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Preface

The Comprehensive School Mathematics Program {CSMP) is a complete mathe-
matics curriculum for students of all ability levels, grades K~6. The program's
goals of improving the effectiveness of mathematics instruction assume that
students can learn and enjoy learning mathematics, not only standard arithmetic
but also areas of mathematics not traditionally taught in the elementary school.
To accomplish these goals, CSMP presents content as an extension of experi-
ences that children have encountered in their development. Using a "pedagogy
of situations, " students are led through problem-solving experiences in an
atmosphere of constant applications, for example, in stories or game-like set-
tings. A feature unique to CSMP is the development of pictorial languages
which foster student understanding of mathematical concepts and provide stu-

dents the means to solve problems without burdensome terminology.

Topics in probability and statistics find a natural place in the CSMP curriculum.
Students find the stories and games appealing and often relate them to everyday
experlences. The development of innovative, pictorial techniques allows the
analysis of probability and statistical situations to be a part of an elementary
mathematics curriculum,. The articles in this book summarize these activities

and methods proven successful by the enthusiastic reception by CSMP students.

We extend our deepest gratitude to Frédérique Papy, former CSMP Associate
Director for Research & Development, whose creativity and tireless efforts
shaped the CSMP spirit and produced many of the ideas in this book. QOur spe-
cial thanks also go to Lennart Rade who brought his clever probability stories
and innovative solution techniques from Sweden to St. Louis classrooms., We
thank Burt Kaufman, former CSMP Director, and Clare Heidema, current CSMP
Director, who suggested a need for this book and supported its development.
Our thanks are especially due to the CSMP writers, typist Deborah Wriede,

and artist Steven Sims, who survived the seemingly endless editorial changes.



We publish this book as a rescurce of ideas for classroom teachers and for
educators responsible for mathematics teacher education. Qur hope {s that
our experiences will enhance the role of probability and statistics in class-

rooms. We welcome hearing of your experiences.

August, 1982 Richard D. Armstrong

Pamela Pedersen




Introduction

Lennart Rade

A fundamental goal of education is to prepare children for life in a soclety, a
society where mathematics is becoming increasingly important. Accordingly,
one goal of mathematics teaching is to provide children the proper background
for an understanding of the world around them. Both goals are strong reasons
for including probability and statistics in a school’s mathematics curriculum.
These areas of knowledge are fundamental to the present-day modeling of our
world in mathematical terms. Probabilistic and statistical methods are impor-
tant tools in industry and in business, and such methods are essential in both
physical and social sciences. It is also important for daily life in our society
that people have some knowledge about the use and misuse of statistical rea-
soning. For instance, advertisements often use "statistical” reasoning in the
form of graphs, tables, and verbal arguments in their attempts to influence

consumers.

It is well documented that the study of combinatorics, probability, and statistics
strongly motivates children by presenting the challenge and the intrinsic appeal
of applications. Incluslon of these areas in the mathematics curriculum will
further help to 'foster a positive attitude toward mathematics in elementary

school children.

Probability theory is a very rich mathematical theory in close contact with many
other parts of present-day mathematics. Also, probability theory employs many
different mathematical tools. So with probability theory in the curriculum, stu-
dents encounter and use a rich varlety of mathematical tools and concepts. For
example, already in elementary school they meet such basic mathematical con-
cepts as sets, functions, and relations and use such basic mathematical tools

as tables, graphs, codes, and abaci.
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In the CSMP curriculum, the learning process is regarded as a spiral process

where children learn by interacting with sequences of related situations,

The CSMP curriculum is published as a sequence of lessons in detailed Teacher's
Guides, supplemented by colorful student workbooks and storybooks [2]. Refer-

ences to lessons described in this book are listed at the end of each article,

The papers in this book offer a selection of the ideas that CSMP has developed
in its effort to effectively teach probability and statistics. The suggestions and
the lessons are the results of many years of discussions and experimentation

with various strategies. All of the ideas reflect classroom experiences.

In @ mathematics curriculum, the goal of the earliest activities in probability
and statistics should be to provide students with experiences involving funda-
mental concepts such as randomness, combinatorics, and the display of infor-

mation. In their paper Probability and Statistics in Grades 1 to 3, Mark Driscoll

angd Richard Amstrong describe the stories and games in the CSMP curriculum
that introduce these concepts. A key to maximizing the children’s benefit from
these experiences is to encourage student discussion about them. In these
stories and games, teachers continually give students an opportunity to state
their opinions, to consider the possibilities, to make predictions, and to discuss
the results. Such interactive involvement prepares students for the probability
and statistics situations encountered in the CSMP Intermediate Grades curriculum

as described in other papers of this book,

In An Area Model for Solving Probability Problems, Richard Armsirong presents a

very interesting method of solving probability problems. The method makes use
of a graphical representation in which a sguare is divided into regions according
to the probabilities present in the problem. This technique allows the solutlon
of problems dealing with multi-stage random experiments in a very elegant a'nd

concrete way that avoids multiplication of fractions.

The paper includes solutions to some cases of the problem of points, a classical

problem of probability theory that was in the focus of interest when the theory
was developed by Pierre Fermat, Blaise Pascal, and other mathematicians during

the 17th century. An example of this class of problems is to determine each

9



player's probability of winning a game to 10 points when player A has scored 9

ang player B has scored 7. The following illustration shows the area method for

attaining the solution,

q-7

10-9

0-7 10-8

9-i0

It is seen from the graph that player A has probability % of winning and that the

corresponding probability for player B is %

Usually this kind of problem is solved with the aid of tree dlagrams, where pro-

babilities are found by multiplying fractions along the branches. In this case,

the following tree diagram would be used.

A B

From the above diagram we calculate, with the aid of multiplication and addition

7
rules, that player A wins with probability 5

10



This example clearly shows the merits of the area method compared to the tree
diagram method. The latter method is, of course, very powerful and certainly
should also be presented in introductory courses in probability, The paper

Fair Games? in this book describes this method.

The study of different random games has always been important for the develop-
ment and teaching of probability theory. The correspondence between Pierre
Fermat and Blaise Pascal focused on problems concerning random games. In

the paper Fair Games ?, Jim Harpel discusses a sequence of such games, His

paper describes how to use these games to introduce the method of using tree
diagrams. Observe that such diagrams do not require the multiplication of frac-
tions. For instance, in the problem of points discussed earller, an alternative
is to consider what is expected to occur in 200 trials. This approach leads to

the following tree diagram, from which also it is seen that player A wins with
100 + 50 + 25 7

probability , Or e

200

The paper Whose Triangle Is It? by Richard Armstrong introduces a classic pat-

tern of combinatorics, the Pascal Triangle, which incidentally is much older
than Blaise Pascal (1623-1662), who used the triangle in connection with his
treatment of the problems of points. Students are led to discover the pattern in
connection with a challenging story, and then they use the Pascal Triangle to

solve other probability problems.

11
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lessons dealing with this topic, which Tom Giambrone describes in the paper

Population Growth, These lessons include work with population growth, the

organization of population data in graphs and tables, and work with population
pyramids. Also, students learn how to find the median age of a population.
These lessons allow students to use hand-calculators in order to work with

real population data.

There is a great growing interest today in the didactics of probability and sta-
tistics and especially so with regard to how these subjects should be introduced
at the elementary school level, A sign of this interest is the 1982 NCTM Year
Book [3], which is devoted to the teaching of probability and statistics at the
school level. CSMP has ploneered work in this area., It is my hope that many
will find the ideas and strategies described here useful and inspiring in future

work in this important field.
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Probability and Statistics in Grades 1 to 3

Mark Driscoll
Richard Armstrong

Young children first encounter the notion of randomness in thelr everyday exper-
iences. Games often involve spinners or dice. Their parents warn them, "Stop
that, you might hurt yourself," or "It will probably rain this afternoon." CSMP
extends these experiences by presenting appealing stories and games for stu-
dents to consider. The appeal arises not only from the settings but also from

the challenge to the students' intuition and problem-solving skills. To prepare
students for the probability and statistics concepts they wil}l encounter in CSMP's
Intermediate Grades Program, CSMP's Primary Grade activities focus on three

fundamental notions: randomness, combinatorics, and the display of information.

A key to understanding the concept of randomness is the role of the "unknown."
Some facts are unknown simply because sufficient information is not available.
For example, only after several clues can students determine a secret number
that their teacher has selected. Other evenis are unknown because they are,
by nature, random. Thus no one can consistently predict the result of roliing
two dice. A significant insight occurs when children realize that, despite the
randomness, experience or analysis may reveal the likelihood of possible out~

comes.,

A discussion of the likelihood of various outcomes when dealing with random
devices such as dice, coins, spinners, or marbles leads naturally to combina-
torial questions such as “How many different outcomes are possible?" CSMP
students' early experiences with arithmetic problems with multiple solutions,
for example, "Find pairs of numbers whose sum is 10," provide their first expo~
sure to combinatorics. Their initial tendency in tackling these problems is to
list solutions as they find them, usually unsystematically. Only gradually do

they recognize the need for organizing a problem's solutions to guarantee that

all of the possibilities have been found. In addition to being a rich source of

15



problems for investigation, such combinatorial situations prepare students to
determine the probability of an event since often a first step in studying a pro-

bability problem is to consider all possible outcomes.

The systematic listing of solutions to combinatorial problems is an example of
the third focus of the probabllity and statistics strand in CSMP, namely the de-

velopment of efficient means of organizing information. In a variety of activities

in the Primary Grades, students experience the value of using lists, tables, and
graphs to record solutions, results of games, or data they have collected. They
discover that organizing the information makes it easler to answer questions and
to draw conclusions about the problem. These early experiences with tables

and graphs prepare students to analyze many statistical and numerical problems

in the Intermediate Grades.

The following three lessons provide a sampling of activities from the CSMP Pri-
mary Grades Program that illustrate the development of the three concepts out-

lined above.

A COIN PUZZLE - FIRST GRADE

Ms. Kavanaugh takes a paper cup from her desk drawer and shakes it. Her
first-eqrade students hear coins jingling and try to guess the amount of money
hidden in the cup. However, a few students remember similar activities they
have done and say, "Don't tell us what is in the cup. Give us a clue.” Ms,
Kavanaugh carefully states her first clue, "I have exactly six coins. Each coin
is either a dlme or a penny." Martha suggests four dimes and two pennies and
the whole class helps her count the amount of money that would be: "10¢, 20¢,
30¢, 40¢, 41¢, 42¢." On the board, Ms. Kavanaugh records the five combina=~
tions her students find. To maintain the pace of the lesson, she provides the

other two possibilities herself.

16
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Several students again prefer guessing the amount of money in the cup. Tommy
seems convinced it's his suggestion, 6¢. Then a second clue is provided:

"There are at least two pennies in the cup."

"It could still be 6¢."
"Cross out 51¢, there's only one penny."
Shortly the class agrees that only the combinations for 51¢ and 60¢ can be

erased.

"Here is my last clue,* continues Ms. Kavanaugh. "There are more dimes than
pennies in this cup. If you know the amount of money in this cup, whisper it to

H

me.

*

Most students whisper the correct answer, 42¢, and then Ms. Kavanaugh lets

them see the four dimes and two pennies in the cup.

17



The discussion in this lesson highlights the distinction between the uncertainty

of "It could be 6¢" and the deduction "It must be 42¢." This experience with an
undetermined event is part of the students' preparation for encountering random

events,

The situation in this lesson exemplifies the students' initial experiences with
combinatorial problems in the first grade. The emphasis is on finding many so-
lutions, not necessarily all solutions. The list simply records solutions; it

need not be organized systematically to suggest missing solutions.

TEMPERATURE BAR GRAPHS - SECOND GRADE

On the first day of school after Christmas vacation, Mr, Warren shows his class
a new Celsius thermometer. The students’ curiosity and questions initiate a dis-
cussion about temperature, thermometers, above zero and below zero readings,
and Celsius and Fahrenheit scales. Mr, Warren passes the thermometer around
the class, and everyone confirms that the indoor temperature is 23°C. He then

pins a duty roster and the following poster to the bulletin board.

TEMPERATURE CHART
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1 4
Co T NN EASENEIERERREN Y
r 4l | i ' i 14 i
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®Celsius

“1*11 hang the thermometer outside the classroom window,” explains Mr. Warren.
“"Each school day morning, the assigned student will read the thermometer and
record the reading on this bar graph. I['ve already shown that this morning's

outside temperature was ~3° Celsius."
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The students read and record the outside morning temperature every scheol day
in January and February. Often Mr. Warren briefly asks questions about the
day's temperature and the bar graph, for example:
e '"Before Nguyen reads today's temperature, who wants to guess what
it might be?"

e “"What do you predict tomorrow's temperature will be?"

e "How much colder {or wamer) is today than yesterday?"

e "How often have we previously matched today's temperature? ®

e '"What has been our coldest temperature? our warmest temperature? "
® "Which is warmer, 2°C or “10°C? How much warmer?"

After two months of recording temperatures, Mr. Warren suggests that they com-
pare their data to the temperatures for St. Louis and New Orleans. Each child
receives a listing of the two cities' temperatures for January and February and

uses that data to draw a bar graph for each city:

TEMPERATURE CHART
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Referring to the three bar graphs, the students respond to Mr. Warren's ques-
tions:
e “Which city had the warmest weather in January and February? the
coldest?"
e "What was the highest temperature for each city? the lowest temper~
ature?"
e "Which city had the greatest variation in temperatures?*

e "What was the most common temperature in each city?"

