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PREFACE

The experimentation which has been carried on since 1957 by the
Madison Project owes many debts to many people. | could not even
determine whose contributions have been the largest. At this moment
| can think of more names to list than | can possibly find space for.

To those friends and colleagues who are not mentioned here, | want to
say that you are not forgotten.

Among those whose contributions have been very great indeed are
Professor Donald E. Kibbey (Chairman of the Mathematics Department
at Syracuse University), Dean Lawrence Schmeckebier, Mrs. Jane
Downing, Mrs. Doris McLennan, Miss Marie Lutz, Miss Cynthia Parsons,
and Mr. William Bowin, who helped tremendously in the early days of
the Project when it operated mainly in the area of Syracuse, New York.
The subsequent sophisticated experimental work done in Weston,
Connecticut, was possible only because of the inspired efforts of
Mrs. Beryl S. Cochran, greatly assisted by Gilbert Brown and Herbert
Barrett of the Weston, Connecticut, public schools. The recording of
this work via motion picture films and audio-tape was made possible
by Morton Schindel, President of Weston Woods Studios. The later
expansion of the Project’s efforts has depended heavily upon the
assistance of the retiring President of Webster College, Sister M.
Francetta Barberis, S. L.; her successor, Sister M. Jacqueline Grennan,
S. L.; the Chairman of the Webster College Mathematics Department,
Professor Katharine Kharas; J. Robert Cleary of Educational Testing
Service; Sister Francine, S. L., of Nerinx High School; Frank H. Duval,
of McKnight Elementary School, University City, Missouri; and Ruth
Hertlein and Gerald Baughman of Hilltop Elementary School, Ladue,
Missouri.

Madison Project materials have been developed initially in suburban
schools. The adaptation of this material, or parts of it, for use with
culturally deprived children in large cities has been made possible by
the administrative leadership of Dr. Samuel Shepard in St. Louis and
Dr. Evelyn Carlson in Chicago, assisted by Ogie Wilkerson, Bernice
Antoine, Emma Lewis, Gail Saliterman, and others, and by Dr. John
Huffman in San Diego County, California.



Mathematical and pedagogical ideas in this volume have been
contributed by many people, including Professors Robert Exner, Erik
Hemmingsen, and Thomas Clayton, of Syracuse University; Professors
Andrew Gleason and Frederick Mosteller of Harvard University;
Professor Gerald Thompson of the Carnegie Institute of Technology;

H. Stewart Moredock of Sacramento State College; Dr. William Reddy
of the U.S. Army Ordnance Corps; and Donald Cohen and Knowles
Dougherty of the Madison Project.

All modern efforts at curriculum revision owe a profound debt to
several dominant national and world leaders—such as Max Beberman,
David Page, Warwick Sawyer, Leonard Sealey, and Caleb Gattegno—and
especially to the men who may be said to have created the present era:
Jerrold Zacharias and Francis Friedman of the Massachusetts Institute
of Technology; David Hawkins of the University of Colorado; Phillip
Morrison of Cornell University; Jerome Bruner of Harvard; the late
Richard Paulson, John Mays, Senta Raizen, and Charles Whitmer of the
National Science Foundation; and their colleagues. Considering the
consequences of their activities, the innovators themselves are
incredibly few in number—but their work is being taken up by many
others, and it is now realistic to hope that a new approach to the
curriculum revision will soon exist in the United States.

Preliminary trials of Explorations in Mathematics were conducted by
Gordon Clem at St. Thomas Choir School in New York City, by Elizabeth
Herbert and Lyn McLane at Weston, Connecticut, and by others in
various schools and places.

The myriad tasks of assembling a printable manuscript were
supervised by Mrs. Bernice Talamante in my office and by the editors
and staff at Addison-Wesley.

All of the teachers and administrators who have worked with the
Project have chosen to spend much of their lives studying the culture
which history passes on to our generation, selecting (as much as we are
free to do so) that portion which we should pass on to our children, and
finding suitable ways for doing this. It is not an unworthy task. Any
value in this book is the fruit of their labor.

Robert B. Davis
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THE PROJECT

A supplementary program

This book is intended to provide children with various
‘‘creative learning experiences' in mathematics. These
experiences are appropriate for a wide range of ages and
grade levels: some can be used with second graders (i.e.,
chronological age about 7 years), while all can be used
with first-year high school students, provided they have
not previously learned this material. In general, the ma-
terials have been assembled with students in grades 5
through 9 in mind.

The material presented in this book was developed as
part of extensive experimental teaching conducted by the
Syracuse University —Webster College Madison Project,*
under the direction of Professor Robert B. Davis and Mrs.
Beryt S. Cochran.

Because many aspects of these discovery lessons may
strike some readers as novel and unusual ana because this
book does not stand alone—but is part of a large array of
Madison Project materials presented via books, pamphlets,
articles, tape recordings, and sound motion picture films —
some explanation is required.

*The nar‘n:'of the Project is taken from the name of the Madison
School, in Syracuse, N. Y., where the Project’s earliest experiments
were conducted.

-

This book is intended to help teachers provide a sup-
plementary program in ‘‘modern” mathematics. Briefly,
features of this program inciude the following:

_ (1) These materials supplement, but do not replace, the
usual school program in arithmetic and science.

(2) Use of Madison Project materials can {and generally
should) be introduced into a school system gradually;
after a first step-by-step introduction, use of the ma-
terials can be expanded and extended, allowing progres-
sive revision and growth within the school program. Proj-
ect materials are being prepared and augmented continu-
ally, allowing for unlimited “‘open-ended’’ growth in the
school mathematics program.

(3) These supplementary, ‘‘modern” mathematics ma-
terials may be taught in one, two, or three lessons per
week, perhaps for a total time of one hour per week. Al-
ternatively, portions of this book may be used as “'units,"”
occupying an occasional week or two during the school
year. For grades 7 and 8, this latter arrangement is prob-
ably preferable.

(4) As mentioned previously, some of the materials in
this book may be started as early as grade 2; some may be
used as late as senior high school. Considerable variation
is possible to meet the needs of individual classes and in-
dividual school situations.

(5) The mathematical content combines certain funda-
mental ideas which underlie nearly all mathematics
(such as variable, open sentence, number line, Cartesian
coordinates, truth set, function, etc.), together with some
important ''new” topics that are basic to modern uses of
mathematics (such as matrices, logic, statistics, etc.).
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(6) Emphasis is placed on creative, informal exploration
by the children; rote drill is avoided entirely, as not appro-
priate to the objectives of a “modern’ mathematics pro-
gram.

(7) Extensive teacher training in the use of these materi-
als is available from the Madison Project, Webster College,
St. Louis, Missouri 63119, or from the Madison Project,
Syracuse University, Syracuse, New York 13210.

(8) Films showing actual classroom lessons and other ma-
terials useful to teachers, administrators, and parents
are available from the Madison Project at either of the
college addresses listed above (see also Appendix B).

(9) This book has been arranged so that it may be used
independently of the companion volume, Discovery in
Mathematics (Addison-Wesley, 1964). (We shall hereafter
refer to these two books as Explorations and Discovery.)
If both books are used in sequence, it is probably better to
use Discovery first, and to follow it with the appropriate
sections of Explorations. It is probabiy better still to use the
two books simultaneously, selecting sections to suit your
class.

Why it is needed

Having taught these materials for some seven years prior
to assembling them in this book, we naturally have many
ideas and suggestions. We shall make only one or two at
this time.

Broadening the school program

Obviously, something is happening to the school curri-
culum these days. Mathematics is not alone. in nearly
every area we seem to be realizing that the school program
has been confined within arbitrary, narrow limits that are
not appropriate in today’'s world.

Consider history and geography. Traditionally, students
in the United States have studied '‘Western” culture —
France, Germany, Italy, England, and the United States it-
self, for the most part—and have learned little or nothing
about Asia and Africa. Yet what is the world in which our
citizens live? The main crises of recent years have involved
the Congo, South Africa, Vietnam, Korea, Cyprus, Algeria,
Ghana, Cuba, Formosa, .. ., areas about which most of us
know little. It seems clear that our study of human culture
must be broadened to include more than merely “West-
ern’’ culture. )

In the case of music, the traditional school program usu-
ally gave the impression that music began with Bach and
ended with Brahms —or possibly Sibelius. Music educators

are now at work trying to broaden this far too narrow slice,
and to include pre-Bach music, ethnic music, jazz, folk
songs, and contemporary concert music.

One can look to nearly any area in the school program
and observe a similar broadening taking place. This
broadening promises to produce a curriculum more vital,
more relevant, more honest, and more useful than could be
achieved within the arbitrary and narrow confines of the
past.

In the case of mathematics, the traditional K-8 curricu-
lum was concerned mainly with adding, subtracting, mul-
tiplying, and dividing, and with applications to simple
retail business transactions. The 9-12 program was dom-
inated by the mathematics related to surveying, navigat-
ing, manual computation, and similar tasks.

Today’'s uses of mathematics are far broader, and a
wider slice of mathematics needs to be presented in our
schools. This broadening of the school mathematics pro-
gram is—as we shall see in the following pages —one of the
main purposes of this book.

Creativity

That children are creative is hardly a new idea, nor is
the notion that schools can properly nurture this cre-
ativity. Unfortunately, however, creativity has known its
own bounds. It has been recognized in relation to ‘‘cre-
ative writing,” to the composing of music, the writing
of poetry, the production of plays. It is an acknowledged
ingredient in painting, sculpture, and ceramics. But ...
creativity in mathematics? Hardly! Mathematics has been
usually regarded as a matter of flash cards for addition
facts, and doing what you were told to do in a computation
with jogarithms. Mathematics has seemed to be a matter of
dritt and following directions. Mathematics has simply
born no relationship whatsoever to the task of nurturing
creativity.

Yet everyone who has studied mathematics at any depth
knows how wrong this picture is. The routine aspects of
mathematics have never been the more rewarding or valu-
able part. Today, when electronic computers are taking
over alt of our routine tasks, the old view of mathematics
is even more seriously in error. Nowadays, routine mathe-
matics is a task for machines; only creative mathematics
is a proper task for humans.

This book makes every possible effort to see that the
child’s experiences with mathematics shall be creative
and not routine.

Suggestions for further reading are given in Appendix A,
under the heading "Philosophy and Pedagogy."” See par-
ticularly: Davis (23), (24), (25), (26), (27); Goals for
School Mathematics {63); Mearns (4); Schwab (1); and
Torrance (70).




THE APPROACH

Creative learning

experiences

Although most educators and scientists who have either
viewed Madison Project films or observed Madison Project
lessons have been markedly enthusiastic, there have been
some few who have been puzzied and disappointed. These
latter have often said, ‘“There was no teaching in that
lesson.” Perhaps not—but there was a great deal of fearn-
ing.

We believe that those who see “‘no teaching” in Madison
Project lessons are disappointed at not recognizing what
they regard as the essential structure of a lesson: the
teacher first telling the students what will happen, then
showing them what to do and how to do it, then giving
them practice or drill, and, finally, summarizing the les-
son.

To be sure, none of these “parts of a lesson’’ can be
observed in typical Madison Project lessons. Their absence
is deliberate and important.

Perhaps, then, in the eyes of some teachers, we do not
present “lessons.” What we do instead is to suggest to

the children one or more mathematical tasks, and then
work with them, unobtrusively, as they devise their own
methods for tackling the tasks. Seven years of Madison
Project experience have convinced us that children can
learn a great deal in this way. Some semantic clarifica-
tion may, however, be achieved if we do not refer to these
as ‘'lessons”; we have instead introduced the phrase
creative learning experiences {or. alternatively, informal
exploratory experiences) to aescribe the “iessons’ —or, if
you prefer, the “nonlessons” —that are characteristic of
Madison Project teaching.

Over the past few years, Madison Project films and live
classes have been observed by a variety of professionals:
teachers, mathematicians, motivational psychologists,
clinical psychologists, logicians, physicists, guidance
counselors, school principals, psychiatrists, psychoan-
alysts, cultural anthropologists, and linguists, among
others. From these observers have come descriptive state-
ments that shed considerable light upon what is, and what
is not, a 'creative learning experience’ in the Madison
Project sense.

Concern for Basic Mathematics. The Project's creative
learning experiences are concerned with fundamental
mathematical concepts, such as variable, open sentence,
signed number, the number line, Cartesian coordinates,
function, etc. They are not concerned with highly optional
or artificial topics. Conseguently, a sequence of creative
learning experiences should add up to significant power
in broad areas of mathematics.

An Active Role for the Student. As far as possible the stu-
dent is given an active role to play. Passive roles, such as
listening to a lecture or reading exposition, are usually
avoided. The “active role,” however, may refer to mental
activity, as well as to physical activity. The child who leaves
class with a look of puzzled involvement is playing an ac-
tive role, quite as much as the student who is making a
measurement with a meter stick. Even in listening, the best
students have always played an active role, in terms of
critical thinking, seeking aiternatives, etc. What is sought
here, in the words of David Page, is to get every student
thinking the way the best students have always thought.

Concepts Learned in Context. We try to have the students
learn concepts in context. Every mathematical concept or
technique was developed to aid in attacking some kind of
problem. When we tear the concept out of this context and
attempt to state it in vacuo (as is too often the case), we
render the concept unintelligible. Thus, in our informal ex-
ploratory experiences, we begin not with definitions but
with tasks. The concepts unfold naturally as one seeks in-
sight into the nature of the tasks.

Opportunities for Discovery. in every lesson we try to have
opportunities for discovery lurking just beneath the sur-
face. These discoveries are sometimes an essential part
of the lesson, but often they have the effect of going be-
yond the basic lesson. In this latter case, it does not mat-
ter how many, or how few, students actually make the dis-
covery.
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The point here is to get the children in the habit of
"looking for patterns’ whenever they are working in
science or mathematics; the discovery —often accidental —
of such patterns is, after all, the main device by which
science moves forward.

As an example of one such lesson, consider the film
“First Lesson.”* In this, we have children trying to put
the same number in every [] in the open sentence

(Ix[D-(x[h+6-
so as to obtain a true statement. Sooner or later they find
that 2 - [] yields a true statement:

(EXE (5 [2]) +

- 10 +6=0 True

Similarly, 3 »[]yields a true statement:

(IXE)SXE) 0

- 15 +6 =0 True

Moreover, if you take any number other than 2 or 3 and put
it in each box, the resulting statement will be false. We
express all this by saying, '‘The open sentence

((O*0)-(sxDrs=0

has the truth set
{2.3}."

Now, the basic purpose of this lesson is to give the chil-
dren experience with '‘variables” (i.e., with "putting num-
bers into theD") and to give them experience with *‘signed
numbers” (suchas 9 ~ 15 = 76, etc.). There is, of course,
an intriguing and important discovery for any child who
sees it—but for the child wha does not see it, it is not es-
sential to the basic purpose of the lesson.

Appropriateness to the Age of the Child. We try to select
informal exploratory experiences so that they are appropri-
ate to the age of the child. Qur experience thus far is not
extensive enough to encompass ali types of school situa-
tions or all varieties of cultural background; nonetheless,
as a broad generality, we are finding fifth-graders {chrono-
logical age about 10 years) to be the *'natural intellec-
tuals,” interested in science and abstract mathematics.
Probably the intellectual curiosity of even younger chil-
dren — even two- and three-year-olds —is also very great, but
their command of abstract symbolism is limited. At about
grade 6, we usually encounter the beginning of a decline,
which extends over grades 7 and 8 (chronological ages 12
and 13); during this time abstract mathematics seems
often to lose some of its appeal for the child —he is more
easily captivated by ‘‘engineering’” or ‘‘activity” type

*This | is also pr ted in Chapter 3 of Discovery. We put
this example in at this point for illustration only. Please do not worry
if any of it seems strange and confusing —we shall develop all of
these ideas carefully in the pages which follow.

subjects, such as logic, statistics, and the physics of
forces and velocities.

Our presént generalities cannot be trusted too far, since
we suspect that variations in school and cultural situa-
tions produce variations in student preferences. In gen-
eral, we must leave it up to you, who actually know your
own students, to select topics appropriate to their in-
terests.

informality. Good creative learning experiences usually
seem to occur in a relatively informal atmosphere. This
fact was first emphasized to us by a linguist* who counted
evidences of levels of formality within the spoken lan-
guage (or gestures) of the teacher!

Low Anxiety Level. Good ''nonlessons” of the type we
are describing seem to be characterized by a low anxi-
ety level. Every child may be eagerly participating, but
there is relatively little fear of failure.

Nonauthoritarian Nature. We try to avoid an authori-
tarian atmosphere. So important is this that we try always
to provide autonomous decision procedures —that is, pro-
cedures whereby a student can distinguish true state-
ments from false statements, without recourse to the
teacher ar to books. For the very young child, the process
of counting often serves as an autonomous decision pro-
cedure. Is it true that 3 + 4 = 77 if the child can count
reliably, he can count out three objects, count out four
objects, combine them, and count the result.

For the mature mathematician, some combination of in-
tuition and logic ostensibly provides an autonomous de-
cision procedure, but history records many instances
where the separation of "true” from “false” has been
difficult and uncertain. At every age level, we try to pro-
vide an autonomous decision procedure if we can possibly
do so. ‘“‘Postman stories’” do this for the arithmetic of
signed numbers. Substituting coordinates into the open
sentence often does this for conjectures about graphs. In
many cases, the ability to solve the problem by a variety
of different methods, thereafter comparing results, pro-
vides an autonomous decision procedure. In all such
cases, the child can settle for himseff the truth or falsity of
the statement in question.

The “Light Touch.” We use a "'spiral” approach. A subject
is not pursued too heavily within a single session, but re-
curs from time to time, and in various guises, until it be-
comes familiar.

Intrinsic Motivation. One psychologist who advises the
Project gave a lecture in a college seminar room where tea
was served. At the start of the lecture, he balanced a half-
full cup (of the college’s best china) on the edge of the
table, just at the point where it teetered back and forth
and threatened at any moment to fall to the floor (on the
college’s best carpet). While the cup teetered, the psy-
chologist lectured.

No one heeded his words; all eyes were on the cup. Prob-
ably everyone in the room felt acutely uncomfortable, and

*Professor H. A. Gleason, Jr., of Hartford Seminory.




wanted to walk over and push the cup further onto the table.
Finally, one person did.

Why did everyone feel a need to perform this task? Not
for any extninsic reason—it was not our china, nor our rug,
nor would we have to clean up, nor would we be blamed. We
were not paid to push the cup onto the table —we were not
even asked to do so! Yet everyone wanted to, and wanted to
very much.

This is an instance of what we have called intrinisic moti-
vation. The task itseif cries out to be done. Gther examples
might be finding a key word in a crossword puzzle or finding
a long-sought piece in a jigsaw puzzle.

We try, wherever possible, to see that the mathematical
tasks that we suggest to the children possess this peculiar
compelling nature: you feel that you want to do it. We make
very little use of extrinsic rewards —indeed, some research
appears to indicate that extrinsic rewards can stand in
the way of genuine crealivity.

For further reading, see Appendix A: Arons (100); Can-
tor (13); Davis (28); Gage (115); Holt (3), (123); Kelly
(41); Sawyer (65); Schwab (1); Skinner (66); and Tor-
rance (70).

Objectives for
student growth

No impaortant hurnan activity is strictly bound by its ap-
parent objectives; on the contrary, it goes beyond these
objectives and may end up possessing values hardly con-
templated at the outset. We would like to think that vir-
tually all educational activity has this definition-defying
character, and that Madison Project teaching is no excep-
tion. It may, however, be useful to consider a brief list of
“objectives” of Madison Project teaching. These objec-
tives refer to objectives for the growth, over the years, of
an individual student. (The Project believes that the
teacher should also continue to fearn and to grow and that
the school program should continue each year to grow and
to improve. The prasent list of objectives refers, however,
merely to the growth that we should like to observe in each
individual student.) The list is surely incomplete, but it
may prove suggestive.

(1} We want children to develop their ability to discover
patterns in abstract situations.

(2) We want children to develop the kind of independent
exploratory benavior that goes beyona anything tne teacher
suggested, that explores paths that both teacher and text-
book author have overlooked, that sees open-ended possi-
bitities for extension where others would see only closed
completion of the assigned task. (And we do not want the
children “going on" merely in order to please us; we do
want them exploring beyond the boundaries of the day's
lesson because they feel there are some intrinsically reward-
ing things oulside those boundaries! One might say that this

OBJECTIVES FOR STUDENT GROWTH 3

is the difference between the dog who escapes from a fenced-
in yard because he wants to explore what's outside of the
fence versus the dog who heels because he has been trained
to heel.)

(3) We want the children to acquire a set of mental
symbols which they can manipulate in order to “try out™
mathematical ideas. (This point will be discussed more
fully when we come to study the arithmetic of signed
numbers.) Probably all good mathematicians possess such
a set of mental symbols, although they may be unable to
describe them in words.

{4) We want the children to learn the really fundamental
mathematical Ideas, such as variable, function. graph,
matny, isomorphism, and so on, and we want these ideas
to be learned early enough in life so that they can serve
as the foundation on which to build subsequent learnings.

(5) We want the children to acquire a reasonable degree
of mastery of important techniques.

(6) We want them to know basic mathematical facts — for
example, the fact that 1 = 1 = "1.

The objectives listed above are rather specific, mathe-
matical objectives that might be described as “'cogni-
tive.” There are also other important objectives, of a more
general nature,

(7) We want our students to emerge from our classes with
a genuine belief that mathematics is discoverable.

(8) We want them to be able to make a realistic assess-
ment of their own individual ability to discover mathe-
matics. (For nearly all students, this ability is greater
than they initially realize.)
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(9) We hope they will genuinely recognize the open-
endedness of mathematics.

(10) We hope they will develop an honest self-critical
ability. This is important in mathematics, as in nearly
everything else, It is no virtue to defend an incorrect line
of reasoning, nor does habitual defensive action facilitate
further learning.

(11) We hope our students acquire a personal commit-
ment to the value of abstract rational analysis.

(12) We hope the students will come to value “educated
intuition.'" The shrewd guess is never to be despised!

(13) We hope our students will come to feel that mathe-
matics Is “fun” or “exciting" or “challenging’ or “re-
warding”" or "worthwhile,”

{14) We want our students to learn something of the cul-
ture that lies behind twentieth-century man. We want them
to understand mathematical history because they have
lived through it. We can bring history right into the class-
room: the students can live through experiences such as
trying to solve x* = 4, only to find their path blocked, until
finally someone makes a brilliant suggestion and they are
able to move ahead. They have just wilnessed a significant
histarical breakthrough, and they can consequently under-
stand what this means in the history of mathematics In
general. Because they have seen mathematics discovered,
beheld this with their own eyes and heard it with their own
ears, they can understand the process by which mathe-
malics in general is discovered.

{15} Finally, we want our students to be able to appreci-
ate pure mathematics for its own sake, but at the same
time to be able to see mathematics in a natural relation to
physics, biology, and so on,

Experience, intuition,
and explicit formulations

One of the guiding principles in the sequencing of the
Madison Project materials is that we should avoid asking
children to discuss things they have never done. Instead,
we advocate a sequence wherein the child first gets ex-
perience, then (as a result) develops intuitive ideas, and
finally strives for explicit words and symbols to describe
his experience. This may seem obvious, but mathematics
teaching very frequently violates this sequence.

For example, it is common to start with one or more del-
Initions. Although this may at first glance seem logical,
a more careful look usually shows it to be unsatisfactory,
A definitior is more nearly the place to end up, rather than
the place to start. When we state a definition, we are sur-
veying an intellectual landscape and deciding which ideas
are in"* and which are “oul.’”” Such a setting of precise
boundaries cannot reasonably come until we have some
rough general familiarity with the landscape.

Our recommended sequence somewhat resembiles the
way man is exploring the moon. First we have the very
broad and rough |deas—for example, that the moon is
there. Then we get a slightly finer, but still quite rough,
version—the appearance of the moon's surface as seen
through a telescope on earth. Then we get still more de-
tailed versions—the photos sent back by space vehicles
which crashed into the moon, or passed near it. We shall
soon be getting yet finer detail, from space vehicles that
achieve a “soft" landing on the moon.

Thus we get a sequence: very rough ideas, rough ideas,
moderately refined ideas, more minutely detailed ideas,
efc. One consequence of this is that we often allow “er-
rors'’ to pass unchallenged in the early stages of a discus-
sion, because we feel that the time has nol yet come (o
ralse such an issue. Later, when the child's experience Is
more extensive, his intuition more fully developed, and his
ability to discuss his intuitive ideas in explicit language
15 greater, then we can discuss matters ot finer detail,

Notice that this means that we do not “try to get things
exactly right from the very beginning."" We try to see that
the feacher does not mislead the child unnecessarily, but
we do not expect sophisticated accuracy in the child’s
answers or suggestions. The finer detail comes later. For
example, it a child says that the open sentence

3 % D = b

has the truth set ma}. we would not necessarily remind
him of the case where D is substituted for a. We would //
we felt sure thai he was ready for ihis, Dtherwise we would
let this matter pass unnoticed for the moment. Another
way to say this Is: don'l answer a question unlil after it has
been raised. (Of course, if you feel the students are ready,
you can see that the question is raised.)

Professor Morris Kline says, “'Sufficient unto the day is
the logic thereof.”' One might add, "Sufficient unto the day
is the level of sophistication thereof.” And soon ...

Premature consideration of exceptional cases, compli-
cations, and other forms of pathology is nol beneficial to
maost students. They do not have the experience, the intui-
tion, or the explicit language to permit them to make use
of such considerations. This must be developed gradually,
and in the sequence: expenence, then intuition, then ab-
stract symbolism, vocabulary, and notation.
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What should we teach?

In the midst of today’s remarkable educational flux it is
hardly surprising that one often hears the question, What
should we teach? Like many important questions, this prob-
ably admits of no absolute and definitive answer. Nonethe-
less, all of us who are involved with education are involved
also with the question, What should we be teaching? Those
of us working in the Madison Project experimentation are
no exception, and, one way or another, this question is
never far from our thoughts. Here, briefly, are some of our
ideas on this subject:

In the first place, for an educational experience to be
one which we should give to a child, we believe it should
meet most or all of the criteria mentioned in the preced-
ing pages: it should be appropriate to the age of the
child, if possible it should be creative rather than routine
(never fear for the routine tasks —somehow they always
seem to be with us, and we need save no special niche to
protect them!), the learner should play as active a role as
possible, the motivation should be intrinsic rather than
extrinsic, and so on. But there is another criterion of very
great importance: what the child knows today should provide

the best possible basis for what he will wish to learn tomor-_

row. However, achieving this is never so simple as merely
saying it. Considerable insight into how this works can be
gained from the psychological theory developed by Lewin,
Piaget, Tolman, and Bruner.

The psychology of Lewin,
Tolman, Piaget,
and Bruner

‘Big things” can be made up from “little things"” in a
variety of ways. A journey of a thousand miles, say the
Chinese, begins with but a single step. However, if we
imagine building a long walk from a sequence of individual
steps, taken alternately with the left and right feet, the
relation of the whole to these parts is, for most purposes,
not very itluminating. Now one can imagine buitding knowl-
edge from a concatenation of small bits of information —
left, right, left, right, as it were —but, as with the journey,
the relation of part to whole is dismal and unilluminating.
Felix Mendelsohn, a brilliant technician in matters of
musical composition, is said to have written a symphony
one measure at a time —a technical tour de force of great
proportions. Such is not the usual method of composing
music. The common, and far easier, method is to work out
small pieces that have definite structural roles to play:
a first theme, other themes, harmonic sequences, varia-
tions of the themes, contrapuntal themes, and so on. These
parts relate to the whole in a way that the mind can grasp
and manipulate.

Suppose we were learning our way around a strange city.
The "putting one foot in front of the other kind of syn-
thesis might be attempted by taking a map, starting in the
lower left-hand corner, and gradually learning the map by
contiguous expansion —that is, *'strip by strip,"” or some-
thing of that sort. This is the dreary, dull, and dismal ap-
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proach, but it is nonetheless sometimes used in pro-
grammed instruction and in curriculum planning. Ob-
viously, a far pleasanter approach—and a far more pow-
erful one—is to seek here, also, for elements of struc-
tural significance. For the city of Syracuse, for example,
one might begin by learning its “main street,” which is
named Salina Street and runs (roughly) north and south,
together with its principal east-west street, which is
probably Genesee Street. These two elements produce a

Sometimes we encounter situations where a modest
change in the learner's cognitive structure will not be suf-
ficient. A more drastic change may be needed. We may
discover, for example, that Erie Boulevard and Genesee
Street, which we have been thinking of as roughly parallel,
actually intersect on the east side of town. An agonizing re-
appraisal of our cognitive structure for the street layout of
Syracuse is now in order. The map C, must be discarded, to

map which looks more or less like that in Fig. 1. &
g
™
a w
0 Erie Bivd.
2
3
_ Genesee St.
Genesee St.
FIGURE 1 FIGURE 3

The psychologists Jean Piaget, Kurt Lewin, E. C. Tolman,
and Jerome Bruner have presented an extended theoreti-
cal framework for discussing the cognitive structures that
we all have “inside our minds,” and the process by which
these cognitive structures become modified or yield their
place to newer, more up-to-date versions. If we take the
preceding two-street map as our starting point, we might
label it C,, to emphasize that it is our “first cognitive
structure.”

