CSMP Mathematics for the Upper Primary Grades Part IV

Worksheets
What’s In This Book?

This book contains all the worksheets you will need for *CSMP for the Upper Primary Grades, Part IV*. Worksheets are labeled with the same letter and number as the lessons with which they are used. In this book, they are in the following order:

N Worksheets

<table>
<thead>
<tr>
<th>N1</th>
<th>N14</th>
<th>N24</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>N16</td>
<td>N26</td>
</tr>
<tr>
<td>N3</td>
<td>N18</td>
<td>N32</td>
</tr>
<tr>
<td>N4</td>
<td>N19</td>
<td>N34</td>
</tr>
<tr>
<td>N6</td>
<td>N20</td>
<td></td>
</tr>
<tr>
<td>N12</td>
<td>N22</td>
<td></td>
</tr>
</tbody>
</table>

L Worksheets

<table>
<thead>
<tr>
<th>L2</th>
<th>L7</th>
<th>L12</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4</td>
<td>L8</td>
<td>L14</td>
</tr>
<tr>
<td>L6</td>
<td>L11</td>
<td></td>
</tr>
</tbody>
</table>

G Worksheets

<table>
<thead>
<tr>
<th>G1</th>
<th>G5</th>
<th>G9</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>G6</td>
<td>G10</td>
</tr>
<tr>
<td>G3</td>
<td>G7</td>
<td>G11</td>
</tr>
<tr>
<td>G4</td>
<td>G8</td>
<td>G12</td>
</tr>
</tbody>
</table>

W Worksheets

| W3 | W17 |
Pair names for the same number. Two are paired for you.

- $436 + 10$ with $268 + 20$
- $186 + 4$ with $467 + 41$
- $348 + 100$ with $192 + 10$
- $294 + 80$ with $217 + 3$
Label the dots.
Pair names for the same number.

\[
\begin{align*}
190 + \hat{8} & \quad \quad \quad 474 + \hat{48} \\
506 + \hat{80} & \quad \quad \quad 470 + \hat{222} \\
111 + \hat{82} & \quad \quad \quad 391 + \hat{209} \\
1,050 + \hat{802} & \quad \quad \quad 850 + \hat{821}
\end{align*}
\]
Label the dots.
Label the dots.
Draw all the possible $6x$ arrows in gray.

You should have five gray arrows.
Label the dots.
Draw all the possible 6x arrows in gray.

You should have seven gray arrows.
Complete.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8 - 5 = □</td>
<td>10 - 5 = □</td>
</tr>
<tr>
<td>9 - 6 = □</td>
<td>12 - 7 = □</td>
</tr>
<tr>
<td>10 - □ = 3</td>
<td>14 - □ = 5</td>
</tr>
<tr>
<td>□ - 8 = 3</td>
<td>□ - 11 = 5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7 - 8 = □</td>
<td>20 - 10 = □</td>
</tr>
<tr>
<td>8 - 8 = □</td>
<td>30 - □ = 20</td>
</tr>
<tr>
<td>□ - 8 = 1</td>
<td>□ - 10 = 30</td>
</tr>
<tr>
<td>10 - □ = 2</td>
<td>50 - □ = 40</td>
</tr>
</tbody>
</table>
Complete.

\[
\begin{array}{cccc}
18 & 19 & 20 & \square \\
-10 & -11 & -8 & -13 \\
\hline
42 & 41 & 40 & \square \\
-21 & -20 & -21 & -21 \\
\hline
14 & 16 & \square & 20 \\
-7 & -7 & -10 & -13 \\
\hline
13 & 23 & 33 & 43 \\
-8 & -18 & -28 & -38 \\
\end{array}
\]
Pair names for the same number.

36 – 24
72 – 49
47 – 20
99 – 56
70 – 29

73 – 50
75 – 34
100 – 57
40 – 28
44 – 17
Pair names for the same number.

