CSMP Mathematics for the Upper Primary Grades Part IV

Worksheets

What's In This Book?

This book contains all the worksheets you will need for CSMP for the Upper Primary Grades, Part IV. Worksheets are labeled with the same letter and number as the lessons with which they are used. In this book, they are in the following order:

N Worksheets

N1	N14	N24
N2	N16	N26
N3	N18	N32
N4	N19	N34
N6	N20	
N12	N22	

L Worksheets

L2	L7	L12
L4	L8	L14
L6	L11	

G Worksheets

G1	G5	G9
G2	G6	G10
G3	G7	G11
G4	G8	G12

W Worksheets
W3 W17

Name
N1 *
Pair names for the same number. Two are paired for you.

$$
348+\widehat{100}
$$

$$
192+10
$$

Name
N1 **
Label the dots.

Name

N1 ***

Pair names for the same number.
$190+\widehat{8}$

$$
474+48
$$

$506+\widehat{80}$
$470+\widehat{222}$
$111+\widehat{82}$
$391+\widehat{209}$
$1,050+\widehat{802}$
$850+\widehat{821}$

Name N1 ****

Label the dots.

Name
N2 *

Label the dots.
Draw all the possible 6x arrows in gray.

$$
3 x \quad 2 x \quad 6 x
$$

You should have five gray arrows.

Name
N2 **

Label the dots.
Draw all the possible $6 x$ arrows in gray.

You should have seven gray arrows.

Name
NB *
Complete.

$8-5=\square$	$10-5=\square$
$9-6=\square$	$12-7=\square$
$10-\square=3$	$14-\square=5$
$\square-8=3$	$\square-11=5$
$7-8=\square$	$20-10=\square$
$8-8=\square$	$30-\square=20$
$\square-8=1$	$\square-10=30$
$10-\square=2$	$50-\square=40$

Name \qquad
Complete.

$\begin{array}{r} 18 \\ -\quad 10 \\ \hline \end{array}$	$\begin{array}{r} 19 \\ -\quad 11 \\ \hline \end{array}$	$\begin{array}{r} 20 \\ -\quad \square \\ \hline 8 \end{array}$	$\frac{-13}{8}$
$\begin{array}{r} 42 \\ -21 \\ \hline \end{array}$	$\begin{array}{r} 41 \\ -\quad-\square \\ \hline 20 \end{array}$	$\begin{array}{r}40 \\ -21 \\ \hline\end{array}$	$\frac{-21}{18}$
$\begin{array}{r}14 \\ -7 \\ \hline\end{array}$	$\begin{array}{r} 16 \\ -\square \\ \hline 7 \end{array}$	$\begin{array}{r}-\square \\ -10 \\ \hline\end{array}$	$\begin{array}{r}20 \\ -13 \\ \hline\end{array}$
$\begin{array}{r}13 \\ -8 \\ \hline\end{array}$	$\begin{array}{r} 23 \\ -\quad 18 \\ \hline \end{array}$	$\begin{array}{r}33 \\ -28 \\ \hline\end{array}$	$\begin{array}{r} 43 \\ -38 \\ \hline \end{array}$

Name
N3 ***
Pair names for the same number.

$$
36-24
$$

$$
73-50
$$

$$
72-49
$$

$$
75-34
$$

$$
47-20
$$

$$
100-57
$$

$$
99-56
$$

$$
40-28
$$

$$
70-29
$$

Name
N3 ****
Pair names for the same number.

$$
86-35
$$

$$
85-49
$$

71-18

$$
80-46
$$

$$
100-66
$$

$$
90-39
$$

$$
95-66
$$

$$
91-38
$$

$$
81-45
$$

$$
88-59
$$

Name

N4 *

Carmen buys two different games and spends exactly $\$ 2$. Draw one string around the prices of these two games.

Anthony buys two different books and spends exactly $\$ 3$. Draw one string around the prices of these two books.

Name
N4 **
William buys two different magic tricks and spends exactly $\$ 3$. Draw one string around the prices of these two magic tricks.

Sharon buys two different paint sets and spends exactly $\$ 5$. Draw one string around the prices of these two paint sets.

Elizabeth buys two different scarfs and spends exactly \$4. Draw one string around the prices of these two scarfs.

Scott buys two different hats and spends exactly $\$ 10$. Draw one string around the prices of these two hats.

Name
N4 ****
Pat buys three different whistles and spends exactly $\$ 2$. Draw one string around the prices of these three whistles.

Elliot buys three different records and spends exactly $\$ 10$. Draw one string around the prices of these three records.

Name
N6 *
Complete.

Name
N6 **
Complete.

Name
N12 *
Complete.

Name

N12 **

Share 234 marbles between Marty and Mandy.

Complete.