Experience will quickly require us to add more detail: we
may soon encounter Erie Boulevard, another major east-
west street, and we may find ourselves thinking of Syra-
cuse as shown in Fig. 2, which we might label C,.

Evidently, our second cognitive structure C, is a refine-
ment of C,. In the language of Piaget, the process of “‘im-
proving” the more primitive map C, into the more sophisti-
cated map C, represents cognitive growth through ‘‘assimi-
lation and accommodation” [see Appendix A, Flavell
(114), p. 49, and elsewhere].

Salina St.

Erie Blvd.

Genesee St.

FIGURE 2

be replaced by C,, which perhaps looks like the map in
Fig. 3. This process of discarding C, and replacing it by
C, represents, then, a more drastic instance of cognitive
growth [see Appendix A, Flavell (114), Chapter 2].

If we use this general point of view, we may say that the
child comes to each lesson with some cognitive structure
Cn, and, as a result of the lesson, we expect that cognitive
growth by assimilation and accommodation will occur, and
the child will replace C, by C,.,. Teachers do not al-
ways think of learning in these terms, but this approach
seems particularly appropriate as a way to think about the
process of learning mathematics.

Notice that every cognitive structure is wrong; you can-
not make from memory a perfect map of the city you live
in, nor can you give, from memory, a perfect description of
the total contents of your own house. ““Right"* and “'wrong”
are not useful criteria in judging cognitive structures—ali
cognitive structures are wrong. However, some are none-
theless preferable to others. In particular, a sequence of
maps which grow like that in Fig. 4 is probably a less power-
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PSYCHOLOGY OF LEWIN, TOLMAN, PIAGET, BRUNER

Salina St.

Erie Bivd

Genesee St.

FIGU

ful sequence than one which grows by the use of signifi-
cant structural elements, somewhat like that in Fig. 5,
even though both sequences are tending toward the same
sophisticated map, shown in Fig. 6.

What does this say in the case of mathematics? If we

devote grade 1 to addition facts up to 10, grade 2 to ad-

dition facts up to 100, and so on, we are putting one foot
in front of the other, left, right, left, right, ... This ap-
proach is weak in power.

If, instead, we seek those basic mathematical concepts,
techniques, and attitudes which play important structurai
roles in the development of the subject, we have a far
more powerful approach. Cartesian coordinates, introduced
(say) at grade 2, give us an ability to relate any arith-

P metic or algebraic problem to a geometric one, and vice
versa, For ali the rest of our lives we shall be able to unify
algebra and geometry into a single coherent subject! This
is power,
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Once we learn such basic structural concepts as variable,
tunction, mapping, and so on, we have a strong structurat
framework to which a/l of our subsequent mathematical
learning can be related. This, again, is power! Here we are
buiiding cognitive structures that can well serve as foun-
dations for improved structures in the future.

Piaget's notion of cognitive growth by assimilation and
accommodation, his view of learning as a sequence of
cognitive structures,

" Cn, Cﬂ+] A CIH-Z y Cn+3 oy
gives us a theoretical position from which we can answer,
at least in part, the question of what should we teach. We
should help the child build cognitive structures from which
future cognitive structures can easily and powerfully emerge.
It appears that a cognitive structure has more good growth
potential if it is organized around concepts which play basic
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structural roles in mathematics as a whole —this provides a
good framework for the assimilation of finer detail and pro-
vides maximum continuity and flexibility when the more
drastic process of accommodation forces us to replace some
cognitive structure with another quite different.

The mathematical concepts in this book — variable, open
sentence, truth set, function, mapping, number line, Car-
tesian coordinates, implication, contradiction, and so on—
have been chosen because we believe these concepts are of
precisely this nature; they do play fundamental structural
roles in the process of thinking about mathematics.

The topics in
brief preview

Which ‘“‘new topics” are offered in the present volume?
Primarily these:

Logic. There is a special branch of mathematics that is
concerned with combining staterments. This subject is
known as mathematical logic. The importance of this topic
has grown rapidiy since 1900, to the point where its inclu-
sion in precollege education seems nowadays to be ex-
tremely desirable. Surprisingly enough, mathematical
logic is a relatively new subject, being (in its present
form) a product mainly of the twentieth century. It prom-
ises to have important implications in any subject where
we start with some statements and work out others, as we do
in law, in philosophy, in science, and in mathematics.

Empirical Statistics. Some phenomena are properly
thought of as "'determined’’ or “‘deterministic.”” For exam-
ple, you hold a stone, release it, and it falls to the ground. It
doesn't sometimes fall — it always falls.

Other phenomena are not fully determined. For example,
you have a headache, take two aspirin, and perhaps the
sensation of pain ceases. Then again, perhaps it does not.

There is, however, a certain measure of regularity and
consistency even within these “chance’ phenomena. This
regularity can often be studied, and even made use of, by
means of statistics. This subject, also, has grown fremen-
dously in importance in recent years. lts inclusion in pre-
college mathematics seems almost inevitable, probably at

many different grade levels, and in many different forms. In
this book there is one chapter which introduces some of
the ideas involved in the study of ‘random’ variation, in
relation to the question of measurement error.

Basic Ideas about Numbers and Variables. The study of
statistics, logic, and similar topics is not possible unless
one also learns about certain concepts that are basic to vir-
tually all mathematics. The "‘essential”’ concepts include
the arithmetic of signed numbers, the idea of variables, the
idea of open sentence and truth set, the idea of functions,
the idea of implication, and so on. (These matters are treat-
ed both in Explorations and also in Discovery.)

Cartesian Coordinates. The great invention of rectangular
coordinates by René Descartes, in the seventeenth century,
made it possible to unity algebra and geometry into a single
subject. Being a seventeenth-century discovery, analytic
geometry is clearly not ‘‘new,” but it is of fundamental im-
portance, and many aspects of Descartes’ idea are actually
quite simple. The subject is of great significance for the
applications of mathematics in physical science, in social
science, and elsewhere. Some of these applications have
been taught easily and successfully at the kindergarten
level; many are highly suitable for grades 4-8.

Matrices. Matrices are basic to a great deal of modern
mathematics, and in many applications. In Project experi-
mentation, matrices have proved to be a source of intrigue
and a fruitful field for exploration by fifth-, sixth-, and
seventh-grade children, as well as by students in senior high
school.

“Mappings” or “Transformations.” This concept, which is
presented In an elementary way in some of the following
chapters, is one of the fundamental concepts of modern
mathematics. If children learn it early in life, it can serve
as part of the framework to which they can attach many
other new ideas that will come along later.

Derivation of the Quadratic Formula. This topic, quite
traditional at grade 9, has proved easy and interesting
for children in grades 5, 6, 7, and 8. We include it here
partly to relate our ‘'new’’ mathematics to the "traditional”
school program. (Our approach to the quadratic formula is,
we hope, more creative than the traditional approach, and
productive of deeper insights into what is really involved.)

All of these topics will be explained at greater length in
the appropriate following chapters.
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Using the Madison
Project films

Teaching the contents of this book is made easier by the
existence of important forms of assistance for the teacher.
Most important among these are the motion picture films
showing actual classroom lessons. These films enable the
teacher to see exactly how matrix algebra can be introduced
to fifth-graders, how Cartesian coordinates can be intro-
duced to second-graders, and so on. In many cases the
same children can be followed, via the filmed lessons, for
as long as five consecutive years of study of Madison Proj-
ect materials. Consequently, teachers can see what their
work will lead to in the next few years of the students’ lives.

Notice that the original purpose of these films is to help
teachers plan {and execute) successful lessons. The films
are primarily intended for viewing by teachers, rather than
by children. In a few cases, however, the films have been
viewed by the children, with seemingly good results. Explore
this possibility further if you wish. (A list of presently
available films is given in Appendix B.)

A varied diet of
experiences

When mathematics is always a matter of reading, writing,
and reciting, it cannot help but become dull for most stu-
dents. Greater variety in the kinds of classroom experi-
ences that they have with mathematics can change the at-
titudes of many children almost beyond belief.

For present purposes, we can distinguish four kinds of
classroom experiences:

(1) Students working in small groups, using the book.

(2) Students working in small groups, performing some
physical experiment.

(3) Class discussion, led by the teacher (which may in-
volve use of the book, or work on some physical experi-
ment, or neither).

(4) A “presentation” by the teacher, usually in the form
of an informal “lecture,” punctuated by student questions
or other student remarks.

The following sections offer some suggestions for provid-
ing for the first two sessions and for combining and se-
quencing these four kinds of sessions. Class discussions
and “lectures’ by the teacher will be discussed when ap-
plicable in the section '“Teaching the Materials.”

Students working in small groups, using the book

When the students are working in small groups, they usu-
ally arrange their chairs in clusters for convenient small-
group discussion. We usually let the students choose
their own groups, which vary in size from two or three
students to as many as six or eight students. We frequently
find that, as a student gets particularly interested in a prob-
lem, he will withdraw from a group discussion and work on
the problem by himself.
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When these sessions are going really smoothly, the teach-
er appears to have almost nothing to do. Actually, by this
we mean that he may not be called upon for a single in-
stance of exposition or explanation. His presence presum-
ably helps keep schoolwork in sight, and prevents degen-
eration into a purely social party situation. Mareover, the
fact that the teacher himself obviously values mathematics
enough to have spent a large part of his life thinking about
it tends to influence children profoundly. But the teacher’s
role is one of transmitting values and setting *‘tone.” He
does not actually need to “‘explain” anything.

(In order to emphasize this matter of values, Project
teachers will frequently sit at their desks and work out
some of the harder problems themselves. There seems to be
no more effective way to show that you value a task than to
actually do it!)

When things are going less smoothly, the teacher has a
more active role to play, in terms of more explicit interac-
tions with students. These may take many forms: talking
with individual students or working with one group or work-
ing briefly with the entire class. The teacher may suggest
alternative problems or topics for students to work on;
explain the general purpose of the lesson if that is not
clear; solve a problem, by way of illustration; exhibif the
work of one student, for discussion by the entire class;
summarize what has been done; recall earlier methods that
may be needed and so forth.

In lessons of this sort, we generally think of the teacher
as playing the role of a foreman with a group of workers.*

Although this role for the teacher has been known to
many fine teachers for some time, it is relatively new for
most Madison Project teachers, and we are quite excited
about it. When the teacher is cast in this ‘‘foreman’ role,
how can he be most effective? When should he take an in-
terest in the work of a student? When should he avoid in-
terfering? Should he avoid looking out of the window, on
the grounds that this overemphasizes his special pre-
rogatives, and perhaps disparages the importance of the
task the students are working on? When should he sit at his
desk, and when should he walk around the room? When he
joins one of the small groups, is it important for him to
sit at a student chair or desk, in order to seem a member
of the group, working on a common problem?

Al of the usual maxims for good teaching presumably
apply to the “foreman” role also: respect the student as a
human being and as an equal; be careful to avoid conde-
scending to the student; listen —really listen! — to what the
student says; when exposition /s called for, express the
essentials, not the minor details; and, perhaps above all,
avoid talking too much, doing too much, or mterfenng too
much.

*Nothing invidious is meant by this. Remember that there are
good foremen and poor on”, good work sm.mhom and poor gnes.
A “foreman’ is not ily unph or avthoritorian; “work”
can build growth, and even be quite enjoyable. Not all “work situa-
tions” are deadly and exploitative.

With ninth-grade classes, we usually arrange to have both
Discovery and Explorations available at these sessions.
Each student has his own personail book and writes in it.
We believe students show a marked improvement in inter-
est when each is allowed to write in his own book.

Students working in emall groups, performing a
physical experiment

In general, this situation is similar to that just dis-
cussed. We would, however, like to emphasize the impor-
tance of letting students perform physical experiments in
the mathematics class. This involves some extra effort, in
arranging materials and equipment, but the improvement in
motivation is almost beyond belief.

Combining and sequencing classroom experiences

In general, working in small groups is especially valuable
in providing experience (“building readiness’) for subse-
quent class discussions or informal lectures. For example,
we let ninth-graders work in small groups on Chapters 32,
33, and 34, with some brief class discussion. After several
days of this, we work out the derivation of the quadratic
formula on the chalkboard, with total class discussion.
The gains in this discussion, as a result of the few days
of previous ‘“individualized exploration,” are dramatic-
ally apparent.

Our sequence —explore, then discuss —might be repre-
sented diagramatically, as in Fig. 7.

Sometimes small-group work can stand entirely alone. If
it can, we would suggest that the teacher refrain from add-
ing on any unnecessary “‘summary,” which somehow ap-
pears condescending—as if the students can't think for
themselves. For ninth-graders, many topics usually go per-
fectly smoothly, with no help (or interference) from the
teacher. (We allow students considerable freedom in
"jumping around’ in the book as they wish, and do not
require them to work every problem. Nor need all students
work on the same chapter at the same time, except where
total class discussion makes this necessary.)

Working in smatl groups gives opportunities for review
or restudy by those individual students who seem to need
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it. Around midyear, some individual students may take
advantage of small-group sessions to work through the
chapters that deal with ‘“‘postman stories” and the arith-

metic of signed numbers.

in the following section we shall comment briefly on
which of the four types of lessons seem to work best for
each individual topic. There is, of course, considerable
variation from one class to another.

Some remarks on

grade level

Hopefully, we are moving toward the day when the arti-
ficial lines of demarcation known as '‘grade levels” will

disappear, and each child will really pursue a course of

tearning that is meant just for him, and which he helps to

determine.

That day is not here, for most of us, as yet. Consequently
—with apologies —we indicate here some of the experiences
the Project has had in teaching the various chapters and
topics at different grade levels.

At the same time, we indicate which of the four types of
classroom fessons we usually use for each topic.

Chapter Suitable Grade Levels Type of Lesson
Chapter 1
] notation grade 5 - grade 9 Class discus-
sion or small

Replacement set

grade 5 - grade 9

groups working
from the book.

Class discus-
sion or smal!
groups working
from the book.

Use of state- grade 5 - grade 9  Ciass discus-

ments as re- sion or small

placements for groups working

variables from the book.
Chapter 2

Cartesian product grade 5 -grade9  Class discus-

of two sets sion or small

groups working
from the book.

Plotting points grade 5 - grade 9  Class discus-

on Cartesian sion or small

coordinates groups working
from the book.

REMARKS ON GRADE LEVEL 13

Tic-Tac-Toe
Game

Chapter 3
Open sentences
with two vari-
ables

Chapter 4
Introduction of
signed num-
bers, using the
‘‘pebbles-in-
bag” model

Chapter 5
Arithmetic of
signed num-
bers, using
"postman sto-
ries’ (sums
and differences)

Chapter 6
Arithmetic of
signed num-
bers, using
"postman sto-
ries” (products)

Chapter 7
Nonstandard
numerals
and nonstan-
dard algorithms

Chapter 8
Graphs with
signed num-
bers

grade 5 - grade 9

grade 5 - grade 9

grade 5-grade 9

grade 5 - grade 9

grade 5 - grade 9

The appropriate
grade levels for
this topic will vary
from school to
school, depending
upon the basic
arithmetic program
that is used

grade 5 - grade 9

Class divided
into two
teams; you
may want to
present this
without using
the book.

Class discus-
sion (with
students vol-
unteering to
come to chalk-
board) or small
groups working
individually
with the book.

Probably most
effectively
done as class
discussion, as
in the film "A
Lesson with
Second Grad-
ers.”

Probably most
effectively
done as class
discussion.

Class discus-
sion or small
groups working
from the book.

Class discus-
sion or small
groups working
from the book.

Class discus-
sion or small
groups working
from the book.
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Chapter 9
PN and UV

Chapter 10

The "'secrets”
(i.e., the co-
efficient rules)
for quadratic
equations from
the book

Chapters 11 - 15
Logic

Chapter 16
The Game of
Clues

Chapter 17

Measurement un-

certainties (an
introduction to
some ideas of
statistics)

Chapter 18
Identities
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grade 5 - grade 9

grade 5 - grade 9

We prefer this for
grade 7 or later;
you might be able
to use it satis-
factorily with
somewhat younger
children.

grade 5 - grade 9
(If you keep it
simple, this game
is fun even for
first graders.
Don't hesitate to
change the rules,
in order to make
it really simple.)

We like this lesson
with sixth-graders,
but grades 7, 8
and 9 would be
suitable. Indeed,
it is an excellent
lesson tor ninth-
graders.

This would seem

to be an essential
part of the mathe-
matics program by
the time you reach
grade 9.

Might be rec-
ommended for
reading out-
side of class:
alternatively,
use either
class discus-
sion or small
groups.

Class discus-
sion or small
groups working
with books

(cf. the films
"First Lesson”
and ‘'Second
Lesson'').

Class discus-
sion or small
groups work-
ing from the
book.

The best meth-
od is to ignore
the book and
present this as
a game to be
played in
class, with the
teacher ex-
plaining the
rules.

This is a
“physical ex-
periment” type
of lesson (cf.
the film "Aver-
age and Vari-
ance™).

Class discus-
sion or work in
small groups or
as individuals.

Is It An identity?

Recognizing
identities

Chapter 19
Describing the
process of obtain-
ing new identi-
ties from old
ones, using
PN and UV

Chapter 20
Shortening
lists of alge-
braic statements
by using gener-
alization and
implication

Chapter 21
Writing deriva-
tions

Chapter 22
Extending our
axiom system, to
provide for sub-
traction and
division.

grade 5 - grade 9

grade 5 - grade 9

grade 5 -grade 9

grade 5 - grade 9

(We usually pre-
fer either grade
5, or grade 6, or

grade 9.)

grade 5 - grade 9

We use this as
a game be-
between two
teams, with
the entire
class partici-
pating, but you
may find bet-
ter methods.
Notice that
this does not
appear in the
student book
at alll We let
the teacher in-
troduce the
game.

Class discus-
sion or small
groups working
from the book.

Class discus-
sion or small
groups working
from the book.

Possibly it is
best to let the
students work
from the book,
insmali groups,
and then have a
“summing up”
session where
the derivations
are made in a
total class dis-
cussion.

Class discus-
sion or small
groups working
from the book




Chapter 23
Making up
derivations

Chapter 24
Extending sys-
tems: “lattices
and exponents

11

Chapter 25
Guessing func-
tions

Chapter 26
The form of
functions
(linear, quad-
ratic, etc.)

Chapter 27
Physical experi-
ments that lead
to functions

Chapter 28
The notation
f(x)

grade 5 - grade 9

grade 5 - grade 9

grade 5 - grade 9

grade 9

grade 5 - grade 9

grade 6 - grade 9

Class discus-
sion or small
groups working
from the book.

Class discus-
sion; alterna-
tively, let stu-
dents work in
small groups,
using their
books. (You
may want a
class discus-
sion near the
end.)

This is prob-
ably best done
as a class ac-
tivity, as in the
film entitled
“Guessing
Functions."

it may well be
that you will
prefer not to
use the stu-
dent books at
all on this
chapter.

Class discus-
sion or stu-
dents working
from their
books (perhaps
in smail
groups).

Physical ex-
periments per-
formed in
class, prefer-
ably with the
students work-
ing in small
groups.

Small groups
working from
the book.

REMARKS ON GRADE LEVEL 15

Chapter 29
Transform op-
erations and
“equivalent
equations”

Chapter 30
Transform op-
erations on in-
equalities

Chapter 31
“Variables'' ver-
sus ‘‘constants"

Chapter 32
General solution
of equations

Chapter 33
Hints on prob-
lem solving, 2 la
Polya

grade 5 - grade 9
(This might also
be appropriate
for younger chil-
dren.)

grade 5 - grade 9
(This right also
be appropriate
for younger chil-
dren.)

grade 5 - grade 9

grade 5 - grade 9

grade 9 (Pos-
sibly suitable also
for some younger
children.)

Our favorite
method is gen-
eral class dis-
cussion, but
the participa-
tion in the
class discus-
sion might be
better if, be-
fore the class
discussion, the
students
worked in
small groups,
using their
books.

For this one
case, it may
be well to have
the class dis-
cussion first,
and then let
the students
work in small
groups, using
their books.

Probably in-
troduction by
the teacher is
most effective,
presumably to
the entire
class; alterna-
tively, let
students work
in small
groups, using
their books.

Students work-
ing in small
groups, using
their books or
working indi-
vidually, using
their books.

Class discus-
sion or small
groups working
from the book.
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Chapter 34
The quad-
ratic formula

Chapter 35
History

Solving cubic
equations by

Cardano’s method

Chapter 36
Mappings

Chapter 37
Introduction to

matrix multipli-

cation

Chapter 38
Exploring
matrices

This is a tradi-
tional topic in
grade 9, and in
our experience
that is a very good
grade level for it;
however, we have
used it success-
fully with bright
students in grades
6, 7, and 8.

grade 9 (Pos-
sible also in
grades 5 and 6)

grade 9

grade 5 - grade 9

grade 5-grade 9

grade 5 - grade 9

At the ninth-
grade level, we
prefer first to
have the stu-
dents work in
small groups,
using the
book. After
this, we go
through the
entire deriva-
tion in a dis-
cussion with
the entire
class.

You can as-
sign this for
reading out-
side of class.

Students. work-
ing in small
groups, fol-
lowed by gen-
eral class dis-
cussion,

Combine some
small-group
work with class
discussion.
These are fun
and easy, once
you see the
point.

We prefer to
have the
teacher in-
troduce this,
working with
the entire
class.

Class discus-
sion or small
groups work-
ing from the
book. You may
want to use
some of each
approach.

Chapter 39
Exploring
matrices,
continued

Chapter 40
Fun with
matrices and
transformations

Chapter 41
Matrices and
transformations

Chapter 42
Matrix solu-
tion of simul-

taneous equations

Chapter 43
Word problems

Chapter 44
Establishing an
isomorphism be-
tween a special
set of matrices
and the set of
rational numbers

Chapter 45
X2 = 4

Chapter 46
Determinants

Chapter 47

Finding matrix
inverses

grade 5 - grade 9
(Perhaps Chapter
39 is easier than
Chapter 38; you
may prefer to
omit Chapter 38
and go directly
from Chapter 37
to 39.

grade 5 - grade 9

grade 5 - grade O

grade 9

grade 9

grade 5 - grade 9

grade 5 - grade 9

grade 9

grade 9

Either smali
groups or
the entire
class.

Perhaps small
groups or stu-
dents working
as individuals.
When students
make up an in-
teresting map-
ping, they can
solve it with
the entire
class.

Either small
groups or class
discussion.

Small groups.

Small groups.

Small groups
or class dis-
cussion.

Small groups
or class dis-
cussion.

Small groups
or class discus-
sion.

Small groups
or class discus-
sion.




TEACHING THE MATERIALS

This section contains a sequence of '‘informal exploratory
experiences’” that, taken together, provide an introduction
to such mathematical topics as matrices, logic, functions,
and Cartesian coordinates. In the following pages you will
find the Student Discussion Guide reprinted chapter by
chapter for your convenience. It appears in the left-hand
column of the page. Opposite each exercise of the Student
Discussion Guide, in the right-hand column, is the answer
to the exercise along with helpful comments and sugges-
tions for teaching the material, when deemed necessary.
Very often, also, you will find chapter background or in-
troductory information preceding the Answers and Com-
ments.

You have, therefore, in one convenient location, the
Student Discussion Guide, the answers for every exercise,
helpful teaching suggestions, and mathematical back-
ground material.



PART ONE e VARIABLES, GRAPHS, AND SIGNED NUMBERS

chapter 1 / Pages 1-4 of Student Discussion Guide
VARIABLES

One can make very little progress in mathematics without the
concept of varable. When a mathematician says ‘'variable,” he
is referring to the concept which is usually written as an

%y Noatr u i".ﬁ\\' \/Zetc.

We present here, for feachers, a somewhat more formal disgussion
of this concept than we would usually present to children.
The tist of statements®

)+ 1

(4 x4)+1
(5% 5)+1<20
(6x6)+1<20
(10 x 10) -+ 1 < 20

contains two true statements (the first two) and three false state-
ments (the last three). All five of these statements may be repre-
sented by one single mathematical “sentence” invoiving a variable,
as follows:

(3 x 20

A

20

X

i

S R

([ Jx[h +1<20 (1)

By itself, however, equation (1) does not permit us to reconstruct
the original five statements, for one simple reason: we do not know,
merely from (1), which numbers (or, if you preter, numerals) are
to be writfen in the ["]. In order to reconstruct the first statement,
we must write 3 in the [ ].

Mathematicians describe this by saying, “Use three as a re-
placement for the variable []."" We shall call this process “UV"
(which stands for “use of a variable”), and shall write

if we carry out the operation

3
we get

(MXG')+1<20.
or, if you prefer,

(3 x3)+ 1< 20

*Notice that the symbol < means “is less than.” Consequently, the state-
ment “3 < 5” is true, whereas the statement “10 < 7 is false.

18
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In order tc reconstruct aif five of the original statements from
equation (1), we must perform

3——>|~ ,

and then, going back to (1), perform

4 — [ |,

and so on, for 5, 6, and 10. Mathematicians indicate all five of
these uses of UV by saying that the replacement set* for the variable
is

13, 4,56, 10/
We might name this set “'R,”" for “replacement,’” and write
R = 13,4,56, 10} (2)

Now equations (1) and (2) together permit us to reconstruct
our original hist of five statements. That is to say, the list

(r.%\.l ;;+l<20

R = {3,4,5, 6, 10]

says exactly the same thing as this list:

(3x3)+1<20
(4 x 4) +1 <20
(5% 5)+1<20
(6 x6)+1<20
(10 x 10) + 1 < 20

Sometimes, however, we want to go beyond merely /isting these
five statements; sometimes we want to label them appropriately
as true or false:

(3 x3)+1=<20 True
(4 x4) +1 <20 True
{(5x5)+1 <20 False
(6x6)+1 <20 False

(10 x 10) + 1 < 20  False

*In mothematics, the word set means merely a collection or an aggre-
gate. We often write sets by using braces or “wiggly brackets,” so that, for
example, the set of New England states might be written

{Muine, New Hampshire, Vermont,
Massachusetts, Connecticut, Rhode lslund}.

Or the set of even numbers less than ten and greater than zero might be
written
[ |
{2, 4,68/
The order of writing the elements of a set is considered to be irrelevant,
so that this last set could alse be written

16,2, 4,8}
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To do this, using our powerful new shorthand, we shall use T to
name the set of those elements of R which produce a frue state-
ment, and F to name the set of those elements of R which produce
a false statement. Evidently, in the present example, T = {3, 4}
and F = {5, 6, 10}. Using this notation, the list

(ij)+1<20
R = {3, 4,5, 6, 10}
T

= {3.4)
F = {56, 10}

says exactly the same thing as this list:

(3x3)+1<20 True
(4 x4)+1<20 True
(5x5)+1<20 False
(6 x6)+1 <20 False
(10 x 10) + 1 <20  False

The power of this new shorthand is very great. Indeed, the
golden period" of mathematical advance was unlocked, in part,
by the introduction of the concept of variable. (Notice that,
unfortunately, the word variable is treacherous, for its mathemati-
cal meaning is quite different from its everyday meaning. Max
Beberman of UICSM has preferred the name ‘“‘pro-numeral,” by
analogy with “pronoun.')

A mathematical sentence which involves a variable is called
an open sentence, consequently,

3+D=5
(%D -(x[D+s=0
((]x[J)+1<20

are all examples of open sentences. All mathematical sentences
are divided into open sentences, true statements, and false state-
ments.

The set T is called the truth set for the open sentence: that is,
it is the set of those elements of R which will produce a true state-
ment when we use UV.

n using UV —~that is to say, in making numerical replacements
for a variable, as we did when we used

s— (]
(DXD)+1<20

to go from

to

(3x3)+1<20,

and so on—it is important to obey an agreement which mathemati-
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One of the major discoveries in mathematics occurred
when someone* realized that you could use sentences

such as
3+ ]=s

A sentence like this is called an open sentence or an
equation.