As the bell rings, the students Insist on drawing a new graph for March and
April and on continuing to record the morning temperature each day. They seem

curious to observe the gradual warming as winter changes to spring.

This two-month activity exposes second~grade students to several benefits of
graphing data. Flrst, the graph imposes an organized presentation of the data,
ordering the temperatures from lowest to highest. Also, the bar graph provides
a very strong visual overview of the data; for example, it is clear that New
Orleans has a warmer winter than St. Louis. These two features — the order-
liness and the visual impact — allow students to answer questions about the
data and to draw conclusions much more readily than if the data were in a table

or in a list,

Cther second-grade lessons continue the development of the themes of random-
ness and of combinatorics. For example, two lessons concern the rolling of two
dice. By rolling the dice many times and drawing a bar graph of the sum of the
two dice, students conclude that some sums (e.g., 6, 7, and 8) occur more
frequently than other sums (e.g., 2, 3, 11, and 12). Hence students experl-
ence that even though the outcome is random, certain events are more likely

than other events.
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A CUBE GAME THIRD GRADE

Ms. Schne der shows her class a red cube and a blue cube that she has cut and

tolded from cardbeard.

Each cube has a number on each of its six aces. Unfolding each cube, Ms.

Schneider shows the shape that she made each cube from. She then draws the
labeled shapes on the board.

40 4 s

0 16
. 10 B
o [

"Suppose," says Ms. Schneider, "tha wsa toss the blue cube three times and

add the numbers that appear on top. Wha sum could we get?"

A student suggests 30. Several classmatas agree, pointing out tha 10 could

be olled three times. This combination s recorded on the board:
I0+10 +10 = 30

The students then offer the other possibilities for the blus cube.

0 +10 + 4 = 24
0+4+4 =18
4 +4+4 |2
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Joanne confidently concludes, "That's all of the possibilities for the blue cube
because with three rolls you will roll "4" no times, once, twice, or three times."

Similarly, the students find the possibilities for the red cube.

RED 16+ 16 +16 =48
16 +16 + | 33
b+1 +1 =18
|+ 1 +1| =3

Ms. Schneider then suggests playing a two~person game with the two cubes,
"One player rolls the red cube three times; the other player rolls the blue cube
three times. The player with the highest sum for the three rolls wins. Which

cube would you rather play with?"
Some students prefer the red cube:

"Two of the red cube's sums, 48 and 33, are higher than any of
the blue cube’s sums."

"You can get 16's with the red cube."”
Others prefer the blue cube:

"The blue cube has four 10's while the red cube has four 1's.”
"You might get a sum of 3 on the red cube and lose for sure."
"You won't roll many 16's with the red cube.®

"It*'s easier to get a “30" on the blue cube than it is to get a

"48" on the red cube,”

After the lengthy discussion, no consensus is reached and Ms, Schneider se-
lects two students to play the game, The student with the red cube wins; the

score is 33 to 24, Other pairs of students play the game, one at a time. The
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players with the blue cube win 3 out of 5 games. As the students continue to
play the game, Ms. Schneider often interrupts a game to ask some questions
about the situation, for example,
e "The first two rolls of the blue cube are 10 and 4. What could this
player's score be after three rolls?" {(Answer: 18 or 24)
® "The player with the red cube has a total score of 3. Can he win?"
(Answer: No)
e "The player with the red cube scores 18. The blue player's first roll
is @ 10. Can she still win? Jlose? tie?* (Answer: She can't lose.
She will either tie or win,)
® "The score of the player with the blue cube is 30. The first two rolls
of the red cube are 16 and 1. Which player is more likely to win?*
{Answer: The player with the blue cube. The other player needs a

16, but there are more i's than 16's on the red cube.)

At the end of the lesson, the players with the red cube have won 17 out of the
30 games. This evidence convinces many students to prefer the red cube; a
few students remain undecided or still prefer the blue cube. Ms. Schnelder,
realizing that a deeper analysis of probability is more appropriate for & later

lesson, brings the discussion to an end,

This Jesson illustrates an application of combinatorics and provides a setting
for an intultive discussion of probabllistic questions. Third-grade activities
place an emphasis on finding all of the possibilities in combinatorial situations,
As demonstrated in this lesson, an organized list aids in reaching the conclu-

sion that no combinations have been missed.

The teacher's guestions about what could happen motivate the discussion of
possible outcomes versus impossible outcomes and of likely events versus un-
likely events. Through these discussions, students learn that random events
are not entirely chaotic., An analysis of the random device, the cube in this

lesscn, yields information on the likelihood of certain events.
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SUMMARY

A primary goal of the probability and statistics activities in Grades 1-3 is to
provide a variety of experiences involving randomness, combinatorics, and
organizing tnformation. By developing these three topics as described in the
above lessons, CSMP prepares its students for the more sophisticated problems

in their Intermediate Grades Program described in the other articles of this book.

In the CSMP curriculum, the activities described in this paper appear in the
followlng lessons:

CSMP Mathematics for the First Grade, Part I, Lesson §73,2

CSMP Mathematics for the Upper Primary Grades, Part I, Lesson L15

CSMP Mathematics for the Upper Primary Grades, Part II, Lessons L6,
L1z, L14

4

CSMP Mathematics for the Upper Primary Grades, Part III, Lesson L12
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Fair Games?

Jim Harpel

Many mathematical problems either do not interest children or cannot be pre-
sented in ways that are accurate and yet accessible for elementary=-school
students. Fortunately, probability provides exceptions to these limitations.
Paralleling the historical role of games in the development of the theory of
probability, the lessons summarized in this article focus on games involving
coins and marbles. The games are not only enjoyable, but also easy to under~

stand.

Based on their experiences and due to the apparent simplicity of the games,
students have considerable trust in their intuition as they consider the fairness
of the games., They feel that they understand the situations and therefore con-
fidently make predictions about the expected outcomes. Yet in probabilistic
situations, the intuition can often be fooled. Paradoxes abound in probability.
A key guestion in curriculum development is to determine an appropriate role for
paradoxes. Handled carelessly, paradoxes can destroy the students' trust in
intuition and convince them that probability {s inscrutable. Rather, the peda-
gogical goals of using paradoxes should be to intrigue students with situaticns
having surprising results angd to refine each student's intuition to encompass

these results,

To achieve these goals, CSMP employs a three~step procedure for presenting
paradoxical situations: prediction, experimentation, and analysis. Once a
game is explained, the prediction step allows students to express their opinions
based on their intuition. The predictions force discussion and clearly stated

commitments which set the stage for revealing the paradox.

In the second step, experimentation, students use dice, coins, spinners, or
other random devices to test their predictions by actually playing the game many

times., The conflict between the predictions and the experimental results serves
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to dramatically pose the paradox. A strongly felt need has been created within
the students - the discrepancy between predictions and results cries for an
explanation. This need motivates the third step in the process: mathematical

modeling and analysis of the situation.

The need to analyze a probability problem often becomes a roadblock which
ultimately precludes the study of probability in the early grades. Admittedly,
most traditional analyses of probability problems are too complex for elementary-
school students. The papers in this book illustrate several techniques used in
the CSMP curriculum that are appropriate for these students. In particular,

the activities in this article illustrate the use of pictorial methods and proba-
bility trees to accurately model the problems and to appeal to students. The
analyses tend to confirm the experimental results and often reveal the source

of any discrepancy between those results and the students' predictions. The
paradox within the game situation has motivated the students to proceed through
steps of prediction, experimentation, and analysis. The active personal in-
volvement with the story provides a basis for refining the student's intuition

with regard to probability situations.

To captivate the students’ interest, the paradoxes occur in stories about the
protagonist Bruce, a boy who invents games to play with his friends. The games

appear fair but usually favor Bruce.

SAME OR DIFFERENT?

"Two children, Alice and Bruce, are responsible for washing the dinner dishes.
In order that they both not have to wash and dry each night, they decide that
some method be used to select randomly who will wash and dry the dinner dishes.
Bruce suggests that 2 black marbles and 1 white marble be used. Alice will mix
the marbles in her hands behind her back and draw two of the marbles without

looking. What could Alice draw?"

"She could draw two black marbles, or she could draw a black and a white marble."
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"Yes, Alice could draw marbles of the same color or of different colors. Bruce
will try to predict what Alice has drawn. If Bruce correctly predicts what Alice
has drawn, Alice must wash the dishes. If he is wrong, he must wash the

dishes. Is this a fair way to decide who washes the dishes?”

With two black marbles and one white marble, the students sense that the game
is unfair but they don't reach a concensus on who 1s favored. The students dis-
cuss this issue for a few minutes. They insist on playing the game. Two vol-
unteers play the game 10 times and record the outcomes on the board.

Different: T |

Same: {iI
“Can we tell from these 10 trials if this game is fair?"

This result convinces some students that "different” is favored. Other students
are uncertain as to the fairness of the game since the results are so close to
5-5. The teacher suggests that the students pair off and that each pair plays
the game 10 times and records the outcomes. In this classroom, there are 15

pairs of students.

“150 games will be played. If this is a fair game, in about how many of those

games do you think you will choose marbles of different colors?"

"1f the game is fair, 'same’ and ‘'different’ will each come up about cne half of

the time — about 75 times apiece."

As each pair of students completes 10 games, the results are recorded and
totaled. The grand total is:
Different: 103

Same: 47

“Do you think this is a fair game? Should Alice play this game with Bruce to
decide who will wash the dishes?™

“No! The game appears to favor Bruce. He could always guess 'different' and

usually win,"
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"Let's find out if that's really so; here are the three marbles."

O

"What pairs of marbles could Alice choose?"

Students draw cords to indicate the pairs of marbles that Alice could select.

"Altogether there are three possible ways to draw two marbles. In how many

ways could we get a pair of marbles of the same color?
“Only by drawing the two black marbles.”

"“Therefore we have only one chance out of three of getting marbles of the same

color, "

"What about marbles of different colors?"

“"There are two ways to get marbles of different colors. So there are two chances

out of three of drawing marbles of different colors."

S
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The teacher draws a probability tree to summarize the information.

wim

i
3

Different Same

"Do you see what this means? When we play Bruce's game, we are more likely
to get marbles of different colors than we are to get marbles of the same color.
If we play the game many times, we can expect that about two thirds of the time
we will get marbles of different colors and about one third of the time we will

get marbles of the same color."

"So what result could we have expected in the 150 games we just played? About

how many times could we have expected to get marbles of the same color?"

*We should have gotten marbles of the same color about 50 times, because

%— x 150 = 50, and marbles of different colors about 100 times, because -g— X

150 = 100."

"How does that compare with what actually happened?"
“103 to 47 is close to 100 to 50."

"Is Bruce's game fair?"

“No, he's very likely to win."

The students express little surprise that Bruce's game is unfair. They strongly
doubted that a game with two black marbles and one white marble would be fair.

Now the stage is properly set for a paradox.

"1f Alice discovers Bruce's game to be unfair, she could refuse to play with
Bruce or she could suggest altering the game to make it fair. What changes

could we make so that the game is fair?"
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Nearly all of the students suggest adding another white marpble so that there
are two white marbles and two black marbles. A few students express the opln-
ion that any game with equal numbers of white marbles and black marbles should

be fair.

"Let's look at the game with two white marbles and two black marbles. Rather

than play this new game 150 times, we'll analyze it."

oiF
v

Much to their surprise, the students notice that this game also is not fair. In

fact, it has the same probabilities as the original game Bruce proposed.

"Neither of these games are fair, but there are fair games with the same rules
but with different numbers of white marbles and biack marbles. Try to find a

fair game,"

Individually, students test various combinations of marbles. They find several

games that are almost fair, and a few students find a fair game,

"Use one white marble and three black marbles! There are three out of six

chances to select 'same’ and three out of six chances to select 'different.'"

3
6

<

The students play this game 150 times and record that they draw marbles of the
same color 71 times and of different colors 79 times. These results tend to
confirm the analysis; certainly the game seems much more fair than the original

game. There are other fair games with two colors of marbles, but the number of
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marbles involved increases quickly. f

Other variations of Bruce's game can be analyzed. What happens if more black
marbles are added? If more white marbles are added? If a third color marble is

introduced?
The following guestion motivates another version of the game,

"What happens to Bruce's game if only one white marble and one black marble

are used?"

“You will only get 'different' every time you select a pair of marbles. You have
one chance out of one of drawing two marbles of different colors and no chance

of drawing marbles of the same color,"

"To make a more interesting game, let's change a rule. What if we keep one
white marble and one black marble but we draw one marble then replace it and

draw again?"

With this replacement rule, the order in which the marbles are drawn is Impor-
tant. The method of analysis must be adapted to take into account the outcomes
white~white and black~black and the order of the draw. The drawing of loops

provides for the white-white and black~black outcomes.

sC0 9<OSs

t To find additional fair games is an excellent, challenging project for students,
The increased complexity of the cord dlagrams requires the development of new
techniques for counting occwrrences of "same" and "different." Fortunately

the dlagrams themselves suggest the needed rules. The "next" fair game in-
volves 3 white marbles and 6 black marbles. An algebraic analysis reveals

that the game 1{s fair if and only if the number of white marbles and the number

of black marbles are two consecutive triangular numbers,
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But now the cord represents two distinct outcomes: "white then black" and
"black then white." To represent this, replace the cord by two arrows because

an arrow indicates the order of the draw.