Share 346 cards between
Cory and Carla.

Complete.
$346 \div 2=$

$$
\frac{1}{2} \times 346=
$$

Name

N12 ***

Complete.

Name
Label the dots.

Name
N14 *
Build an arrow road between 5 and 16 using $2 x,+1$, and -1 arrows. Try to use as few arrows as possible.

$$
2 x \quad+1 \quad-1
$$

Name
Build an arrow road between these pairs of numbers using $2 x,+1$, and -1 arrows. Try to use as few arrows as possible.

$$
2 x+1
$$

Name

N14 ***

Build an arrow road between these pairs of numbers using $2 \mathrm{x},+1$, and -1 arrows. Try to use as few arrows as possible.
2x
$+1$
\longrightarrow

100

Name

Build an arrow road between these pairs of numbers using $2 x,+1$, and -1 arrows. Try to use as few arrows as possible.
2x
$+1$
-1

13

Name
Build an arrow road between these pairs of numbers using $10 x,+1$, and -1 arrows. Try to use as few arrows as possible.

$$
10 x \quad+1 \quad-1
$$

2

Build an arrow road between these pairs of numbers using $10 x,+1$, and -1 arrows. Try to use as few arrows as possible.
\qquad $+1$
-

Name

N16 ***
Build an arrow road between these pairs of numbers using $10 x,+1$, and -1 arrows. Try to use as few arrows as possible.

507

Name

Build an arrow road between these pairs of numbers using $10 x,+1$, and -1 arrows. Try to use as few arrows as possible.
10x

\longrightarrow

989

12

Share 26 cards fairly between Dick and Nina.

For Dick	For Nina

Write a number sentence about this sharing.

Share 27 pencils fairly among Andrea, Sheila, and Rob.

For Andrea	For Sheila	For Rob

Write a number sentence about this sharing.

Share 34 pennies fairly between Pat and Gary.

For Pat	For Gary

Write a number sentence about this sharing.

Share 54 dimes fairly among Bill, Stanley, and Lisa.

For Bill	For Stanley	For Lisa

Write a number sentence about this sharing.

Name
N18 **

Share 114 pictures fairly between Arthur and Maria.

Write a number sentence about this sharing.

Share 81 candies fairly among Nora, Brad, and Mark.

For Nora	For Brad	For Mark

Write a number sentence about this sharing.

Share 186 stamps fairly between Andy and Pam.

For Andy	For Pam

Write a number sentence about this sharing.

Share 129 marbles fairly among John, Ann, and Cathy.

For John	For Ann	For Cathy

Write a number sentence about this sharing.

Share 483 stickers fairly among Paula, Stacey, and Joy.

For Paula	For Stacey	For Joy

Write a number sentence about this sharing.

Share 732 cards among Wally, James, Amy, and Jade.

For Wally	For James	For Amy	For Jade

Write a number sentence about this sharing.

Share 819 seeds fairly among Mike, Ellen, and Eric.

For Mike	For Ellen	For Eric

Write a number sentence about this sharing.

Share 1,935 books among Sandra, Leo, Christy, Sharone, and Maia.

For Sandra	For Leo	For Christy	For Sharone	For Maia

Write a number sentence about this sharing.

Name
N19

Name
Label the dots on this number line.

Name
N19 **

Label the dots on this number line.

Name \qquad
Label the dots and complete the multiplication facts.

2x

8×

Name
N20 **
Complete this table.

Name
N20 ***
Label the dots.

Name
Label the dots.
Draw all the possible 8x arrows in blue.

Name

N22 *

Label the dots.

$$
-37 \quad+46
$$

Name
N22 **

Label the dots.
$\times 2 \quad-69$

Name
Label the dots.

Name

N22 ****

Label the dots.
Draw seven missing x6 arrows in gray.

Name
N24

Name
N24 *

Label the dots.
Draw all the possible $5 x$ arrows in gray.

You should find seven $5 x$ arrows.

Name
N24 **
Complete this table.

$5 \times$

Starting Number	$10 x$	$5 x$
25		
82		
41		
63		
85		
94		

Name
N24 ***

Draw all the possible $10 x, 5 x$, and $\frac{1}{2} x$ arrows.
10x

$\frac{1}{2} x$

15

75

18,750

750

Name \qquad
Build an arrow road between each pair of numbers. Try to use less than ten arrows in each road.