(1) Can you write something in the [_] in the equa-
tion above s0 as to produce a true statement?

(2) Can you write something in the [ ] in the equa-
tion above so as to produce a false statement?

*The originad discovery of open sentences rand what we shall call variables)
octurred so long ago that its precise ongin is not known. An English scholar
named A. Henry Rhind found, and boughl, what turned cut to bo a very
ancient Egyptian papyrus dating from before 1650 B.C. This papyrus s now
the property of the Brilish Museum. It was the work of a very ancient scribe
named Ahmes, and it includes the basic idea of variables. However, surprising
23 it may seem, Ahmes und the people of his time did not have a really satis-
factory method for writing numbers, and this appears to have prevented them
from doing very much with the idea of variables. We, today, cin do a great
deal with this idea, and will undoubtedly continue to dis er more and more
ways 10 use varables,

VARIABLES 21

cians all make: whatever number is written in the first [ in the
sentence, thal same number must be written in every other [] in
the sentence. This agreement makes the concept of variable useful;
without it, variables could not play their present important role
in mathematics. We shall refer to this agreement as the “rule for
substituting.”*

Frequently we shall not bother to indicate the replacement set
R. In such cases, the reader is free to use any number he knows
about as a replacement for the variable.

We would never present a formal discussion such as the pre-
ceding one, to children. Rather, when we want children to meet
the concept of variable, we shall try to arrange for them to meet this
concept unobtrusively, and to come upon it while they are in the
process of doing something.

All right. Then we, as teachers, must ask ourselves what '‘active”
thing children can do with variables. One answer, evidently, is that
we can ask them to solve equations such as

3+[ ]=5
D+D+D=9,

and so on. This, then, is what we shall now do.

or

Answers AND COMMENTS

(1) If you write 2 in the [ ], you will get the statement

3+E|=5

(or, it you prefer, 3 + 2 = 5) which is, of course, true.

(2) Any number other than 2 will produce a false statement. For
example, 1965 will produce

3+ 1965 =25 False.

*Compare Discovery (teachers’ text), pages 25 and 26. You may also be
interested in the film “First Lesson.”
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(3) Do you know what mathematicians mean when
they speak of “the truth set for the open sentence

3+ D = 5”7 Do you know how to write this truth
set?

(4) Do you know what mathematicians mean when
they speak of the “rule for substituting” ?

(6) Bill claims that the *rule for substituting” says
this: if an open sentence has more than oneDin it, you
must put the same number in every occurrence of the
1. Do you agree?

(6) Can you give some examples of using the “rule
for substituting” ?

(7) Tony says that the “rule for substituting” is
not the same as “making a true statement.” Do you

agree?

(8) For the open sentence

-+,
can you substitute so as to obey the rule for substituting
but make a false statement?

[STUDENT PACE 1

(3) The truth set for the open sentence 3 + [ | =5 is the set of num-
bers which will yield a true statement. In this case,

T =12}

{Notice that we have also just answered the question of how to
write this.)

For most students this is, of course, a rhetorical question; they
presumably do not know (however, having older brothers and sis-
ters, they may'). In any case, we prefer asking this question,
rather than merely making a statement; we feel the question does
a good job of getting the students’ attention.

(4) The rule for substituting might be stated as “Whatever number
you write in the first box in an open sentence, you must write
this same number in all the other boxes.”

(5) Bill is, of course, correct.

(6) Here are a few:

It we start with the open sentence

J-0-]

and use UV,
3—[ ]
we get
3+0=23
If we use
1985 — [ ]
we get

1985 + 0 = 1985,

(7) Tony is correct, as questions 8 through 12 clearly demonstrate.

(8) There are many ways te do this; here is one:

++=9, or

We have put the same number in each D and surely our re-
sulting statement is false, so we have successfully done what the
question asked us to do. (You may find it helpful to view the film
“First Lesson.”’)

T7+7+7=9
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(9) For the open sentence [page 2]

LI DTl

can you substitute so as to violate the rule for substi-
tuting but make a true statement?

(10) For the open sentence

(==
can you substitute so as to violate the rule for substi-
tuting and make a false statement?

(11) For the open sentence

o d-U-»

can you substitute so as to obey the rule for substituting
and make a {rue statement?

(12) What is the truth set for the open sentence

D+D+U=9?

Can you find the truth set for each open sentence?

as [+ [ =12

a4 (2x{ )+ =

VARIABLES 23

(9) Again there are many possibilities; here are a few:

4]+ [a]+[1]=

m+@+E49
[3i-[]+[5]-9
(8] «[1]«[o] - ¢
@+[2]+@:9

and so on.

(10) Here, alse, there are many. possibilities; here are some of them:
[1! + @ + @ =9
[1086] + 1732] + 1985| = o
L]+ (1] + o]
]+ 5]+ [£]

(11) There is only one way 1o do this:

3 — [ ]
3]+ [3]+[3]-

9
S

"

(12) {3}

(13) {8}
(14 {3}
Younger students, especially, will usually attack this problem

by trial and error, which is a good method in this example. For
instance, if we try 2 — [ ], we find

2x2)+1=7
4 +1=7
5 =7,

which is evidently false. Moreover, we see that 2 is foo small.
Hence, let's try 3 — [7]:

2x3N+1=7
6 +1=7
7 =7,

which is true.
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Si{nt:f 3 — ] yielded a true statement, the lruth set must
be {3}.

Actually, one might ask if there aren't some other numbers that
will also work. This is, a priori, a possibility; however, in problems
of the present type, the truth set contains exactly one element, so
we have completed our work on this problem once we have found
that 3 =[] produces a true statement.

15)  (3x[_])+5=38 (15) {11}
16) (2x[ ])+20=25 (16) {24}

Here, the trial-and-error method which we discussed in answer
to question 14 can be used to show us that 2 is too small and also
that 3 is too targe. For a further discussion of problems like this,
see Discovery, Chapters 20, 21, and 22. You may also wish to view
-the film entitled “Open Sentences and the Number Line.”

i

an @x[)+n =22 (17) {33}

Chifdren usually tackle this problem something fike this:
Ty3 — [ ]
(3 x3)+11 =22
9 + 11 = 22
20 = 22 False

3 is too small.

We can represent this on a number line:

Too small

Try4 -— D:

(3 x4)+ 11 =22
12 + 11 = 22 False

4 is too large.

The number-line picture now looks like this:

T T

Since 3 x[_] must be a whole number, we can see what denomi-
nator we must use. Evidently, the answer must be either 31 or
34, or else no number works! Which js it?
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(18)

(1ox[])+1 =28

(19) What do we mean (in mathematics) when we
speak of a variable? How can we write a variable?
How many ways do you know to use a variable?

(20) Sometimes, when we want to be very pre-
cise, we specify the replacement set for the variable.
John says that if we specify the replacement set
R = {3, 4,5,6, 7} for the variable (] and if we write
the open sentence

3+D=(2+D)+1,

we have really written five mathematical statements
that don’t have [ ]’s in them! Do you agree?

VARIABLES 25

(3 x33) +11=22
11 + 11 =22  True

Consequently,

(18)

T={32].
{23} or {27}

The procedure here is generally similar to that of the preceding
problem.

(19)

(20)

This, too, may be a rhetorical question. Still, one or more of the
students may actually know that we write “variables” as x, y,
a, A, r,[]. /A, V. b, h, etc. These symbaols behave much like
pronouns. The sentence

He is President of the United States
or, even better,
_________is President of the United States

has, itself, no truth value. it will become true or false depending
upon what we put in the blank, or use as an antecedent of “he.”
In just the same way,

D+9:15

is neither true nor faise; it will become true or faise when we
use some number as a replacement for the [_]. The [_] is known
as a varioble.

ARternatively, we can think of

[]+9=15
with the replacement set
R={1,2345,...}
as standing for the unending list of statements

1+9=15
2+9=15
3+9=15

4 +9=15

One of these statements is true; all of the others are false.

John is right. The open sentence and replacement set
3+ D = (2 + D) + 1
R = {3,4,5,6,7}
mean exactly the same thing as the five statements:
3+3=(2+3)+1 3+6=(2+6)+1
3+4=(2+4)+1 3+7=(2+7)+1

3+5=(2+5)+1
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(21} Do you know what the symbol

<

means (in mathematics) ?

(22) Which statements are true and which are false?

(a) 3 <5
(b (2 x3) +1 <12
ey 2 <1
(d)o <7

{e) 1000 < 1,000,000
[page 31

Hi12 <7

(g) 1006 < 1060

th) 2000 < 1000
(i)5<5

() (3x4)+1<10

) (3x4)+1<13

(23) Suppose you wanted to tell somebody these
seven statements—only these seven, and neo others:

5+ 4<2]
5+5<21
+ 6 <21
+ 7 <21
+8 <21
+ 9 <21

+ 10 <= 21

(. I T T R S Y

Could you do this by writing only one open sentence
and by writing the replacement set for the variable [ J?

[STUDENT PAGE 3

Since mathematics is deeply concerned with the discovery of
pattern, notice how clearly the pattern of these statements is
revealed by the variable notation.

(21) The symbo! < means “is less than.” For example, the statement
3<5
would be read:

Three is less than five.

(22) (a) True
(b) True
(c) False
(d) True
(e) True
{f) False
(g) True
(h) False
(i) False
(j) False
(k) False

It is often helpful to interpret
a<b
to mean
a lies to the left of b on the number line.
We shall see the value of this interpretation when we begin to deal

with signed numbers,

{23) The open sentence and replacement set

5+D<21

R = {4,5,6,7,8,9,10]

mean exactly the same thing as this tist:

5+4 <21
5+ 5 <21
54+6 <21
5+ 7 <21
5+8 <21
5+9 <21
5+ 10 < 21
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(24) Paul has written some open sentences and indi-
cated replacement sets for each variable. In each case,
can you write the statements Paul means, without
using variables?

@@3x[])+1<25 R
(b)D+D=2xDR
@3+[]=[]+3

{0,2,4,6}

{100,7,3, 24}

R ={57.91011}

(25) Jill wrote these statements:
7+(2%x1) <50
7+ (2%3) <50
7+ (2x4)<350

7 + (2 x 10) < 50

Can you indicate these four statements by writing one
open sentence and by writing the replacement set for
the variable?

(26) Don wrote these statements:

(8+1)x(8-1)=(8x8)-(1x1)
(8+2)x(8-2)=(8x8)-(2x2)
(8+3)x(8-3)=(8x8)-(3x3)
(8+4)x(8-4)=(8x8)-(4x4)
Can you represent Don’s four statements by writing
one open sentence and by indicating the replacement
set for the variable?
[page 4]
(27) Nancy used the letter P to indicate a variable,
and she wrote this for the replacement set for P:
R = {Jill, Eva, Eileen}
Then she wrote:
I like P.
What did Nancy mean?
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(24) (@) (3 x 0) + 1 <25

(3x2)+1<25
(3 x 4) +1<25
(3 x s) +1<25
(b) 100 + 100 = 2 x 100
7+7=2X7
3+3=2x3
24 + 24 = 2 x 24
)3 +5=5+3
3+7=7+3
3+9=9+3
3+10=10+3
3+11 =11 +3

You may want to view the film entitled ‘"Variables and Replace-
ment Sets.”

(25)7+(2xl:])<50
R={1,3,4,10}

26y (8+[ [)x (8- ) =(8x8)~(_|x[]

R = {1,2,3,4}

(27) The open sentence and the replacement set

| like P.
R = {lill, Eva, Eileen}

mean exactly the same thing as this list:

I like Jill.
| like Eva.
I like Eileen.

Note: Sometimes, in order to be sure we match up the replace-
ment set with the variable correctly, we shall use subscripts, like
this:

Ro = {Jill, Eva, Eilleen}.
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(28) Tom used the letter P to indicate a variable, and
he said that the replacement set for the variable P was
to be:

R = {“St. Louis is a city”, New York is a city”,
“Los Angeles is a city”, “Miami Beachisa
city”, “Minot is a city”}

Then Tom wrote:
P is a true statement.

What did Tom mean?

(29) Dick wrote:
P is a false statement.
R = {“Massachusetts is a city”, “Connecticut is a
city”, “Missouri is a city”, “Alaska is a city” |
What did Dick mean?

(30) Suppose I write:
I like P.

What would the truth set for this open sentence be for
you?

(31) Kathy uses the symbol “~” to mean “not.”
Kathy wrote:

( ~P) is false.
R = {"The violin is a musical instrument”, “The
trumpet is a musical instrument”, “The

piano i8 a musical instrument”, “The
trombone is a musical inst.rument"}

What did Kathy mean?

(32) Can you make up some examples like these?

[STUDENT PAGE 4

(28) “St Louis is a city” is a true statement.
“New York is a city” is a true statement.
“Los Angeles is a city” is a true statement
“Miami Beach is a city” is a true statement
"Minol is a city” is a true statement.

(29) “Massachusetts is a city” is a false statement.
“Connecticut is a city” is a false statement.
“Missouri is a city” is a false statement.
“Alaska is a city” is a false statement

(30) This will be different for each student.

(31) “The violin is not a2 musical instrument” is false.
“The trumpet is not a musical instrument” is false.
“The piano is not a musical instrument” is false.
“The trombone is not a musical instrument” is false.

Notice that, because the English language does not work the

same way that mathematical symbols do, the "'not"” symbol appears
to the left of the P in mathematics, as

~ P,

whereas the word not is usually inserted somewhere in the middle
of the string of English words:

The violin is not a musical instrument.

Indeed, precisely where we insert the word not is, unfortunately, a
matter of great importance. Notice that the statements

Not all men live in St. Louis
and
All men live not in St. Louis

have different meanings; indeed, the first by itself can have either
of two different meanings:

It is not true that all the men in the world live in St. Louis.
It is not true that only men live in St. Louis.

(32) There are many possibilities.
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(33) In replacement sel the same us truth set?
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(33) No. The replocement set tells us which elements we have
agreed lo substitute for the variable. Not all of these substi-
tutions will necessarily yield true stalements. The truth set
tells us which of these replacements agreed upon actually
yield true statements.

It might be interesting here to introduce the word subser. A set
A 15 called 3 subset of a set 8 1f every element of A is also an ale-
ment of 8 This is written

ACBEB

For example, if W={2,4,6} and U= {1, 2, 3, 4, 5, 6|, then
wcu
Using this word, we can say:
The truth set is a subset of the replacement set.
Notice that, for any set 5 whatsoever, it must always be true that

SCS

There is one further quirk of mathematical language. Since the
emply sel, @, has no elements In It, then there are no elements of
@ that fail to be elements of S, for any set S. Herice, every element
of @ is an element of 5, and the emply sel is regarded as a subset
of syery sed,



CHAPTER 2
The Cartesian Product
of Two Sets

[page 5]

When we speak of an ordered pair of names (or nu-
merals, or whatever), we mean a pair where order is
important. Thus, the ordered pair

{Nancy, violin)
is not the same ag the ordered pair

(violin, Nancy).

(1) Suppose we write the open sentence
P studies Q,
and we agree to indicate replacements for the variables
P and Q by writing:
The ordered pair (P, @) may be either
{Nancy, violin) or (Bill, clarinet).

What would we mean?

(2) Joe says we would mean

violin studies Nancy
and
Bill studies clarinet.

Did Joe use the order correctly?

chapter 2 / Pages 5-9 of Student Discussion Guide

THE CARTESIAN PRODUCT
ofF Two SETS

This chapter introduces two ideas: the Cartesian product of two
sets and the idea of rectangular (or Cartesian) coordinates.

The formal definition of the Cartesian product of sets A and 8,
which we write

A x B,

is “A x B is the set of all ordered pairs (x, y), where x is an element
of A, and y is an element of B." Mathematicians sometimes use
the symbol € to mean “is an element of.” Using this symbol, we
could write

A x B is the set of all ordered pairs (x, y),
where x € A, and y ¢ B.

Answers AND COMMENTS

(1) and (2) Joe is wrong. According to the agreement stated in the
problem, the first element of each ordered pair is to be used as
a replacement for the variable P, and the second element of each
ordered pair is to be used as a replacement for the variable Q.
We can write out the two uses of UV as follows:

Nancy — P Bilt - P

violin - Q@ clarinet - Q
Result: Nancy studies violin. Resuit: Bill studies clarinet.

30
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If 4 is the set
A = (Al Bill, Henry}
and if B is the set
B = {Nancy, Eileen, Eva} s
then the Cartesian product 4 x B is the set
{(AL Nancy), (Al, Eileen), (Al, Eva),
(Bill, Nancy), (Bill, Eileen), (Bill, Eva),
(Henry, Nancy), (Henry, Eileen), (Henry, Eva)}_

@ 1f (3) A x 8= {(1,5),(1,6),(2 5) (2 6), 3, 5)(3,6)

A =:1,2,3
{ } Notice that the number 1 is not an element of A x B, even

though (1, 5) and (1, 6) are elements of A x B. indeed, no number
is an element of A x B; the elements of A x B are ordered pairs
of numbers. (Perhaps in an analogous way, a mother is not a fam-
ily, although she may be part of a family.)

and
B = {56},

can you write the Cartesian product

A x B?

(4) Using the same sets as in question 3, canyou  (4) B x A = {(5,1),(5,2), (5,3), (6, 1), (6, 2), (6, 3)}
write the Cartesian product

B x A?

René Descartes was a French mathematician and
philosopher who was born in 1596 and who died in
1650. He made very effective use of the idea of naming
points in the plane by using ordered pairs. The adjec-
tive “Cartesian” is derived from Descartes’ last name.
Az we shall see, discoveries made by Descartes in the
seventeenth century continue to influence our lives

. today. [page 6]
(6) Do you know how Descartes was able to use (5) Descartes’ method was to “cross” two number lines:
{ ordered pairs of numbers as names for points in the
: plane?
i 4 A vertical number line
3
2
1
o

A horizontal number line

I 5L 1 1 Il J i
¥ I 1 T 1 ¥ =

0 1 2 3 4 5

*Cross” the two number lines so that the point
labeled "0 on the vertical line becomes coinci-
dent with the point labeled 0" on the horizontal
line.
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(6) What was life in the United States like during
Descartes’ lifetime?

[STUDENT PAGE 6

By crossing the number lines Decartes obtained a grid (much
as one uses streets and avenues in Manhattan):

This point is '3 blocks over
to the right,” counting from
the origin, and is "2

blocks up,” counting from
the origin. Consequently,

it is labeled (3, 2).

This point is called
the “origin” and is
labeled (0, 0).

You may want to view one or more of these films: “First Les-
son,” ‘'Postman Stories,” ‘A Lesson with Second Graders,”
*'Graphs and Truth Sets.’

(6) Descartes was born in 1596 and died in 1650. To compare this
with lite in the United States (which, of course, was not the
“United States” in those days), one might consider, first of all,
the dates displayed on the number line on page 33.

We suggest that you cut out the number line on page 33, paste
the sections together, and display it for your students’ use during
the discussion of question 6.

For useful references on life in the colonies during Descartes’
lifetime, see Appendix A: Barck (148), Wright (162).

By contrast, life in France and Germany, where Descartes lived,
showed presumably more adequate provision for intellectual en-
deavors, as witness the university founding dates, displayed on
the number line on page 35. (Again, we suggest you cut out the
number line, join the sections, and display it for your students.)

For references, consult Appendix A: Clark (150).

Further insight into the age when Descartes lived may be gleaned
from the answers to questions 7 through 10.

It may seem that Descartes lived a long time ago, but this is
hardly the case. One can make convincing arguments that "“our
modern point of view' was born in Tudor England (among other
places), and hence dates from around 1485. Certainly the music
of Gabrielli and the elder Scarlotti still speaks meaningfully to
us today —not to mention the plays of William Shakespeatre.

That Descartes himself had much of a *‘modern’ point of view
may be illuminated by the following note which he wrote in his
book La Geometrie:

| hope that posterity will judge me kindly, not only as to the
things which | have explained, but also as to those which | have
intentionally omitted so as to leave to others the pleasure of
discovery.

For further information on the life and times of Descartes, see
Appendix A: Bell (149), Newman (158).
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(7) During Descartes’ lifetime did they have radios?
television? telephone? airplanes? automobiles? bi-
cycles? How did people travel in Descartes’ time?
Did they have railroads? steam engines? Did they
have printed books in those days? Were they able to
sail across the Atlantic Ocean?

(8) What kind of music did they have in Descartes’
time?

THE CARTESIAN PRODUCT OF TWO SETS 39

(7) Obviously, they did not have radios, TV, telephones, airplanes,
or automobiles. (Compare also the answer to question 6 above.)
The dates of a few important inventions and innovations are
shown on the number line on page 37, which we suggest you
cut out and display.

Obviously, this is the merest beginning of what can be done with
number lines and graphs in attempts to illuminate the temporal
ordering of history. You may find other number-line pictures more
revealing than those presented here. Make some of your own if you
like.

Furthermore, a graph, on rectangular (Cartesian) coordinates,
that plots time in years on the veitical axis and the estimated num-
ber of different titles of printed books in existence (in Europe) at
that time on the horizontal axis might be very revealing:

Number of different A
titles of books

Your students
might complete
this graph as a
research project.

]

-+

———————+—x
LI B | ¥ Year
Q o 9 Q Q o

< T 0NN O W N~
S3ehg 8l

(8) Descartes, dying in 1650, never heard the music of Johann
Sehastian Bach, who was born in 1685, aithough Bach is the
earliest major Western composer whose works are well known
at the present time. Interest in pre-Bach music nowadays runs
high, and the time may not be far off when composers of Des-
cartes’ time will be more familiar than they are today.

An effective teaching unit might combine the major mathemat-
ical discovery of Descartes (the *‘crossed number lines,” or Carte-
sian coordinates) with an attempt to get a glimpse of Western
civilization in 1596 - 1650. The unit might include listening to
some of the music of that period and discussing transportation in
that period, life in the American colonies at that time, perhaps
some literature of that period, etc.

The following are some recordings of music from the time of
Descartes:

1. Erwin Bodky, playing harpsichord and clavichord, on the
record entitled Music of the Barogue Era for Harpsichord and
Clavichord, Unicorn Records, UN 1002. This recording includes
music of Samuel Scheidt (1587 - 1654}, one of the major pre-
Bach composers, whose music has immediate appeal for the twen-
tieth-century listener, and Matthias Weckmann (1619 - 1674).

2. Recorder and Harpsichord Recital No. 3, London label
LL1026, which teatures Carl Dolmetch and Josepn Saxby playing
the music of William Lawes (1602 - 1645) and also the famous
folk tune, '‘Greensleeves,” which was already ''old” in Descartes’
time.
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(9) Are there any schools or colleges in the United
States today that were in existence during Descartes’
lifetime? Are there any in England? in France? in Italy?

(10) Did they have plays in Descartes” day? What
books, novels, or plays, if any, might Descartes bave
read or seen?

(11) Jimmy wanted to give number names to points
on a line. First, he named one point “0”;
]

+—
0

then he named a point “1.”

R |
L
0o 1
Can you give number names for some other points on
Jimmy's line?

1 1
L a—

0 1

[STUDENT PAGE 6

3. Surely one of the major pre-Bach composers was Claudio
Monteverdi. His *‘Madrigals, Book 1" (1587) can be heard on
the Allegro LP recording ALG 3020, performed by the Roger
Wagner Madrigal Singers.

4. A most significant area of music from this period is repre-
sented by Gregorian chants. An excellent recording is Period LP
number SPL 569, Gregorian Chants, Vol. 1, performed by the Trap-
pist Monks” Choir of Cistercian Abbey.

By way of contrast, you may want to listen to some music that
was too ““modern” for Descartes to have heard. For example, some
Bach organ music performed on a Baroque organ {(much is avail-
able); the Mozart ““Sonatas for Violin and Harpsichord''; some
harpsichord music of Domenico Scarlatti (1685 - 1757), for ex-
ample, Fernando Valenti on Westminster LP XWN 18918; Vivaldi
oboe and bassoon concertos; the harpsichord music of Pachelbel,
Béhm, Rathgeber, and Fischer (available on the Bodky LP men-
tioned above); the symphonies and string quartets of Haydn (born
in 1732); the symphonies of Beethoven; and the fifth symphony of
Sergei Prokofiev. (Perhaps also, some contemporary “electronic”
music.)

In connection with Descartes’ use of coordinates, you may want
to look at a text on analytic geometry and the study of conic sec-
tions, and to consult Appendix A: Bell (149) and Leasor (155).

(9) In 1638 the Dutch in the New Amsterdam colony founded what
is now known as the Collegiate School of New York, possibly
the oldest private school in the United States. Roxbury Latin
School, founded by John Eliot in 1645, still operates today,
as does the Hopkins Grammar School (New Haven, Connecticut),
which was founded in 1660. Boston Public Latin School was
founded in 1635. Harvard College was founded in 1636 - 37,
and William and Mary College was founded in 1693, The first
universities in the “New World” were founded by the Spanish
in the “New Spain” colonial empire. Many European univer-
sities had existed for centuries by the time Descartes was born.
(Compare answers to questions 7 and 8.)

For further reading, see Appendix A: Hofstadter (153), Haskins
(152).

(10) If you wish, you can use this question as a research assign-
ment for some of your students.

(11) Once you have chosen 0 and 1, you are committed. No further
“arbitrary" cheices are possible if we want segments to “add
up” in the natural way. For example,

2
I T Ll

0 1

lells us, since 1 + 1 = 2, that the segment 01 “added” to itself
must “equal” the segment 02:

0 1

1-----1
4+ >

0 1 1

2 must go here!
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(12) Ellen used a vertical line.

She named one Then she named
point “0.” another point “1.”

- 1
1, F .
[page 7]

Can you give number names for some other points on
Ellen’s line?

1
TO

Descartes used a pair of crossed number lines in
order to name the points in the plane.

A

y

THE CARTESIAN PRODUCT OF TWO SETS

Similarly,

\ 4

o 1 2 1
3 must go here!
One can continue this pattern indefinitely.

(12) This is similar to question 11.

11
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Since he was going to use ordered pairs of numbers,
he had to decide upon an order. He decided to use the
first number of the ordered pair to refer to the hori-
zontal number line and the second number of the
ordered pair to refer to the vertical number line.

A (Second number)

-

I
(First number)

{13) The point (0,0), which is often cailed the ori'gin, is located where

(13) If we draw a grid, like this,
the vertical and horizontal axes (or number lines) cross:

|
1
T

T |
= T
FTi

can you find the point Descartes named (O, 0)?

—

This point is named (0, 0).

[page 8]

(14} Can you find the point Descartes named (2, 3)? (14) This point is named (2, 3).

/]
|/

3 blocks up.”

| T | o

————————

*2 blocks over to
the right.”

Notice that one counts “city blocks,” rather than “intersections.”
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(15) Can you find the point Descartes named (4, 1)?

(16) What names (using ordered pairs of numbers)

would Descartes give to these points?

(17) Descartes could use his “crossed number lines”
to make pictures representing Cartesian products.
Can you use these “Cartesian coordinates” to make a

picture representing

AxB, ifd= {34 andB = {0,1}?

L
ERRE
"-‘_-m_r.?"‘*-
7
D

5 —
8] 1
o i-
c I

i
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(15) y

This point is named (4, 1).

You may want to view the film ‘A Lesson with Second Graders."”

(16) A: (3,49
B: (8,2)
C: (6,0)

D: (6,5)

(17) A x B = {(3,0), (3,1), (4,0), (4, 1)}
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(18) Suppose 4 = {1,2, 3}. Suppose B = {2, 3}.
Can you make a graph (or picture) showing the
Cartesian product 4 x B? How many points will there
be in the picture representing A x B?

(19) Suppose that the set M has r elements and the
set N has 3 elements. How many points will there be
in the picture representing the Cartesian product

Mx N?

(20) Suppose that A = {Nancy, Jane} and B =
{Don. Roy, Louis}. Can you write the Cartesian
product

A x B?
[page 9]

(21) Suppose that 4 = {red’, green, ye]low} and

B = {hat, scarf}. Can you write the Cartesian pi‘oduct
A x B?

(22) Suppose that A = {2,3,4} and B = {1,2}.
Make one graph to show 4 x B and another graph to
show B x A.

We can play a game using Descartes’ method of
naming points in the plane by means of ordered pairs.
This game is just like tic-tac-toe, only different.

In this game, called “four-in-a-row,” if you get four
of your marks in an uninterrupted straight line, you
win. All of your marks, unlike in tic-tac-toe, will be
on the intersection of two lines. (The board allows
room for five marks in a line.)