D 2 2
Y L3
s s
D D S

The shift from drawing without replacement to drawing with replacement yields
a fair game. In fact, any "same=-different" game with replacement and with
equal numbers of white marbies and black marbles is fair. This result partially
justifies any intuitive feelings based on symmetry that students might have had

originally about the situation.

TWO-STAGE PROBABILITY GAMES

The "Same or Different?" lessons and the use of trees to sclve combinatorics
problems prepares students to consider multi-stage probability situations. Once

again, Bruce provides the intriguing games,

"Abby and Charles are neighborhood friends of Bruce. One day, Bruce puts three
white marbles and one black marble in a bag. In a second bag, he puts three
black marbles and one white marble. Bruce's game is to fiip a coin. If 'heads’
comes up, Abby picks two marbles from the first bag. If 'talls’ comes up, she

picks two marbles from the second bag."

Heads Tails

O O
O e
Bag 1
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"'If 0 black marbles are drawn, Abby wins.
If 1 black marble is drawn, Bruce wins,

If 2 black marbles are drawn, Chafles wins."

*Abby and Charles are always suspicious of their friend's games, so they
wonder whether or not it 1s a fair game. Do you think Bruce has invented a

fair game?"

The students spend several minutes discussing the game. Some students sug-
gest that the game Is fair because there are three possible outcomes and each
child has one chance to win. Others are suspicious of the game because it is
possible to draw two black marbles from only one of the bags while one black
marble may be drawn from either bag. The disagreement provides a need to

analyze this game.
"What is the first step or stage of this game?”

"Flipping a coin — you get either ‘heads' or 'tails'."

1
2

"Yes. What happens next?”
" Marbles are drawn from either Bag 1 or Bag 2."

Several students recognize the similarity of this stage with previous work and
suggest using cord pictures to analyze the results. The labels on the cords

indicate the number of black marbles chosen.
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Bag 2

N|—
)~

H
1 ]
z Z
1 Black 0 Black 2 Black 1 Black
(Bruce) (Abbey) (Charles) (Bruce)

The tree representation suggests that Bruce is favored as only he can win in
two ways. Since the product rule has not yet been introduced, other methods

must be used to quantify the situation.

“Suppose that the three children play the game 200 times. What would we
expect to happen? About how many times do we expect to get theads'? About

how many times do we expect to get 'tails'?

"About 100 times each because % x 200 = 100."

0 Black 2 Black 1 Black
(Abby) (Charles) { Bruce)
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"Since 3 = L and 1 100 = 50, each outcome should occur about 50 times."

6 2 2

1 Black 0 Black 2 Black 1 Black
(Bruce) (Abby) (Charles) (Bruce)

"Now we can decide how heavily Bruce's game favors himself. About how many

games out of 200 would we expect Abby to win?"
"Abby should win about 50 games."
"What 1s Abby's probability of winning?"

"l; her chances are 50 out of 200."

4
1
Similar questioning determines that Bruce's probability of winning is 3 and
Charles' probability of winning is l». The intuitive approach of "let's pretend

4
to play 200 games® allows students to calculate these probabilities without

recourse to the multiplication and addition of fractions.

"The game {s not fair. Bruce has the best chance of winning."

"Yes ; that is what Abby and Charles concluded too, and they were not very
happy with Bruce's game. Could we modify this game so that it would be a fair

game?"

Some students suggest that the composition of marbles in the bags does not

need to be changed to get a fair game.

"Whenever 'tails' followed by a draw of one black marble occurs, we just start

the game over again. If this game were played 200 times, Abby would win about
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50 times, Bruce would win about 50 times, Charles would win about 50 times,

and the game would have to be started over about 50 times."

Other students discover that by adding two white marbles to the first bag and
two black marbles to the second bag, a fair game results. Analysis of this

situation verifles that the new game is fair,

0 Black: 10 cords 1 Black: 5 cords
1 Black: & cords 2 Black: 10 cords

Again, only Bruce can win regardless of which bag is chosen. Thus some stu-
dents still suspect Bruce is favored. Only by constructing a probabtility tree

and considering play of 150 games are the "hold-outs" persuaded.

1 Black 0 Black 1 Black 2 Black
{ Bruce) (Abby) ( Bruce) (Charles)
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Even though only Bruce has two ways to win, the game is fair:

Abby: 50 games; —?9- =L

150 3
Bruce: 25 + 25 games; % = %
50 _ 1
Charles: 50 games: 150 - 3
SUMMARY

The immediate goals of these activities are to provide students with appealing
probability problems that they are eager to understand and to develop the tools
needed to analyze the problems. The paradoxes in Bruce's games usually lead
the students to disagreeing predictions and experimental data. These discre-
pancies intrigue the students and thereby create a need for a deeper understand-
ing of the problem. The analyses, based on dot and cord pictures and tree
diagrams, provide visual means for explaining the paradoxes. After revealing
the source of a paradox, the challenge is to use the same analytical tools

together with trial and error to find modifications that produce a fair game.

The mathematical goal of these activities {s to introduce tree diagrams as a
means for determining probabilities. Tree diagrams are a powerful tool for
analyzing probability problems because they explicitly present all of the random
events within a situation in their logical order, and they offer strong visual
support for the appropriate multiplication and addition of probabilities. Exper-
iences with tree diagrams lead directly to the basic algebraic rules for combining

probabilities,

This paper demonstrates a way to introduce tree diagrams to elementary school
students; a key is to avoid any need to add or multiply fractions. Instead, stu-
dents consider what "should" happen if a situation, for example, a game, is
repeated a large number of times. Running, for example, 200 games through a
probability tree determines each player's expected number of wins and thus
his/her probability of winning. This technique, along with prediction and

experimentation, serves to develop intuition with regard to probabilistic

situations.
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In the CSMP curriculum, the activities in this paper appear in the fourth-grade

lessons from the Probability and Statistics strand.
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Codes to Solve Problems

Pamela Pedersen

Situations involving equally likely outcomes provide a good place to begin
studying probability, a place accessible to students at the intermediate grade
levels. In problems involving a finite number of equally likely outcomes, the
measure of the probability that a particular event will occur is simply the ratio
of the number of favorable outcomes to the number of possible outcomes. To
measure the probability of a particular event occurring in such situations, one
needs to count:

a) the elements in the outcome set, and

b) the elements in a particular subset (event) of the outcome set.

In these situations probability questions reduce quickly to combinatorics ques-
tions, probability providing an appealing context in which to develop combinatoric

techniques.

This paper describes three probability situations from the Comprehensive
School Mathematics Program { CSMP), each situation involving a set of equally
likely outcomes. To solve the problems posed, counting techniques are used
that fit the interests and experiences of students in the intermediate grades.
Each of the solutions involves a mathematical model of the situation in which
the counting of ocutcomes is readily achieved, the necessary correspondence

between the situation and the model being accomplished by a code.

In two of the three situations, the code sets up a one-to-one correspondence
between the possible outcomes and configurations on base abaci — "pencil and
paper" schematics upon which convenient number base systems are imposed. To
understand these solutions, students need to have many prior experiences with

various base abaci, gradually building confidence that for every number there is
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exactly one standard configuration on any given abacus, and that every confi-

guration on an abacus represents exactly one number.

The third situation employs a rectilinear grid system as a coding device. The
grid system provides a strong visual aid that makes clear how to apply the stan-

dard product rule for combinatorics in the context of this problem,

Before considering the three situations, let us look briefly at base abaci.

A checker on an abacus assumes the value of the board on which it is placed.
The number represented by a configuration of checkers on an abacus {s the sum

of the values of the checkers, For example,

represents the decimal number 33 (27 + 3 + 3) on a Base Three abacus.

For each abacus, there is a rule governing the valid trading of checkers. If b

is the base number, the rule of the Base b abacus is:
b checkers on any board of the abacus represent

the same number as one checker on the next

board to the left,
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For example, on the Binary abacus two checkers on a board . . .

64 32 6 8 s 2 1

. . . can be traded for one checker on the next board to the left and vice versa.

64 32 16 8 4 2 L

On the Base Five abacus five checkers on a board . . .

3,125 625 125 25 5 !

. . . can be traded for one checker on the next board to the left and vice versa.

3025 625 125 28 5 |

r_

The standard or usual configuration for a number is the configuration that uses
the fewest number of checkers to represent it. By making trades, we can always

start with a configuration for a number and arrive at its standard configuration.

For example, the following sequence demonstrates a series of trades on a Binary
abacus for simplifying a non-standard configuration for 21 to the standard confi-

guration,
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16 8 & 2 i

= 2|

It is clear we can put any number n on a base abacus, for we can simply put n
checkers on the ones' board. Furthermore, if we make all of the possible trades,
we will arrive at one and only one configuration for n, namely its standard con-

figuration on the given abacus.

The following three situations are representative of the CSMP philosophy and

approach to mathematics, in particular to combinatorics.

RANDOM ART

One of Nabu's ¥ interests is painting. He does not paint portraits or landscapes ;

he paints pictures with red and blue squares, randomly selecting the color for

T Nabu is a fictional character appearing in several CSMP lessons.
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each square. To decide the color of each square, Nabu first outlines the pic-

ture :

Then for each small square he takes a red marble and a blue marble in his hands
and shakes them. He puts them behind his back and brings one marble forward.
The color of the marble determines the color of the square. He continues in

this way until all four squares are painted.

[

How many different pictures with four squares could Nabu paint?

Students might suggest drawing all of the pictures, but they would need a syste-
matic way of accounting for all possibilities and of finding duplicates. One
method that will do both involves imposing a Binary abacus on the picture. We
use a Binary abacus rather than an abacus for a different base because there are
only two possibilities for each square — either Nabu colors it red or he colors

it blue. Since there are four squares in the picture, we need only consider the

first four boards of the abacus.

We can set up a correspondence between the paintings and the configurations on

these four boards of the Binary abacus in this manner:
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e Having a square colored red Ls equivalent to having a checker an the

corresponding board of the Bindry abacus.

e Having a sguare colored blue fs equlvalaent Lo not having any checkers

on the corresponding board or the Binary alsacus.

°
corresponds to 4

The abacus provides a way of asslaning a number to each painting. The code
number tor a palnting {s the dec:mal number represented by the corresponding

configuration on the Binary abacus. For example,

6 13

for each palnting there {s a unique nuinber, and for certain numbers there s a
painting. Which numbers are they? The smallest is 0, assigned to the picture
with four blue squares; the largest is 15, assigned to the picture with four red

squares.

0 15

So there are at most sixteen (0 through 15) possible palntings. To be con-

vinced that all sixieen are possible, \we could actually do the coloring for each
of the numbers O through 15: since there are few in numbar, this 18 a realistic
task. But In fact students are convinced already, being familiar with abaci

trom previous activities.
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There  8ix &n pos ble paintin s, utsom ofth m - "antlally th  sa

For example,

» . . by rota Ing "ny on of these four p. intings, we can get the o he Lhree,
Using rotation” o part " anthe ® , we gat three subsets of our-of-a-kind
pic ures, two ubse s 0 one of- -kl d pi tures, and one sub & 0 wo-0' -

a-k nd pic.ur

Echofthe lopict s s quallylk lytob pantedby bu cause of the
'orw red-one blue m_rble" method -sad to selecl the colo 5. So to g the
probability th N bu will paint a pie: from . .nyonaofth ®m ubses

can take the to of the number 0 elements in a8 subsa to the numbe of sle-
ments in & . The probabllitl - prov de a me ns .or measuring the rar ty

of N bu's v fous pictu s.
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8imll r methods could be used lo p ting with nine = u res Ag ln Nab
pa nts ch quare red o blue. Th are many mo ossi

ble, as xpected. To coun. them wa can us the Bin ry bacus .amuaily 10 the

way we used 1t for the four-square pictun is time w us" nine d o
the abacus,
23 14 ]
[ 3z I
» ] ]

Th. corraspondence between color ngs and confl urations of these nine be rda
of the abacus 8 s& up. s before; the ¢ & pumoers are assig d nthe 6 me

way For examp ,

Tha lle t code number i 0, correaponding to th ' plcture with nine bl
squares. The large ' cod number correspo ds to the picture with LU red

To find out which number is on the abacu_, we could add the value of "' e nine

ch ckers. But there is a morn clever way!
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Place an extra checker on the ones' board. The extra checker on the ones'
board sets off a chalnof trades (1 + 1 = 2: 2 + 2 =4;4 + 4 =8; .. .) by
the "two for one" rule of the Binary abacus. The final result is two checkers

on the 256-square.

® ) ® Y
256 128 b4 256 129 b4

2l e ol Wl o = 2%256 = 5|2

o | o *
4 2 1 L 2 1

Since an extra checker was added, the largest code number is 511 (512 -~ 1).
Each code number from 0 to S11 represents a different painting. Therefore Nabu
can draw 512 different pictures. The one-to-one correspondence between the
numbers 0 to S11 and Nabu's paintings need not be proven in any formal sense;

previous activities with base abaci build credibility for this correspondence.

SPIES AND BRIDGES

This is the story of a spy named "Boris.” Boris has six helpers whose code
names are "a", "b", "c¢", "d", "e", and "f". Each day Boris's job is to assign
each helper to observe one of three bridges. We call the bridges "0", "1", and
1] 2" .

