multiples of 3
 36

40
Match the A-blocks with dots in the strings.

Describe a piece to put in the place with no dot. _____________
Put these numbers in the string picture.

15 125 128 7 20 100 77 777
Label the strings so that the hatched regions are empty. Many solutions are possible.

Explain why the hatched regions are empty with your string labels.
The dots in this arrow picture are for some of Darren’s relatives.

- his mother
- his father
- his sister
- his paternal grandfather
- his paternal grandmother
- his maternal grandfather
- his maternal grandmother
- one of his great grandfathers

Can you label the dots?
Find and draw a missing red arrow.
Cathy is the sister of Nick and John. Both of Cathy’s paternal grandparents and her maternal grandfather are still alive, but Cathy’s maternal grandmother died last year. Draw an arrow picture showing Cathy’s family.

You are my mother

You are my father

Nick Cathy John
Put these numbers in the string picture.

10 25 12 0 13 55 17 32

Multiples of 2

Multiples of 5
Put these numbers in the string picture.

8 15 1 30 100 6 99 37
Label the dots with numbers of your choice.
Put these numbers in the string picture.

20 0 12 12 6 4 99 50 56
3 × 25 4 × 30 4 × 7

Multiples of 4

Less than 50

Multiples of 3
<table>
<thead>
<tr>
<th>Activity</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Name ____________________ L14(d)

Time Your Daily Activities

1. How long does it take me to brush my teeth?
 Estimate ____________________ (hours/minutes)

 Starting Time Ending Time

 It took me ____________________.

2. How long does it take me to eat breakfast?
 Estimate ____________________ (hours/minutes)

 Starting Time Ending Time

 It took me ____________________.

3. How long does it take me to ______________? (choose an activity)
 Estimate ____________________ (hours/minutes)

 Starting Time Ending Time

 It took me ____________________.
Draw dots in this string picture so that there are:

7 dots in the red string;
5 dots in the blue string;
10 dots altogether in the two strings.
Draw dots in this string picture so that there are:

15 dots in the red string;
15 dots in the blue string;
25 dots altogether in the two strings.
Label the parts of the picture to show how many dots are in each part. Fill in the blue box to show how many dots are in the blue string.

100

25

200
Name ___________________

Label the parts of this picture to show how many dots are in each part.

45

55

80
Color each shape one-half red and one-half blue.
Draw one long path between Angela’s house (A) and Barbara’s house (B). Draw several shortest paths between A and B. Use a different color for each path.

The taxi-distance from A to B is _________ blocks.

The taxi-distance from B to A is _________ blocks.
N = Nora’s House P = Post Office S = Store

The taxi-distance from N to P is ________ blocks.

The taxi-distance from P to S is ________ blocks.

The taxi-distance from S to N is ________ blocks.

It is raining and Nora must do some errands. She walks from her house (N) to the Post Office (P) and then to the store (S) and then home. What is the length of the shortest trip she can make? ________
How long is this zigzag path from S to E? _________ cm

Draw a shorter path from S to E. Try to make it as short as possible. How long is your path? _________ cm
How long is this zigzag path from S to E? _______ cm

Draw a shorter path from S to E. Try to make it as short as possible. How long is your path? _________ cm
Draw as short a zigzag path as you can from S to E. Try to make it shorter than 25 cm.

How long is your path? __________ cm
Draw a zigzag path from S to E that is longer than 50 cm.
How long is your path? _________ cm
Color each shape one-half red and one-half blue.
Color each shape one-third red, one-third blue, and one-third green.
23 cm²
33 cm²
Find points the same taxi-distance from N and from S. Color them red.
Find points the same taxi-distance from N and from T.
Color them blue.
Find points the same taxi-distance from N and from B. Color them red.
Color exactly one-half of each shape. Use the picture to write another name for $\frac{1}{2}$.

Example

$\frac{1}{2} = \frac{4}{8}$

$\frac{1}{2} = \frac{\quad}{4}$

$\frac{1}{2} = \frac{\quad}{16}$

$\frac{1}{2} = \quad$

$\frac{1}{2} = \quad$
Color one-eighth of this shape.

Color three-eighths of this shape.

Color four-eighths of this shape.

Color seven-eighths of this shape.

Circle the name for $\frac{1}{2}$.
Color exactly one-third of each shape. Use the picture to write another name for $\frac{1}{3}$.

Example

\[
\begin{array}{c}
\text{\frac{1}{3} = \frac{2}{6}} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\frac{1}{3} = \frac{6}{12}} \\
\end{array}
\]
Color one-twelfth of this shape.

Color six-twelfths of this shape.

Color four-twelfths of this shape.

Color seven-twelfths of this shape.

Circle the name for $\frac{1}{2}$:

Circle the name for $\frac{1}{3}$:
Bif is a secret number.
Bif is in this arrow picture. Label the dots.

Bif is in this string picture. Put the numbers from the arrow picture in this string picture.

Odd numbers

Less than 10

Who is Bif? _____________
Zip is a secret number.
Zip is in this arrow picture. Label the dots.

Zip can be put on the Minicomputer by taking off just one checker. Cross out one checker to show Zip.

Who is Zip? _______________
Label the dots.
Label the dots.

2 \times

+10

2 \times

+8
Label the dots.

3\times +12

3\times +40