One team’s marks are x's, and the other team’s
marks are o’s. The teams take turns naming points
they want marked, using Descartes’ system of ordered
pairs of numbers. The teacher marks the points that
each team names. (If you make an illegal move, you
lose that turn, and no point is marked.)

The “playing board” looks like this:

3

{STUDENT PAGE 9

(18) A x B = {(1,2),(1,3),(2,2), (2,3), (3,2), (3,3)}

|

There are 6 points in this
picture of A x B.

(19) There will be r x s points.

(20) A x B = {(Nancy, Don), (Nancy, Roy), (Nancy, Louis), (Jane,
Don), (Jane, Roy), (Jane, Louis)}

21) A x B = g(red, hat), (red, scarf), (green, hat), (green, scarf),
(yellow, hat), (yellow, scarf)}

(22) & x B = {(2,1),(2,2), 3, 1), 3, 2), (4, 1), (4, 2)}
b

Graphof A x B
B x A= {(1,2)(1,3),(1,4), (2,2),(2,3), (2,9}

Graphof B x A
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(23) Here is a sample game. See if you can keep

track. of it.

What does the board look like now?

(24) Can you finish the game that we have just
started? Which team do you think was ahead at the

end of question 23?

x team
o team

x team

o team:

x team
o team
x team

o team

: (3,2)
:(2, 2)
: (3,3)
(3.1)
H (4,5)
: (0,0)
: (1,3)
: (2,1)

THE CARTESIAN PRODUCT OF TWO SETS

(23) Here is the game, step by step:

X team: (3, 2) 0 team: (2, 2)
|
-
X team: (3, 3) O team: (3, I)
A
I
X team: (4, B) O team; {0, 0)
Y
]
Since (4, 5) was illegal,
no point was marked,
X team: (1, 3) O team: (2, 1)

|

©

©

(24) The x team will win if they don't make any mistakes.

45



chapter 3/ Pages 10-11 of Student Discussion Guide

OPEN SENTENCES WITH
MoRE THAN ONE VARIABLE

In this chapter we want to consider open sentences such as

D+A=8
() +s=A
(=D + (Ax ) =25

and so on. We shall, in most cases, be dealing with two variables, ]
and /\. In such cases, the “rule for substituting” says that:

Whatever number we put in one [_] must be put in all the other
[]'s; whatever number we put in one /\ must be put in all the
other /\'s; the number in the /\ may be the same as the number
in the [] or it may be different—we get our choice!

Thus, for the open sentence

- +A=-0O+A)
both of the following substitutions are legal, according to the rule
for substituting:

([sl+ 3D+ A= (5]+ A)+[3]
((s]+[3) + A= B+ A) + 5]

With the two vatiables @nd N\ there are two common methods
of indicating the repfacement sets:

(i) We may use subscripts, as here, so that
LI+ A=A+1]
Ry = {1, 2}
R, = {5.6}

means exactly the same as this list:

1+5=54+1
1+6=6+1
2+5=54+2
2+6=6+2

(i) We may use ordered pairs of numbers. in this case, we agree
that the first number in the ordered pair is the replacement for the
variable [ ] and that the second number in the ordered pair is the
replacement for the variable /. Thus,

O+ A-A+0
R - {(11) (1:3) (2.7))

46
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CHAPTER 3
i Open Sentences With
More Than One Variable

Ipage 10]

{1) Sometimes we want to write an open sentence
that has more than one variable in it. Do you know how
we can do it? Can you give some examples?

(2) Nancy gave these examples:
O+ A=
HEERVA
L+«d=A
O-00-A-»

Can you figure out what Nancy meant? How would the
“rule for substituting” work for Nancy’s open sentences?

(3) Bill says that Nancy forgot to indicate any
replacement sets for her variables. What do you think?
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means exactly the same as this list:

1+1=1+1
1+3=3+1
2+7=7+2

Notice that the second method allows greater flexibility. Indeed,
one could not have written the second example by the first method.

Answers AND COMMENTS

(1) See the preceding remarks.

{2) See the preceding remarks.

(3) Bill is, of course, correct. When we don't bother to indicate any
replacement sets, we usually mean “use any numbers that you
know.” (Sometimes we mean “use the counting numbers 1,
2,3.."

There is an important matter here which deserves attention.
Some authors nowadays use the phrase ‘‘counting numbers’ to
mean the set {0. 1, 2, 3'. .. } while other writers use these same
words to refer to the set 11, 2, 3, .. } We would argue that, in the
interests of simplifying the over-all elementary school program, we
want to focus attention on the major number systems used in ele-
mentary school, and we wish to keep this number as small as pos-
sible. A modern elementary school mathematics program cannot
be built with less than three distinct number systems, which we
have come to refer to as

the system of counting numbers {0, 1,2, 3, }

the system}of reference-point numbers { .., "2,71,01,
+
2,...1,

the system of measurement or “sharing” numbers {%,‘1}, 21,
1.9,001,...}.



48 CHAPTER 3

(4) In Nancy's class, it turned out that some
stuaents knew about "negative numbers” and other
students did not. In order to be fair, the class agreed
to work on Nancy’s open sentences, without using any
negative numbers. Then, in order to make the work
easier, the class also agreed not to use any fractions.
In order to remember this agreement, the class wrote:

R, ={0,1,2,3,..

R, = {0,1,2,3,..}
What do you think the class meant?

5 I
R, ={0,1,2,3,4,...}
R, =101,234,..},

can you find the truth set for each of Nancy’s open
sentences?

[STUDENT PACE 10 |

We will be studying all three of these systems as we work our way
through this book. Please don't worry if they are unfamiliar right
now.

The point here is that, if we want to simplify the over-all elemen-
tary schoo! program as much as possible, these three systems seem
to be the really basic ones. The “counting numbers’ answer the
commonplace question '"how many?’’ The reference-point numbers
occur in any situation where we mark an arbitrary reference point
(like the “zero'" on a thermometer) and can move away from this
reference point in either of two directions (as ‘'toward higher tem-
peratures’ or '‘toward colder temperatures'). The geometric pic-
ture for this is:

] } ] ] L L ] 1
T T T T T T

73721 01 2 '3 4

The “sharing” or ‘‘measurement’’ numbers occur when we share
things or measure things (as, '} of the candy” or “‘the table is two
and a half feet high").

If we agree to focus on these three number systems as the major
ones for modern elementary school mathematics, then we are
forced to include zero among the set of '‘counting numbers,"’ since
zero is often the answer to the question “how many?" (For example,
in ""How many sisters do you have?'’ or ‘‘How many children do you
have?’’ and so on.)

In the examples in this chapler, we shall be using the system of
counting numbers. Later on in this book we shall consider problems
just like these, and approach them using one of the other two num-
ber systems. This step-by-step approach is simpler, both for reader
and author, in a textbook situation. In an actual classroom situa-
tion, where we enjoy the greater power of two-way communication,
we would move into other number systems when the learner began
to indicate a readiness to do so—which might come very early in
the year’s work.

(4) The class was using the first method described above.

5 @[ |+ /\ =8

ooqmm.bww—no“j
o—wubo\mqalb

Table for the Truth Set
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An alternative way to write the truth set would be:
7={(0.8), (1.7), (2.6), (3,5), (4.4), (5.3), (6. 2),
(7.1). (8.0)}-

Notice that T is a set of ordered pairs of numbers. It is not a set of
numbers. For example, 0 is not an element of T, even though (0, 8)
and (8, 0) are both elements of 7. Similarly, far is a word in the
English language, but f is not a word in the English language.

As a matter of fact, 7 is a subset of the Cartesian product

R. x R,

We can write this, using the symbol C (which means '‘is a subset
of’"), as follows:
T C Ry x R,

(d [J + 3 = /\ The truth set in this case is an infinite set,
so we shall have to use the “three-dots” notation to mean
“and it goes on like this forever and never comes to an end.”

wro-o||:|

Table for Truth Set

Alternatively,

= {(0.3). (1.4
@[ ]+ ]=/\

L
0
1
2
3

Tahle for Truth Set
Alternatively,

= {(0,0),(1.2). (2.4). (3.6),...}.
@ ]+ ]J+/\ =8 N AN
Bk
2 | s
3 | 3
1

Table for Truth Set
There are only 5 elements in this truth set:

~ {(0.9). (1) (2:5) (3.3). (41}
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(6) Bruce said he could write the truth set for the

open sentence
BEFVACE

by means of a table, like this:

Table for Truth Set

What do you think?
[page 11]
(7 Ellen says that Bruce's table is not complete.
Can you finish it?

(8) Can you use a table to represent the truth sets
for Nancy's other open sentences (see question 2)?

(9) Can you make up some open sentences of your
own?

(10) Jerry says he can use Descartes’ idea of “crossed
number lines” to represent the truth set for the open

sentence
- A-s

by means of a graph. He labeled the horizontal number
line with a [JJto show that he used it to locate the
replacement for [ He labeled the vertical number
line with a /\ to show that he used it to locate the
replacements he used for /\.

L A

L
—— ] T } [
A Eui
. ) g2 T
e A
T hEl
manm
T - ii__
]

Graph for Truth Set

[STUDENT PAGE 11

(6) Bruce’s table is not complete. See the answer to question 5(a).

(7) Ellen is correct. See the answer to question 5.

(8) See the answer to question 5.

Notice that questions 5, 6, 7, and 8 present a fairly typical
“Madison Project’’ sequence, as follows:

(i) General question

(ii) Question to help with (i)

(iii) Further question to help with (i)
(iv) Repeat of question (i)

{9) This should give no difficulty.

(10) The complete graph looks like this (recalling that

R, =R, = {012 3,...}x
rA

| L

What would this graph look like if R = {0, 4, 1, 14, 2, 24, ...}
and R, ={0,%, 1,142, 24, .. A}? (You may wish to view the film
*Graphs and Truth Sets.™)
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Jerry says the points marked correspond to this table:

LA

1 7
S 3

Can you complete the graph, if
R, =1{0,1,2,3,4,5,...)
R, = {0,1,2,3,4,5...}7

Can you make a graph to show the truth set for each
of the following equations? (Use R, = {0, 1,2,3,.. } ,
R, =1{0,1,2,3,...}.)

an  ([x1)+3=/\

a2 ([Jx2)+3=/

an WA etc.

cy

(12) WA etc.

gy

You may want to view the film ““Second Lesson'" and to compare
Chapter 11 of Discovery.
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CHAPTER 3
a8 ([ ]xs5)+3= A\ (13) LA etc.
0
1o ([(Jx1)+2=, (14) JYAY etc.
L:A
See Chapter 15 of Discovery.
as ([Jxn+1=/,\ (15) YA etc.
0
(ERVEX AN (16)

etc.

1y

{STUDENT PACE
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an  ([Jx1)+10=/\ 17) AA
elc.
0
ag []x /\ =36 (18) Recall that R, = {0, 1,2, 3,...} and 8, = {0, 1,2,3,...}
The graph to represent the truth set of [ ] x /\ = 36 is then as
follows:
YA

O

Evidently, then, 7 contains nine elements, each of which is an
ordered pair of numbers. T = {(1, 36), (2, 18), (3, 12),

(4.9), (6.6), (8,4), (12,3), (18,2), (36, 1)}.
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chapter 4'/ Pages 12-20 of Student Discussion Guide
SIGNED NUMBERS

Your students may already know about signed numbers. If they
do, this chapter will provide a good opportunity to see that their
understanding is really adequate for future work. If they don’t—and
we are operating under the assumption that they do not-—then
this chapter is intended to be the first introduction of the idea of
negative numbers.

There are several remarks about this chapter that may clarify
its contents:

(i) The official "first real introduction” of signed numbers is pre-
sented by means of the "pebbles-in-the-bag” model. This mode!
permits one to add and subtract unsigned numbers, and to express
the answer as a signed number, as in

5-3="2
5~9 =174,

It does not provide for the addition or subtraction of signed num-
bers; for example, it does not provide for

3+ 12
3 ~ "5,

In order to handle problems in adding and subtracting signed
numbers, we shall use a mode! involving “postman stories,” in
Chapter 5.

(i) in the present chapter, we shall distinguish counting situa-
tions (where 5 — 3 = 2 and where 3 - 5 is impossible) from refer-
ence point situations (where 5~ 3 =*2 and 3 -5 ="2).

This distinction should become easy with a little experience. (In
our own work, we have never had trouble with this distinction, but
teachers are sometimes apprehensive when they first encounter it.)

(iii) We shali use a ‘modern” notation, pioneered by Max Beber-
man and the LICSM Project, and write *2, "3 instead of +2, ~3.

We shall read *2 as "positive two,” and shall avoid reading it
as "plus two." Similarly, "2 will be read as ‘'negative two'" and not
as '“‘minus two.” This language may seem strange at first; however,
within our experience it clarifies matters considerably. This will be
explained at some length later in this chapter.

(iv) Prior to the "pebbles-in-the-bag” model, we shall consider
—very briefly indeed —a “hotel” model. We do not do anything
serious with this model; indeed, you could omit it if you prefer.
Its inclusion is merely a matter of building readiness for what

- follows.

For further reading, you may want to refer to Appendix A:
Levi (90), Gibb (37), and Moise (95).

54
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CHAPTER 4
Signed Numbers

T
Tt

[page 12}

The numbers |, 2, 3, 4, ... arise whenever we count
things. Really, these are the only numbers that arise
from counting, at least the way most people do it.

If we use our imaginations, we might think to add
zero, which arises in counting how many brothers
you have (if you don't have any brothers).

This gives us

0,1,2,3,4,5,...

(1) Can youmark 0, 1,2, 3,4, ...on anumber line?

When we want to divide things up (like cakes and
pies and candy bars) or when weé want to measure
things, we need more numbers, such as

IS B T

1,3 1 & & 2, 2%, 2.7, and so forth.

(2) Can you show the numbers
. % 15, 2%, 44, 37

on a number line? Where would 3;%; be?

(3) Do you think there are any new kinds of num-
bers that are different from

counting numbers: 1,2, 3,4, ...
and different from
2ero: 0
and different from
fractions: ¥, I, 2, 2, 1%, &, and so forth?

Do you know any other kinds of numbers?

Mathematicians talk sbout something that they call
a one-dimensional linear vector space. You meet this
one-dimensional linear vector space when you mark a
reference point on a line.

Reference point —we usually
mark this zero,

You can move away from this reference point in one
direction or in the opposite direction.

SIGNED NUMBERS 53

Answers AND COMMENTS

(1) e t } { t

0 1 2 3 4 5...

Actually, even merely marking these points on a number line
may serve to raise the question, “What happens when you go
toward the left?" (You may be interested in viewing the films
‘A Lesson with Second Graders,” and “Education Report: The New
Math.”)

(2) This will presumably give no trouble. Here are a few of the
points in question.

—
- e

ot
Nl —~> 5 € Wi

(3) We hope the students may suggest “negative” numbers or
“helow zero” numbers. Sophisticated students may also kuow
irrational numbers and complex numbers (which they may
kriow in matrix form).
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(4) Can you think of anywhere that you have seen
numbers used this way?

(5) Do you know how they determine zere on a
centigrade thermometer?

A certain hotel is built on the side of a steep hill.
The result is that the entrance and the lobby are
really in the middle of the building. The architect,
who was also an amateur mathematician in his spare
time, decided to label the lobby floor zero. The next
floor above the lobby floor he called positive one.
On the elevator indicator he wrote [page 13]

‘1.

The floor just below the lobby level he called negative
onre. On the elevator indicator he wrote

1.

>
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(4) Here are some possihilities: The scale on a thermometer. The
scale on ammeters, especially oid-fashioned automobiie am-
meters (which often recorded “discharge” and “charge” along
a portion of a “number line,” from ~20 to *20. Altitude, above
and below sea level. The number line. The axes in Cartesian
coordinates (which is really the same as the number line).

(5) Zero on a centigrade thermometer is determined as the equili-
brium point of ice and water, at a controlled barometric pressure
(or aititude).

We want to suggest that you use the symbols *3, -5, etc., rather
than the traditional +3, ~5, and that you read them as ''positive
three' and ''negative five" instead of the traditional *'plus three”
and “minus five." The traditional notation gave three different
meanings to — {read "minus”) and two different meanings to +
(read “'plus™). Qur work with children has convinced us that this
causes confusion*. Consequently, for the different meanings we
use different symbols, as follows:

Written Read Meaning

*2 "'positive two" for positive numbers

2+ 3o0r*2 + 75 'plus” for the operation of
addition

-3 “negative three” for negative numbers

5-20r"3 -*5 “minus” for the (binary)
operation of sub-
traction

°(2) “opposite’ or for the (unary)

‘additive inverse” operation of taking
the additive inverse

(cf. page 77)

The “modern” notation for positive, negative, and additive
inverse was pioneered by Max Beberman and the UICSM Project;
it is coming to be found in an increasing number of ‘‘modern”
books.

*For example, using traditional notation, a seventh-grade class was asked
to moke up an arithmetic of signed numbers and to defend it in terms of its
consistency with previous mathematical work. They defined (+2) x (-3) to
be 3, on the grounds that 2 times 3 is 6, then you have to subtract 3, so the
answer is 3.” This might be called a rational response to an irrational nota-
tion; it confuses operations with port of the name of @ number. Such con-
fusion has never arisen when we osk children to dacide what *2 x -3 should
be; the operation here is clearly multiplication, while the - sign is clearly
part of the name of the number “negative three.”

To give o second example, “bright” engineering students in college used
to be confused by the assertion that the absolute value of x was defined as:

s xif 0 = x
Ix| =
(—xifx(O

They would ask, “How con the absolute value of x ever be minus?”

This, again, shows confusion as to whot — means. When, instead, we have
uvsed the “modern” tion °[ ] instead of —x, and asked fifth graders
whether o] is positive or negative, they have refused our invitation to con-
fusion, ond have (correctly) d that it depends upon what you put in

the [ ] .
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(6) Suppose the elevator starts at
3
and goes to the lobby. Did it go up or down? How many
floors up or down did it go?
(7} Suppose the elevator starts at
8
and goes to the lobby. Did it go up or down? How many
fioors up or down did it go?
(8) Suppose the elevator starts at
3
and goes to
*6.
How far did it go? Which way, up or down?

{9) Danny has a bag that has lots of pebbles in it.

[page 14]
We need to mark a reference point, so Jerry says “Go!”
Now Danny takes 3 pebbles from the pile on the table,
and puts them in the bag.

Are there more pebbles in the bag than there were
when Jerry said "Go,” or are there less? How many
more or how many less? Do you know how we write
this?
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{6) It went up; in fact, it went up three floors.

(7) It went down; in fact, it went down 8 floors.

(8) I went up 9 floors.

Questions such as 6, 7, and 8 are part of the standard Madison
Project practice of trying to shape concepts in a preconscious (or
preverbal) form, well before we try to elevate the concept to the
conscious, explicit, verbal level. If you expect concepts to “‘come
from nowhere,"” you will be disappointed. Nor can you build con-
cepts at the verbal level. There must be previous preverbal or pre-
conscious experience that has “built readiness' —i.e., already
begun to create the concept at a preconscious level. As one
example, E. E. Moise of Harvard University has pointed out that
a child's experience of seeing rows of “identical’ items on dis-
play in stores helps build readiness for the geometrical concept of
congruence. As a further example, the work in Discovery on
“balance pictures’” is intended to help form, at a preconscious
level, the concepts of equivalent equations and transform opera-
tions.

(9) There are more pebbles in the bag; in fact, there are three more,
which we write as *3.

You can watch this “'pebbles-in-the-bag' procedure in complete
detail, as a first introduction of signed numbers, in the film enti-
tiled A Lesson with Second Graders.”

This lesson always goes more smoothly if you ask “more or
less” before you ask “how many more" or “"how many less.”

The question Do you know how to write this?" is partly rhe-
torical: there is no (official) way that the child could know. Still,
we get his attention better by asking questions. (What's more, it
may even turn out that he does know!) The answer, of course, is
that we write this as *3, which we read as "‘positive three.”

It is important here to distinguish what we put into the bag (or
take out) versus the signed number which represents the condition
of the bag (i.e., more or less pebbles than when Jerry said “Go!"').
What we put in we count; it is indicated by an unsigned counting
number. What we take out we count; it, too, is represented by an
unsigned counting number. However, when we ask for a report on
the present condition of the bag—i.e., "Are there more or less
stones than when Jerry said 'Go!'? How many more?"’ —we are
asking for a signed number.

In the present case, our procedure is always as follows:

When Danny puts three pebbles into the bag, this is counting,
and the teacher writes on the board

3.
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(10) Now Danny takes 5 pebbles out of the bag. We
can write
3 -5
Are there more pebbles in the bag than there were

when Jerry said “Go,” or are there less? How many
more or how many less? Do you know how to write this

3-5=_..7

[STUDENT PACE 14

When the teacher asks, ‘‘Are there more or less than when Jerry
said 'Go!’ 7" this is not counting, and the teacher writes

3 =13

After writing this, which was intended to introduce the notation
“~3," the teacher erases part of it, to end up with

3.

(10) There are now two pebbles less in the hag than there were when
Jerry said “Go!" We write

3-5="2
which we read as

“three minus five equals negative two.”

In question 10, Danny removes five pebbles. This, too, is
counting, and calls for unsigned numbers:

3~ 56

When we get a report on the condition of the bag (""Two pebbles
less than when Jerry said ‘Go!’ '), this js not a matter of counting,
and calls for a signed number:

3-5="2.

Thus, the pebbles-in-the-bag model permits us to add and sub-
tract unsigned numbers, and to express the answer as a signed
number.

In many years of trials, we have consistently found the “'pebbiles-
in-the-bag”’ model to be simple and effective. It is, however,
important to teach it so as to avoid various possible pitfalls.
Consequently, the Madison Project has developed a large battery
of teacher aids that focus on the introduction of signed numbers,
via the ""pebbies-in-the-bag” model.

Most important of these is the film entitled A Lesson with
Second Graders.” We strongly suggest that you view this film with
a group of colleagues, and that thereafter you practice teaching
the ‘'pebbles-in-the-bag’” model while your colleagues observe
and make suggestions. With some cooperative effort of this sort,
ycu can quickly learn the most effective methods for using this
presentation with children in grades 2 through 9, or so.

Another important teacher aid is the Madison Project /n-Service
Course #1 For Teachers.

We can summarize a few important aspects of the ‘‘pebbies-in-
the-bag"” model briefly:

(1) Notice that we do not ask about the total number of pebbles
in the bag. To do so would, of course, get us back into a counting
situation where 5 - 3 = 2 and where 3 — 5 is impossible.

(ii) Instead, we have a child mark a reference point by saying
“Gol,” and our questions are always about more or less pebbles
in the bag than there were when the child said "“Go!"

This gets us out of "“counting” situations and into a reference
point situation, where

5-3="2
3-5="2
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Can you make up a “pebbles-in-the-bag” story for
each problem? Can you write the correct signed number
to describe what happened in each case?

(11 7-2=__

(12) 5-4=__
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(iii) Notice that we must begin with a large unknown number
of pebbles already in the bag, and a pile of pebbles not in the
bag, in order to enable us to ‘'go either up or down'’ in the amount
in the bag.

(iv) We find it easier to begin by putting a few pebbles into the
bag, and thereafter to take a few out. It is less convenient to begin
by taking some out.

(v) Remember that you are dealing with problems such as
3-5="72
7 ~3="4
where the numbers on the left are unsigned numbers and the num-
bers on the right are signed numbers. The reason for this is that, in

3 -5=72,
we counted 3 pebbies into the bag (a counting situation, involving
unsigned “‘counting’’ numbers), then we counted 5 pebbles out of
the bag (a counting situation, again), and then we asked about the
condition of the bag, in relation to the reference level {a "'reference
point” situation, involving signed numbers).

(vi) We strongly recommend a careful use of the words positive,
negative, plus, and minus, and the symbols for them. Smali sym-
bols, written high, indicate “positive’” and "negative,” and are
part of the name of the number itself. They do not refer to the
operations of addition and subtraction. Conversely, large symbols,
centered in the line, indicate operations, and are read “'plus’ or
“minus”. For example, we would read

34+ 5
as

positive three pius negative five,”

and we would read
7 - "2
as
“*positive seven minus negative two.”

(11) Ellen (or somebody) said “Go!" We put 7 pebbles into the bag.
We removed 2 pebbles from the bag. There are now 5 more
pebbles in the bag than there were when Ellen said "Go.”

We write

7 -2 = "5
which we read as
“seven minus two equals positive five.”
(12) Joan (or somehady) said “Go!” We put 5 pebbles into the bag.
We took 4 pebbles out of the bag. At this point, we have one

pebble more in the bag than we had when Joan said “Go!"
We write

5 -4 =14,
which we read as

“five minus four equals positive one.”
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13y 3-4-= - (13) Kathy (or somehbody) said “Go!" We put 3 pebbles into the bag.
We took 4 pebbles out of the bag. There were fewer pebbies in
the bag than when Kathy said “Go!" How many fewer? One
fewer.
Consequently, we write

3-4="1,

which we read as

“three minus four equals negative one.”

(Hopefully, by now you and your students are beginning to get
some feeling as to how counting situations and reference point
situations differ from one another, and how each of them works
out.)

(149 2-10=_ (14) Bernice (or somebody) said “Go!” We put 2 pebbles into the
bag. We took 10 pebbles out of the bag. We had fewer pehbles
in the hag than there were when Bernice said “Go!"” How many
less? Eight less.

So we write

2-10="8

which we read as

“two minus ten equals negative eight.”

(15 6 -6 = (15) Janet said “Go!” We put 6 pebhles into the bag. We took 6
pehbles out of the bag. Now, at this point, do we have more
pebbles in the bag than there were when lanet said “Go!”
or do we have less, or what? We have the same number.

We write

6-6=0
which we read as

“six minus six equals zero.”

You can observe essentially this sequence in the film entitled
"A Lesson with Second Graders."”

(16) 3-2= (16) Jill said “Go!"” We put 3 pebbles into the bag. We took 2 pebbles
out of the bag. Now, are there more pebbles in the bag than there
were when Jill said “Go!” or are there less, or what? There are
more. How many more? One more.

Consequently, we write

3I-2="1,

which we read as

“three minus two equals positive one."

Notice that this differs from the pure counting situation where
we would say

3-2=1
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3] 9~ 10 =

(18) 2+3 - 1=

(19) 5~4-1-= -

(20 4~-3-2=

{21) Can you mark these numbers on a number line?

(22) Can you mark some more numbers on a number
line?

SIGNED NUMBERS 6l

In the present situation, does

3-2="1
mean that there is now exactly one pebble in the bag? No! By no
means! Indeed, we do not know how many pebbles there are in the

bag.
What does

3-2="1

mean? it means there is now one more pebble in the bag than there
was when lJill said “Go!"' It is this distinction which causes

3-2=1 and I3 -2="1

to describe two quite different situations.

(17) Eloise said “Go!" We put in 9. We took out 10. There is now
one pebble less in the bag than there was when Eloise said
uGa!u

Consequently, we write

9-10 =1,
which we read as
“nine minus ten equals negative one.”

(18) Marion said “Go!" We put 2 pebbles into the bag. We put 3 peb-
bles into the bag. Then we taok 1 pebble out of the hag. Now
(since aftogether we put in 5 and took out 1) there are 4 more
pebbles in the bag than there were when Marion said “Go!”

Consequently, we write

2+3-1=14,
which we read as

“two plus three minus one equals positive four.”

(19) Jerrold said “Go!” We put 5 pebbles into the bag. Then we took
4 pebbles out of the bag. Then we took 1 pebble out of the bag.
Now, at this point, are there more or less pebbles in the bag
than there were when lerrold said “Go!"? There are the same
number.

Consequently, we write:

5-4-1=0,
which we read as:
“five minus four minus one equals zero.”

(20) Try this one yourself,

1) 51 |

{22) This should pose no prohiems.
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(23) Using Descartes’ idea of crossed number lines,
can you mark these points on a graph?

4: (o, 0)
B: (-2, 3)
C: (1, 1)
D: (2, -3)

(24) Can you play our game of “four-in-a-row” on this
board ?

{A

I8 BN
H

] o

j,__.r[_

[page 15]
What is the biggest number you can put in the {]?
What is the smallest ? What is the biggest number you
can put in the /\? What is the smallest ?

(25) Can you mark these numbers on a number line?
{3, -2, -3, 2%, 4}
(a) Is '3 more or less than *47?
(b) Is *3 to the right or left of '4?
(c) Is "3 more or less than *3?
(d) Is '3 to the right or left of '3 ?
{e) 1s "2 more or less than 25 ?