10x +1 -1
6

5

Name

N26 * *
Build an arrow road between each pair of numbers. Use less than ten arrows in each road.

$$
10 x \quad+1 \quad-1
$$

Name

N26 ***
Build an arrow road between each pair of numbers. Use less than ten arrows in each road.

$$
10 x \quad+1 \quad-1
$$

Name

Build an arrow road between each pair of numbers. Use less than ten arrows in each road.
10x
$+$
-I

II (

13

N32 *

Label the dots in the pictures to help solve these problems.
Put cookies in packages of 24 . How many packages will 200 cookies fill? \qquad How many cookies left over? \qquad

Complete.

$$
2 4 \longdiv { 2 0 0 }
$$

Put erasers in boxes of 15 . How many boxes will 350 erasers fill? \qquad How many erasers left over? \qquad

350

Complete.
$1 5 \longdiv { 3 5 0 }$

Name

Draw pictures to show how you solve these problems.
Put bottles in cartons of 16.
How many cartons will 350 bottles fill?
How many bottles left over? \qquad

Complete.
$1 6 \longdiv { 3 5 0 }$
Put cards in packages of 36. How many packages will 500 cards fill? How many cards left over?

Complete.
$3 6 \longdiv { 5 0 0 }$

Name
N34 *
Build a road between each pair of numbers.
Try to use less than ten cords to build each road.

$$
2 x \text { or } \frac{1}{2} x
$$

7

Name
Build a road between each pair of numbers.
Use less than ten cords to build each road.

$$
2 x \text { or } \frac{1}{2} x
$$

Name
N34 ***
Build a road between each pair of numbers.
Use as few cords as possible to build each road.

$$
2 x \text { or } \frac{1}{2} x
$$

48

Name

$$
\text { N34 } \quad \text { **** }
$$

Build a road between each pair of numbers.
Use as few cords as possible to build each road.

$$
2 x \text { or } \frac{1}{2} x
$$

130

Name L2 *

Match names for the same number.
One is done for you.
$(2 \times 5)+10 \quad 25$
$(2 \times 10)+5$
$(5 \times 10)+2$
70
$2 \times(5+10)$
60
$5 \times(10+2)$
30
$10 \times(5+2)$
52

Name

L2 **

Elf is a secret number.

Clue 1

A name for Elf can be written using all these symbols, each symbol exactly once.
$(+x)$
2

Clue 2
A name for Elf can be written using all these symbols, each symbol exactly once.
2

$)$
6
$+$
3
x

Name \qquad
Draw all the missing red arrows.

Name

L4 **

Draw all the missing red arrows and loops.

Name
L6 *
Fill in the chart with ways to label the dots.

5	
	1
9	
	0

What could the blue arrow be for? Fill in the blue box.

Name
L6 **
Fill in the chart with ways to label the dots.

Name
L7

Name

Play The Red Arrow Game with this tree. Start at \mathbf{S}.

Name

Play The Red Arrow Game with this tree. Start at \mathbf{S}.

Name

L11 *

Complete these number sentences about multiplication with ten number friends.

$$
1 \otimes 6=\square \quad 9 \otimes 1=\square
$$

$$
2 \otimes 6=\square \quad 2 \otimes 8=\square
$$

$3 \otimes 6=\square$
$3 \otimes 8=$

$5 \otimes 7=\square$
$5 \otimes 6=\square$ $4 \otimes 9=\square$ $6 \otimes 6=\square$

$$
7 \otimes 3=\square
$$

Name
L11 **
Find several solutions to this number sentence. One is done for you.

Name

L12 *

All the ten number friends are here. Draw blue arrows in their $\otimes 5$ picture.

${ }^{2}$ 3

0

6

Name \qquad
Label the dots to put the ten number friends in this $\otimes 4$ picture.
$\otimes 4$

Name

L14 *

Two numbers may talk to each other if and only if one number is a multiple of the other.

Label the dots. Many solutions are possible.

Name

L14 **

Two numbers may talk to each other if and only if one number is a multiple of the other.

Label the dots. Many solutions are possible.

										G				
							${ }^{\text {P }}$							
							\bigcirc							
			N	-										
-														

Color exactly one-half of each shape. Use the picture to write another name for $\frac{1}{2}$.

Example:

$$
\frac{1}{2}=-
$$

$$
\frac{1}{2}=-
$$

$\frac{1}{2}=-$

$\frac{1}{2}=-$

$\frac{1}{2}=-$

Color exactly one-third of each shape. Use the picture to write another name for $\frac{1}{3}$.

Example:

$\frac{1}{3}=-$

$\frac{1}{3}=-$

$\frac{1}{3}=-$

$\frac{1}{3}=$

Name

G3

Complete the table.

Name

G4 *

Connect the dots with a zigzag path, but do not go out of the yard. Try to make your path as short as possible.

\qquad $\mathrm{cm}=$ \qquad dm .

Connect the dots with a zigzag path, but do not go out of the yard. Try to make your path as short as possible.

Length of zigzag path = \qquad $\mathrm{cm}=$ \qquad dm .