Boris assigns each spy to observe exactly one bridge. He might make the assign-
ment so that all bridges are covered, or just one or two. He uses an arrow pic-

ture to record how the helpers are assigned to the bridges.
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ne _y rte makes this as ignment:

Each day Bori the assignmen tohead rtes, H mus enda e-
cre me g8, bu the arrow picture {s certainly no very ecret. Since ths
are three bridg s, Boris d cides thathe co ldu -1 the Ba ¢ e : abacus to
prod ce a sacre code number or each a signm nt nd |/ (8 each of six boards

of the abacus be for one of th. pie

| |

r

7

awumoot of checkers (zero, one, a two ona py'sboardl di .t 8 ‘o whlch

bridge spy | assigned. Far xampl ,

corre ponds
to

The code number for assignment {s the decimal number p en ad by tha
co ra po d ng configura fon © checkersontheBa Th ~ bac . The code

numbar for the preceding rrowplcurs 1 714-

{2 x 243) + <2 x B1) (2 x27) ' 9+ 3 =74
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Therefore, instead of sending a picture of the asslgnment to hsadquarters,
Boris, in this case, sends the massage 714 .qg4e 3-° Whan received, head-
quarters knows to put 714 on the Basa Three abacus to determine Boris assign-

ment of sples to bridges,

The following dlagram indicates how headquarters would decode the messags

" 200 coda 3. i

For each assignment there is a unique number gince the assignment indicates
the number of checkers to place on each board of the abacus., For certajin num-
bers there {5 an assignment Which numbers could they be? The smallest (s
clearly 0, comesponding to all six spies watching Bridge 0.

The largest number corresponds to each spy watching Bridge 2,

To find out which number this is, one could add the values of the twelve check-
ers. But Ls there a more clever way? Repeat the trick used to determine the

largast number on the three-by-three Binary abacus.

49



Place an extra checker on the ones' board. The extra checker on the ones'
board sets off a chain of trades by the “three for one" rule of the Base Three
abacus. The final result is a single checker on the next board to the left of
the original six,

243 @ 21 4 3

Since an extra checker was added, the largest possible code number is 728

(729 - 1). We conclude that there are at most 729 possible assignments (re-
member that 0 is a possible code word). In fact, each whole number between

0 and 728 represents a unique assignment, so there are exactly 729 possible
assignments. This one-to-one correspondence between the numbers 0 through
728 and the assignments that Boris can make does not need to be shown formally;

prior activities with abaci build credibility for the correspondence.

Suppose that one day the enemy plans to blow up Bridge 2 and that Boris, not
knowing this, assigns the spies randomly to the bridges. What is the proba-
bility that Bridge 2 will be covered by at least one spy?

It {s because the spies are randomly assigned to bridges that we have a set of
equally likely outcomes. There are many ways for Boris to make random assign-
ments ; for example, he could use a spinner circle divided into three congruent
parts, a set of random six-digit numbers from the set {0, 1, 2}, or three iden-

tical marbles labeled “0", “1", and "2",

To answer the question posed, we need to compare the number of possible as-
signments with the number of possible assignments in which Bridge 2 is covered,
We have already found the former to be 729. Let us now proceed to find the
latter indirectly by calculating the number of assignments in which Bridge 2 is

not covered.
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Consider any assignment of spies to bridges in which Bridge 2 is not covered,

Then each of the six spies would be assigned either to Bridge 0 or to Bridge 1.

Since for each spy there are only two possibilities to consider, whether a spy
is assigned to watch Bridge O or Bridge 1, a Binary abacus rather than a Base

Three abacus can be used for the counting.

We can argue similarly to the way we did in the case of three bridges. If a

spy is assigned to Bridge G, the corresponding board on the abacus is empty;

if a spy 1s assigned to Bridge 1, one checker is placed on the corresponding
board of the abacus. The smallest code number is 0 (all six spies are assigned
to Bridge 0). The largest code number is 2% - 1, or 63 (all six spies are as-
signed to Bridge 1). There i{s a one-to-one correspondence between the numbers
0 through 63 and the possible assignments to Bridges 0 and 1. We conclude

. that there are sixty-four possible assignments of six spies to two bridges., The

probability that none of the spies will be assigned to Bridge 2 is about 0.09:

2° _ _64

% = 359 = 0.09

Therefore the probability that Bridge 2 is being watched is about 0.81:

729 - 64 _ 665

729 = 535 = 0.91
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Geing one step further, we could ask: What is the probability that all three

bridges will be covered if Boris randomly assigns the six spies to bridges?

To find this probability, we need to compare the number of possible assignments
in which all three bridges are covered to the total number of possible assign-
ments. We have already found the latter to be 728. To find the former, we can
count the possible assignments in which at least one of the bridges is not cov-

ered and subtract this number from the number of all possible assignments, 729,

But we have already done most of the work! We have found that the number of
possible assignments in which Bridge 2 i{s not covered is 64, By repeating the
argument, there are 64 possible assignments in which Bridge 0 is not covered,

and there are 64 possible assignments in which Bridge 1 is not covered.

At first glance it might appear that there are 3 x 64 possible assignments in
which at least one bridge is not covered, but we must not overlook that in
counting both the possible assignments in which Bridge 2 is not covered and
the possible assignments in which Bridge 0 is not covered, we have twice
counted the single assignment of all six spies to Bridge 1. Likewise, we have
counted the assignment of all six spies tc Bridge 0 twice and the assignment of
all six spies to Bridge 2 twice. Therefore, the number of assignments in which

at least one bridge is not covered is 3 less than 3 x 64,
(3 x 64) - 3 = 189

The number of assignments In which all three bridges are covered is 540:
729 - 189 = 540

If Boris randomly assigns the bridees to six spies, the probability that all three
bridges will be covered s about 0.74:

.;’47330.74
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We'll repr sen rrows on th grid by plac ng checkers appropri-tely. For
example, there ls anarro {rom M rk o Edv ard. We put @ checker (n the

square wheze the column fo

A B C E m T

Repres nt ng row In this w. y, the orlginal arrow picture cor spon s to the
coni ur " ono checke s ¢ the right of 1,

-

®E 0O m B

Edworo

Troye

Bacause exactly one arrow s arts at e ch dot and x c¢tly one " rrow ends a .
each dot, thare is exactly one ¢checker 1n ach row and n e c¢h column. Coun -
ng the number of differen” arrow plctures i5 equivalen ¢ counting the number

0 ways to pu exactly one checker in each row and In each celumn of the grid

54



How many choices are there for

putting a checker in column A?

Six,

O m =

»

Suppose we put the checker in row E.

How many choices are there for

putting a checker in column B?

»r ® O m =

Only five because the checker in

column B cannot be put in row E

since there already is a checker

in that row; in other words, two

children cannot get Edward’s

name.

» @ O m X A

We make use of the product rule for combinations here: namely, if there are
six possibilities for putting a checker in the first column and there are five
possibilities for putting a checker in the second column, there are 6 x 5 (30)

possibilities for assigning checkers to the first two columans,
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The consideration o cycles leads to probabtl ty ques ion: the plece of
p per with children's n mes are g ven ou randomly, wha Is e p obabillty of
get ing one cycle — c¢onnected arrow pic ure? To find ou how many of the
720 arrow pfctures ra connected, wa'll de “rmmi - howv to locate six checker
on the grid in such a way that th correspond ng arro  p cture {5 conn cted.
Each ime, be ore we place a checker, we'll count the numbe of choices for

that checker.

Le 's tart witt A. Where could we place a checker n column ? Anywhore

xcep the first row. We cannot place tha checker n row A because we would
have a loop : A and eventually more thanao pac . Wa have .va squares to
choose from. Suppose we choose row C and draw n rrow [rom Ato C, th s,
Ang la gets Charles' name.

It would seem natural to consider column B next, but that cho ca fe ds o later
complic tions in the argument. Since the firs arrow ends t C, we consider

nex the ammow s arting a C. Where could we place a checker in column C7? We
canno . piace {' in row C because there would be loop C. Also we caano
place it n ow A because there would be a two-cyc betwean A and C, We have
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CONCLUDING REMARKS

In this paper you viewed three problem-solving situatlons irom CSMP's Mathe-
Mm3tics for the Intarmedtato Gradas and the methods usaed te solve the problems.
These activities tllustrate the pedagoglcal role of both storles and modoels (n
the learning of mathematics. The storles add intarest to the combinatorial
problems and foster the students®' understanding of the situation. The various
codes demonstrate the power of models to simplify and clarify the solutions to
mathematical problems. The models provide a critical link between the problem
and Its solutfon. We, the CSMP staff, found these methods to be particularly
succossful with students in the {ntermediate grades and also to coordlnato well

with several themes developaed In the CSMP curriculum.

Ofton a particular method of solving & problem has a side henefit — a bonus of
some kind. In "Random Art" and in "Sples and Bridges," tho method of usling
abac! to count the possible outcomes not only accomplishes the enumaration
but actually provides a device for ganorating a complete list of possible out-
comes, should ever such a 1ist be deslcod. (In many combfnatorlc situations,
constructlve cxlstence proofs are prefenred.) Consider Nabu's antwork. We
count Naby's possible works of art by setting up a one-to-one correspondaence
between the numbers O to 1S and the possible paintlngs, a correspondence that
we set up through the use of the Binary abacus. How many numbers there are
from 0 to 15 is evident; the enumeration of the possible paintings is accom-
plished. Butf should we wish to sea a display of the sixteon possible works of
art. we need only to find the cormesponding palnting for each of the rnumbers

0 to 15.

0 - . : ;
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In "How Many Permutations?" we use the product rule as the counting device.
But recognition of the situation as one in which it is natural to employ the pro-
duct rule is aided by setting up a correspondence between certain configurations

of checkers on a grid and the permutations that we are trying to count,

The CSMP curriculum presents many techniques for solving problems. We want
to encourage students to meet new situations with a curiosity and an openness
toward new solution techniques. Such an attitude does not come readily! We
can aid its formation by presenting mathematically rich situations that interest
the students and by carefully choosing the techniques to solve the problems that
arise. For if we can get to the heart of a situation by building on the students'
mathematical experiences and by using tools natural to the situation, the stu-~
dents cannot help but be impressed by the mathematics involved and remember

its value,

In the CSMP curriculum, the activities in this paper appear in the {ifth- and

sixth-grade lessons from the World of Numbers strand.
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Whose Triangle Is It?

Richard D. Armstrong

I A Y N K
2345678
3610/52028---
410 203556 -
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| 51637---
| 6215
| 728
| B o
] Joso
4‘:%4%4&@& 8&’%\‘\?&?& { .
The arithmetic triangle as The arithmetic triangle as
depicted by the Chinese constructed by Blaise Pascal
mathematician Chu Shth-Chieh in Treatise on the Arithmetic
in 1303 Triangle, published posthumously
in 16635

The arithmetic triangle, commonly known as Pascal's Triangle, has fascinated
mathematicians for centuries. In about 1100, Chinese writers and the great
Arab poet and scientist Omar Khayyém referred to algebraic patterns that suggest
their knowledge of the arithmetic triangle. In 1303, Chu Shith-Chieh depicted
part of the triangle in a book on algebra and even then described it as an old
method for expanding eighth and lower powers of binomials, for example,

(a + b)7. Much later, in the 1550's, the two Itallan mathematicians Niccolo

Tartaglia and Giroclamo Cardano both investigated properties of the number
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patterns in the arithmetic triangle and appear to have applied it tc problems in
both algebra and combinatorics. A century later, Blaise Pascal (1623-1662)
wrote Treatise on the Arithmetic Triangle in which he identified and proved
interrelationships among numbers in the triangular table. Furthermore, he
developed techniques for applying the arithmetic triangle to combinatorial

solutions of probability problems.

Whose triangle is it? Chu's? Tartaglia’s? Cardano's? Pascal’s? Both
European and Oriental origins of the arithmetic triangle are ocbscure. Some
historians question the originality and, therefore, the significance of Pascal's
contributions. Still, due to his treatise, the title "Pascal's Triangle" seems

appropriate.,

With {ts elegance and basic simplicity, the arithmetic triangle can and should
also helong to elementary school students., This article presenis a detective
story from lessons in the fifth-grade CSMP curriculum, prompting students to
construct Pascal's Triangle as they solve a problem about locating stolen dia-
monds. The latter part of the story introduces a code that provides a link
between Pascal's Triangle and its application to combinatorial problems. The
article concludes with a set of probability problems that demonstrates the use

of Pascal's Triangle and the code to determine probabilities.

T Most applications of the arithmetic triangle stem from either binomial expan-
sions or combinations. The appendix to this article provides examples of these
two applications.
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THE STOLEN DIAMONDS '

T East

>

After taping a poster to the board, the teacher presents a problem by telling

this story. "Here is a street map of part of a city. T is the house of the famous
detective, Trek. Some diamonds were stolen from Trek's house and he suspects
that they are hidden at X. In order to find clues about who the thieves might be,
Trek decides to explore all the routes from his house, T, to the diamonds at X.
He must be careful because in this part of town all of the streets are one-way,
either north or east. Trek is driving, so he must stay on the streets. About
how many different routes from T to X do you think there are for Trek to investi-

gate?"

After tracing several routes from T to X along the one-way streets, students
discover that each such route is fourteen blocks long since X is eight blocks
east and six blocks north of T. The students' estimates of the number of differ-
ent routes from T to X typically vary from about 20 to 80, Now the challenge is

to count the number of routes.