(f) Is "2 to the right or left of "25?

(23}

(24)

(25)

[STUDENT PAGE 15

AL

/B: (*2,'3)
4:(0,0)
\‘ .
a
c: -1,y =]
™~0:(2.-3)

This version of tic-tac-toe uses signed numbers. With the axes
as drawn (and remember, we count from the heavy lines or
“axes,” counting “city blocks” rather than “intersections™),
the corners of the board are:

(-2, 2) AR
J
2 -2 2.2

Consequently, numbers greater than positive two will result
in illegal moves (and hence a wasted turn).

To answer what is the “smalfest” fegal number for this ver-
sion of tic-tac-toe, we need to agree first on what we mean hy
“smallest.” Which shall we call “smaller,” :%; or “5? Which shall
we call “smaller,” -3 or ~1,000,0007 Both answers make sense,
hut for the “linear ordering” used by mathematicians, we agree
that

A <B

shall be proc]aimed to mean

A lies to the left of B8 on the number line.

With this interpretation, 3 < 2 and "2 < 1 and "1 <0.
We can now say that "2 is the smallest legal number for this ver-
sion of tic-tac-toe. Any number smaller than =2 (for exampie,
"3) would result in an illegal move and a wasted turn.

-5l

2
] & PN ] 1 | I | FY 4
T v v T T L T A d 4
.4 -3 -2 "1 e -1 -2 -3 4

(a) *3 is less than 4.

(b) *3 is to the left of 4.
(c) ~3 is less than *3.

(d) "3 is to the left of *3.
(e) "2 is more than 2.

(f) "2 is to the right of -23.
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(26) Do you know what

<

means on the number line?

(27) Which statements are true and which are false?

(a)
(b)
(©
)

(e)
)
(g
(h)
(i)
0)]

] (k)

t Y

(m)

(n)

(p)
@
(r)
(s)
(t)
i ()
L (v}
1 (w)

think ?

5 <7
0 <

0 <

(=]
A
3= =

N sl
AooA A
IR SL A A

5 <
1000 < 0
“1000 < '1
*3 < ~1000
0 < "1000
1<

7 <7

‘7 <710
10 < °7

(28) Erik says that dates for B.C. and A.D. almost
work like the numper line, but not quitel What do you
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(26) As mentioned in answer to question 24,

(27)

(28)

A <B
means

A lies ta the left of 8 on the number line.

(a) True
(b) True

(c) True
(d) True

(e) False
(f) True

(g) True (That is, negative one is less than zero.)

(h) True (That is, negative two is less than negative one.)
(i) True (That is, negative one is less than positive one.)
(j) False

(k) Faise

() True (That is, negative five is less than zero.)

(m) True

(n) False

(o) True
(p) True
(q) True
(r) False
(s) False
(t) False
(u) False
(v) False
(w) True

Erik is correct The “date line” unfortunately goes from 1 B.C.
to 1 AD., omitting the year zero which should fall in between.
However, by the time you are a century or more away from 1 B.C.,
this relative error is not of much importance. Would you think
much differently of Beethoven if he had been born in 1769 A.D.
instead of 1770 A.D.? Similarly, an 83-year-old man is “practi-
cally 82" and “practically 84.” However, a two-year-old child
is neither “practically one” nor “practically three,” and a one-
year-old child is not “practically a newhorn babe.” A trip of
101 miles is “practically 100 miles,” but a walk of 100 yards
is not “practically the same thing as a walk of 5580 feet.” The
addition of one to a Jarge number doesn’t matter very much, but
the addition of one to a small number matters a great deal.
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(29) Even though the dates are only almost like a
number line, Erik says that "a sort of number-line
picture” helps him to understand the history of Western
civilization. Here is the picture Erik made:

I-v —— Mch:medes 287232 BC
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(80) Don says Erik only considered mathematicians,
and he left cut a great many mathematicians, even at
that. Can you add some of the following mathemati-

cians, to Erik’s chart ?

J. W. Alexander

P. Alexandroff

Emil Artin

Stefan Bergman
Friedrich Withelm Bessel
R. H. Bing

George David Birkhoff
George Boole

George Cantor
Constantin Carathéodory
Arthur Cayley

W. K. Clifford

J. W. R. Dedekind
Albert Einstein

Gottlieb Frege

(1856-1915)
(1896- )
(1898- )
(1898- )
(1784-1846)
(1902- )
(1884-1944)
(1815-1864)
(1845-1918)
{1873-1950)
(1821-1895)
(1845-1879)
(1831-1916)
(1879-19565)
(1848-1925)

2006cC.
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(29) Erik’s chart can be very valuable indeed.

— ——«Lagranga 11726 1B1Y;
I— Caucity (1789 1850
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Erik has considered only mathematicians. You can, similarly,
make charts using only poets, only playwrights, only scientists,
only explorers, or only composers, etc. In nearly every case, the
chart will be most suggestive.

If you consider only Western civilization, you will tend to get
clusters around -600 to ~300, and then from *1500 to the present.
Some of this, of course, is an artifact of our method of recording
and studying the past; nonetheless, it poses intriguing questions
that cry out for explanation.

Using these number-line charts, your students can discover,
for themselves, the Renaissance! Much is said in favor of unifying
our studies; here is an excellent opportunity to illuminate history
by a simpie use of mathematics! You may want to consuit Appen-
dix A, Eves (151), Kramer (154), and Lloyd (156). Your students-

might also enjoy reading Eileen Power’s Medieval People (Double-
day-Anchor).

(30) Compare answer to guestion 29.

Obviously, if you don’t enjoy the idea of combining a little mathe-

matics and a little history, you can omit these *‘historical’’ ques-
tions.
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Evariste Galois
Kurt Godel

Herman Grassmann
John Graunt
Edmond Halley

Sir William Rowan Hamilton

Felix Hausdorft

J. B. van Hemholtz
David Hilbert

Bela van Keérekjarto

Felix Klein

Andrei Kolrogorov
Henri Leon Lebesgue
Solomon Lefschetz
Deane Montgomery

R. L. Moore

John von Neumann
Amalie Emmy Noether
G. Peano

Jules Poincaré

George Polya

L. S. Pontriagin
Srinivasa Ramanujan
Georg Friedrich Riemann
J. B. Rosser

Bertrand Arthur Russell
Waclaw Sierpinski

T. A. Skolem

M. H. Stone

Alfred Tarski

Oswald Veblen

Karl Theodor Weierstrass
Andre Weil

Hermann Weyl

Alfred North Whitehead
Norbert Wiener

R. L. Wilder

E. F. F. Zermelo

(1811-1832)
(1906- )
(1809-1877)
(1620-1674)
(1656-1742)
(1805-1865)
(1868-1942)
(1821-1894)
(1862-1943)
(1898-1946)

[page 17)
(1849-1925)
(1903- )
(1875-1941)
(1884- )
(1909- )
(1882- )

(1903-1957)
(1882-1935)
(1858-1932)
(1854-1912)
(1887- )
(1908- )
(1887-1920)
(1826-1866)
(1907-
(1872-
(1882-
(1887-
(1903-
(1902-
(1880-
(1815-1897)
(1906- ]
(1885-1955)
(1861-1947)
(1894-1964)
(1896~ )
(1871- )

- e e A e

(31) Ellen says Erik’s chart is not big enough to get
all the names in. Can you make a chart that is big
enough ? (Use the same scale from 1800 B.C. through

2000 A.D)

{32) Bill said it would be easier just to mark a dot to
show when each mathematician was born. Bill began
his chart with dots for Abmes, Thales, Pythagoras,
Polya, Dedekind, Graunt, Peano, and Veblen. At this
stage, Bill’s chart looked like this:

|
|

v v U ou e ou
2 4 48 oz o4
§E2§8¢ 8 ¢ 8

10008 ¢
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800 1
7008
500 &r
00 8
&ec
300 8¢

Can you mark on Bill’s chart all the other mathemati-
cisans mentioned in this chapter?

08

1008c «
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(31) through (32) Compare answer to guestion 29.
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[page 18]

(33) Harold said these charts seem to say something

about history. He made a new chart, marking the dates

of birth of the following musicians. What did Harold’s
chart look like?

Johann Sebastian Bach (1685-1750)
Kar] Philipp Emanual Bach ’ (1714-1788)
Béla Bartok (1881-1945)
Ludwig von Beethoven (1770-1827)
Leonard Bernstein (1918- )
Johannes Brahms (1833-1897)
Elliott Cook Carter (1908- )
Francois Frédéric Chopin (1810-1849)
Aaron Copeland (1900- )
Claude Debussy (1862-1918)
Giovanni Gabrielli (1554-1612)
George Gershwin (1898-1937)
George Friedrick Handel (1685-1759)
Roy Harris (1898- )
Franz Joseph Haydn (1732-1809)
Wolfgang Amadeus Mozart (1756-1791)
Sergei Sergeevich Prokofiev (1891-1953)
Sergei Wassilievitch Rachmaninoff (1873-1943)
Alessandro Scarlatti (1659-1725)
Domenico Scarlatti (1683-1757)
Franz Peter Schubert (1797-1828)
Robert Schumann (1810-1856)
Dmitri Dmitrievich Shostakovich (1906- )
Igor Stravinsky (1882- )
Petr Tlich Tchaikovsky (1840-1893)
Antonio Vivaldi (1675-1741)
Richard Wagner (1813-1883)
William Walton (1902- )
Kurt Weill (1900-1950)

(34) Ellen made a chart showing birth dates of paint-
ers, sculptors, and architects. What did Ellen’s chart
look like?

(35) Nancy made a chart showing birth dates of play-
wrights, writers, and poets. What did Nancy’s chart
look like?

(36) Andy made a chart showing birth dates of ex-
plorers. What did Andy’s chart look like?

(37) Dick made a chart showing birth dates of scien-
tists. What did Dick’s chart look like?

(38) Do these charts suggest anything? How do you
explain it?

(39) Do you know the date when cities first began to
appear? What sort of chart can you make from the
beginning dates of various cities?

[STUDENT PAGE 18

(33) Compare answer to question 29.

(34) through (37) If you wish, you can use this as a research assign-
ment for your students. You might also ask students to make a
chart of some inventions or discoveries. References McClelland
(50) and Woodward (161) will also be useful for such an assign-
ment.

(38) Compare answer to gquestion 29.

(39) We leave this up to you and your students.
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(40) Do you know what pecple mean when they speak
of the Renaissance?
[page 19}
(41) What do you think these charts will look like
for the following part of the number line?

2000 2100 2200 2300 2400
AD. AD. AD. AD. AD.

(42) You may be interested in studying the changes
in the population of Europe. A chart can help here, too.

(43) Here is a table for the population of London. You
may want to make a chart of this.

Date Population
1801 1,088,000
1811 1,269,000
1821 1,604,000
1831 1,778,000
1841 2,073,000
1851 2,491,000
1861 2,291,000
1871 3,336,000
1881 3,881,000
1891 4,266,000
1901 4,563,000
1911 4,541,000
1921 4,498,000
1931 4,408,000
1951 3,353,000

Population of London

(44) Do you have any theories on why the graphs look
like this? You might try to find the dates of the following
events to check against your theories.

Founding of Oxford University

Founding of Cambridge University

Founding of University of Paris

Discovery of the source of the Nile

French Revolution

California gold rush

Discovery of America

First European settlement in South America

First trip around the world

Marco Polo's birth

First universal compulsory education
in the United States

Founding of Hopkins Grammar School

First railroad across United States
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(40) 1 hope the number-line pictures of the preceding few guestions
make this all too clear.

(41) Your guess is as good as anyone else’s. Assuming a continua-
tian of recent trends, you can fill in a rather spectacular-
looking picture.

(42) Another possible research assignment.

(43) We can make the “Population of London” graph as follows:

Poputation ﬂ
5,000,000 L.
4,000.000 1
3.000.000 L
2,000.000 1. .

1,000,000

R55E8%8888838;5883¢%

Population of London

One difficulty in this chapter is the task of coping with numbers
of the size we need for the study of history. (In some cases you may
want to use logarithmic graph paper.) For a particularly fine
example of an attempt to cope with very large numbers, consult
Appendix A, Ardrey (147), pages 208-213.

(44) This is a very apen-ended, library research guestion. Perhaps
one or more of your students (or, better, 2 committee of them)
may wish to prepare a special report on this. Several helpful
references are listed in the Student Discussion Guide. For an
interesting discussion of what is {at the time of this writing) the
earliest known record of prime numbers, refer to: Jean de Hein-
zelin, “Ishango,” Scientific American (June, 1962, pp. 105-
116). As to the theories your students may suggest, we make no
predictions.

For a general view of theory construction, it may be worth men-
tioning the important work done by J. Richard Suchman, of the
University of lilinois, in connection with his Inquiry Training pro-
gram. Professor Suchman emphasizes that —ostensibly, at least —
science does not recognize any "official’’ theories. Any theory is
admissable to the extent that it explains the known facts and is
capable of meeting the demands made upon it.
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Crusades

First European contacts with China

Stradivarius’ birth

United States Revolutionary War

United States Civil War

World War 1

World War 11

Date of discovery of prime numbers, ete.
{Belgian Congo)

Date of Australopithecus Africanus

[page 20]
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chapter 5/ Pages 21-22 of Student Discussion Guide
POSTMAN STORIES

In the preceding chapter we used the ‘‘pebbles-in-the-bag’
model to introduce signed numbers. That was, presumably, the
first time the students encountered the idea of signed numbers.

It is important to remember that the pebbles-in-the-bag model
serves (very well) to introduce signed numbers. It does not intro-
duce the arithmetic of signed numbers. Using the pebbles-in-the-
bag idea, we can think meaningfully about *2, '3, and so on, but
we cannot add, multiply, or subtract these new numbers.

What we can do with the pebbles-in-the-bag model is to add and
subtract unsigned (*‘counting”) numbers, and to express the an-
swer as a signed number.

Using the pebbles-in-the-bag maodel, we can do these:

5-3="2

7-11="4
3+2-1+7~10="1
5-8+4-6="5

We cannot do these:

5.3 =2
5~ 3 =18
2 x "3 ="6
2 x 3 =10
7+ 72="9

Now, in this chapter, we introduce ‘'postman stories.” By the
time that we have finished with postman stories, we shall be able
to handle the entire arithmetic of signed numbers.

One or two remarks about this chapter may be helpful:

The postman and the housewife behave as in the fantasy novels
of Franz Kafka. We have never found this troubiesome with chil-
dren; after all, children enjoy “Superman’ and similar fantasies.
As long as the teacher is not disturbed by fantasy, the children will
not be. Indeed, properly (and /ightly) handled, fantasy strengthens
one's hold on reality, rather than weakening it, for we all learn
best by contrasts and comparisons.

What do the postman stories do? They provide a suitable set of
mental symbols which can be "“manipulated’” mentally so as always
to suggest the correct answer to problems in the arithmetic of
signed numbers. Such mental symbols, described especially in
the work of Toiman, Piaget, Aldous Huxley, and Kurt Lewin, deserve
more attention than they usually receive [see Appendix A: Flavel
(114), Tolman (69), Davis (28), Lewin (129), Huxiey (43), and
Hoyle (124).] Let me give three examples:

(i) Is it easier to take off your shoes before taking off your socks,
or is it easier to take off your socks betore taking off your shoes?
You do not need to experiment in the physical world in order to find
out. Why not? Because you have 2 set of mental symbols which you
can “experiment with"” inside your head, as it were.

69
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(ii) My poodle, when tied to a tree, runs around the tree until
he has no free rope left. Then he doesn’t know how to unwind him-
self, so he howls until someone comes to help (admittedly not an
ineffective strategy). You and |, being human beings, have in our
minds mental symbols for ““dog,” '‘rope,”’ and “tree,"” with which
we can perform a “thought experiment.” These mental symbols
have a complete cognitive-level set of “rules of dynamics" that
makes such “‘thought experiments’ possible. If winding counter-
clockwise has shortened the rope, then “unwinding” in the oppo-
site direction will lengthen the free rope.

You and | don't even need to try this out; we know it will work.
The poodle, evidently, has no such set of mental symbols available
to him, so he stands, tied to a very short rope, and howls.

(iii) How much is 53 + 277 We don't need any algorithm at all
to answer; we can use symbols, such as these:

L

50, 30,
plus a small minus a small
piece piece

Each small piece is the same size, namely, 3. Therefore, put
together, we clearly have

50 + 30 = 80.

More precisely, here is what we want postman stories to do for
us:

Whenever we have a mathematical problem, such as
*37 ~ 2 =2,

we want the postman stories to provide a corresponding
story that will show us what the answer should be.

When we start with a postman story, it is not necessary
that there be a corresponding mathematical problem,
since we mean to use postman stories to explain mathe-
matics, and not conversely.

We shall begin by starting with postman stories and then finding
corresponding mathematical expressions. (Purists among the audi-
ence may object that some of the mathematical expressions are
not of normal occurrence, because they confuse symbols for binary
and unary operations; but this is unimportant, since when we come
to use the stories in actual practice, we shall always be starting
with the mathematics and seeking an appropriate story, and never
conversely.)

Here is the way we shall work:

When we say “‘bills,” we mean what the gas company, the elec-
tric cornpany, and the furniture company send to us. (We do not
mean those lovely pieces of paper printed by the folks in Washing-
ton and called “ten doliar bills.’")

When we say ‘‘checks,” we man those lovely things our employer
gives us, and our broker sends us, and so on. (We do not mean those
things you get in restaurants that make you poorer instead of
richer.)
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Thus, when we receive a check, we get richer; when we give back
a check, we get poorer; when we receive a bill, we get poorer; when
we give back a bill, we get richer,

At this point you may want to read carefully the explanation in
the Student Discussion Guide. Notice that the “fantasy’* behavior
has been devised so that the postman stories work out exactly as
described above, with regard to “receiving’’ or *‘giving back'" bills
and checks. The stories may sound foolish, but they are precisely
and reliably consistent in their logic. They embody neither contra-
dictions nor "“double-counting.”

For the postman story we write

+

postman brings a check for $5.00 +

postman takes away a check for $5.00

postman brings a bill for $5.00 + 5
postman takes away a bilt for $5.00 -5

Notice that bills are represented by negative numbers, checks
are represented by positive numbers, bringing is represented by
a "plus” sign, taking away is represented by a “minus” sign.

At this point, you may want to view the Madison Project film en-
titled ‘‘Postman Stories.”” Before you do, it will be well to dis-
cuss what you can see in this film.

In making nearly all Madison Project fitms, we try to show a new
learning experience of the children—they are confronted with a
task they have never met before, and the viewer can watch how
the children work their way through this new problem, usually
with relatively little help from the teacher. To make such films
successful, the children must have adequate previous background
(or ‘readiness’) so that it is reasonable to expect that they will
succeed in attacking this new problem, but they must not have so
much ‘“‘readiness’” that the ‘‘new’’ problem isn't really new.

Now, achieving this is not easy. If, on Thursday, the teacher
felt that the students would be ready for the new task on Friday —
and if we could rent TV facilities for videotaping on a few hours
notice —the problem of arranging such films would not be too dif-
ficult. However, it takes several weeks to arrange TV videotaping
facilities.

Consequently, a Madison Project filming session is planned
like a ‘‘moon shot" from Cape Kennedy: you don’t aim at the
moon; rather, you try to arrange for your space capsule and the
moon to arrive at the same future point at the same future time.

We must estimate, well in advance, when the students will be
ready for the new topic, and hope that the day they’re ready for
the new topic turns out to be the day the TV cameras are there.
Obviously, we sometimes miss.

The film "Postman Stories” is an interesting case. We used a
class of so-called “‘culturally deprived” children, provided by
Mr. Ogie Wilkerson and Mr, Cozy Marks, of the St. Louis Public
Schools. We planned to show how these children learned to match
up “postman stories” with corresponding mathematical situa-
tions.

Once the cameras started rolling, it became evident that the
class had too much readiness for this task —there was too little
“new’’ learning taking place. Consequently, the teacher had to
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[page 21]

Jerry wrote a story about a very peculiar postman,
who behaved like this:

(a) He read all of the mail.

(b) He did not necessarily deliver the mail to the
right people. He gave it to anyone he wanted to give
it to. (But he remembered who should have received
it!)

(c) Later on he would come back and pick up mail
he had misdelivered, apologize, and give it to the
right person.

Jerry’s story also includes a housewife, who also be-
haves peculiarly:
(a) She tries to keep up-to-date in her estimate of
how much available money she has.

(b) She never reads the addresses on the mail she
receives (she figures it doesn’t do any good anyhow,
because the postman. delivers them to whomever he
wants), and she never reads the name on bills and
checks (but she reads the amount and keeps her
records up-to-date!).

[STUDENT PAGE 21

jump immediately to a “‘harder” task, where really new learning
could occur. He turned to the task of graphing

L=+ (A< A) =28
which was entirely new for the class, and which makes use of
"postman stories.”

The result was one of our most successful films. At the begin-
ning, the children give wrong answers to nearly every problem in
the arithmetic of signed numbers (saying, for example, that
"1 x 71 =0, and that “"1 x "1 = "2"). Next, the children
use '‘postman stories” to decide —by themselves! —what the cor-
rect answers should be. Toward the end of the lesson, they have
gained enough insight into how the arithmetic of signed numbers
works so that they give correct answers without recourse to *‘post-
man stories''!

Now, this is just what we want “postman stories” to do! We
want them to provide the children with an ““autonomous decision
procedure’’ whereby the child can decide for himself what answer
he should give in a problem involving the arithmetic of signed
numbers.

This film proves — better than anything we could have planned —
that postman stories are capable of providing a foundation for
the arithmetic of signed numbers—for "culturally deprived”
children as well as for *‘culturally privileged' children.

And, notice, nobody told the children any “rutes” for working
with signed numbers.*

ANswers AND COMMENTS

) *Cf. Max Beberman, An Emerging Program of Secondary School Mathe-
matics, p. 25 (Harvard University Press, Cambridge, Mass., 1958):

Teachers of the conventional course in beginning algebra recognize the
fact that students are very quick in discovering a rule for adding directed

numbers [i.e., “signed numbers"]. In fact, the usual rute stated in text-

books is o ily complicated description of an algorism . . . Any stu-

dent capable of learning algebra in the first place will have invented this
algorism. Any student who is able to interpret the textbook description
is also able to carry out the algorism for adding without using the text
description. [I have added the italiu—R.B.D.] Hence, our earliest oppor-
tunity for an important discovery in the UICSM program occurs in connec-
tion with the rule for adding directed numbers. All student din
this first attempt. l:l'alics again cddod-—R.B.D.J

Telling students, “rules” for the arithmetic of signed numbers is an exer-
cise in utter futility. Adults of our acquaintance who were fold such rules
in school nearly always repeat them —and use them —incorrectly ot this
point in their adult life. When we show these same adults the “postman
story” model, they become able to get correct answers without recourse to
(incorrectly) memorized rules.
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Jerry’s story involves bills, like
3, "1, 75, "100, 10,
and checks, like
2, 7, '5, Y100, '9.

(1) Do you know what Jerry means by a check?
Who might send you a check?

{2) Do you know what Jerry means by a bill? Do
you like to get bills? Who might send you a bill?

Jerry’s postman sometimes brings checks
+ *3,
and he sometimes comes and takes away a check (that
was really for someone else)
- *10.
The postman sometimes brings bills
+ 7,
and he sometimes takes away a bill (that was really
for somebody else).

(3) Does it make you happy or sad when the post-
man brings a bill?

(4) Does it make you happy or sad when the post-

man takes away a bill? ]
[page 22]

(5) Does it make you happy or sad when the post-
man brings a check?

(6) Does it make you happy or sad when the post-
man takes away a check?

(7) Jerry said, “On Monday morning, the postman
brought the housewife a check for $3 and a check for
$5.”

+ '3 + 5
As a result of the postman’s visit on Monday morning,
did the hougewife think she was richer or poorer? How
much richer or how much poorer?

(8) Can you write a single signed number showing
how much richer or poorer the housewife thought she
was?

+ '3 +'5 =
(9) Geoffrey's father says that mathematicians
sometimes leave off the first “+” sign and write merely
‘3 + 'S,

Can you write a single signed number that names the
same amount as ‘3 + '57

3+ 5 =

(1)

(2)

(3}

(4)

(5)

(7)

(9
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This question is intended to emphasize that when we receive a
check, we hecome richer.

This question is intended to clarify our present use of the word
bill: when we receive a bill, we hecome poorer.

Sad

Happy

Happy

Sad

The housewife thought she was richer, by $8. Consegquently,
she changed her estimate of her available funds upward $8;
if, say, she had thought she had $120 available to her, she
now changed this to $128.

$+20
$128

We could write + ‘3 + '5 = '8.

*3 + *5 = '8. This is the form which occurs normally in
mathematics.
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(10) The housewife thought she had $120 uncom-
mitted and available hefore the postman came Monday
morning. How did she change her records as a result
of the postman’s visit Monday morning?

[ ]2

(11) Gloria says the housewife’s records should look
like this:

$120
$130

Do you agree?

Can you make up a postman story for each problem?
What answer do you get?

(12) 2+ 7

(13) 2+

[STUDENT PAGE 22

(10) 3420
$128

(11) No. Compare answer to guestion 10.

(12) On, say, Tuesday morning, the Postman came and brought

a check 2+ 7
for $2 "é + 17
and he also brought -2 i 7
a check 2+ %7
for $7. ‘2 + ’#

As a result of his visit on Tuesday morning, the housewife be-
lieves herself to be richer by $9. She will revise her estimated
available funds upward by $9. We could write

2 +*7 ="9.

(13) On, say, Thursday morning, the Postman brought

\
a check 2 + 1
1
v
for $2 ‘2 + 71
1A
and he also brought 2+ 71
)
a hill 2+ 71
for $1. ‘2 + 71

As a result of the postman’s visit on Thursday morning, the house-
wife believes herself to be richer by $1. She will revise her
estimate of available funds upward by $1. We can write

2+ 1 =71
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(14)

(15)

(16)

5+ 2

3+ 4

Q —
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(14) The postman brought

LI

a bill 5+ 2
|
for $5 5+ "2
i
and he also brought 5+ 2
1
a bill 5+ 2
{
for $2. 8+ 2

As a result of the postman’s visit on Friday morning, the house-
wife helieved herself poorer hy $7. She decreased her estimate
of available funds by $7. We could write

S+ 2="7

(15) On, say, Saturday morning, the postman brought a check for
$3 and he also brought a hill for $4.

As a result of the postman’s visit on Saturday morning, the

housewife helieves herself to he poorer by $1. She revises

her estimate of available funds downward by $1. We can write

3+ 4="1
The reason for the emphasis on the day when the postman visits
will become clear in answer to question 16 below.

(16) On, say, Monday morning, the postman came, and brought a
check for $9 and took away a check for $2. The postman re-
marked, “! sure hope you weren't planning on spending that
check for two dollars. It’s really for Mrs. Wilsen. If you'll give
it back to me, VIl run over and deliver it to her right now.”

As a result of the postman’s visit on this Monday morning,
Mrs. Housewife helieves herself to be richer by $7. She revises
her estimate of available funds upward by $7, say,

5150
$157

We could write
'9 - 2 ="',

Why have we put so much stress on the time factor of the post-
man's visits? This problem shows the reason. Students will some-
times confuse the problem

2+ ('9-2)="9
with the present problem
9 -2 ="
The student may ask, “Why isn't Mrs. Housewife richer by nine
dollars? She just got a check for two dollars, then gave it back.
Why should that have any effect?”

The answer, of course, is that Mrs. Housewife received the check
for $2 sometime last week, and has already included it in her
estimate of available funds. Consequently, when she has to return

the check for $2, she must reduce her estimate by the correspond-
ing $2.
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(18)

CHAPTER 5

-5 -2

-5

[STUDENT PAGE 22
The use of the time factor lets us distinguish easily between

2+ ('9-12)="19
and
‘9 -2 = 7.

Writing *9 ~ '2 = *7 describes what happened as a result of the
postman’s visit on this Monday morning.

By contrast, *2 + (’9 - '2) ="9 describes a combination of part
of last week’s transactions

2+(9-"2)="9
2 + (9 - 2)

together with the result of the postman's visit this morning:

2+ ("9 - +2) =9,

T

With a little practice, plus careful attention to details, | believe
you will find this works both easily and reliably. The use of time
facilitates distinctions such as those above.

(17) On, say, Tuesday morning, the postman came and took away a
check for $5 and he also took away a check for $2.