86 - 35 85 - 49
71 - 18 80 - 46
100 - 66 90 - 39
95 - 66 91 - 38
81 - 45 88 - 59
Carmen buys two different games and spends exactly $2. Draw one string around the prices of these two games.

Anthony buys two different books and spends exactly $3. Draw one string around the prices of these two books.
William buys two different magic tricks and spends exactly $3. Draw one string around the prices of these two magic tricks.

Sharon buys two different paint sets and spends exactly $5. Draw one string around the prices of these two paint sets.
Elizabeth buys two different scarfs and spends exactly $4. Draw one string around the prices of these two scarfs.

Scott buys two different hats and spends exactly $10. Draw one string around the prices of these two hats.
Pat buys three different whistles and spends exactly $2. Draw one string around the prices of these three whistles.

Elliot buys three different records and spends exactly $10. Draw one string around the prices of these three records.
Complete.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2} \times 10$</td>
<td>$\frac{1}{2} \times 20$</td>
<td>$\frac{1}{2} \times 14$</td>
<td>$\frac{1}{2} \times 26$</td>
</tr>
<tr>
<td>$\frac{1}{2} \times 12$</td>
<td>$\frac{1}{2} \times 40$</td>
<td>$\frac{1}{2} \times 18$</td>
<td>$\frac{1}{2} \times 48$</td>
</tr>
<tr>
<td>$\frac{1}{2} \times 50$</td>
<td>$\frac{1}{2} \times 100$</td>
<td>$\frac{1}{2} \times 52$</td>
<td>$\frac{1}{2} \times 120$</td>
</tr>
<tr>
<td>$\frac{1}{2} \times 30$</td>
<td>$\frac{1}{2} \times 124$</td>
<td>$\frac{1}{2} \times 36$</td>
<td>$\frac{1}{2} \times 130$</td>
</tr>
</tbody>
</table>
Name ____________________

Complete.

\[
\begin{array}{ccc}
\frac{1}{3} \times 30 = & \frac{1}{3} \times 45 = \\
\frac{1}{3} \times 36 = & \frac{1}{3} \times 105 = \\
\frac{1}{3} \times 90 = & \frac{1}{3} \times 120 = \\
\frac{1}{3} \times 99 = & \frac{1}{3} \times 117 = \\
\end{array}
\]

\[
\begin{array}{ccc}
\frac{1}{2} \times 5 = & 2.5 & \frac{1}{2} \times 6.40 = \\
\frac{1}{2} \times 25 = & \frac{1}{2} \times 3.00 = \\
\frac{1}{2} \times 45 = & \frac{1}{2} \times 0.52 = \\
\frac{1}{2} \times 51 = & \frac{1}{2} \times 3.52 = \\
\end{array}
\]
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2}) \times 20 = ___</td>
<td>60 \div 2 = ___</td>
</tr>
<tr>
<td>(\frac{1}{2}) \times 24 = ___</td>
<td>68 \div 2 = ___</td>
</tr>
<tr>
<td>(\frac{1}{2}) \times 40 = ___</td>
<td>80 \div 2 = ___</td>
</tr>
<tr>
<td>(\frac{1}{2}) \times 46 = ___</td>
<td>82 \div 2 = ___</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2}) \times 50 = ___</td>
<td>30 \div 2 = ___</td>
</tr>
<tr>
<td>(\frac{1}{2}) \times 52 = ___</td>
<td>32 \div 2 = ___</td>
</tr>
<tr>
<td>(\frac{1}{2}) \times 54 = ___</td>
<td>34 \div 2 = ___</td>
</tr>
<tr>
<td>(\frac{1}{2}) \times 56 = ___</td>
<td>36 \div 2 = ___</td>
</tr>
</tbody>
</table>
Share 234 marbles between Marty and Mandy.

\[
\frac{234}{2} = \quad \frac{1}{2} \times 234 =
\]

Complete.