T The two activities, “The Stolen Diamonds* and " The Burglar Suspects,"” are
based on the Storybook "THE HIDDEN TREASURE" by Frédérique Papy. The
collection, Stories by Frédérigue, is available from CEMREL, Inc., St. Louis,
Missouri,
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Students first focus on the area near
Trek's house and attempt to count the
number of routes to each labeled

intersection,

By tracing, they readily find the
answers and are able to explain the
"2, 3, 4, 5" pattern. They also
note that there is only one route to
each intersection directly east or

directly north of T.

After several attempts, students
accurately trace the six routes from
T to P, Systematically counting all
of the routes from T to R mﬁ.vmmnm
formidable. During their experi~
mentation, a few students notice
that every route from T to R must
pass through E or P, but not both.
Since there are four routes from T
to E and six routes from T to P,
there are ten (4 + 6) routes from

T to R. Symmetrically, there are

also ten routes from T to S,
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The insight concerning intersection

R readily generalizes. All routes to

U pass through R or S, so there are

twenty (10 + 10) routes from T to U; 10 15

all routes to V pass through G or R,

North ——>——
=
«

v P
(-]

7 c

so there are fifteen (S + 10) routes

to V; and so on,

1 7 28 84 210|462 (924 |16 “\oou

Students use this addition pattern v el lse lze las2 les2 |72 li2sy

and symmetry to quickly complete

M s s s | [ie 20 [330 lass
the grid. There are 3,003 different
routes from T to X! A truly unbe- ! 4 o120 (35 (56 184 1120 149
lievable result. Yet the simplicity ,_m; 1 3 6 6 15 [23 |28 [s6  las
=

of the pattern quells the doubters

in the class.

1 1 ] 1
T East ——
In solving this problem, students have constructed a part of Pascal's Triangle;
though the shape of the array of numbers differs from the more common triangular
arrangements. Mathematically the choice of arrangement is unimportant, and so
we will continue to call it "Pascal's Triangle." Pedagogically the rectangular

array is natural for both the story about Trek and the applications discussed

later.

Looking ahead to applications of Pascal's Triangle, it is important to realize
that the students have not only determined the number of distinct paths from T
to X, but also the number of distinct paths from T to any intermediate intersec-
tion. For example, the students' construction indicates that there are 210
distinct routes from T to the intersection six blocks east and four blocks north
of T, The students could continue the additive pattern to find any element of

Pascal's Trlangle.
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The above story about Trek following routes does not only prompt the construc-
tion of Pascal's Trlangle, but also provides a model for many applications of
the triangle. In fact, many combinatorial problems can be directly interpreted
as problems about counting the number of distinct routes from T to the appro-
priate intersections on the grid. The continuation of the story about Trek
introduces a binary code which provides a key link between Pascal's Triangle

and its combinatcrial applications.

"For each route Trek travels from T to X, he uses a secret code to.record it in
his notebook. One day Trek writes. 10110000111000 in his notebook. Can anyone

guess Trek's secret rule for writing codewords ?*

Several students agree on the _x
| 7 28 84 210 (462 [924 |17 P03

route for the given codeword:

1 [ 21 56 126 252 (462 |792 287

_O:OOOO___OOO AN ls s s |o |izs |zo fs0 fes

1 4 10 20 35 56 84 120 165

21 28 36 45

North
o
=]

| 1 1 ]
T East ——————

By finding the correct routes for several codewords and by writing their own

codewords, most students prove that they have discovered the rule: 0 means to
go east one block ;1 means to go north one block., They also notice that each
codeword for a path from T to X has exactly fourteen digits: eight0's and six
1's. This occurs since X is fourteen blocks from T, eight blocks east and six

blocks north.

How many l4-digit codewords are there with exactly eight 0's and six 1's?
3,003, of course; due to the one~to-one correspondence between these code-
words and the routes from T to X. Trek's code itself intrigues students and,
most importantly, it prepares students to apply Pascal's Triangle to combina-
torlal problems. The following episode from Trek's adventures {llustrates this

role of the 0 -1 binary code.
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THE BURGLAR SUSPECTS

Trek's story procesds: "During his investigation, Trek learns that a gang of
six thieves have stolen the diamonds. Trek has fourteen suspects and is sure
that all six thieves are among his suspects. He feels that they would confess
if he could interview all six thieves together. So he decides to interview the
fourteen suspects In groups of six. Trek draws fourteen dots, labels them "a"
through "n", and encircles six dots to represent the first group of six suspects

he will interview."

@®d

@b
K
o, *

“For each group of suspects he interrogates, Trek decides to write a codeword
in his notebook. He writes 00101101010100 for the group of six suspects indi-

cated in the above picture."

Students break the code by aligning the digits of the codeword with the letters
of the alphabet.

abcdef g
00iI0ti10

Trek's rule is: write a 1 for each suspect in the group to be interviewed and

write a 0 for each of the other suspects.

67




Students then confront the inevitable combinatorial question, “"How many differ-
ent groups of six suspects could Trek interview?" Many students groan drama~
tically, but a few spontaneously respond "3,003." They notice that each code-
word for a group of six suspects must have fourteen digits: six1°’s and eight
0's. Since they have just determined that there are 3,003 such codewords,
they realize that there must also be 3,003 distinct groups of six suspects.

The one-to-one correspondence is readily accepted.

The above solution demonstrates several advantages of imposing a binary code
on an appropriate combinatorial problem.
e Pedagogically, the code suggests to students that the current problem

might be related to earlier problems involving Pascal's Triangle.

e Mathematically, the binary code defines the one-to-one correspon-
dence between the elements of the problem and the appropriate paths

on the grid.

e The codeword ldentifies the precise entry of Pascal's Triangle that

is required for the problem at hand,

The following activity illustrates these features through a further application of
Pascal's Triangle to a combinatorial problem. Within a story about a custom in
a foreign country, students encounter the following problem :

In how many different ways can three brass rings and

seven silver rings be arranged on a pole?

The two types of rings suggest
a0-1binary code. Each codeword
will have ten digits: sevenO's

and three 1's,
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There {s a one-to-one correspondence between the arrangements of the seven
silver rings and three brass rings on the pole and the codewords with seven

0's and three 1's. Therefore the original problem is equivalent to the question:
“How many different codewords are there with seven 0's and three 1's?" These

codewords can be applied to Pascal's Triangle.

1
Each codeword with seven 0's vl e e lae ez |92 1716|3003

and three 1's represents a route

3
=

56 126|252 [462 (792 |1287

from T that proceeds, in some

>
&
&
3

126|210 330 |495

order, a total of seven blocks

east and three blocks north.

S fo o [3s lss 84 g0 hes
= )
All such routes end at B, The S h 3 e o s |a les e es
e
route for 0100011000 1is shown. 2
1 2 3 s |5 & |7 8 |

1 ] 1 ] 1

T Eatst(ﬂl)——a—
0100011000

The "120" at intersection B indicates that there are 120 distinct routes from T

to B, Hence there are 120 codewords with seven's and three 1's. And there-
fore, in solution to the combinatorial problem, there are 120 distinct ways to

arrange seven silver rings and three brass rings on a pole,

In this problem, the introduction of the binary code recalled earlier applications
of Pascal's Triangle, established the required one-to-one correspondences, and
indicated which element of Pascal's Triangle was appropriate for the problem.

The next section illustrates the application of similar techniques in the solution

of probability problems.

FAMILIES

We all know of at least one large family with a preponderance of boys or a pre-
ponderance of girls: the Pontello's with six sons and two daughters or the

Williams*® with seven daughters and no sons. Probablility questions naturally

arise from such situations. For example, in a family with eight children, what

69




is the probability that there are exactly six sons? that all are daughters? that
at least six are daughters? Through application of Pascal's Triangle, combina-

torics provides a means to calculate such probabilities.

A key to a combinatorial approach to these problems is to classify families
according to the sex and the order of birth of the children. For example, any
family with exactly five children, two young boys and three older girls, is
classified BBGGG. Two families are considered distinct if their number or
order of children differ. For example,BBGB and BGBB are distinct, as are GGG
andGGGG. This classification assists a combinatorial approach to these pro-
blems because any two distinct families with the same number of children are
equally probable. ¥ For example ,BBBGG ,BGBGB , and GGGGG are all equally
likely families. The following problems employ this classification to provide
combinatorial applications of Pascal's Triangle to probability problems.

Problem 1 Calculate the probability that a family with eight children

has exactly six sons.

Solution: Determining this probability requires the calculation of:
a. The number of distinct eight-children families in terms of
the sequences of boys and girls; and
b. The number of those families with exactly six boys.

The number of distinct families with eight children equals the number of eight-
letter codewords using B andG. By simply changing the coordinate labels,

Pascal's Triangle can be used.

¥ 1t is assumed that the probability of a child being a girl is 50%,
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Each eight-~letter codeword refers
to a path of length eight, starting
at T. It is easily determined that
all such paths end on the encircled

diagonal,

E)

Girl (G) ——>

-
—

.1_\ ¢ 45 165|495 (1,287 2003 |6435 [12870
\ 3 3% 120 1330 792 [1716 (3432 |ea3s
~
1 }\km 20 482 [92¢ |16 [3003
) 6 121 k 126 (252 las2 792 1207
o <
! 5 15 kkm 210 (330 498
'\
H 4 i | h 56\ [84 [120 |les
‘
1 3 & 1 15 ;\;k:o 45
) 2 3 4 5 ) A ] o
g
1 t 1 ) ¥ 1 N h
o
Boy ({B) =—>»

Therefore, there are 256 (1 + 8 + 28 + S6 + 70 + 56 + 28 + 8 + 1 = 256)

paths of length eight. So there are 256 eight-letter codewords withB's and G's

and also 256 distinct families with elght children.

Of these 256 familles, the

number of distinct families with six boys equals the number of eight-letter

codewords with sixB's and twoG's.

All such codewords represent paths
from T which end at intersection C,
There are 28 distinct paths from T
to C and 28 codewords with six

B's and two G's.

Therefore, there are 28 distinct families with six boys and two girls.

probability that a family with eight children has exactly six sons is

or approximately 0.11.

< \ \I? 45 165 495 1,297 |1003 64335 (12870
1 N ] 35 120 |30 792 L7216 |2432 |45
] \17\ 28 84 20 [462 (924 [r7i6 |3003
1 [} \,( 56\ 26 |252 462 792 1287
[ s 15\35 70\ 126 [210 |a30 |<98
R PR [ zo‘\’# so\[u 120|168
e N\
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5 | 2 3 4 5 [ N B\L9
D
‘ ] 1 \ H 1 1 ]
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is_ (: _7
256 6
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In a similar manner, each of the following problems about children in a family
can be interpreted as a problem about codewords consisting of B's andG's and
subsequently as a problem about counting paths on the Pascal Triangle grid.

For each problem, the appropriate entries on the grid are encircled.

Problem 2 Calculate the probability that a family with eight children
has all girls.

Solution:
Qh\\? 45 165|495 1287 [3003 (8435 |12870
&\k 36 120 1330|792 13716 [3432 6438
1 % m‘& 230|462 924 1716 2003 — l
1 [} m 56 126 252 482 (792 [i287 P - 256 = 0.004
T 1 E) 15 k‘;\ 126|210 133|495
3 4 L] 20 L\ 56 84 120|188
§ 1 3 -] L] 15 x 29 316 45
g 1 2 3 4 5 [} \ 8 9
L \ 1 A 1 \ | N;
T Boy (B) ——»
Problem 3 Find the probability that a family with eight children
six or more girls,
Solution:

&5 165 (495 1.267 3003 |6435 |12.870

330|792 [1716 |AA32 |4a35

8 B4 210 [462 924 [1.716 |3003

21\/_\56 126 (252 462 (792 1287

- 7 -
1 km 126|210 [330  lavs "2%'6 = 0.4

e

7
NS4

arl (6) —>

3 4 ) & 7 8 ¢

' ! ! ) 1 ) 1 }
T Boy {B) ——
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Problem 4 Find the probability that a family with six children has
exactly three boys.

Solution:

165|495 [1.267 J3003 (4435 [12.870

120 (330|792 11776 3432 |6435

34 210 462 [924 [1716 (3003

R,
I

20
T+6+5+20F6F+6FT

26 (210|330 [495 - R0 k-3

56 1206 252|462 (792 1287

84 120 oS5

28 36 45
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L
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SUMMARY

Pascal's Triangle is a powerful device for investigating many probability pro-
blems through a combinatorial approach. Motivated by a detective story, stu-
dents can discover the basic additive pattern of the array of numbers. Not
only does the story lead to the construction of Pascal's Triangle, but the story
also develops a binary code that proves very useful in applying the triangle to
solve combinatorial and probability problems. This set of activities demon-
strates how a rich problem~solving situation can motivate a mathematical
concept, namely Pascal's Triangle, and also lead to understanding and appli-
. cations of that concept. With this approach, problem solving becomes both a

means and an end in mathematics education.

Whose triangle is it? Chu's, Tartaglia's, Cardano's, Pascal's, and any student's

who learns its power and recognizes its elegance,
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In the CSMP curriculum, the activities described in this paper appear in the
fifth-grade lessons from the Workbook strand, the sixth~grade lessons from

the Language of Strings and Arrows strand, and the sixth-grade lessons from

the Probability and Statistics strand.
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APPENDK

The earliest and most fundamental applications of Pascal's Triangle involve
either binomial expansions or combinations. In élgebra, the elements of
Pascal's Triangle Indicate the coefficlents of the expansions of expressions

such as (a + b)7.