(The postman said, “I hope you haven't been making plans for
spending those checks. They really belong to Mrs. Cohen. i
you'll give them back to me, I'll run over and give them to Mrs.
Cohen as soon as I'm through with work.”)

Unfortunately, Mrs. Housewife had, as usual, counted these
checks into her estimate of available funds. Consequently, as a
result of the postman's visit this morning, she had to decrease
her estimate of available funds by $7. Whereas she had thought
she had $157, she changed this now to $150.

3150
45T
$150

We could write
-5 - *2="17

This, also, is a notation that will not occur often in our mathe-
matical work; strictly speaking, it also confuses binary and unary
operations. However, even though, in this sense, we need not ex-
plain such “‘foolish” notations, we are in fact able to do so if
we choose.

Similarly, the notation shown in answer to question 18 is a no-
tation that we shall not ordinarily encounter in our mathemati-

* cal work; nonetheless, we can explain it if we wish.

(18) The postman came Wednesday morning. He took away a biit for
$5. Now, the housewife had already provided for this bill in her
estimate of available funds. Consequently, when the postman
came this morning and told her this bill was not really for her,
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(19) -1 -5
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she breathed a sigh of relief and increased her estimate of avail-
able funds by $5.

We could write

Actually, when we come to the notation for opposites or additive
inverses (see Discovery, Chapter 40, or Explorations, Chapters 11
and 15) we shall write this as

s) -

and represent the unary operation of “finding the additive in-
verse' by a "‘rainbow’ picture:

.4 -3 -2 - 0 "1 ‘2 3 ‘4.
To find the "opposite” or “additive inverse” of a number, you "'go

to the opposite end of the rainbow." You need not worry about this
matter at this point; we shall return to it later, in Chapter 11.

(19) On Thursday morning, the postman came and

i
took away -1-75
{
a bill -"1-75
N
for $1 -1-75
|
and he aiso took away -1-75
a bill -"1~75
{
for $5. -1-75

The housewife had, of course, already provided for both of these
bills in her estimate of available funds. When she found out
that those bitls were not really for her, she revised her estimate
of available funds vpward $6.

$161
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(20)

CHAPTER 5

10 -

100

[STUDENT PACE 22
For the original problem — -1 — 5 we could write
-1 -75="6

(Roughly translated, this says that taking away a bill for $1 and
a bill for $5 makes you richer by $6.)*

(20) The postman arrived Friday maraing. He brought

{
a check “10 - "100
4
for $10 10 - "100
¥
and he took away 10 - "100
¥
a hill *10 - 100
A\
for $100. 10 - "100

The check which he brought was, of course, a new matter; but
the housewife had aiready allowed for the $100 hill in her es-
timate of available funds. When she found that this bill wasn't
really for her anyhow, she breathed a large sigh of relief and,
combining the morning’s two transactions, revised her estimate
of available funds upward by $110.

316t
$271

We could write

‘10 - ~100 = '110.

“Miss Katie Reynolds, a teacher of the fifth and sixth grades in the At-

tucks School in St. Louis (which is part of Dr. Samuel Shepard’s well-known
“Banneker District”), has developed the most effective method for teaching
Postman Stories that any of us on the Project hos ever seen. Her method
works so smoothly that she is able to teach this topic easily and successfully
to an entire class of culturally deprived children whase school performance
might ordinarily be quite marginal. Miss Reynolds’ device is to use index
cards to represent checks, and to use a piece of paper (with an appropriate
notation written on it) to represent a bill, so as to gain the advantage of
clear visual imagery in relation to Postman Stories. But her particularly in-
genious idea is 10 introduce a “Bill Bag.” Whenever the housewife receives
a bill for, say, $7, in order fo be sure that she will have the money availoble
to pay it, she does the following: she 1ckes seven index cords representing
$1 each — or some other combination of index cards representing checks thot
total $7 — wraps the bilf areund them, puts a rubberband around this, and
puts this into her “Bill Bag.” The great advantage of Miss Reynolds’ method
appears when the postman comes to take back a bill, for when he tells the
housewife that that $7 bill was not for her, she reaches into her Bill Bag,
takes out this little package with the slastic around it, undoes the package,
gives the bill back to the postman, and is now quite visably richer by $7.
Each child can see for himself “where the $7 comes from.”
» Some children seem to require direct visual experience as a foundation
for building abstract concepts. The “Bill Bag” method which Miss Reynolds
developed, in cooperation with the principal of her school, takes much of
the abstract terror out of problems like

2 -7 =9
by giving the child a very clear visual experience. The *2 is there, repre-
sented by index cards the postman has just handed her. The “extra seven

dollars” is there, just freed from captivity in the “Bill Bag”; putting them
together, the child sees that the housewife is “richer by nine dollars.”
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(21 - ‘100

(22) 10 - 100

(23} -7

(24) ‘5 - "2
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(21) Postman took away a check for $100. Housewife is “poorer”
by $100:

- 100 = "100.

(22) Postman bhrought a check for $10, took away a check for $100.
As a resuit of his visit this morning, the housewife is “poorer”
by $90.-We could write

*10 - *100 = 90.

(23) Took away bill for $7. Since the housewife had made provision
tor this bill in computing her estimate of available funds, when
she fournd out the bill was not for her she revised her estimate
upward by $7:

-7 ="1
(24) Postman brought a check for $5 and took away a bill for $2.

5 - 2 = '
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POSTMAN STORIES FOR PRODUCTS

Experienced teachers will not doubt that “‘the product of two
negative numbers” is one of the most 'mysterious” items in the
traditional curriculum, The traditional curriculum approached the
arithmetic of signed numbers by stating rules which students were
asked to memorize.

Those memorized rules did nothing to dispel the mystery of it
all, and with the passing of time most people forgot the precise
form of the rules, replacing them with incorrectly recalled substi-
tutes that led to wrong answers.

The “rules’ approach did not work. {Ask adults of your acquaint-
ance to perform some problems in the arithmetic of signed num-
bers if you want to see what we mean.) Modern curricula have
tended to replace these fallible “‘rules” with something quite dif-
ferent: namely, mental imagery that suggests the correct answer.

There is a growing literature dealing with such imagery, and
much more will probably appear in the near future. See Appendix
A: Davis (28), (170); Tolman (69); Beberman (103); Sanders (64);
Flavell (114); and Brown (105).

Now, teachers may, at first, feel uncomfortable with such imag-
ery. They may ask if “truth” in mathematics should not be made
to depend upon formal mathematical logic, and not upon ‘‘mental
imagery."'

Actually, mathematical "'truth'’ appears in two forms:

(i) “Heuristic truth,” where we believe a statement to be true
for nonlogical reasons.

(i1) “Logical truth," where we support a statement by a careful
logical proof.

To neglect either of these aspects is unwise. '"Heuristic truth”
guides our intuition; it enables us to guess which things may be
worth trying to prove, and it reassures us that the whole affair
“makes sense.”

""Logical truth” is often too complicated to guide our intuition;
“logic” functions almost like a giant computer, that tells us which
statements must be labeled T and which must be labeled F, but
it does not tell us why, except in the most formalistic and remote
sense.*

It seems very likely that heuristic thought more often than not
depends upon ‘‘models’ or appropriate mental imagery.

Actually, we might distinguish four kinds of reasons for believing
a mathematical statement to be “true:

(i) A meaningful mode! suggests the truth of the statement.

*Compare Jerome Bruner, The Process of Education, pp. 13-14:

“The third theme [of this book | involves the nature of intuition —the in-
tellectual technique of arriving ‘at plausible but tentative formulations
without going through the analytic steps by which such formulations would
be found to be valid conclusions. Intuitive thinking, the training of hunches,
is a much-neglected and essential feature of productive thinking not enly in
formal academic disciplines but alse in everydoy life. The shrewd guess, the
fertile hypothesis, the courageous leap to a tentative conclusion—these are
the most valuable coin of the thinker ot work, whatever his line of work.
Can school children be led to master this gift?”

80
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(i} The statement is a simple agreement—as when we agree
that the first-named coordinate shall refer to the horizontal axis
and the second-named to the vertical axis (the rule for substituting
is also in this '‘agreement’’ category).

(iii) A consistent pattern seems to suggest the truth of the state-
ment.

(iv) A lpgical proof of the statement exists.*

By the tirne a student has compieted grade 9, we would hope
that he could give both intuitive and logical reasons for the state-
ment

1 x 1 =11,

[The logical proof depends primarily upon the distributive law

LI (AN ==+ * V)]

However, considerable experience with children has convinced
us that, below grade 9, the "‘model’’ approach —specifically, post-
man stories —works out far more satisfactorily than any of the other
approaches. Even for ninth-graders, the postman stories—once
they have been mastered —are often the most effective "‘explana-
tion" of the behavior of signed numbers.

in this chapter we shall take our postman model, which we have
already used for addition and subtraction, and extend it to deal with
multiplication. Our stories for multiplication will necessarily be
different from our stories for adding and subtracting, because the
role of units (or “dimensions") is different.

In adding, you (ordinarily) want similar units for each term. That
is, if

3+ 72
t
this is “dolfars”
then
34+ 2
T

this should also be *‘dollars.”

However, in multiplying, if both units were *‘dollars,”

2 x '3
Tt
“dotlars” "dollars”

the “‘answer” would be in "dollars squared” (as in the case, for
example, of “inches” and ‘‘square inches’). This would be non-
sense. Consequently, we cannot interpret both factors as dollars.

We shall, instead, interpret products in such a way that the sec-
ond factor will be interpreted as money—i.e., as a bill or a check.

2 x '3
T

*Actually, on a deeper level, “logic” is merely one more instance of “pot-
tern.” We observe, for example, the general appropri of some logical
rule (for ple, modus p ), and we thereafter prociaim this rule—
that is to say, we make consistent use of this noturally occurring pattern.
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CHAPTER 6
We can use the first tactor to tell us how many times the postman
brings the item or takes it away.
‘2 x '3
+

Specifically, these following examples show the four possibil-
ities with multiplication.

(i) *2 x *3
d
The postman brings 2 x*3
i
two 2 x *3
l
checks *2 x *3
¢
for $3 each. 2 x *3

As a result of this visit, you are “richer” by $6. Hence we write

2 x *3 = ‘6.
(ii) *2 x 5

4
The postman brings 2 x5

{
two '2 x5
$
bills 2 x5
{
for $5 each. 2 x5

As a result of this visit, the housewife revises her estimate of un-
committed available funds

downward
by $10.

X X
1]

NN

-10

We can write

2 x5 ="10
{read: positive two times negative five equals negative ten).
(i) 3 x "4

The postman comes on Tuesday morning, and
takes away 3 x ‘4
three 3 x4

checks 3 x4

for $4 each. 3 x '4




STUDENT PAGE 23]

CHAPTER 6
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For products, like
"2 x 3,
Jerry makes up stories like this:
The postman

Brings or takes away? brings

%2 x '3
How many? two

"2 x *3
Bills or checks? checks

2 x Y

2 x '3

Postman Stories for Products

[page 23]

For how much? for $3 each.
i
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He says: ““! hope you weren't planning to spend those three
checks | brought last week. They're not for you —they’re for Miss
Parsons. If you'll give them back to me, I'll run over and give them
to Miss Parsons as soon as | get through work this afternoon.”

As a result of the Postman's disappointing visit this morning,
Mrs. Housewife must revise downward her estimate of uncom-
mitted available funds:

3 x "M ="12.

(iv} When you receive bilfs, that's sad. When you give back bills,
that's good! For the case

2 x 76
our story goes like this:

The postman came on a warm and sunny April morning—Thurs-
day moming, as a matter of unimpeachable fact —and

took back 2 x 76

two 2 x 76
4

bills 2 x 6

{

for $6 each. 2 X6

The postman remarks, ''| hope you haven’t worried about those
bills; they're really for the lady upstairs. Give them back to me, and
I'll run right upstairs with them this very minute.”

As a result of the postman’s visit, the housewife revises upward
her estimate of available funds:

2 x 6 ="12.

Considerable experience has convinced us that postman stories
will work successfully for you, in your class, if you will take the
trouble to work them out carefully and consistently.

ANswers AND COMMENTS
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Can you make up a postman story for each problem?
What answer do you get?

1 2x%x3= (1) *2 x *3 = *6 (Compare the illustrative example (i) in the intro-
duction to this chapter.)
d
2y *2x°'5-= (2) The postman brings 2 X ‘5 =
M
two 2 x Y5 =
1
checks 2 x *5 =
V

for $5 each. 2 x *H =

As a result of this visit, Mrs. Housewife revises upward

2 xH="
T
her estimate of available uncommitted money. *2 x *5 = *10
T
3) *2x3= (3) The postman comes on Monday morning,
{
bringing 2 x 3
\
two ‘2 x 3
\
biils 2 x 3
{
for $3 each. 2 x "3

As a result of the postman’s Monday-morning visit, Mrs. House-
wife must revise downward her estimate of available spending

money:
2 x 3 ="6
4 *2x5= (4) Postman brings two bills for $5; Mrs. Housewife is thus “poorer”
by $10:
2 x 5 ="10. ;
5) *5x7= (5) Postman brings 5 checks for $7 each:
G x 7 = *35.
(6) 2 x4 = (6) On Thursday morning, the postman pays a visit.
l
He takes away 2 x *1
X
two 2 x Y1
"
checks 2 x "
1

for $1 each. 2 x *1
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(7

(8)

8

($10]

(an

12

6
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As a result of the postman's Thursday-morning visit, the house-
wife must decrease her estimate of avaifable funds (since she
had, of course, previously included these two checks in her es-
timate of her available spending money). By how much? Evidently
she must decrease the amount by $2:

"2 x ‘1 =72

Notice that one might also make use of the identity

(J=1-00

in solving this problem.

(7) Postman takes away two checks for $5 each:

2 x 'S5 =10,

(8) Postman takes away two bills for $5 each. Since the housewife
had already allowed for these bills in computing her estimate
of available uncommitted funds, she may now breathe a sigh of
relief and increase her estimate of uncommitted funds by $10:

"2 x 5 = "10.
(9) Similar to question 8 above:

2 %x 6 ="12

(10) Postman brings twe bills for $6 each. As a result of this visit by
the postman, the housewife must decrease her estimate of her
availahle “free” spending money:

2 x 6 =12,

(11) Similar to question 8 above:

1 x 71 =1,

(12) Note that this is a problem in addition.

The postman brought

a check ‘5 + '3

for $5 ‘é + '3

and he also brought ‘S i ‘3
a check 5+ +3

{

for $3. 5+ '3

As a result of this visit by the postman, the housewife will in-
crease her estimate of available funds by $8:

‘9 + '3 =8
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13) -5 = (13) This notation will not usually occur in our mathematical work.
It is nice to know, however, that we could explain it with a post-
man story if we wanted to.

The postman took away -5
a bill -5

for $5. -5

The housewife accordingly increased her estimate of her uncom-
mitted available funds by $5:

- 5 =5,

In most mathematical situations we shall prefer to use the *‘op-
positing’" symbol ¢ to denote this unary operation, and to reserve
the *‘subtraction” symbol — to denote a binary operation. Thus,

instead of
-5 = 5,
we would usually write
(5) = 5.
(149 3 x 3= (14) Similar to question 8 ahove:
"3 x 3 ="9
15y  2x-2~= (15) Similar to question 8:
2 x 2 =4,
For questions 16, 17, and 18, the stories should cause no diffi-
culty.
(16) I x'3 = (16) "3 x 3 = '9
(1m 2x 2= (17) '2 x "2 = -4
18) 2 x-2= (18) 2 x 2="4
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KYE’S ARITHMETIC

This chapter reports an actual occurrence. While presenting sub-
traction, a third-grade teacher was discussing this problem:

64
-28

Shesaid, "'l can't take eight from four, so | take ten from the sixty. ..’
At this point a third-grade boy, named Kye, interrupted and said,
"“Oh, yes you can! Four minus eight equals negative four...”

64
—28
4

k]

“and sixty minus twenty equats forty..."

64
-28
4
40

“forty plus negative four equals thirty-six..."”

64
=28
4
40
36

"so0 the answer is thirty-six.”

This is as good an example of the difference between '‘tradi-
tional" programs and ‘‘modern’’ programs as we have encountered.
The “'traditional” teacher would presumably have said, *'No, Kye,
that's not the way you do it. Now you watch carefully while | do it
the right way!"”

The teacher in Kye's class, who was trying hard to catch the elu-
sive spirit of “‘modern’ mathematics, actually listened to what Kye
suggested, and actually thought about it.

Hundreds of hours of tape-recorded classroom lessons have con-
vinced us that children very often make up ingenious methods for
solving problems, only to be overruled and ““corrected” by a teacher
who doesn't really understand the child’s suggestion. (The author
pleads guilty to this himself, and claims —in his defense —that chil-
dren, although ingenious, are not clearly articulate; it is sometimes
hard to figure out what a child means, particularly when the child’s
suggestion is quite unexpected!)

In any event, Kye's teacher did listen to his suggestion, she tried
to understand and appreciate it, and she encouraged Kye (and the
rest of the class) to explore Kye’s method more fully. It turns out to
be an excellent algorithm for subtraction—invented by a third-
grade boy!

Suppose Kye's teacher had rejected Kye's suggestion. Kye would
have been left with the feeling that “this stupid mathematics never
does make sense; it never works out the way you'd think it would!"

87
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7] CHAPTER 7

| Kye’s Arithmetic

[page 24]

(1) Miss Parsons was working this subtraction prob-

lem with her class:

64
—-28

She said, “l can’t take eight from four, so I'll regroup
the sixty as..." At this point a boy named Kye inter-
rupted and said, “Oh, yes! Four minus eight is negative

four
64
=28
4

.. and twenty from sixty is forty

64
~28
4
40

... so that you get forty plus negative four, which is

thirty-six.”

64
-28
4

What. would you say to Kye?

{STUDENT PAGE M4

indeed, Kye would have been faced with the dilemma of perse-
vering in his own vision of mathematical consistency at the price of
severing diplomatic relations with the teacher or else hypocritically
abandoning what he believed to be the true "‘pattern.’ Either way
Kye would be the loser.

“Modern’’ mathematics teaching provides Kye with a third
choice: to persevere in "'figuring things out for himself” and to win
approval —rather than rejection —for his creative efforts at making
up his own methods for solving problems.

The mid-twentieth-century work on encouraging '‘divergent
thinking” should never have been necessary. We ought never to
have piaced such ridiculously great emphasis on ‘'convergent
thinking!"" Do we really want everyone to think in the same rigid
mold?

Children can make up their own algorithms for arithmetic —if we
adults give them a chance!

[lf you wish to do further reading, see Davis (31) or In-Service
Course #1 (available from The Madison Project). You might also
wish to view the Madison Project films “‘Kye's Arithmetic’ and
""Education Report: The New Math."]

AnNswers AND COMMENTS

(1) If you explore this further (as we shall do in the next few pages)
you will find that Kye's method is ingenious, valuable, and
correct.
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(2) Can you use Kye's method on this problem? (2) 3-5="2: 83
83 =25
_25 —2

80 - 20 = 60: 83
-25

2

.60

60 + 2 = 58 83
-25

2

_60

58

(3) Some other students extended Kye's method. (3) (a) 70 + 2
They decided to write “negative signs” over the digits
to which they apply, so that

— (c) 10 - 3,0r10 + 3

{b) 70 - 3, or (if you prefer) 70 + -3

53
means (d) 20 + 1
50 - 3 (e} 40 + 5
or M 50+5
50 + -3.

Note that this use of '‘negative digits” offers an unexcelled

If 34 means “thirty plus four,” can you say what each opportunity to study place-value numerals.

of these numerals means?

(a) 72
() 73
(e) 13
(d) 21
(e} 45
() 55
[page 25]
(4) Cynthia wrote: (4) Cynthia's “answer” is perfectly acceptable. lts meaning is clear

(compare guestion 3 above), and one can stop with “44" as the

Lg_; “answer.” Alternatively, one can convert to our standard
A1 numerals:
What do you think ?
|
e
30 35 40
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(5) Can you work out these problems by two {or (5) (a) Method 1
more) different methods? -
@ 23 by 59 3+3=0: 2§
+13 +37 13
0
20 + 10 = 30: 23
+13
0
30
30 + 0 = 30: 23
+13
0
30
30
Method 2 (converting to standard numerals)
13=10-3=71: 23
+ 7
23 + 7 = 30: 23
+ 1
30
(b) Method 1
9+ -7=2: 59
+37
2
50 + 30 = 80: 59
+37
2
80
80 + 2 = 82: 59
37
2
80
82
Method 2 (converting to standard numerals)
37 =30 -7 =20 + 3 =23 59
+23
Now proceed as usual. ..
16) Some other students made up a method for sub- (6) This method is quite satisfactory, and one more example of the
tracting. If we use their method, the problem ingenuity of children when we appreciate their ingenuity
instead of crushing it.
64
means “how far (on the number line) is it from 28 to This method was made up by some sixth-grade children in a
6477 suburb of Seattle, Washington.

T
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We'll see
28 plus 2 gets you to 30 64
28
2
.. plus 30 gets you o 60 654
-28
2
30
.. plus 4 gets you to 64 64
28
2
30
4

.. und altogether we've added b4

2 and 30 and 4, - 28
2
30
A
36
. which is 36.

What do you think about this method 7
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CHAPTER 8
1 Graphs With Signed Numbers

V‘Jr‘?‘.

[page 26)
(1) Can you show the truth set for

(MR ENVARWAVES >

by means of a table and a graph? (Use both positive
and negative numbers.)

(2) Can you show the truth set for

mxA:36,

by means of a table and a graph?

chapter 8/ Pages 26-28 of Student Discussion Guide
GrapPHS WITH SIGNED NUMBERS

If you have not already done so, this would be a good time to view
the film ‘‘Postman Stories.’’ You may also be interested in the film
“Circles and Parabolas.”

ANswers AND COMMENTS

(1) it is prabably wisest to restrict ourselves to integers. If we do,
we shall find exactly 12 pairs of numbers that will produce a
true statement; consequently, the graph will show exactiy 12

points.
L1 [ A Ao
o ‘5
'5 0
3 ‘4
‘4 3
o | 5 @
5 0
3 4
4 -3
-3 ‘4
-4 '3
3 4
4 -3
Tahle for Truth Set Graph for Truth Set

Actually, as the film "'Postman Stories’ shows very well, thisis a
case where the algebra aids the geometry, and the geometry aids
the algebra. Once you have located a few points, both geometric
and algebraic calculations work together to help you locate addi-
tional points.

For the continuous case, where we include rational numbers,
compare Discovery (Teachers’ Text), page 199.

(2) We might, again, use only integers. if we make this choice, the
table and graph look like the following.

92
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LA YA
1| 36
2| 18
3| 12
4 9
6 6
9 4
12 3
18 2
36 1 >
11736 i}
21|18
3|12
4| 9
B8] 6
9] 4
121 3
18] 2
361 1
Table for Graph for Truth Set
Truth Set

There are many elements of the truth set that involve fractions;
indeed, if we allow fractional solutions, we get what appears to be
a continuous, smooth curve, instead of merely isolated points.
(This curve is known as a hyperbola, and was used by the architect
Gyo Obata in designing the planetarium in St. Louis, Missouri. A
photograph of this planetarium appears in the Student Discussion
Guide. Of course, the perspective of the photo distorts somewhat
the actual curve.)

The following shows what the curve might look like if we allow
the use of fractions.

Ll
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(3) Can you show the truth set for

+A:IO,

by means of a {able and a graph? (Use positive numbers,
negative numbers, and fractions.)

As iNlustrated at the right,* a piece of the graph of the
truth set of problem 2,

XA=36,

was used by architect Gyo Obata in designing the plane-
tarium in St. Louis, Missouri. A continuous, smooth
curve (a hyperbola) was obtained by allowing {ractional
solutions.

“On page 95 of the Teachers™ Text

[STUDENT PAGE 26

Or, we might look more closely at the following which shows a small
piece of this curve, with a portion of the table.

CT 1A [ VAN
1 | 36
1 | 24
2 | 18
2+ | 16
22 | 15
24 | 14
3 | 12
35 | 1
33 | 10
4 9

Ll

Table for Truth Set
(if we agree to use fractions)

.

[
Graph for Truth Set

(3) If we use only positive whole numbers, the trijth set looks like
the following.

dlA 4

—
(<]

W O~ U hEWN
- N W bH DN

Ly

Table for Truth Set Graph for Truth Set
(using cnly positive (using only positive
whole numbers) whole numbers)
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PSS

A

Ow

The picture is rotated so
that the i and A axes ap-
pear in their usval positions.

GRAPHS WITH SIGNED NUMBERS 95

If, instead, we agree to use integers (i.e., the replacement set
for each variable shall be { .., 5,74,73,72,1,0,°1,°2,43,.. .}).

A

Because of perspective and changes of
scale, the [l and / axes that fit the profile
curve do not seem to be perpendicular,

Actual view of the
St. Louis planetar-
iure a8 seen from
the ground.

v then the table and graph look like the following.
BRI
§ T s
O
In this diagram the per- -3 13
spective is changed so B
that the and ... axes 2 12
appear perpendicular. -1 1
0|10
~ 1| s
2 8
< 9 1 -
10 0 L
11 (1
12 | 2

Table for Truth

Set (it we Graph for Truth Set
agree to use (if we agree to use
integers) integers)

Finally, if we use also fractions (positive and negative), the
graph looks like the following.

[ YA

Graph for Truth Set
(if we agree to use
integers and fractions)
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(4) Can you show the truth set for

Lhx A=

by means of a table and a graph?

24,

[page 27]

[STUDENT PACE 27

(4) If we use only integers, the table and graph leok like the

following.

LA A

1| 24

2| 12

3| 8

4] 6

6] 4

8| 3
"12 2 f ]
24 1

1124

*2 |"12

‘3] 8

4| 6

6| 4

‘8] 3
21 2 Graph for Truth Set (using only integers)
24 | 1

Tabie
for Truth
Set (using
only
integers)

if we agree to allow the use of fractions (positive and nega-
tive), the graph becomes another example of a hyperbola.

LD

Graph of Truth Set (if we agree
to allow the use of fractions)
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Can you make a graph for each truth set?

(5) DxA=-24

® [ ]x/\="36

" DxA=~12

(5)

(6)

GRAPHS WITH SIGNED NUMBERS

A
| 0
A
(]
AA
>

97
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® []x/\=n2 8 AD
: 7

® []-A-=o ) AL
>

an [ ]+ A\ =0 10 VAN
=
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an - A =[]>[] (1 , AL
i I
A\
O
a A+ (<D =o (2) AL
\l
bi
T
[ll‘ll’"l i 11 'l’llll T lL }
A e R R
T TyTTrTT IR RN R NG RE RSN ARREEEREE]
AD
ay = AxA (13) ,
3 : O
¢
— - AL
an [ J+(Ax/AN)=o0 (14)
= = D

as ([ =D+ (/A x Z\) = 169 (15) Using integers only:
i A
1A

13 0
12 5
‘5 ‘12
0 “13
“13 0
12 ‘5
5 12
0 13
12 "5
"5 12
12 )

5 12
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ae (CIx[N+(Ax/\) =2 (16) Using only fractions (positive and negative) with denominators
equal to two:
LA A2
0 3
0 3
+_% 0 - -
__g_ 0 4 b
“ 4.;; & {
N 0
2 2 4
% 3 * ¢
3 -4
F] 2
% 3
-a -4
2 z
% %
-3 23
z 2
an  ([Ix=2)+3=/ (17) Using only integers and fractions  Using all fractions,
with denominators of 2: positive and negative:
AA [ VAN
4
. A
@ (&
* 7
Compare Discovery, Chapters 11, 15, 17, 18, and 35.
a8 ([]x'2)+3=/\ (18) Using integers only: Using fractions:
AL YA
Vi
/
0 o
/
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a9 ([J=x2)+3=

@) ([ Jx-2)+3-=

(21) Widge says she uses the symbol "2” like this:

) =
(9) -

T10) =

(1) =

What would this be?

(5)

GRAPHS WITH SIGNED NUMBERS 101
A (19) Using integers only: Using fractions:
A\A A\A
0 O
Compare Discovery, Chapters 11, 15, 17, 18, and 35.
FAN (20) Using integers only: Using fractions:
AD
(] in)

(21) O('*5) = -5. This is read either as “the opposite of positive five

is negative five” or as “the additive inverse of positive five is

-3 negative five.”