Share 346 cards between Cory and Carla.

\[
\frac{346}{2} = \quad \frac{1}{2} \times 346 =
\]
Complete.

\[
\begin{array}{c|c}
4 \div 2 &= __ \\
5 \div 2 &= __ \\
6 \div 2 &= __ \\
7 \div 2 &= __ \\
100 \div 2 &= __ \\
30 \div 2 &= __ \\
8 \div 2 &= __ \\
138 \div 2 &= __ \\
\end{array}
\]

\[
\begin{array}{c|c}
\frac{1}{2} \times 600 &= __ \\
\frac{1}{2} \times 640 &= __ \\
\frac{1}{2} \times 642 &= __ \\
\frac{1}{2} \times 650 &= __ \\
\frac{1}{2} \times 500 &= __ \\
\frac{1}{2} \times 90 &= __ \\
\frac{1}{2} \times 6 &= __ \\
\frac{1}{2} \times 596 &= __ \\
\end{array}
\]
Label the dots.

800

832

848

840
Build an arrow road between 5 and 16 using 2x, +1, and −1 arrows. Try to use as few arrows as possible.
Build an arrow road between these pairs of numbers using 2x, +1, and –1 arrows. Try to use as few arrows as possible.

2x +1 –1

q

31

50
Build an arrow road between these pairs of numbers using 2x, +1, and –1 arrows. Try to use as few arrows as possible.
Build an arrow road between these pairs of numbers using 2x, +1, and −1 arrows. Try to use as few arrows as possible.
Build an arrow road between these pairs of numbers using 10x, +1, and –1 arrows. Try to use as few arrows as possible.

2

3

53

24
Build an arrow road between these pairs of numbers using 10x, +1, and –1 arrows. Try to use as few arrows as possible.

8 → 10x → +1 → 115

108 → 14 → –1 → 8
Build an arrow road between these pairs of numbers using 10x, +1, and –1 arrows. Try to use as few arrows as possible.

10x +1 -1

507

5

570

5
Build an arrow road between these pairs of numbers using 10x, +1, and –1 arrows. Try to use as few arrows as possible.

989

7

12

1,084
Share 26 cards fairly between Dick and Nina.

<table>
<thead>
<tr>
<th>For Dick</th>
<th>For Nina</th>
</tr>
</thead>
</table>

Write a number sentence about this sharing.

Share 27 pencils fairly among Andrea, Sheila, and Rob.

<table>
<thead>
<tr>
<th>For Andrea</th>
<th>For Sheila</th>
<th>For Rob</th>
</tr>
</thead>
</table>

Write a number sentence about this sharing.
Share 34 pennies fairly between Pat and Gary.

For Pat | For Gary

Write a number sentence about this sharing.

Share 54 dimes fairly among Bill, Stanley, and Lisa.

For Bill | For Stanley | For Lisa

Write a number sentence about this sharing.
Share 114 pictures fairly between Arthur and Maria.

<table>
<thead>
<tr>
<th>For Arthur</th>
<th>For Maria</th>
</tr>
</thead>
</table>

Write a number sentence about this sharing.

Share 81 candies fairly among Nora, Brad, and Mark.

<table>
<thead>
<tr>
<th>For Nora</th>
<th>For Brad</th>
<th>For Mark</th>
</tr>
</thead>
</table>

Write a number sentence about this sharing.
Share 186 stamps fairly between Andy and Pam.

<table>
<thead>
<tr>
<th>For Andy</th>
<th>For Pam</th>
</tr>
</thead>
</table>

Write a number sentence about this sharing.

Share 129 marbles fairly among John, Ann, and Cathy.

<table>
<thead>
<tr>
<th>For John</th>
<th>For Ann</th>
<th>For Cathy</th>
</tr>
</thead>
</table>

Write a number sentence about this sharing.
Share 483 stickers fairly among Paula, Stacey, and Joy.

<table>
<thead>
<tr>
<th>For Paula</th>
<th>For Stacey</th>
<th>For Joy</th>
</tr>
</thead>
</table>

Write a number sentence about this sharing.