!
I 2 | The eighth row of Pascal's
I 3 3 | Triangle provides the
L% 6 4 | coefficients for {a + b)7.
+ b)7 =
1 5 1010 5 | (a +b)
1 616 2015 6 | 1a? + 7a®b + 21a®b® + 35a%*b®

+ 35ab%* + 21a%b® + 7ab® + 1b”

Cr 7203321 1 1)
i 8 28 56 70 56 28 8 |

In general, the (n + 1 )th row of Pascal's Triangle provides the coefficients

for (a + b)n,

A fundamental question in combinatorics 1s to determine the number of distinct
subsets of a specific size of a given set. For example, “"How many different

three-person subcommittees can be formed from a committee of seven members?"

i
I 2

| 3 3 | The answer, 35, is the fourth
element of the eighth row of
SRLER A Pascal's Triangl
scal's Triangle.
I 5 10 10 5 1
I 6 156 2015 6 |

17 20835 2 1 |
| 8 # 56 70 56 28 8 |

In general, the number of subsets with r elements from a set with n elements is
the (r + l}th entry in the (n + l)m row of Pascal's Triangle. Further combina-

torial applications of Pascal's Triangle appear in this paper.
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An Area Model for Solving Probability Problems !

Richard Armstrong

Most American children have an intuitive concept of randomness, partially due
to games involving dice, spinners, and cards. Since probability provides a
rich source of problem-solving experiences, we decided to extend our students'
informal experiences and include probability as an integral part of our elemen-
tary mathematics curriculum. The article, "Probabllity and Statistics in Grades
1 to 3," in this book describes stortes and games for second and third grades
which introduce concepts such as expected frequency, equally likely events,
and prediction. The students' reactions to these activities indicated to us
their capability of progressing to the analysis of one-stage probability experi-
ments through combinatorial methods. In one third~grade lesson, the students
conslidered the thirty-six equally likely outcomes when two dice are thrown
and determined that there are six ways for @ sum of seven to occur. Thereby

1

they calculated that the probability of rolling a sum of seven is —3%, or 6

Their success and enjoyment in analyzing several one-stage probability situa-
tions demonstrated that these students were capable of considering more complex
multistage experiments in the intermediate grades. However, traditional arith-
metic sclution technigues of such problems tend to require either unwieldy
combinatorial analysis or a well-developed understanding of the addition and
multiplication of fractions. Of course, the consideration of these problems
could be postponed to later grades, but even for more mature students the com-
putational aspects of arithmetic solutions often tend to obscure rather than

illuminate the underlying probabilistic concepts.

The need for an alternative model for solving probability problems became ap-

parent. To be appropriate for intermediate grade students, we thought the model

T This paper appears in NCTM's 1981 yearbook, Teaching Statistics and
Probability.
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should —

e be sufficiently powerful to handle fairly sophisticated probability

problems ;

@ rely primarily on mathematical skills that the students have already

acquired;

e be consistent with the students’ current understanding of probabilistic

conecepts;

® support the eventual development of more advanced solution techniques.

Considering that most probability situations intrinsically involve fractions and
that a common model for fractions involves the partitioning of circular or rec-
tangular regions (“pies” or "cakes"), perhaps it is natural that we developed
a geometric model to satisfy the above criteria. In this model, a unit square
is divided Into regions so that the areas of the regions are proportional to the
probabilities involved in the situation. The following three activities indicate
the use and development of this model and moreover {llustrate its pedagogical

and mathematical characteristics.

*
MARRIAGE BY CHANCE

Mr. Simons, a fifth-grade teacher, tapes @ poster on the board and with appro-
priate embellishment tells the following story, occasionally allowing students

to react and comment.

ENTER —>

Y This story is inspired by a popular short story, "The Lady or the Tiger?" by
Frank Stockton which appears in A Storyteller's Pack: A Frank R, Stockton

Reader, Scribner, 1968.




"The king and queen of a medieval Kingdom arranged a marriage for their daugh-
ter and Prince Cuthbert from a neighboring kingdom. The princess acceptsd
this plan without enthusiasm. A short time before the proposed wedding day,
she met Reynaldo — handsome, clever, romantic, but only a peasant. Thelr
love developed quickly and secretly, but inevitably the king learned of their
relationship. Irate, he ordered that Reynaldo be thrown into a room full of
tigers. But in response to his daughter's pleas, he offered a compromise:
Reynaldo would walk through a maze, each path leading to one of two rooms.
While the hungry tigers wait in one room, the hopeful princess waits in the

other room. If Reynaldo enters the latter room, he and the princess could

i

marry.

Pointing to the poster, Mr. Simons continues, "The king showed the princess
a map like this one of the maze and let her decide in which room to wait. Re~-
member that Reynaldo does not have a copy of the map and can only guess
which paths to follow. Which room is he more likely to enter, Aor B?"

Some students suggest that Reynaldo's probability for entering each room is %,
or %, because there are three doors into each room., However, other students
realize that the answer Is not so cbvious, since Reynaldo is more likely to
arrive at the third door from the top than at other doors because theres is a path
which leads directly from the entrance to the third door. After more discussion,

the majority of the class votes that the princess should wait in Room B,

Mr. Simons draws a large square on the board and suggests,

"Let's use this square to determine the probability that :

e th
Reynaldo will enter Room B. When he enters the maze, upper pa
what is the first choice Reynaldo must make?" When a middle path
student responds that Reynaldo must choose to take the lower path
upper path, the middle path, or the lower path, Mr. Simons

adds some information to the square,
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Out of eighteen pieces of the same size, eleven are gray and seven are red.

Therefore, Reynaldo has eleven out of eighteen chances to find the princess.,
1

18 3

of course, but the class did place the princess in the better room.

1 2
His probability of success is =——, or almost —. His success is not guaranteed,

Some students at first were intent on finding clever ways for Reynaldo to detect
and avoid the tigers. Rather than being out of place, this humorous diversion
emphasized the need to accept certain restrictions when a situation is being
modeled. As in real-life applications, the situation had to be idealized. An
advantage of embedding a problem in a story instead of using a real example is

that the necessary restrictions can be minimized and well controlled.

Solving several more probability problems presented in story contexts prepares
the students to consider a famous problem from the early history of probability

theory — a problem which requires more sophisticated mathematical {nsights.

A PROBLEM OF POINTS

In the history of mathematics, the first probability questions arose from games
of chance. One particularly intriguing problem, now called the "problem of
points," appeared as early as the fourteenth century. The following is an exam-
ple of the problem. Two gamblers play a game for a stake which goes to the
first player to gain ten points. If the game is stopped when the score {s 9 to 8,
how should the stake be divided between the two players? It is assumed that

the players have equal chances of winning each point.

This problem was popular and controversial in Europe in the sixteenth and early
seventeenth centuries. In 1556, Tartaglia claimed to have the solution but s{-
multaneously declared that any solution is ”judicial rather than mathematical,"
that is, it must be agreed upon by the two players (an astute commentary on

applied mathematics!}.,

In 1654 Antolne Gombard, the chevalier de Méré and a member of King Louts
XIV's court in France, encountered the problem through his interest in mathematics

and gambling. Being an unsolved problem, he proposed it to a young mathema-
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tician, Blaise Pascal. The ensuing correspondence beiween Pascal and an
older friend, Pierre Fermat, reveals that they developed three distinct tech-
niques for correctly solving this problem. The application of these technigues
to other probabilistic questions provided an impetus to mathematicians and

eventually led to the development of modern probabtlity theory.

Embedding the problem of points into a children's game and using the area tech-
nique allows intermediate grade students to solve this historically significant

problem,

Let's listen to Ms. Kell as she describes a game to her class. "Rita and Bruce
play a game. Rita has one red marble and one blue marble. With her hands
behind her back, she mixes them and then puts one marble in each hand., Bruce
chooses a hand. [f he selects the hand with the blue marble, he scores one
point, Otherwise Rita scores one point, The procedure is repeated, and the

winner is the player to first score ten points.”

Rita Bruce

TH
i)

After playing the game a few times in class, Ms. Kell suggests the following
situation. "One day, Rita and Bruce must stop a game when the score is Rita 9
and Bruce 8. If they continue the game the next day, what 1s the probability
that Rita will win?"

\ The Belgian math educators, Prédérique and Georges Papy discovered this
solution technique for the "problem of points." Their solution revealed to our

staff the potential of the method in many other situations.
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Aft . discus ing the game an m k ng som estimates, the s udents use a

square to nalyzae the sftuation:

1f the score s 9-8, the nex scora
wlll be 10-8 or 9- w th equal lke-
lthood. Divide the square Into halves.

Rt wns {the score s 10-8. Color

the appropria e reqg on red or Rita.

[ the score reaches 3-9, the game 1.
f Ir. Colo h lf th appropriate region
red for Rita and half gray for Bruce.

Three=fourths of the : quare s colored red nd one- ourth gray. Therefore whean

Rita s leadling 9 to 8, th probahillty of her winn ng s 2 and the probability of

8ruce winalng is 1 Becau e o the symmetry tnduced by using one red m rble
nd one blua marble, we can .mmediately conclude th = { Bruce waro leadl

nolng would be % an Rit s probab lity © w nning
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AN ARCHERY GA

on a square provd severs ped gogc | dv ntage
for solv ng pro billly problams. P ctorlal rep sentation of the analy pro-
v des v sual ins ghts nto probab ty concepts. Reliance on ometrc Is
llows the velopmen o concepts, wh cha ckof rithm tic skills would
omally mpede. Division o t Llon in propoe n the pprop la proba-
bili"les appe s to the stud nts8’ n o pro blty. B
th s so.uttion technique lso provides a mithem {cal dv. ntage by producin. a
less complex solution or certa n types of sophisticated prob billty problem .
xample, the probability problem pres nted Ln the following tory volves
n Infinite arkov chaln.
As archers, R& h s et rge. 3 o the time nd Bruce hits th arget % 0 the
e, They dectde to vi a conest. Le ng Bruce shoo Ir ncc he s e
poorer arch r, they al’' rna sho 8 until on Ings by h tting the targit. Who s
vor. d? Wh t is each conte tant' probability o winnn ?

O Bruce In
® Rita ns

qu re to ca culate the pro abilities.

Bruce shoots rs and has a probab Il y o l3
o hi ngth arge and winn ng mmedi 'ely.

C \lor 1 of the square gray,

Bruce m sses the e , Rita shoo and wins
by itiing the targat with probabllity of 3 o!

th colored ion, color ? 0o tred.
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infinite series, or the formation and solution of linear equations. Of course,
the intuitively appealing conclusion that a particular ratio is maintained through-

out an infinite process is assumed but not proven at this level.

PERSPECTIVE

A desire to allow intermediate grade students to progress in their understanding
of probability concepts without relying on a comprehension of the multiplication
and addition of fractions motivated the development of this area technique,
Observing the students' ability to apply this model to solve fairly sophisticated
probability problems and listening to their responses convince us that this goal
was achieved. Besides its pedagogical advantages, this area technique pro-
vides simpler solutions to certain advanced problems such as some Markov

chain problems.,

However, we do not suggest that this area method should supplant other ap-
proaches to probability. Other representations, for example using probability
trees, provide further insights into probability toplcs. As problems become
more complex and lead to general theories, the use of variables and algebraic
techniques become a necessity. Therefore we suggest that a strong background
for probability be bullt in the intermediate and middle grades by parailel deve-
lopment of these topics: numerical skills with rational numbers; analyses of
probability problems by combinatorial methods, by this area technique, and by
using trees; statistical experiences which include the concept of expected fre-
quency; and an Introduction to variables. Each of these topics by itself is
appropriate in the intermediate grades and taken together would provide students
the ability t© model and solve realistic, fascinating probability and statistical

problems in later grades.

In the CSMP curriculum, the activities described in this paper appear in the
fifth- and sixth-grade lessons from the Probability and Statistics strand.
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Breaking a Stick: Probability Without Counting

Joel Schneider

Probability in school mathematics curricula commonly occurs in finite situations,
for example: What are the chances of picking a white ball from a collection of
white balls and black balls? By contrast, consider this problem: If a stick is
broken at two points chosen at random, what is the probability that one may
construct a triangle with the three pieces? Some breaks yield a triangle; for
example, all three pieces might he the same length and give an equilateral
triangle. Some breaks do not yield a triangle; for example, two of the pieces

might be very short.

Success Failure

Of course, there are an infinity of choices for the breaking points and so no
simple counting of successes is possible. Our approach of using a geometrical
device to represent the problem is based on an idea of Castelnuevo {Proceedings
of First International Congress on Mathematical Education, Dordrecht {(Holland),
D. Reidel, 1969) and modified by G. Papy (1977 seminar at CEMREL Inc., St.
Louis)., Using a geometrical approach to a probability problem is a particularly

attractive example of cross~fertilization among areas of mathematics.

The students' experiences of geometry throughout CSMP is informal and largely
based on the use of several tools: the compass, the straightedge, and a device
for constructing parallel line segments, One application of the last too!l is in
effecting parallel projections, providing one of the basic experimental construc-
tions with which to study the problem. Developing the geometrical prerequisites
and solving the probability problem occupies weekly lessons for most of a semes-
ter for a class of sixth-grade students. This article describes the content of

the lessons.
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resorting to formalism. Examples . .

DAV

and counter examples . . .