You may wish to view the film “Second Lesson.”
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(22) Can you find these “opposites™? (22) (a) o(*1) = 1. Read either as “the opposite of positive one is
o negative one” or as “the additive inverse of positive one is nega-
(a)~("1) = tive one.”
® °(4) = W °(4) = 4
@ (&) = (©) "(4) =%
@ (o) = ) °(0) = 0
[page 28]

(23) Lex says that Widge is finding additive inverses (23) Lex is right. We are actually using the identity
and that she finds 0(*]) by asking, “What can [ add
to positive one to end up with zero?” What do you think? D + VD = 0.

For an explanation of what we mean by identities, see Chapter 18
of Explorations or Chapter 5 of Discovery.

(24) Can you find the truth set for each open (24) (a) { 5}.‘5 is the additive inverse of *5.
sentence?

(a) *5 + |:| =0 {
w7+ ]=0 © {
© -3 + D -0 () {0} 0 is the additive inverse of 0.

@o+[ =0

Can you give the truth set of each of these open sen-

{h) 7}. -7 is the additive inverse of *7.

‘3}. *3 is the additive inverse of “3.

tences another name?

(25) Cynthia made a rainbow picture: (25) Cynthia is right.

A

-4 -3 2 -1 Q "1 2 -3 ~4

She says that you find the additive inverse of a number
by “going to the opposite end of the rainbow.”

What do you think?

(26) Can you find the additive inverse of each (26) (a) 10

number?
(b) 15
(a) *10
{c) -3
(b) 15
{c) "3 @ 0

(d) 0




chapter 9/ Pages 29-34 of Student Discussion Guide

UsING NAMES AND
VARIABLES IN MATHEMATICS

This chapter is intended to be somewhat more of a “reading”
chapter, although some valuable class discussion might occur after
the students have tried to read the chapter and to understand it by
themselves.

Mathematically, the chapter is intended to introduce these
ideas:

(i) the distinction between ‘‘names’’ and *‘things’’;

(i) the meaning of the symbol =, or of the idea of "is equal to,”

or “equality’’;

(iii) the logical operation known as PN;

(iv) the mathematical operation known as UV.

Let us review these matters very briefly right now. First, it is
sometimes desirable to distinguish some thing from some name
for that thing. | This distinction has been made most forcefully and
most lucidly by Vaughan and Beberman in the UISCM materials,
see Appendix A: Beberman (87).]

Consider the exampie of mitk. If | have the thing milk on my
paper, that is a mess, probably attributabie to my two-year-old
daughter. But if | have on my paper a symbol or a name to refer to
milk, that is an entirely different matter. Indeed, a symbol for milk
has been used four times in this paragraph.

Here is a second example. The statement

Mary has four letters

might, without further clarification, mean either that the gir/ Mary

has received four letters in her mail box this morning, or it may

mean that the name Mary has the four letters M, a, r, and y,
Suppose we wish to name the number severr. We could write

7 or Vil or seven.
We could also write
6+ 1 or 5 + 2

oo 1+1+1+1+1+1+1
oo 10 -3 or 35 + 5.

Any of these would be names for the number seven.

This may not seem very exciting or very important. But wait until
we come to use this idea in our efforts to work out the meaning for
the sign =, and for the logical operation that we shall call PN.

Second, what shall we mean by the symbol =7 You will hear
people, when they are speaking carelessly, say that ‘‘some number”
is equal to "“some other number.” But-—as we ask in the Student
Discussion Guide —how can some number be equal to some other
number? This does not make sense. Nor is it the approach of mod-
ern logicians. They have preferred to interpret the statement
1+1=2to mean

103
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1] CHAPTER 9

Using Names and
Variables in Mathematics

[page 29]
THE MEANING OF “EQUAL”

How can “two different numbers” ever be equal? This
question poses the kind of problem we often encounter
when we think carefully about the words we use.

[STUDENT PAGE 2

"1 + 1" names some number, and “2'' names some
number, and — in fact —they both name the same number.

Thus, equality is primarily a statement about names and not
about things. We shall carry this same interpretation along, whether
the “things’’ be numbers, statements, matrices, geometrical en-
tities, or what have you.

In particular, we shall name matrices by writing arrays of num-
bers such as

1 2 01 5
or or 2
3 4 1 0 25

We shall say that two such names will name the same matrix if and
only if they “iook’" as if they do. That is

5 &)

names the same malrix as

N
w =
£ N
Sae—

but the name
6 )
3 4

does not name this same matrix. We shall look into this matter
when we begin our study of matrices.

Third, we have a logical operation which we shall refer to as the
principle of names and shall abbreviate as PN. The meaning of PN
is stated at moderate length in the Student Discussion Guide. We
shall try ta understand what it is all about when we come to this
part of the student chapter.

Finally, the use of variables (or UV) is not something new. It is
our old friend from Chapter 1, reviewed here in order to compare it
with PN, which is somewhat like it.

ANswers AND COMMENTS
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In mathematics it is sometimes important to use
words rather carefully. Mathematicians and logicians
want to avoid contradictions in what they say. Con-
sequently, they have thought a good deal about the
problem of “two different numbers” being “equal,”
and have decided to resolve the difficulty this way:

(a) Mathematicians distinguish "symbols” or
“names” from “things” or “ideas.” You have an idea of
two; but you cannot write the idea on the chalkhoard.
(They don’t sell that kind of chalk!)

What you write on the board is a symbol or a name,
such as

2
or
113
or
two .

(b) Mathematicians agree that “equality,” which
they write by using the symbol *=" is a statement
about names, and not a statement about things or
ideas.

Thus, “two different numbers” never will be “equal.”
When we write

1+1 =2,
what we shall mean by this is that
1+
is a name and that
2

is a name, and, in fact, these names both name the
same “thing” or “idea."” Both

1T +1
and
2
are names for the number two.
(1) In Paul’s class, there is a gir] named Sandy
Davis. Paul claims that we would be using the symbol

“="" correctly, as it is used by modern mathematicians,
if we wrote

Sandy = Miss Davis.

Do you agree?
{page 30]
(2) Jill says we could also write

Hawaii = the only state consisting
entirely of islands.

Do you agree?

(1)

(2)

USING NAMES AND VARIABLES IN MATHEMATICS 105

Paul is correct. When we write
Sandy = Miss Davis,

we are saying that “Sandy” is a name and “Miss Davis” is a
name and that both name the same person.

This usage of the = sign would be correct, in the light of modern
logic and mathematics.
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(3) In the triangle ABC,

A B

can you identify which angle is meant by the notation
£ CARB? Which angle do we mean when we write

£LCBA?

(4) George says that the triangle ABC has some
kind of symmetry. In fact, he took a protractor and
measured / CAB and also # CBA. He concluded that
they were equal, and so he wrote

¢ CAB = / CBA.

What do you think?

[STUDENT PAGE 30

(3) The notation

¢ CAB
refers to this angle:
c
A B
whereas the notation
/ CBA
refers to this angle:
c
A B

{4) George is correct insofar as if we put a protractor on these two
angles, we shall get the same reading in both cases. However,
when George writes

£ CAB = / CBA,
he goes too far! According to modern usage, the statement
/ CAB = / CBA

would say:

“/ CAB" names something, and "/ CBA” names
something, and, in fact, they name the same thing.

However, “/ CAB" does not name the same angle that “~ CBA”
names, as our pictures in question 3 clearly show.

Please notice that this is a new usage of “equals.” When | was
in school —and possibly when you were —one learned that "the
base angles of an isosceles triangle are equal.” This is using the
idea of equality precisely as George did when he wrote

£ CAB = £ CBA.

Both George and my past education are wrong, if one judges in
terms of today's use of the symbol =, or the idea of equality. Foran
excellent discussion of this matter, see Appendix A, Moise (94).
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{5) Can you make up some statements where you
use the symbol “=" the same way that modern mathe-
maticians do? Can you explain the meaning of your
statements?

THE “PRINCIPLE OF NAMES"”

Mathematicians have a rule, which we shall call
the “principle of names,” and will abbreviate “PN.”
The rule PN says roughly this:

If you take any true statement, take some occur-
rence of some name in this statement, erase it,
and replace it by another name for the same thing,
then the new statement you get will also be true.

The same thing holds for false statements. If
you start with a false statement and replace some
occurrence of some name by another name for
the same thing, then the new statement will
also be false.

To understand PN, let's look at some examples.

(6) Let’s use Sandy Davis’s name again. If we start
with the statement

Sandy was born in St. Louis, Missourt,
(which is true) and if we erase the name “Sandy”
B was born in St. Louis, Missouri,
and replace it by “Miss Davis” (which is another name
for the same person), we get the statement

Miss Davis was born in St. Louis, Missouri.

Now, according to PN, the statement Ipage 31]

Miss Davis was born in St. Louis, Missouri,
should also be true. Is it?

(7) Suppose that we start with the statement
Accra is a city very near the equator,
and suppose that we say
Accra is the capital of Ghana.
Can we write

The capital of Ghana is a city
very near the equator ?

(8) Can we start with the statement
2+4=6
and use the fact that
4
names the same number that
3 +1
does, to write

2+ (3+1)=6?

(5) Here are a few:
2x2=4

This says that “2 x 2” names some number, and “4" names
some number, and —in fact—they both name the same number.

Deutsch = German

This says that “Beutsch” is a name of a language, and “German”
is the name of a language, and —in fact—they both name the
same language.

Vil = seven

This says that “VII” names a number, and “seven” names a num-
ber, and—in fact—they both name the same number.

(6) VYes. This is a correct use of PN.

(7} Yes. This is a correct use of PN.

(8) Yes. This aiso is a correct use of PN.
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(9) Can we start with the statement
5+5+5 =15
and use the fact that

5
names the same number that
3+ 2
does, to write
5+5+{3+2)=15?

Is this a correct use of PN?

A METHOD FOR SHOWING WHERE (AND
HOW) WE HAVE USED PN

Sometimes mathematics looks complicated when
you see it written down, and it is useful to have ways
of “writing notes to ourselves” so that we can keep
track of what is going on. This occasionally happens
when we are using PN. In order to keep track of where
we use PN, we can use either of two methods. For one
method we mark a “gaping hole” for the name we
“erase,” and into the “gaping hole” we place the new
name for the same thing. For the other method we
agree to underline with a heavy black line the name
which we “erase” and also the new name for the same
thing.

Example 1
The “gaping-hole” method of writing:
(1) Sandy was born in St. Louis.
We erase the
name “Sandy.”

(1i) IR was born in St. Louis.
Into the
“gaping hole,”
we insert
the name
“Miss Davis.”
(iii) Miss Davis was born in St. Louis.
o [page 32]
The “underlining” method of writing:

(i) Sandx was born in St. Louis.
(ii) Sandy = Miss Davis.
PN from line (i),

using line (iD).

(iil) Miss Davis was born
in St. Louis.

Notice that, in the line above, we have given an
“explanation” of what we did, by writing

PN from line (i), using line (if).
Example 2

The "gaping hole” method of writing:
W (3x6)+(3x1)=21

{STUDENT PAGE 32

(9) Yes, it is. Please notice that, in using PN, we may deiete one
osccurrence of the name “5”

5+5+X%=15

to get
5+5 +¢= 15.
t
gaping hole

Into this gaping hole, we put another name for the same thing
(namely, “3 + 2") to get

5+5+(3+2 =15

We did not have to do the same thing for all the other occur-
rences of 5 in this statement. in this respect, PN is quite different
from UV.

Note: In questions 6 through 3 we started with true statements.
We then used PN. Since PN does not change the truth value of a
statement, we ended up with true statements.

If, instead, we start with a false statement, we shall end up with
a false statement. Here is an example:

New York State is south of the Mason-Dixon line.

Now, “New York State" is also called '‘the Empire State.”” Hence,
we could use PN, erase the name “New York State':

AP is south of the Mason-Dixon line.
ot
gaping hole
And then put in another name for the same thing:
The Empire State is south of the Mason-Dixon line.

This last statement is false, and so is the statement we started with.
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(ii) Now, "3 x 1” names the same thing that
“3” names.
(i5i) Hence, we can “erase” the name “3 x 17
(3 x 6) +mmmm= 2]
(iv} Into the “gaping hole” we can put “3,” to get
(3x6)+3=2.

The “underlining” method of writing:

@ (3x6)+(3x1)=2
(i3I x1=3
(i) (3 x8)+3=2 PN from line (i),

- using line (ii).

(10) Try to rewrite your work on questions 8 and 9,
using the "underlining” notation and “explaining”
the final step, as in the preceding examples.

THE “USE OF VARIABLES "

There is another rule in mathematics which looks
somewhat like PN but is really quite different. We
want to be carefu! not to get the two mixed up.

This other rule is the rule for using variables, which
we shall abbreviate “UV.”

We have actually learned about UV in Chapter 1,
but we did not name it. Let's look at a few examples.

(11) If you start with the open sentence

1+ =20

and if you make a numerical replacement for the

variable like this
Uv:3 — D,

what statement do you get?
youg [page 33)

(12) If you start with the open sentence

B+I<5

and if you make a numerical replacement for the
variable like this

uv:s — [ |,

what statement do you get?
(13) If you start with the open sentence

(J+h+ =31

and if you use the fact that the “open name”

L1+

will always name the same thing that

2x [ |

names, can you therefore write

Have you used UV or PN? Did you use it correctly?

(10) Here is question 8, written using the “underlining” notation:

i 2+4=6
Gi) 4 =3 + 1
(i) 2+ (3 + 1) =6 PN from line (i), using line (ji).

Here is question 9, written using the “underlining” notation:

i) 5+5+5=15
(i) 5 =3 + 2
(iii) 5 + 5 + (3 + 2) = 15 PN from line (i), using line (ii).

(I3 +3=2x3

Remember, in using UV, you must make the same replacement
for every occurrence of the variable. That is, if you put 3 into the
first [ ], you must put 3 into every [_|. (Contrast this with ques-
tion 9.)

(12) 8 + 1 < 5. Notice that one cannot teil anything about the
truth or falsity of an open sentence. In this case, using 8 as the
numerical replacement results in a false statement. If the nu-
merical replacement had been 2, UV:2 -» [], the resulting
statement, 2 + 1 < 5, would be true.

(13) This is a correct use of PN.
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(14) If you start with the open sentence

(-« =3x]

and if you make a numerical replacement for the
variable by “putting 4 in every [ ],” what statement do
you get? Did you use UV or PN?

(15) Al started with the open sentence

and “put 5 into all the | fs on the left side of the =
sign.” He got, as & result, the open sentence

(5+5)+5=3x[ |

Was Al using UV or PN? Did he use it correctly?

(16) If you start with the open sentence

(2x[D+[0-ax]

and use the fact that the open name

L

will always name the same thing that

M
names, can you therefore write
(2 )+ X[ =3[
kN
(Erase this .. )

(2XD)+(IXE:|)=3X[:|?

f\
(and put this in its place.)

Did you use UV or PN? Did you use it correctly?

(17) Try to write out your work for guestion 16,
using the “underlining” notation.

[page 34]
(18) How is UV different from PN?

[STUDENT PACE 34

(14) (4 + 4) + 4 = 3 x 4. We used UV.

(15) Al was apparently trying to use UV, but he did not use it cor-
rectly. He put 5 into the first three [_]'s, but he didn't put 5 into
the last [ ]. (Compare guestions 9 and 11 above.)

(16) This is a correct use of PN.

(17)(2xD)+Q=3xD
(= 1=
(2XD)+(IXD}=3XD

(18) This is a little bit like asking “What's the difference between
a United States mail box and a 1964 Chevrolet?” There are
lots of differences. One that should be noted carefully is that UV
requires us to look at what we do to the first [ ], and to treat
every other [_| exactly the same way; PN makes no such require-
ment {compare question 9).

Also, UV is possible only if we have an open sentence that
contains at least one variable (whether we write the variable
as[_]or /\ or x or A does not matter). On the other hand, PN does
not necessarily involve variables.

A cornect use of PN will never change the truth value of a
statement. A correct use of UV will often change truth values.

For example,
3 + [:] =5

is open, whereas, if we use UV,

uv: 11— D,
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we get the statement

3+ 11 =5,
which is false.
(19) What number is named most often below? {19) The number seven is named six times, if we agree that
) ‘5 - "2,
\
m\e‘“a\ *‘5 which names the same numhber that
~
7 \ 2 *7
o XTIl does, also names the same number that
AY 7
-
2 does.
\\ - 4_ 1,000,009,600,003

il & Siy

o

A

35 o
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chapter ].0 / Pages 35-36 of Student Discussion Guide

NORA’S SECRETS

If your students have previously studied Discovery, which deals
with this topic, you may prefer to omit this chapter (or you may pre-
fer to use it for review).

At the start of this lesson, the children presumably have only one
method for finding the truth set for the open sentence

(%0 -(x[D+6=0

this is the method of “trial and error”” (or, as the physicist Jerrold
Zacharias more suitably describes it, ‘‘the method of exploiting
errors'’).

By using this method, they will find that:

"1 does not work"”:

(=N -6xO)+6=0
1 - 5 +6 =0
4
-4 + 6 =20 False

"2 works'":

@B -GE)s-o

10 +6=0

‘6
Rs) + 6=0 True
"3 works':
ExED-xED-e-
15 + 6 =
‘6
6 + 6 =0 True

"4 does not work'':

(&)= [2) - (5 % [3]) + 6

I

16 - 20 + 6 =
4
4 + 6=0 False

One could go on, to find that 5, 6, 7, and 8 do not work, and 50
on. Notice, however, that this method by itse/f could never fully de-
termine the truth set: we know that 2 and 3 belong to the truth set,
but we do not know that these are the only elements of the truth set.
There are infinitely many numbers, and we can never try them all.
Hence, there may always be other elements of the truth set that
-we have not yet tried.

In the present instance we resolve this difficulty by telling the
students that there are only two elements in the truth set. (If you
would prefer to leave this open-ended, and to avoid the "“authori-
tarian” note of '‘telling,” you can do so0.) Hence, once a child has
found two numbers that work (i.e., that result in true statements),
he knows he has found the entire truth set for that equation.

112



STUDENT PAGE 3]

CHAPTER 10
Nora's Secrets

[page 35]

Can you find the truth set for these open sentences?

m []-e6=2
@ (2x[])-6=2 5
i
(3) Can you find the truth set for this open sen-
tence?

GXD%(SXD)M:O{ }

Can you find the truth set for each open sentence?

@ (Jx[h-02x[J)+ss=o
® ([Jx[D-(ex[])+rs-0
© (x0)- (=0 +w0=-o
o Qe Oi-exDesmo
© @<O-texDrsseo
) (Dx[])-(px[‘]'pu:o{'}

(10) Nora says she knows two secrets about this
kind of equation. Do you know what she means?

)
}

Can you find the truth set for each open sentence?

anv ([x[D-(sx[])+26=0

NORA’S SECRETS 113

Now — and this we would rot tell the children! —if a child is alert
and seeking to discover patterns, there are two important ones
here, just waiting to be discovered:

((Ix[D-(tsx[J)+6=0

T = {2 3]

Can you find them?

@ fa)
@ {23
@ (1.9
® (53]
© (52
@ (1)
® (i3]
® (1.2

(10) This is a situation that sorely tries an author's mettle: many peo-
ple claim that a teacher never feels comfortable letting children
learn by discovery unless the teacher himself has experienced
what it means to make mathematical discoveries. Perhaps these
people are right; on the chance that they may be, we have de-
cided not to put this answer in this book.

(11) {13, 2}
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(12)

(13)

t14)

CHAPTER 10

([(Ix[ h-taxJh~33=0

(]« -tox[Tr+2-0

([ Ix[Ji-t2x[ l+20-0

((IxD-(zx[ P+20-0

(1= -ts=x[J)+r3e=0

(CI=[ - o2x[ [+ 20

[page 36]

0

(18) Do you know Nora’s secrets? If you do, DON'T
TELL! (It's a SECRET!)

Can you find the truth set for each open sentence?

(19)

(20)

2D

(22)

(23)

24

(25)

(1= Dh-tax[Nh+1w0-o
(Dxm) 45XD)+-]470
((IxLDh-(sx h+6=0

(CIx [ Q) -(ox[ h+22=0
(=D -tsx[Ji~10-0
((Ox[ -5 N+8=2

(D> -G2x[])+2s

[STEDENT PPACE 36
(12) {11, 3}
(13) {4, 5}

Note that 2 and 10 do not work; if you don’t believe it, substi-
tute into the equation; the resulting statements will be false.

(14) 2,10}
Here, 4 and 5 do not work.

I ]
(15) 120, 1;

X

(16){12,3}

(17) {100, 2}

(18) Compare guestion 10.

(19) |'5, 2}
(20) {77, *2}

(21) {2, "3}
Remember: 2 x "3 = 6.
(22) {11, 2}
(23) {5, "2}

(24) Ah! This is different. We must first subtract 2 from each side of
the equatian, to get

(DXD)_(E’XD)‘LG:O'
for which (as we already know) the truth set is
2,3},
- (25) Change to

(CIx[h-(3x[J)+22=0

for which the truth set is

{11, 2}.
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(26) {[:]:D} - (8-*D}+2o-8 (26) Change to

(DxD)-(BxD)+12=01

for which the truth set is

l6,2].




Part Two = Logic

We now begin our study of fogic. We shall proceed on the
assumption that the study of logic is entirely new to you
and to your students. The procedure we shall use is more
or less typical of how modern scientists construct abstract
‘cognitive structures,” or ‘‘models,” that enable them to
think about complicated aspects of reality.*

We shall begin by observing how actual people use the
words and, or, if, then, not, and so on. We shall oversimplify
this usage drastically. First, we shatl focus on the apparent
truth values that people seem to attach to the various state-
ments. If we let each student make this first “‘mode!’’ by
himself, and in his own way-which is what we do in our
own Madison Project classes—then we shall get quite a
variety of possible models.

Some models will allow only two truth values, true and
false (which we shall often abbreviate as T and F). Some
models will allow more truth values, including, perhaps,
some like these: ‘“maybe,”” “‘not proven,” ''possible,"” and
so forth. After we have made and looked at these various
(somewhat primitive) models, we can work together as a
class to build a common mode! — hoping uitimately to par-
allel reasonably closely the actual model used most com-
monly by modern mathematical logicians. This model is a
two-valued logic which we shall study in the following pages.

Now, once the bare outline of this model begins to take
shape, we can turn to a2 new kind of question: we can ask
questions about the further development of the model itself,
without regard to reality. (As Professor Marshall Stone has
remarked, "Mathematics frees us from the constraints of
reality.")

After we have developed the model! further, we can turn
around and attempt to reapply it to observation of actual
behavior of actual people —particularly people who are
talking about mathematics.

Why is the study of logic worthwhile? The models that
we shall deal with are, indeed, oversimplified versions of
the human use of language, so "‘logic”” will not completely
and fully describe human language. It will, however, help
to illuminate a few matters that sometimes need illumina-
tion. Moreover, it will help to focus our attention on some
of the "little' words we use — the “if's,” “‘or’s,”" and “not’s”’
—that sometimes slip by unheeded, like Volkswagens on a
highway much-traveled by large trucks. Even the idea of
truth value of a statement may heip to remind us of one as-
pect of language that we often forget.

*Compare the following amusing and perceptive bit of dialogue,
from a play by Saul Bellow. Marcella is @ weman vacationing in
Miami, Ithi is a leading atomic scientist.

Marcella: . .. You wouldn’t know about such things. You take the
big view. Overall. international. Cosmic. Nature.

Khimor: Nature. 1 don’t know nature. | only know certain mathe-
matical structures. ... (Saul Bellow, The Wen, Esquire, Janvary,
1965, p. 73).

it might be well to look at a few examples. One some-
times hears this usage:

Keep driving like that, and you'll kill somebody.

Probably, by the time we are through building vur abstract
model, we will interpret the statement above to mean about
the same thing as

If you keep driving like that, then you’li kill somebody.

Indeed, our truth-value analysis will probably show these
two statements to be exactly the same.

Yet, we can go beyond a truth-value analysis, and can
consider other aspects of these sentences. We can, for
example, count the number of words in each. In this case,
the two statements do not look the same —one contains
more words than the other. More importantly, we can try
to judge the fone of each sentence. Opinions will inevitably
vary, but in my own opinion the first statement probably
sounds somewhat more forceful, to most hearers, than the
second. The moment we-use the word if, we invite our lis-
teners to sit back and disassociate themselves from our
words—"Ah, he said if..."

As another example, consider the public-service notice
that was used over radio stations prior to the 1964 elections:

Vote, and the choice is yours.
Don’t vote, and the choice is theirs.
if you fail to register, you have no choice.

Again, a truth-value analysis might regard the statement

Vote, and the choice is yours
and the statement
If you vote, the choice is yours

as identical. However, in my own opinion, the tone of the
first is much stronger than the tone of the second. One
might say that the nuances of meaning are different. This
example, then, suggests that the usual uses of logic do not
fully reflect the entire meaning of our statements.

The actual use of human language is complex, indeed.
Even a vastly simplified description, which is what we here
seek to construct, can be of some value —much as a hastily
drawn map can sometimes be. The *'logic” we are develop-
ing is really, then, a rough description of one aspect of how
people use language.

Why is this worth studying? My own answer is based on
observing secretaries, delivery men, and all kinds of people,
in a wide variety of situations. Observation makes it clear
that people use language carelessly, and especially where
words like or or not are concerned. If you conduct your own
observations, | think you can find plenty of examples.
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Here are a few instances where the usual use of such
words is careless, or where such carelessness has led to
trouble:

(i) A letter said: "If you have a contract with Me. W_____,
we would like to examine a copy.” This letter was construed
to mean that the recipient should have & contract with
Mr. W . Perhaps it did mean this, but it didn’t say so.

(i) Professor Layman Allan, of the Yale Law School,
has pointed out that /ogical ambiguities abound in sup-
posedly careful legal documents. It is not hard to find
some in documents released by state governments, in con-
tracts of various sorts, and so on.

(iii) A world-famous mathematician went to take a driving
examination. He had memorized statements from a booklet,
including the statement

it is illegal to park within
15 feet of a fire hydrant.

As part of the test, he was given some *‘true-false’” ques-
tions, including this one:

True

False

The mathematician checked ''true,” on the grounds that
if the first statement was true, the second surely was. The
examiner, however, claimed that the correct choice was
'false," since it should be fifteen feet, not nine feet.”

it is illegal to park within
9 feet of a fire hydrant.

(iv) If you whisper a statement such as
The moon is high, or John is not ready

to a student, ask him to whisper it to another student, and
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ask the second student to repeat the statement aloud, you
will find ervors often creep in. A particularly common error
is to change the "or"’ to an “and,” and to end up with the
statement

The moon is high, and John is not ready.

This, however, involves a major alteration in the logical
meaning of the statement.

{v) In the “game of clues,” which we shall encounter
in Chapter 16, the following situation sometimes arises.
The children are told the “‘clue,”

Al of the numbers are odd.

They subsequently learn that this clue was false. Conse-
quently, they change it to read

All of the numbers are even.

This, however, is not a correct ''negation™ or “‘denial’” of
the original clue. What they should write is

At least one of the numbers is even.

It seems reasonable to hope that a brief study of logic
may help to improve the use of these much-neglected (but
important) “little’” words, such as i, not, and, or, and so on.*

*Some results of Professor Bruner's Center for Cognitive Studies
at Harvard give renson for optimism. Merely considering alterna-
tives can improve one’s response to a situation —the most limiting
“mental set” apporently often results from never having considered
alternatives in the first place. See Appendix A: Weil (143).




chapter 1 ]. /Pages 37-40 of Student Discussion Guide

LoGIC (BY OBSERVING
HOW PEOPLE USE WORDS)

Notice carefully the approach to logic which is used in this chap-
ter. We begin by looking at people —specifically, the people around
us—and observing how they use the words and, or, not, if. . . then,
etc. We are not concerned with how they c/aim they use these
words, but rather with how they actually do use these words. In
this sense, one might say that this chapter is concerned with soci-
ology or with cultural anthropology: we are occupied with the task
of "observing the natives.”

If we observe the natives honestly and carefully, we shall find
that:

(i) They use the words and, or, efc., in a variety of different ways;
they are not atways consistent. (Indeed, it might not be too ex-
treme to say that they are downright ‘'sloppy” and inexact.)

(ii) In most cases, we take our meanings more from the context
than from the explicit statement.