Share 732 cards among Wally, James, Amy, and Jade.

<table>
<thead>
<tr>
<th>For Wally</th>
<th>For James</th>
<th>For Amy</th>
<th>For Jade</th>
</tr>
</thead>
</table>

Write a number sentence about this sharing.
Share 819 seeds fairly among Mike, Ellen, and Eric.

For Mike | For Ellen | For Eric

Write a number sentence about this sharing.

Share 1,935 books among Sandra, Leo, Christy, Sharone, and Maia.

For Sandra | For Leo | For Christy | For Sharone | For Maia

Write a number sentence about this sharing.
Label the dots on this number line.
Label the dots on this number line.
Label the dots and complete the multiplication facts.

2x

8 × 6 = ____

8 × 11 = ____

8x

8 × 4 = ____

8 × 14 = ____
Complete this table.

<table>
<thead>
<tr>
<th>Starting Number</th>
<th>2\times</th>
<th>4\times</th>
<th>8\times</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Label the dots.

\[2 \times \quad +10 \]

103

231

154
Name ______________________

Label the dots.

Draw all the possible 8x arrows in blue.
Label the dots.

-37 +46

18
Label the dots.

×2

-69

56
Label the dots.
Label the dots.
Draw seven missing x6 arrows in gray.
Label the dots.
Draw all the possible 5x arrows in gray.

You should find seven 5x arrows.
Complete this table.

<table>
<thead>
<tr>
<th>Starting Number</th>
<th>10×</th>
<th>5×</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Draw all the possible 10x, 5x, and \(\frac{1}{2}x \) arrows.

10x

5x

\(\frac{1}{2}x \)

3

15

30

150

9,375

75

3,750

750

18,750

1,875

375
Name ______________________

Build an arrow road between each pair of numbers. Try to use less than ten arrows in each road.

\[10 \times \quad +1 \quad -1 \]

\[6 \quad \bullet \]

\[5 \quad \bullet \]

\[73 \]

\[36 \]
Name ____________________ N26 **

Build an arrow road between each pair of numbers. Use less than ten arrows in each road.

\[
10 \times +1 -1
\]

103

9

108

12
Build an arrow road between each pair of numbers. Use less than ten arrows in each road.

10× +1 −1

3

670
Build an arrow road between each pair of numbers. Use less than ten arrows in each road.

| 10x | + | - |
Label the dots in the pictures to help solve these problems.

Put cookies in packages of 24. How many packages will 200 cookies fill? _______ How many cookies left over? _______

200

\[\begin{array}{c}
24 \downarrow 200 \\
\end{array} \]

Complete.

Put erasers in boxes of 15. How many boxes will 350 erasers fill? _______ How many erasers left over? _______

350

\[\begin{array}{c}
15 \downarrow 350 \\
\end{array} \]

Complete.
Draw pictures to show how you solve these problems.

Put bottles in cartons of 16.
How many cartons will 350 bottles fill? _________
How many bottles left over? _____________

Complete.

\[
\begin{array}{c}
\text{16} \\
\hline
350
\end{array}
\]

Put cards in packages of 36.
How many packages will 500 cards fill? _________
How many cards left over? _____________

Complete.

\[
\begin{array}{c}
\text{36} \\
\hline
500
\end{array}
\]
Build a road between each pair of numbers. Try to use less than ten cords to build each road.

2x or \(\frac{1}{2}x \) or \(+1 \) or \(-1 \)

- 7
- 6
- 30
- 50
Build a road between each pair of numbers. Use less than ten cords to build each road.

\[2 \times \quad \text{or} \quad \frac{1}{2} \times \quad +1 \quad \text{or} \quad -1 \]
Build a road between each pair of numbers. Use as few cords as possible to build each road.

\[2 \times \quad \text{or} \quad \frac{1}{2} \times \quad \pm \quad \text{or} \quad -\]

48

60

100

88
Build a road between each pair of numbers. Use as few cords as possible to build each road.

$2 \times$ or $\frac{1}{2} \times$

$+$ or $-$
Match names for the same number.
One is done for you.