) ><1 & A

lead to recognition of polygons (more formally, "simple closed polygons").
With the idea of polygon secure, we attempt to construct polygons under con-

straints on the lengths of the sides.

Duplication of line segments is basic to these constructions. The available

tools are a compass and a straightedge. The following sequence of constructions,
posed as problems, enables students to develop their facility with the tools as
they respond to increasingly restrictive constraints on the number and iength of

sides of polygons.

Problem 1: Construct a polygon with eight sides, all having the same
length.

Many solutions are possible; students each construct several.

O P27

The Key to the construction lies in drawing the sixth side so as to bring the ends
of the chain of sides close together. Then the seventh and eighth sides close
the shape. There are usually two choices for the location of the last corner and

these are located by finding the intersections of the arcs centered on the free
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endpoints (A and B) as shown here,

The last corner must be

one of these two points,

located with 2 compass.

Thus there are two cholces
A for seventh and eighth sides.

Several experiences with this problem, with varying numbers of sides, provide
students an opportunity to develop a good sense of the use of the compass in
constructing polygons under a simple constraint. The constraint is so simple
as to allow the students to concentrate on developing their techniques. Through
studying this problem with several numbers of sides, we discover the fact that
while there are many solutions with 8 sides, with 6 sides, and with 4 sides,

there is only one solution with 3 sides, namely the equilateral triangle.

Problem 2: Gtven two line segments, draw a quadrilateral so that each

side is the same length as one of the two segments.

Once again there are many solutlions, By comparing their solutions, the class
discovers that they fall naturally into families. There are five combinations of
sides: all short, all long, one short and three long, three short and one long,
and two short and two long. The first two cases appeared along with Problem 1;

there are many solutions, but each is a rhombus.

s L

L
L L
Y 4
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In the case of one short and three long, there is again only one family of
solutions., If we classify with respect to the arrangement of sides, there is

only short-long-long~-long, even though the shape may vary. For example,

S
s
L L
and L L
L L

The case of three short and one long is similar; there is only one family of

solutions, short-short-short-long, Again the shape may vary; for example,

S S
S S
L i

The case of two short and two long is more interesting since there are two
families of solutions, depending on the order of the sides in rotation: short-
long-short-long or short-short-long-long. The first sequence results in a

parallelogram and the second in a kite or a wedge.

S 5
S S §
L
L L L L
L
s

parallelogram kite wedge

Drawing the longer diagonal in red in several examples of the parallelogram

suggests a comparison of the diagonal with the two unequal sides of the parallel-

ogram.

L . L L
: 7 Sé ?
L : -
L
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BROKEN STICKS

Break a stick into three pieces., label the pieces "A", "B", and "C".

A B Cc

According to the Triangle Inequality, to make a triangle any two sides must be

longer than the third side. In particular,

A and B together must exceed C,
A and C together must exceed B, and

B and C together must exceed A.

By examining many broken sticks and comparing the lengths of their pieces, we
notice a pattern. Look at the largest plece, say it ts C. How long can it be

if we are to construct a triangle? If the stick measures 100 cm, whatever the
length of C, A and B make up the remainder. C cannot be too long — if C is 80
cm long, then A and B together are 20 cm long, but in order to form a triangle
they must exceed C. Hence C cannot be 80 c¢m long. More generally, if C is
more than half the stick, then A and B together are less than half the stick and
no triangle can be constructed. But if C is the longest plece and C is less than
half the stick, then A and B together are longer than half the stick and the three
pieces yleld a triangle. This concliusion suggests a modified version of the
Triangle Ineguality: If a stick is broken at two points chosen at random, one
can construct a triangle with the pleces if and only if each piece is less than

half of the stick.

We represent the stick as a line segment. The first task is to choose two
breaking points at random. Random choice is familiar from other situations in
the probability strand, but the simultaneous random choice of two points is a
new problem, For this we recall some ideas from earlier work in geometry.
Coordinates on a grid provide a link between a pair of points and a single point.
That is, two points {one on each axis) identify a single point on the plane and
vice versa. Regardless of the orientation of the axes, the linking mechanism

in the constructions is parallel projection along the axes.
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In the CSMP curriculum, the activities described in this paper appear in the

sixth-grade lessons from the Geometry and Measurement strand.
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Shunda’s Newsstand

Clare Heidema

The business world offers many opportunities for statisticians, especially in
advising decision-making processes. Elementary school age youngsters in
their everyday lives also are confronted with decision situations, some with a
business flavor, where a rudimentary understanding of statistics may prove
useful. However, the pedagogical concerns of making the study of these
situations accessible at an early age often prohibits consideration until the
problems can be discussed on a high mathematical level. Consider, for exam=-
ple, the classic "Newsboy's Problem"” concerning a newspaper seller attempting
to maximize profit. Children can appreciate such a problem; indeed they may
have paper routes or operate newspaper stands themselves. SHUNDA'S NEWS-
STAND provides an excellent examplie of how an operations research problem
involving statistics in a decision-making context can be presented at the ele-

mentary school level,

Crucial to the presentation of the problem in terms that fifth-grade students can
understand is the use of stimulating plctures to view the sample data in a variety
of ways, The pictures and graphs provide an alternative to technical numerical
methods ; an alternative that is both aesthetically and pedagogically appealing.
This approach illustrates two goals of CSMP: (1) to present the best of mathe-
matical content essential for understanding the nature of mathematics and its
ever-increasing applications to diverse situations in the real world; and (2) to
engage youngsters immediately and naturally with the content and applications
of mathematics, making mathematical ideas accessible to young children through

the use of non-verbal languages.
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SHUNDA'S PROBLEM

A common problem in the business world is to determine the optimal quantity of
items to buy or produce in order to make the most profit. Many factors affect
such decisions and no one can be guaranteed of always making the best choice.
Still, educated decisions can be made by doing a careful study of sample data
and by assuming that past behavior of the consuming public 18 a good predictor
of future behavior. There is always a risk; all one can do is decide what is the
most reasonable prediction. SHUNDA'S NEWSSTAND is concerned with such a

business world problem as it affects Shunda, a young newspaper seller,

We present the situation in a story-workbookf, that 1s, as a story told in the
pages of a "comic book." Along the way the students respond to questions and
solve intermediate problems. They become familiar with a variety of pictorial
representations of information and supply the necessary results needed to under-
stand the main problem. Prompted by a series of stimulating pictures for record-
ing data, the students use the daily demand to determine the most profitable

inventory of newspapers,
The CSMP Library

MATH STORY-WORKSOHKS
Qur story is about Shunda, a newspaper s

seller, who has a newsstand on the
corner of Hamilton Street and Euler
Avenue. Each day between 4:00 and
6:00 PM, she sells newspapers to

people passing by her stand.

t SHUNDA'S NEWSSTAND is in The CSMP Library, a collection of math story-
workbooks providing fanciful excursions into the colorful world of mathematics,

# In this paper, we use actual reproductions (in reduced fonn) from the booklet,
omitting color except where it is essential to the presentations,
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Several pages at the beginning of the booklet present basic information about
Shunda's job. Shunda buys newspapers from a dealer for 10 cents each, and
she sells them to her customers for 20 cents each. Since the number of

Shunda's customers varies from day to day, the dealer agrees to buy back the

unsold papers for 5 cents each.

For each newspaper SOLD, Shunda makes a gain of 10 cents. For each newspaper RETURNED, Shunda has a loss of 5 cents.
S| = i 3 5 4 cents loss
S| = +i0 = JO cents gain 5 =
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Shunda begins her newsapapar business as an apprentice and 80 is Uowed to
buy differ ng umbers of pap r5 from day o ay depend ng onh wha sho expac s
the dem. nd to be,

Shyndaboyghl _~ nenpapert. Comghebs ,
L riold - T

Thes . pages Sk students © read graphs and to caicul te Shunda's daily profit.
The stylization on page 10 reflacts Shunda s whimsical side, Such artistic
freedom requires litt.e or no explonation, and | contributes to the s udents’

axpariance viewlng d ta Lh a var ety of ways.
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Students draw a graph of Shunda's sales record.

Shunda starled her newspaper busingss as an apprenlice. Her leaming and
tralning period will end November 1SLh. Alter that day, she will have lo
follow stricter rules and the ity supply of newspapers she buys will have

10 remaln CONSTANT: the same number every day. |n order to disoaver
Ihe dest supply 10 buy from the dedler, Shunda detides (0 keep a record ot T
Ine gaily demand during an experimental 20 day period Comlete: |
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Then Shunda will determine whal woyld have been the dest consiant supply

14

Shunda hopes that i{f she can determine what would be the best constant supply
during that experimental period, then she can expect it also to be the best con-

stant supply in the future,

Before proceeding towards a solution, students stop to express their opinions
on Shunda's decision. Such a problem interests 10 to 12 year olds; they may
be just beginning to earn their own spending money. This discussion can bring
out the studenis’ natural curiosity about business matters; it tests thelr intui-
ticn about implications in the statistics for a twenty-day experimental pericd.
Our experience suggests that students will think of a variety of ways of view-

ing the data; for example,

e Shunda should get only as many papers as she is sure t0 sell; then

she is sure to have a positive profit every day.

e Shunda should get about 17 newspapers every day because she most

often sold that number of papers.

e Shunda should get about 22 newspapers every day because half the
time she sold more than 22 newspapers and half the time she sold

less than 22 newspapers.
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e Shunda should get about 20 newspapers every day because that is

halfway between 35 (the most she sold) and 5 (the least she sold).

e Shunda should get 22 newspapers every day because that is the average

number she sold daily during the experimental perlod.

SHUNDA'S SOLUTION

We continue our story with Shunda organizing and studying the demand process

as reflected in her records for the experimental twenty-day period.

... dad ther has the columng "“cloge canks ©'

T

+ 4
-+

DEMAND STAIRCASE

44+

I
s o0 2RS

I
1+
]
i
o]
[
)
14
|2

Students follow along stopping to provide calculation results as needed. This
contribution and their previous practice with completing balance sheets or
"profft~o-meters" provide opportunities for students to find various calculation

methods.
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- con tant dally supply

w i L
C L Aospcum ey .
Momdaiyigyy B
ol by
D
Therefore, wt . ©0 nt dally supply of 22, s total proth uld beo
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stylizing of Shunda's profit-o-metar contributes app riate sxperience [0
studying the graph th de crl the . _mand process
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The story~workbook ends with a discussion of Shunda's conclusfion. Since 26
papers would have been the best constant supply for the twenty-day experimen-
tal period, Shunda decides to adopt it. Of course, she cannot be sure this will
remain the most profitable choice. She does not try to forecast future demand;
what she does is make the best choice based on the limited evidence of the
experimental period. As in most business ventures, she cannot avoid taking

some risk.

This example of statistics activities for the elementary school intends to in-
volve students in a real world application of mathematics., There is consider-
able calculation practice in a meaningful context. There is the opportunity to
use bar graphs in a dynamic way to organize data. And, most importantly from
a mathematical point of view, there is the experience of using statistics for

preblem solving.

In the CSMP curriculum, the activities described in this paper appear in the
fifth-grade lessons from the Probability and Statistics strand.
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Population Growth

Tom M. Giambrone

Twenty-five percent of all of the people who ever walked
the face of the earth are living now. Ninety percent of
the scientists of all time are living now.

Population statistics can be a rich source of surprising information that suggests
many implications about the world around us, The above statistics may indicate
why population growth is of worldwide concern and may reflect one reason for

the continuing technological explosion of this century.

Population statistics appeal to students' natural curiosity about the world around
them and the future that lies ahead. The sixth-grade CSMP curriculum includes
a series of lessons on population growth. The lessons provide the opportunity
to organize, interpolate, and analyze real life statistics. More importantly,
students use the data to make inferences about the past, present, and

future — a rare activity at the elementary level Ln the study of statistics.

Can elementary school students handle such a sophisticated topic? Can they
form inferences based upon statistical data? Students' experiences in the four
lessons outlined below reveal that the answer to each question is a definite

Iiyes- "

POPULATION GROWTH RATES

The first lesson introduces students to the concept of population growth rate.
Using their intuitive sense of ratio, students develop techniques to compute

the growth rates and net population gains of several United States' cities.

The lesson begins with a discussion focused on the question: '"What factors

affect population growth 7" Students conclude that the factors affecting population
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fall into four categories: births, deaths, immigration, and emigration.

The discussion then moves to the meaning of the following statistic:

In 1977, the United States showed a net gain in population.
Its rate of growth was an additional 7.5 people for every

1,000 people.
Able to interpret this statistic, students proceed to develop several methods for

computing growth rate and net gains. Specifically, they complete this chart of

data on five U, S. cities.

Annual Popuiation Growth |Net Population

ey Population 1 pate per 1,000 People Gain - One Year
fondo. | 5,000 q.8
e | 79,697 “14.7
Honowlu, | 705, 38 23.7
pew York. 1 7,895,563 -10.5
sumnysite. | 6,208 54
Pogulusa, | 21,823 ~301

Some methods that students might suggest are described below.
o Imagine the City of Hondo divided into five groups of 1,000 people.
Each group gains about 9.8 people, so the net gain is about 49

people {5 x 9.8).

e Harrisburg's population is about 80,000, so the net loss is approx-

imately 1,176 people (80 x 14.7).

e Sunnyside's population Is about 6.2 thousands. Consider
6.2 x ‘:] = 54 and fill in the box by trial and error or by calculating
54 + 6.2. The growth rate is approximately 8.7 peobie per 1,000.