Name

G4 $\quad * *$

Connect the dots with a zigzag path, but do not go through the building. Try to draw a path shorter than 1.8 dm .

Length of zigzag path = \qquad dm (less than 1.8 dm)

Connect the dots with a zigzag path, but do not go through the building. Try to draw a path shorter than 2.3 dm .

Length of zigzag path $=$ \qquad dm (less than 2.3 dm)

Name

G4 ***

Connect the dots with a zigzag path, but do not go through the building. Try to draw a path shorter than 2.7 dm .

Length of zigzag path = \qquad dm (less than 2.7 dm)

Name

G4 ****

Connect the dots with a zigzag path, but do not go through the building. Try to draw a path shorter than 2.6 dm .

Length of zigzag path = \qquad dm (less than 2.6 dm)

Name

Find the taxi-distance from \mathbf{N} to each station.

Find the taxi-distance from \mathbf{A} to each station.

												1		
							-							
											,			

Name

G5 *

Circle in red the stations that are closest to \mathbf{T}.
Find the taxi-distance from \mathbf{T} to each station.

Circle in red the stations that are closest to \mathbf{S}.
Find the taxi-distance from \mathbf{S} to each station.

1															
				+											
				,											
				,											
				-	-										
					,										
						,									
						8						s			
						-									
							-								
							-								
								-							
								-							
								,							
									-						
									I						
									,						
										,					
										,					

Draw a spiral starting at A. Do not go beyond the border of the large black square.

					${ }^{\circ}$					

Name
Draw a spiral starting at A. Do not go beyond the border of the large black square.

-																		
-																		
-																		
\square																		
									A									
-																		
-																		
-																		
-																		
-		\square																
-																		
		\square																

Find a hiking trail that uses all the paths. Write s at your starting point and E at your ending point.

Name \qquad

Find a round-trip trail that uses every path just once.

G8 *

TOUR: Uses each door exactly once
Find a tour of this house. You may start and end where you like. Mark your starting place \mathbf{S} and your ending place \mathbf{E}.

Name

G8 **

TOUR: Uses each door exactly once
Find a tour of this house. You may start and end where you like. Mark your starting place \mathbf{S} and your ending place \mathbf{E}.

TOUR: Uses each door exactly once
Try to find tours of these houses.

G8 ****

TOUR: Uses each door exactly once
Try to find tours of these houses that start and end at the same place.

Name

G9 *

TOUR: Uses each door exactly once
Find a tour of this house. You may start and end where you like.

On tracing paper, draw a map of this house. Show a hiking trail corresponding to your tour.

TOUR: Uses each door exactly once
Find a tour of this house. You may start and end where you like.

On tracing paper, draw a map of this house. Show a hiking trail corresponding to your tour.

Name
G9 ***

TOUR: Uses each door exactly once
Find a tour of this house. You may start and end where you like.

On tracing paper, draw a map of this house. Show a hiking trail corresponding to your tour.

Name \qquad
Draw a house plan for this map.

Name

G10(a)

Color and cut out sev eral rectangles, each with area $12 \mathrm{~cm}^{2}$.

											1 cm	$1 \mathrm{~cm}^{2}$

Name
G10(b)

Name
G11(a)
Color and cut out sev eral rectangles with perimeter 20 cm .

										\square		
										1 cm		

Try to find the highest score for a tracing in this grid.

Name

G12 * *

Try to find the highest score for a tracing in this grid.

Name

Try to find the highest score for a tracing in these grid pictures.

Try to find the highest score for a tracing in these grid pictures.
HIGHEST SCORE

HIGHEST

What number is on the Minicomputer?

Name
W3 **

Put each number on the Minicomputer. Use at least one (0)-checker for each number.

$$
\begin{aligned}
20=\square & 30=\square \\
21=\square & 34=\square \\
40=\square & 70=\square \\
42=\square & 79=\square \\
45=\square & 100=\square
\end{aligned}
$$

Name
W3 ***

Cobb is a secret number.

Clue 1

Cobb can be put on the ones board of the Minicomputer with exactly two (10)-checkers.

Cobb could be \qquad , \qquad , \qquad , \qquad , \qquad ,
\qquad , \qquad , \qquad , \qquad , and \qquad .

Clue 2

More than 50

\qquad

Name

WB ****

Robb is a secret number.
Clue 1 Robb can be put on the ones board of the Minicomputer with one (10-checker and one negative checker.

(10) \otimes

Robs could be \qquad , \qquad , \qquad , \qquad , \qquad , \qquad , \qquad ,
\qquad , \qquad , \qquad , , \qquad , \qquad , and \qquad .

Clue 2

Robs could be \qquad , , , and \qquad .

Clue 3 Robs is on the same +5 arrow road as 17. +5

Who is Kob? \qquad

Name
W17