(2 × 5) + 10 \quad 25

(2 × 10) + 5 \quad 70

(5 × 10) + 2 \quad 20

2 × (5 + 10) \quad 60

5 × (10 + 2) \quad 30

10 × (5 + 2) \quad 52
Elf is a secret number.

Clue 1

A name for Elf can be written using all these symbols, each symbol exactly once.

\[
\begin{align*}
2 &+ x \\
1 &4 \\
\end{align*}
\]

Clue 2

A name for Elf can be written using all these symbols, each symbol exactly once.

\[
\begin{align*}
2 &+ 3 x \\
6 & \\
\end{align*}
\]

Who is Elf? __________
Draw all the missing red arrows.
Draw all the missing red arrows and loops.
Fill in the chart with ways to label the dots.

What could the blue arrow be for? Fill in the blue box.
Fill in the chart with ways to label the dots.

<table>
<thead>
<tr>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>7</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>7</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Name ________________

Play The Red Arrow Game with this tree. Start at S.
Play The Red Arrow Game with this tree. Start at S.
Complete these number sentences about multiplication with ten number friends.

1 \times 6 = \boxed{} \quad 9 \times 1 = \boxed{}

2 \times 6 = \boxed{} \quad 2 \times 8 = \boxed{}

3 \times 6 = \boxed{} \quad 3 \times 8 = \boxed{}

4 \times 6 = \boxed{} \quad 5 \times 7 = \boxed{}

5 \times 6 = \boxed{} \quad 4 \times 9 = \boxed{}

6 \times 6 = \boxed{} \quad 7 \times 3 = \boxed{}}
Find several solutions to this number sentence. One is done for you.

\[\square \times \triangle = 2 \]

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>1 \times 2 = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
All the ten number friends are here. Draw blue arrows in their $\otimes 5$ picture.
Label the dots to put the ten number friends in this $\times 4$ picture.
Two numbers may talk to each other if and only if one number is a multiple of the other.

Label the dots. Many solutions are possible.
Two numbers may talk to each other if and only if one number is a multiple of the other.

Label the dots. Many solutions are possible.
Color exactly one-half of each shape. Use the picture to write another name for $\frac{1}{2}$.

Example:

$$\frac{1}{2} = \frac{3}{6}$$

1.
 $$\frac{1}{2} = -$$

2.
 $$\frac{1}{2} = -$$

3.
 $$\frac{1}{2} = -$$

4.
 $$\frac{1}{2} = -$$

5.
 $$\frac{1}{2} = -$$

6.
 $$\frac{1}{2} = -$$
Color exactly one-third of each shape. Use the picture to write another name for $\frac{1}{3}$.

Example:

$$\frac{1}{3} = \frac{2}{6}$$

\[
\begin{array}{ll}
\frac{1}{3} = - & \frac{1}{3} = - \\
\end{array}
\]
Complete the table.

<table>
<thead>
<tr>
<th>Taxi-distance from N</th>
<th>How many places?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 blocks</td>
<td>1</td>
</tr>
<tr>
<td>1 block</td>
<td></td>
</tr>
<tr>
<td>2 blocks</td>
<td></td>
</tr>
<tr>
<td>3 blocks</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taxi-distance from N</th>
<th>How many places?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 blocks</td>
<td>16</td>
</tr>
<tr>
<td>5 blocks</td>
<td></td>
</tr>
<tr>
<td>6 blocks</td>
<td></td>
</tr>
<tr>
<td>7 blocks</td>
<td></td>
</tr>
</tbody>
</table>

[Grid with points marked for N]
Connect the dots with a zigzag path, but do not go out of the yard. Try to make your path as short as possible.

Length of zigzag path = __________ cm = __________ dm.
Connect the dots with a zigzag path, but do not go out of the yard. Try to make your path as short as possible.