By not providing specific procedures for computing the net growth or the growth

rate, the teacher allows students to create their own technlques. The strategies
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they develop increase their understangding of the concept "population growth

rate"” — the key for later lessons in this sequence.

TABLES AND GRAPHS

The activities in a second lesson demonstrate that appropriate organization of
data facilitates both the interpretation of the data and inferences based upon
the data., Students begin by examining a mock newspaper article :

The United States population growth rate has been declining
lately. It also declined for a while before World War II.

We can easlly see this from the following data. For each
year, the population growth rate per 1,000 people is given:
1950, 17.1; 1935, 6.3; 1965, 11.8; 1920, 18.8; 13855, 17.5;
1910, 15.2; 1975, 7.0; 1930, 7.3; 1940, 9.8; 1915, 14.9;
1960, 16.6; 1925, 13.8; 1970, 10.7; 1945, 10.7,

The teacher highlights the effect of the disorganized nature of the data by asking
several questions such as: When was the growth rate the highest? lowest?
When did it decline? The students’ difficulty in answering these questions
motivates the central theme of the lesson: Are there better ways in which to

present this data? The students suggest a table and a graph.

Annual Growth Rate Fon THE ANITED STATES
Year (per 1,000 people)
1910 15.2 R i
1915 14.9 3 J\ ]”'\R
1920 18.8 §:5~4 4 \
1925 13.8 §
1930 7.3 'i
1935 6.3 g
1940 9.8 % 1ol :
1945 10.7 x
1950 17.1 E \ \
1955 17.5 -
1960 16.6 2
1965 11.8 .
1970 10.7
1975 7.0
0

WIG 1920 W30 1940 1030 1960 1930 80
YEAR
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After constructing the table and the graph, the class reconsiders the questions
they previously found so difficult. The ease of answering the same questions

accentuates the benefit of organizing data.

Yurther questions reveal the advantage of the graph over the table. For exam-
ple, what was the growth rate in the year 1927? Through interpolation, the
students can estimate a 1927 growth rate of 12 people per 1,000 {see the

arrows below).

POPULATION GROWTH RATE
FOR THE UNITED STATES

. Al

20

@
|

w
3

ANNUAL GROWTH RATE (per 1,000 people)
3

VIO 1920 1930 1040 IFSO 1960 1970 1980

YEAR

The graph also shows the large fluctuations in the U.S, population growth rate.
The remainder of the lesson focuses on the historical events that could have
caused such fluctuations, Students suggest the Great Depression and World

War II as possible causes for the. low rate of growth from 1530 to 1945. However,
changing sociological views, such as people deciding to marry later or electing
to have fewer children, seem a more likely cause of the recent low growth rate

from 1970 to 1975.

The activity of organizing data, found in the first part of this lesson, is fairly
commonplace in the study of statistics. However, the discussion of factors

that may have caused the large fluctuations in the population growth rate repre-
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sents an important shift in the lesson. The students move from simply reading

the data to interpreting and making inferences based upon the data. These

attempts to interpret data allow students to appreciate the purpose of organizing
data into graphs, rather than rotely practicing techniques of data organization,
Correlating data with known historical and sociological factors provides a

framework for later using current data to predict future events,

POPULATION PYRAMID

There exist many ways to graph a set of population data. The choice of a parti-
cular graph reflects the feature of the data that the statistician wishes to high-
light. In a third lesson, students explore several population graphs. First,
the comparison of two distinct graphical representations of population growth
during the period 1910 to 1975 allows students to cbserve the different ways
that each graph portrays the same information. Then students also analyze
another graph, the population pyramid. The lesson begins with a comparison

of the following graphs.

A: Population Growth Rate B: U.S. Population {1910~1975)
for the U.S. (1910-1975)

POPULATION GROWTH RATE
FOR THE UNITED STATES U.S POPULATION (1910-1975)

N - ¢

180

160

ANNUAL GROWTH RATE (per 1,000 people}
=
e
POPULATION (IN MILLIONS)
s

wol 1A

O 53 ﬁi i 1930 1960 1970 080 T T E
YEAR YEAR
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Since these two graphs display the same census data, they reflect the same
trends in different ways. For example, students notice the fact that the popu-
tation is always increasing, shown in graph A by the rate always being positive
and in graph B by the total population always rising. Also, the low period in
growth from 1930 to 1940 shown in graph A corresponds to a "leveling off” in
graph B. Conversely, the sharp rise from 1950 to 1960 in graph B indicates

the high growth rate that is recorded in graph A. This activity encourages
students to observe different ways that graphs can display rates of growth., In
particular, the graphic comparison demonstrates that a declining (but positive)

growth rate and a rising total population can occur simultaneously.

Besides studying the overall growth rate, demographers also analyze the United
States population according to various factors: age, race, sex, religion, etc.
With this in mind, the following statistic motivates the idea of population dis-

tributions — the second theme of this lesson,

United States : K-8

1970 . 34,300,000 students
1975 : 32,000,000 students

The decline in total elementary school enrollment surprises most students. Who
might be concerned about this decline in school enrollment? Teachers are most
certainly concerned. Implications of this single statistic include school clos-
ings, teachers being laid off, and many other problems all too familiar to the

reader. An open student discussion of this statistic focuses on such implications.

When first confronted with the above statistic, students assume that the decline
in school enrollment is due to an overall decline in the population. This conjec-
ture, however, contradicts the previous observation that the United States always

had a positive growth rate from 1910 to 1975, To resolve this dilemma, the
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teacher presents the idea of population distribution by age group.

U. S. Population by Age Group - 1976

Percent of Percent of

Age Total Population Age Total Population
0-4 7.1 40-44 5.2
5-9 8.1 45-49 5.4
10-14 9.2 S0-54 5.6
15-19 9.8 55-59 5.0
20-24 9.1 60-64 4,3
25-29 8.3 65-69 3.9
30-34 6.6 70-74 2.8
35-39 5.5 75-79 1.9
80-84 1.3
>84 0.9

Total U. S. Population: 214,649,000

By comparing the percent of population in the 5~to~14 age groups (the approxi-
mate K-8 enrollment in 1975) with the 10-to-19 age groups (the K-8 enroliment
in 1970}, students note that the enrollment loss appears due to a decrease in
the number of people in that age group. The table reveals how the population

in a particular age group can decline even as the total U.S. population continues

to increase.

The introduction of population distribution by age suggests other questions of
human interest such as:; How many Americans remember World War II? Worlgd

War 1?7 How many Americans are over the age of 657

After exploring these questions, students conclude the lesson by constructing
a population pyramid of the United States population.
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Group

15-19
16-14
5-9
04

b2 10%
Percent of Total Population

COMPARATIVE POPULATION GRAPHS

Upon graphing and interpreting a population pyramid for the United States, stu-
dents naturally assume that pyramid to be "normal' for countries. In this fourth
lesson, the very dissimilar shapes of both Sweden's and Mexico's population
distribution graphs as compared to the United States' graph, conclusively dis~
proves the students' assumption. A goal of this lesson is to interpret the three
countries' graphs as a means for conjecturing the political priorities of the

countries and what problems may lie in the future for each nation.

The beginning of the lesson returns to a conjecture made in the first lesson,
Between the years 1930 and 1945 the United States experienced a low rate of
growth. Two historical occurrences were given as the cause of this: The Great
Depression and World War II. The teacher challenges the students toc use the

population pyramid to determine which event appears to have had greater impact.
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%
Percent of Total Populziion

A notable feature of the above graph is the relatively low percent of people in

the 40-t0o-44 age group compared to neighboring age groups. Being of age
somewhere between 40 and 44 in 1976 means being born sometime in the years
from 1932 to 1936 — the midst of the Depression. Apparently, either people
during the Depression chose to have fewer children or their children had a much
lower life expectancy. The graph does suggest that the Depression was a greater

contributing factor to the lower population growth rate than was World War II.

Besides graphs, another simple statistical tool for comparing national popula-
tions 1s averaging. The population pyramid does not allow easy computation
of the mean age of the population; however, the median age is appropriate
and is easily computed. (The median age of a population is the age that 50%
of the population is younger than and 50% is older than.) The dark gray
shading on the following graph indicates the younger 50% of the population.
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U.S. Population by Age Groups

b 10%
Percent of Tolal Pogulation

Most of the 25-t0o-~29 age group is shaded dark gray. Therefore the median age

of the U.S. populailon is about 28, After completing this computation, students
discuss whether other countries are likely to have similar median ages. Even at
first glance, the population pyramids for Mexico and Sweden (see below) reveal

the dramatically different population distributions in different countries.

POPULATION PYRAM 10 FOR SWEDEN - 1975 POPULATLON PYRAM D FOR MEXICO - 1976
FOTAL POPULATION: 8,193,000 TQTAL PCPULATION ; 62, 9,000
>8
oy 088
%7 m slder 50% of Egks
074 poputation i
oo Jor
664
5559
054 54
c:zzp o4 Gm” z:
¥ B39
-3 X3
2-29 2529
20-2 W
1519 1519
1014 10-3
v9 59
04 o4

b3 s i
Percent of Total Population
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With Sweden's uniform population distribution, its median age is about 35,
higher than that of the United States. In Mexico, a greater portion of the
population is in the younger age groups and, therefore, the country has a low

median age, about 17.

What insights into areas of concern for these governments do these population
graphs and medians suggest? The remainder of the lesson focuses on a com-
parison of some political and social issues these countries may soon face such
as:

e United States and Sweden have a large population in the older age

groups who need support.

® United States is closing schools while Mexico needs to build more

schools.

® Mexlico's rapidly increasing population could cause shortages of

food, housing, and health facilities.

® Sweden has the largest percent of older people, while Mexico has

the smallest.

As in previous lessons, the lesson has moved to a discussion about the data.
The importance is not so much the statistical tools that the students acquire,
but the important realization that these tools enhance the discovery and dis-

cussion of events in the world around them,

AN EXTENSION

One can extend a lesson either by embellishing one of the topics covered or by
applying the same statistical technigues to a different context. There are num-
erous avenues for extending these lessons. One possible extension is to study
the impact of the current population distribution of the United States to a topic

of recent controversy: the Social Security System.,

There have been several raises in the Soctal Security tax in recent years, each

one promising to set the system on firm ground. As we shall see, the probiem
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with the system may lie in its basic design, therefore calling for more creative

measures to rectify the system.

Some citizens assume that the Social Security System invests the money they
collect and later returns the money to the original contributors. In reality, the
system is designed so that the current work force generates the revenue for the
retirees currently on social security. In order to gain only a crude overview
and to simplify the analysis, we will contrast the total potential work force

(ages 20-62) to the total potential social security receivers (over 62).

AGE GROUP GRAPH
UNITED STATES - 1976

ty 0%

potential work foree 53%

AGE GROUP

T
5% 0R

PERCENT OF TOTAL POPULATION

The following guestions highlight some difficulties in the Social Security System:
& How many people in the potential work force does it take to maintain

one person on social security?

e In 1981, how many people entered the work force for every person

who entered the retirement system?

e WiIill the situation get better or worse? in 1990? (Assume life

expectancy of 80.)
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The graph provides answers to these guestions. In 1976, approximately four
people {4 x 13 is about 53} in the potential work force were needed for every
one person on social securlty (a ratioof 4 to 1). In 1981, however, approxi-
mately 5% of the population entered the social security system while only 10%
of the population entered the work force (a ratic of 2 to 1}; thus the potential
work force is not growing as fast as the potentlal retirees. And as we can see
from the graph, the problem will continue to worsen in the future since the popu-
lation entering the work force is decreasing. Questions such as those above
could be used as a beginning of another lesson on statistics and economics.
The important statistical activity again gives the students an opportunity of not
just taking the data at face value but drawing implications from the data in re-

1.
gard to some social issues,

SUMMARY

The series of lessons on population growth exhibits several valuable features
for the teaching of statistics, namely:

® topics that interest students at a particular grade level,
e a problem-solving atmosphere, and

e 2 unifying factor for a variety of mathematical tools and concepts.

Students' curicsity about the world around them begins to emerge in the inter-
mediate grades. Utilizing this curiosity 1s valuable in teaching, in particular
teaching mathematics, effectively. Students' interest in certain situations

can be employed to create problem-solving activities that they are intrinsically
motivated to resolve with the use of mathematical tools. The Population Growth

lessons are an example of such activities, using interest to explore content.

Building on a foundation of interest, the mathematical content i{s then introduced

as a means to resolve questions and to generate a source of new inguiries, thus

¥ Even this simple analysis sheds light on problems affecting the Social Security
System and can serve to prcduce many conjectures which can be tested with a
more fine grained analysis. Statistics for such a treatment can be found in
"Statistical Abstracts of the United States.”
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creating a true problem-solving atmosphere. Students learn new statistical

methods as well as gain an immediate appreciation of their application.

Lastly, an important lesson can be gained for curriculum design from the way
that population growth is used as a unifying theme for a variety of mathematical
concepts. For example, students encounter: reading graphs, estimating, per-
cents, ratios, as well as many other concepts and procedures that might other-
wise be taught separately as disjoint pieces of mathematics. The Population
Growth lessons are just one example of CSMP's curriculum design that engages
students in a variety of mathematical ideas presented in an interesting and

informative context.

In the CSMP curriculum, the activities described in this paper appear in sixth-
grade lessons from the Probability and Statistics strand.
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