Length of zigzag path = __________ cm = __________ dm.
Connect the dots with a zigzag path, but do not go through the building. Try to draw a path shorter than 1.8 dm.

Length of zigzag path = __________ dm (less than 1.8 dm)
Connect the dots with a zigzag path, but do not go through the building. Try to draw a path shorter than 2.3 dm.

Length of zigzag path = __________ dm (less than 2.3 dm)
Connect the dots with a zigzag path, but do not go through the building. Try to draw a path shorter than 2.7 dm.

Length of zigzag path = __________ dm (less than 2.7 dm)
Connect the dots with a zigzag path, but do not go through the building. Try to draw a path shorter than 2.6 dm.

Length of zigzag path = __________ dm (less than 2.6 dm)
Find the taxi-distance from N to each station.
Find the taxi-distance from A to each station.
Circle in red the stations that are closest to T.
Find the taxi-distance from T to each station.
Circle in red the stations that are closest to S.
Find the taxi-distance from S to each station.
Draw a spiral starting at A. Do not go beyond the border of the large black square.
Name ____________________ G6(b)

Draw a spiral starting at A. Do not go beyond the border of the large black square.
Find a hiking trail that uses all the paths. Write S at your starting point and E at your ending point.
Find a round-trip trail that uses every path just once.
TOUR: Uses each door exactly once

Find a tour of this house. You may start and end where you like. Mark your starting place S and your ending place E.
Find a tour of this house. You may start and end where you like. Mark your starting place S and your ending place E.
TOUR: Uses each door exactly once

Try to find tours of these houses.
Try to find tours of these houses that start and end at the same place.

TOUR: Uses each door exactly once
TOUR: Uses each door exactly once

Find a tour of this house. You may start and end where you like.

On tracing paper, draw a map of this house. Show a hiking trail corresponding to your tour.
TOUR: Uses each door exactly once

Find a tour of this house. You may start and end where you like.

On tracing paper, draw a map of this house. Show a hiking trail corresponding to your tour.
TOUR: Uses each door exactly once

Find a tour of this house. You may start and end where you like.

On tracing paper, draw a map of this house. Show a hiking trail corresponding to your tour.
Draw a house plan for this map.
Color and cut out several rectangles, each with area 12 cm2.
Color and cut out several rectangles with perimeter 20 cm.
perimeter = 20 cm
Try to find the highest score for a tracing in this grid.
Try to find the highest score for a tracing in this grid.
Try to find the highest score for a tracing in these grid pictures.

Check your answer from Worksheet G12**
Try to find the highest score for a tracing in these grid pictures.

<table>
<thead>
<tr>
<th>HIGHEST SCORE</th>
<th>HIGHEST SCORE</th>
<th>HIGHEST SCORE</th>
<th>HIGHEST SCORE</th>
<th>HIGHEST SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check your answer from Worksheet G12**

Check your answer from Worksheet G12*
What number is on the Minicomputer?
Put each number on the Minicomputer. Use at least one \(\text{checker} \) for each number.

\[
\begin{align*}
20 &= \quad & 30 &= \\
21 &= \quad & 34 &= \\
40 &= \quad & 70 &= \\
42 &= \quad & 79 &= \\
45 &= \quad & 100 &=
\end{align*}
\]
Name __________________

Cobb is a secret number.

Clue 1

Cobb can be put on the ones board of the Minicomputer with exactly two 10-checkers.

Cobb could be _____, _____, _____, _____, _____, _____, _____, _____, _____, and _____.

Clue 2

More than 50

Multiples of 3

Who is Cobb? __________
Robb is a secret number.

Clue 1 Robb can be put on the ones board of the Minicomputer with one ☐-checker and one negative checker.

Clue 2 Robb could be ______, ______, ______, and ______.

Clue 3 Robb is on the same +5 arrow road as 17.

Who is Robb? __________
<table>
<thead>
<tr>
<th>Me</th>
<th>Mo</th>
<th>Mu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>