(iii) Any attempt to develop a simple description of the use of
language must, in fact, be an oversimplification of the actual com-
plicated reality.

in the next few chapters, our program for the development of
logic will go through three stages. First, we shall study how people
actually use the words and, or, true, false, if. . .then, etc. We shall
represent this usage by an oversimplified model, using a two-valued
logic. Second, we shall give greater precision to our use of these
words, by making some agreements on how we shall use these
words henceforth in this course. Finally, we shall take a “'‘mathe-
matician's eye view'’ of what is going on. We shall make every-
thing abstract, remove virtually all vestiges of context, and ask how
we can study and extend the abstract mathematical system with
which we seem to be dealing.

In what respects is our description in this chapter oversimpli-
fied? Perhaps primarily in these two regards:

Linguistic Simplification. The placement of nof within an English
statement is a subtle and tricky matter. Consider, for example, the
statement

... where the skies are not cloudy all day.

. Does this mean that, all day long, there is never a cloud in the
skies? Does it mean that the skies aren't cloudy a// day: there is a
brief period around 2 o'clock in the afternoon when a bit of blue
sky and sun breaks through? Does it mean that, generally speaking,
the skies are /ess cloudy than they are back East? What, in fact,
does it mean?
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1 CHAPTER 11
Rl Logic (by observing
how people use words)

T

{page 37]

(1) Barle wrote

Table for
Truth Set

What do you think ?

Within our representation of statements, we shall take a simple
statement

P
and denote its negation by
~P,

which we can read as "“‘not P."” We clearly oversimplify English a
great deal when we treat negation in such a simple fashion.

Truth-Value Simplification. Most statements in ordinary conver-
sation are really not *“‘absolutely true,” nor are they "‘absolutely
false." They usually contain "'some truth,” but also admit some
room for disagreement. Consider, for example, the statement ‘'red
is a pretty color,’”” or the statement '‘the United States is a rela-
tively young nation.” By the same token, the negation of most
statements is not '‘absolutely true,"” nor "“absolutely false.” There
are, in ordinary conversation, many shades of "truth' and "falsity."”
Yet, in order to get a simple model, we shail regard all of our state-
ments as either true or false. This is known as imposing upon our
statements a ‘two-valued logic'': the only allowable values will be
“true” and '‘false.” Clearly this is an oversimplification of the
actual reality.

For further reading, see Appendix A: Allendoerfer (76), Davis
(27), Exner (40), Kemeny (82), Ohmer (97), Mendelson (93), and
Eves (86).

ANswers AND COMMENTS

Notice that we use subscripts to indicate which replacement set
is to correspond to which variable.

(1) I we consider only Earle’s replacement sets and do not ask our-
selves which statements are true and which are false, we see

that the statements
D + A =8

R, = {2,3,57}
R, = {1,3,5}

mean exactly the same thing as

2+1=8
3+1=28
5+1=28
7+ 1 8
2+3=8
3+3=28
5+3=28
7+34%=8
2+5=28
3+5=28
5+5=8
7+5=28
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(2) Joan wrote
P is x;
R, = {"New Orleans is a city”, “New Hamp-

shire is a city”, “New Jersey isa stat,e"};

R, = {true, false} .

Can you make a table to show the truth set for Joan’s
open sentence?

(2)

[STUDENT PAGE 37

So far we have used only the ideas of variables and replace-
ment sets. However, we are interested in the truth set.

Of the 12 preceding statements the following are true:

7+1=28
5+3=8
3+5=28

The remaining 9 statements are false. Consequently, the truth
set is given by the following table:

LA

7 1
5 3
3 5

Earle's table for the truth set is wrong. It contains two listings
which should not be there. The replacement

2—>Dand5——>A

is incorrect because
2+5#8

The replacement

l-—aDand7——>A

is incorrect, even though 1 + 7 = 8, because 1 is not an
eiement of the replacement set of [ ).

In the first place, thinking only of Joan's replacement sets and
not asking ourselves, just yet, which statements are “true” and
which are “false,” we see that the statements

Pis x;

Ry = {“New Orleans is a city”, “New Hampshire is a city”,
“New lersey is a s!ate"};

Ry = {true, false]

mean exactly the same thing as:

“New Orleans is a city” is true.
“New Orleans is a city” is false.
“New Hampshire is a city” is true.
“New Hampshire is a city” is false.
“New Jersey is a state™ is true.
"New Jersey is a state” is false.

Thusfar, we have used only the ideas of variable and replace-
ment sets. But we are asked to think about the truth ser—i.e.,
we are asked which of these uses of UV led to true statements.
Evidently, of the six statements above, the first, fourth, and fifth
are true:

“New Orleans is a city” is true.
“New Hampshire is a city” is false.
“New Jersey is a state” is true.
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{3) Larry made this table for the truth set of Joan's
open sentence.

P , x
New Orleans is a city. true
New Hampshire is a city. false
New Hampshire is a city. true
New Jersey is a state. false
Do you agree?
[page 38]

(4) John said he was going to keep track of his
friends’ statements. He was not going to see how many
words they used, he wag not going to worry whether
their words were elegant, and he was not going to care
about what they said. The only thing he was going to
study was whether their statements were true or false.
John made this table:

D|A|DandA
I

He said, “I'm going to study what my friends mean
when they use the word ‘and.’ I don't know what state-
ment they may put in the m, but it will be either true
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On the other hand, we have three false statements:
“New Orleans is a city” is false.
“New Hampshire is a city” is true.
“New Jersey is a state” is false.

Conseguently, the truth set is given by the following table:

P | x
“New Orleans is a city” True
“New Hampshire is a city” False
“New Jersey is a state” True

We could also write this truth set as

T = {("New Orleans is a city”, true), (“New Hampshire is a city”,
false), ("New Jersey is a state”, true)}.

Notice that T is a set of ordered pairs, and that, in fact, 7 is a sub-
set of the Cartesian product

Ry x Ry,
which we could write as
T C Rp X RX'

This example is a tricky one. If our students are to like mathe-
matics, the "light touch™ is important. Do not dwell on this prob-
lem. In fact, if you prefer, leave it out altogether!

Indeed, you may prefer to make up an easier example of your own
to put in its place. But, whatever you do, pfease don’t try to “drive
this example home.”” You can only alienate children by such an
approach.

(3) Larry's table is wrong. A correct table is shown above, in the
answer to question 2.

(4) Four. The statement in the [ Jjmay be either true or false, and the
statement in the /\ may be either true or false. Hence, there are
these four possibilities:

A

hea M IR I |
- - -
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or false. I don’'t know what statement they may put in
the /\, but it will be either true or false.”

How many possibilities must John allow for in his
table?

(5) Eileen said that people might put a true state-
ment in the [ | and a frue statement in the /\, so she
wrote:

What do you think ?

(6) Jill said that people mighti put a true statement
in the {7] and a false statement in the A\, so she added
another line to John's table:

(A [ L ad A
T } T

T F
What do you think ?

(7) Can you add any more possibilities to John's
table?

(8) John asked one of this friends to make up a sen-
fence,

Dand.A,

with

R, = {"I am ten years old”, "I am fifteen years
old”, “1 am seven feet tall \,

R, = {"my name Is George”, “my name is
Albert "} .

How many sentences could his friend have written?
Can you write them all 7

(9) Henry, who is twelve years old, wrote:
I am ten years old and my name is Albert.

Was Henry's statement true or false?
Ipage 39]
(10) Nancy says that if you put a true statement in
the [} and a true statement in the ,\ , then the state-

ment
[ and A

will be true; so she wrote:
! A !
L] AR ELYAN
T T T
What do you think ?

[STUDENT PAGE 30

(5) Eileen has one of the four possibilities,

(6) Jill is cotrect.

(7) Compare the answer 1o gquestion 4.

(8) With R, and R, as given in the question,

[ana A\
repiresents these statements:

i am ten years old and my name is George.

1 am ten years old and my name is Albert.

| am fifteen years old and my name is George.
I am fifteen years old and my name is Albert.
| am seven feet tall and my name is George.

| am seven feet tall and my name is Albert.

There are six statements, as there should be, since we are deal-
ing with the Cartesian product R, x R,, where there are three
elements in R, and two elements in R,

(9) For him, the statement was false.

(10) Nancy is evidently using the word and in its most common
sense. She is cerfainly correct, according to the way most
people most often use the word and.
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(11) Can you complete John’s table? (11) There are many possible ways to complete John's tabte, be-
cause there are many different uses of the word and. Prabably
the most common would be:

A [T A
T | T T
T | F F
FloT F
F Il F F

If, for example, someone promised us “3$5 and a year’s sub-
scription to the St Louis Post-Dispotch” we wouid feef he had
kept his promise only if we received both the $5 and the sub-
scription to the Post-Dispatch.

Other uses of the word and do, however, exist. An ingenious
teacher suggested the following:

“You keep driving like that and yow'll kill somebody.”

Now, when would we consider this statement true? If we do
keep driving like that, and we do kili somebody, we’d prob-
ably ruefully admit the prediction was correct, so we have

A | Dant A
T | 1 | T

where we have used “and,” to emphasize that this is a second

meaning for and, quite different from the earlier usage.
Suppose we do keep driving like that, and we don‘t kill any-

body. Then we might argue that our critic was wrong; hence we

might write:
VAN RELLYAN
T l T | T
T F F
Suppose we stop driving “like that,” and we kill somebody

anyhow. My guess is that most peopie would then argue that the
advice had been wrong:

O A | OmA

T T
T F F
F T F

Finally, suppose we stop driving “like that” and we do not
kill anybody. We might then feel that the advice had come “just
in time,” and might represent the abstract analysis of this case

as:
LA | [ and A
T T T
T F F
F T F
F F T

There are, in fact, still other uses of the word and that you
can locate if you seek them diligently. Can you identify an
"and,"?
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(12) Can you make a table of the way your friends

use the word "or"?

(13) Sandy made this table to show how her friends

use Yor'”™:

P
T
T
F
F
k?

What do you thini

{14) Ann disagreed with Sandy. Ann says her friends

use “"or” this way:

- -3

What do you think ?

PorQ

ol I B

(12)

(13)

(14)

{STUDENT PAGE 39

There are two uses of or that are about equally common. When
someone says

“I'd love to get an A in math ar English,”

| think he means he would love an A in math, he would love an
A in English, and he would love an A in both subjects. The truth
table: for this use of or—which we shail call “or," —goes like

this:
LA [ Llen A
T T | T
T F T
F T T
F F F

There is a second use of or, which we shall cali “or,.”
When a restaurant menu says

one vegetable or salad,

I think it means that you may have one vegetable or you may
have salad but you don't get both. The truth table for “or,” would
then be:

D /\ Dnrz&
T T F
T F T
F T T
FoloF F

Can you find any other uses of the word or?

Sandy’s table is correct; this use of or is often called the in-
clusive or. It is this use of or which is always used in mathe-
matics,

Ann’s table is also correct; this use of or is often called the
exclusive or. Apparently this use of or is implicit among law-
yers, or else they would have no need for the symbol and/or
which is common in legal usage.
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(15) Alex says sometimes his friends use “or” the
way Sandy says and sometimes the way Ann says,
What do you think ?

(16) Alex gave this example: " I'll either go canceing
all day Saturday or I'll go to the baseball game.” Which
way is “or” used in this sentence, Ann’s way or Sandy’s
way?

(17) Kevin gave this example: ' I sure hope 1 get an
A in English or math.” Which way is "or” used in this
sentence?

(18) A waitress said, " You may have potato or spa-
ghetti.” Which kind of “or” did she mean?

(19) Do you know what mathematicians mean by the
“inclusive or” ?

[page 40]

{20) Do you know what mathematicians mean by the
“exclusive or”?

(21} Kathy made a table for her symbol “~.," which
means "not ”:

Do you agree?

(22) Can you make a table for “~ Q" ?

(23 John uses [7] and /\ for the variables in his
tables. Sandy uses P and @ for the variables in her
table. In order not to get mixed up, John and Sandy
have made a table labeled with both P and Q and []
and /\:

" 1Inclusive or” " Exclusive or”
AN Tand /T o /S AN (1

Pand Q Por@ Porq - P - Q

Q
T
F
T
F

mom -3 =%

Can you fill in the rest of their table?

(15) Alex is, of course, correct.
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(16) This is presumably the exclusive or (i.e., Ann’s version), since
Alex presumably means he will not do both.

(17) This is presumably the inclusive or (i;e., Sandy's version).

(18) Presumably the exclusive or (i.e., you don’t get hoth potato

and spaghetti).

(19) and (20) Compare the preceding questions.

(21) Kathy is correct.

(22) »p Q -Q
T T F
T F T
F T F
F F T
{23) “Inclusive “Exclusive
7 or” or”
LA Tamd AN Tor AL Jor AT~ [ ]~/
P|lQ | PandQ PorQ {Por Q ~ P ~Q
TI|T T T F F F
T |F F T T F T
FIT F T T T F
F IF F F F T T
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(24) What do your friends mean by ‘if ...then..."? (24) There is considerable variation among uses of if . .. then. Con-
Can you show this by a truth table? sequently you should expect a number of different analyses
from your students. Here are some common ones:
L1 | A |1 then A\ — -
P Q@ | f P .then Q. HE AR LIRLLLYAN
T T P Q If P, then, Q.
T F T T T
F T T F F
F P F T F
F F ?

{Mathematicians write “1f P, then Q" this way:
We might, for example, be thinking of the statement “If 1

P=Q wash my car, then it will rain.” In the fourth case, FF, we
or else might feel that we had never properly put the matter to a test.
P 5Q) Notice, however, that if we accept a table such as this, we have

abandoned our two-valued logic, and ate now allowing three
symbols: T, F, and 2.

The following table is a version of our first table, modified to
reject the “?” in order to retain a two-valued logic.

P Q If P, then,Q.
T T T
T f F
F T F
F F T
Evidently, we might instead have chosen to modify table 1 as
follows:
P Q If p, then,Q.
T T T
T F F
F T F
F F F

You might say that when we never did wash our car, and so never
did test out the proposition, table 2 gives it “the benefit of the
doubt,” whereas table 3 rejects it as “not proved.”

Mathematicians always use ff. . then according to the following

table:
P Q IfP, then, Q.
T T T
T F F
. F T T
F F T

This meaning appears also in legal contexts; if my insurance
policy says

“1f | die, the insurance company will pay my estate $30,000,"
then if { do die and they do pay, they have not violated the contract;
if 1 don't die and they do pay, they have not viclated our contract
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(although company stockholders may feel that the management
has been overgenerous); if | do die and they don’t pay, they have
violated the contract (my trustees go to court!), and if | don't die
and they don't pay, they have not violated the contract.

(25) Sandy’s father says that mathematicians write (25) P Q P& Q
P & Q . T T T
to mean T F F
P has the same truth value as Q. F T F
F F T
Sandy made a truth table for
P < Q. ) ) ) )
o Notice that, in this chapter, we don’t want the students trying
Can you figure out how she did it? to get the “right’’ answer. We want them to seek an honest analysis
PlQ| Po@ of how their friends use these various words. Consequently, they
T T may come up with answers quite different from those suggested
T F here.
F T
F F
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Logic (bhy making agreements)

[page 41]

(1) Bill says it is very confusing to find people using
the same word for different meanings. He says we
should agree, in this class, that whenever we say
“and” we will use it according to this table:

P11 Q@ | Pand @
T | T T
T | F F
F [T F
F[|F F

What do you think?

chapter 12/ Page 41 of Student Discussion Guide
LOGIC (BY MAKING AGREEMENTS)

In the preceding chapter we outlined our approach to logic,
which might be described as a three-step approach:

Step 1: Cultural anthropology
Step 2: Legislation
Step 3: Mathematical exploration

Chapter 11 was concerned with step 1, the cultural anthropology
or linguistics approach; we tried to see how people actually do
seem to use the words and, or, etc; and what they seem to mean.
At this stage the goal is honest, shrewd observation. We want to
observe actual usage of these words by actual people. We do not
want —heaven forbid! —to color our observations with our expec-
tations of how people '‘ought to use these words and what they
ought to mean.” As a result, there is no ''right"” answer in Chap-
ter 11 that can be predicted in advance. The goal is for each chiid
to be true to his own experience. We have started, already in Chap-
ter 11, to make a very simple model for this linguistic behavior,
in terms of two-valued logic and truth tables.

Now, in the present chapter, we begin step 2: legislation by
making agreements. We shall take the diverse and chaotic usages
of Chapter 11 and impose order and clarity by legislative edict.
We shall agree that, henceforth in this course, we shall use the
various words in strict accordance with a single meaning, as re-
vealed in a single column of the truth table. By this method we
shall achieve the incredible result—as Professor Patrick Suppes
points out —of using an imprecise language to create a more pre-
cise language!

ANswers aND COMMENTS

(1) This is a good idea. it initiates step 2 of our three-step approach
to logic.

128
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(2) Paul’s father says that mathematicians always
use “or” to mean the “inclusive or.” Let's complete
the following truth table for “or.” And let’s agree that,
in this class, we will always use “0#”’ according to our
table.

P Q P or Q

(3) Let’s make up a truth table for “if ... then...”
Let’s agree that, in this class, we will always use
“if ... then ...” according to the table we make up.

P Q If P, then Q.

(4) Let’s make up truth tables for “~,” and for
“&>,” and let's agree that, from now on in this class,
we will use “~-”" and "< according to our tables.

plel-rl-a|rProe
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(2) 1tis important in this chapter to make sure that our agreements
are consistent with those commonly made by mathematicians
and logicians. Here is the truth table:

P Q P orQ@
T T T
T F T
F T T
F F F

(3) Here is the table which mathematicians use:

P Q If P, then Q.
T T T
T F F
F T T
F F T

This table may seem ‘‘peculiar’’ — perhaps even wrong —to you
and to your students. This is presumably due to the fact that /...
then is used in many different ways in ordinary usage, and in yet
one more way by mathematicians. Notice especially that none of
the usual notions of ‘‘cause” and “effect’’ are inciuded in the
mathematical usage.

This is deliberate; as long as causality is involved, there can
never be certainty as to whether a statement is true or false. (For
example, does some kind of virus cause cancer? Does motion
through the ether cause a shortening of measuring rods, as people
believed before Einstein? Would driving 30 miles per hour cause
you to drop dead, as many people predicted when trains and auto-
mobiles were first introduced?) We need a more abstract theory,
one that is not too close to reality. We do not know reality, but we
can make up abstract systems ourselves, and we can be reasonably
sure about them.

The symbols for *“If P, then Q"' are either

P=Q
or
POQ

(4) Here is the truth table, as used by mathematicians and logicians:

PlQ | ~P | ~Q|PQ
T|]T | F F T
T F | F T F
FlT |7 F F
FlFr | 7 T T
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255 Some Complicated Formulas
in Logic

[page 42]
(1) Larry says he can fill in the column for
~ (Pand Q).
Can you? '

(2) Joan says there is really nothing new in this;
you just use things you ajready know, such as “-"
and “and.” What do you think?

(3) Can you fill in a column for
- (Por@?

chapter 13 / Pages 42-43 of Student Discussion Guide

SoME COMPLICATED FORMULAS
IN LOGIC

Because this chapter is possibly somewhat more difficult than
any thusfar, we recommend that, when in doubt, you omit it.

If you do include this chapter, please try to go through it “lightly."”
This is a real test of the “light touch.” A heavy-handed, '‘system-
atic,"” pedantic treatment of this chapter will almost certainly not
work with younger children. A light, “‘intuitive’” approach, however,
will work.

Mathematically, there are two points to this chapter:

(i) We can use our existing knowledge to fill in many additional
columns in our truth table —columns with headings such as:

~{PandQ), ~(PorQ), (~Por(~Q), (~PorQ.
(ii) When we do so, some columns will be the same. We shall not
say very much about this, leaving it instead for student discovery.

Before teaching this lesson, you may want to view the Madison
Project film entitled "‘Extending Truth Tables.”

ANnswers AND COMMENTS

(1) Actually, this is now fully determined by what has gone before.
Here is the result:

P Q Pand Q ~ (P and Q)
T T T F
T F F T
F T F T
F F F T
(2) loan is carrect.
(3) P Q PorQ@ ~(PorQ)
T T T F
T F T F
F T T F
F f F T
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(4) Can you fill in a column for (4) P Q ~ P ~(~P)
~(~P)? T T F T
T F F T
F T T F
F F T F

At this point some students may already have made the impor-
tant discovery that the columns for P and for — (-~ P} are exactly
the same. If any students do discover this, you may want to en-
courage them to try writing their discovery. They can do this as
follows:

P& [~ (=n]

(Remember that <=’ means '*has the same truth value as."”’)

{(5) Can you fill in a column for (5) P Q P=Q ~ P = Q)
~ (P = Q) T T T F
T F F T
F T T F
F F T F
(6) Can you fill in a column for (6) [ Q P& Q ~{P & Q)
~ (PSS 0? T T T F
T F F T
F T F T
F F T F
{(7) Can you fill in a column for (7) We shall de this in several stages. First,

(~ P)and (~ @)? D and A

is true only if we put a true statement into the ] and a true
statement into the A\. When will we do this? Evidently, if ~ P
is true and if ~ Q is true:

P Q ~ P ~Q (~P)and (- Q)
T T F F

T F F T

F T T F

Flr | I D——

Now, in all other cases, ‘T_| and /\" will be false:

p Q ~ P -~ Q (~P)and (~ Q)
T T F F F
T F F T F
F T T F F
F F T T T
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(8) Can you fill in a column for (8) This, too, we shalf do in stages. First,
(- P ~@)?
( ) or ( Q) ’___| or &
Can you fill in columns with the following headings?

becomes false if we put a false statement into D and a false
statement into /\. When will this happen? if ~ P is false, and if

—~ Q is false:
[ Q ~ P ~ Q (- P)or(~ Q)
T T F_| P—F———-F
T F F T
F T T F
F F T T

in all other cases, “( ~ P) or {~ Q)" will be true:

P Q ~ P -~ Q (~P)or(~ Q)
T T F F F
T F F T T
F T T F T
F F T T T
9 (- Plor @ (9) Again, we work in stages: “(~ P) or Q" will be false if both

{ ~ P} and Q are hoth faise:

P Q ~P (~PyorQ
T T F

T (F F) F

F T T

F F T

Otherwise, “(~ P) or Q" will be true:

P Q - P (~PorQ
T T F T

T F F F

F T T T

F F T T

Here, also, a student may discover that the column for
(~Plor@
is exactly the same as the column for

P = Q.

Hf anyone can write this, we usually name it after the student who
first writes it correctly; for example,

Toby's formula: [( ~P)or Q] ol [P = Q].
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(10} P or (~Q) (10) Here, also, we shall work in stages. In the first place, “P or
(~ Q)" is fatse if p is false and if (~ Q) is false:

~Q Por(~Q)

F
T
o

In all other cases, “P or (~ Q)" will be true:

malmalp

P
T
T

®
F

P Q ~Q Por(~Q)
T T F T
T F T T
F T F F
F F T T
(1) @ =P (11) W you “promise and don't deliver,” @ —> P is false:
P Q Q=P
T T
T F
Q__Q,KF
F F
In all other cases, it is true:
P Q Q=7°r
T T T
T F T
F T F
F F T

Suppose Jackie discovers the following formula and writes it
correctly; then we have

Jackie's Formula: [Q = P] & [P or (~Q)].

(12) P and (~ Q) (12) Again, we work hy stages. “P and (~ Q)" is true if P is true and
(~ Q) is true:

~Q Pand (~ Q)

I |

m 7 (=)= | o
I I IR I )
F




134

(13)

(14

CHAPTER 13

(- P) &> Q

[~ P = Q]

- e Q)

Otherwise, “P and (~ Q)" is false:

[STUDENT PAGE &2

P Q ~ Q P and (~ Q)
T T F F
T F T T
F T F F
F F T F

(13) We need only fill in columas for (- P) and for Q, and then see
where they do have the same truthvalues | (- P) <> Qwill be
nue] and where they don’t [( ~P) &> Qwill be false_]:

P Q ~P (~P) < Q
T 1 F

T | G P T

F @ | 1 T

F F T

P Q ~P (~P) & @
T | @ 1 B——F

T F F T

F T T T

F F —+——F

(14) This is an easy one. Just use the column for (~P) < Q:

P | @ | (~PSaQ ~ [t~ < a]
T T F T
T | F T F
F T T F
F F F T

(15) Another easy one; just use the column for ~ [( ~P) & Q];

P a |~|(=Peal | ~{~[(-Psal}
T T T F
T F F T
FooT F T
FoF T F

Notice that we are accumulating more and more opportunities
for discoveries. Here are a few:

Jitl's formula: {~[(~P) & Q)] < | P Q]

John's formula: [ {~[(~ P e q|} |< [(-P & Q]
Bernice’s formula: { ~ [_(~ P} or Q]} & [P and (-~ Q)]
Evelyn's formula: [(~ P or Ql P { ~ [P and {(~Q) l}
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(16)

(17

(18)

[(~P) < @] or [P = Q]

[P = 0] or [0= P]

~([p=> @) [0 = 7))
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(16) This, too, is fairly easy. We use the columns for (- P) & Q
and for P —> Q, and use the fact that ‘T_] or /\" will be false
only if we put a false statement into the [_]and a faise statement

into the A\:

Plaf(-P el P=al[(-Pealuop=a]
T[T F T

T|F T F

FlT T T

FIF F T

However, (~ P) < Q and P —> Q are never simulta-
neously false! Consequently, “[(~ P) &> Q] or [P = Q:l"
is never false; it must aiways be true: ’

(- QlP=aQ

[(~m<alo[r=a]

mm| - =] v

Q
T
F
T
F

M| -

T
F
T
T

]
T
T
T
T

(17) Again, we work by stages. First, we shall need the columns for
P = Q and for @ = P. Then, we shall recall that ‘("] or
/\" is false only if we put a false statement into the [ ] and a
false statement into the /\:

Plajr=ala=r|[r=a]o[a=r]
T[T T T
T|F F T
FIT T F
Flf T T

Again, we see that P :-;L Qand Q => P are never simulta-
neously false; hence “| P = Q] or [Q = PJ" must never
be false! it, aiso, is always true: '

Plalp = ala=r|[r= alo[a=r]
T[T T T T
T|F F T T
FlT T F T
FlF T T T

(18) We merely use the preceding column, and here we have an ex-

pression which is always false:

plal[p=a]o[a=r] ~{[P=a]eo[a=r]}
K T F
T|F T F
FlT T 3
FIF T F
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(199 P& (~Q (19) ~Q P& (~Q)

N |- v
m—|ma] o

AT |~
M

We have the possibility of another discovery:

Miriam’s formula: [(»-P) = Q'] & [P <:>-(~Q)-|

20 - [P (-@] (20) Pl Q| PSS (-@ | ~[PS (~Q)]
T T F T
T| F T F
F T T F
FlF F T
(21) P and (- P) (21) Pl Q| ~P |Pand(~P)
T[] r F
T F F F
F T T F
F F T F

Actually, of course, Q plays no role in this problem, and we
could use a shorter truth table:

Pl ~P | P and (~ P)
T I F | F
F T F
(22) Por (~P) (22) P11 Q| ~P | Por{(~P)
T T F T
T F F T
F T T T
F F T T
Using the shorter table:
P | ~P| Por(~P)
T | F | T
F T T

(23) P& (~-P) _(23) ~P P& (~P)

mn| -] v
n-H|l M| o

~—t| mm
|-
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[page 43]

(24) Michael says he has made an interesting
discovery. Have you?
(25) Mark says that the column for
~ (P and @
is exactly the same as the column for
(~Plor(~ Q).

What do you think?

(26) Eileen listened to what Mark said, and wrote
[- Pand @] & [(~Pror(~@].

The class named this “Eileen's formula.” Can you
make up any other formulas the way Mark and Eileen
made up this one?
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Using the shorter table:

(24) We are referring, of course, to the realization that some columns
in the truth table are identical with others,

(25) Mark is correct.

Incidentally, if your chiidren already know the distributive law,

A=V = A) - (V)

(which is sometimes also called “the law for distributing muitipli-
cation over addition’), they may notice that

~(Pand Q) & (~Plor (~ Q)

is a kind of law for distributing ~ over and. The rule is: prefixa ~
to each statement, and change and to or.

(26) Eileen is correct.

As we have seen, there are many more formulas of this type.
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LoGIic (BY THINKING LIKE
A MATHEMATICIAN)

In order to understand the point of this chapter, it is worthwhile
looking at how arithmetic develops as a branch of mathematics.
The origins of arithmetic lie, presumably, in general "life experi-
ences” with counting sheep or children or wives or enemies or
whatever. After a time, however, abstractions are created —such
as the number 1, the number 2, the number 3, and so on —which
are able to stand by themselves as abstract concepts. We do not
need to refer back to the experience from which these concepts
were drawn. When we say, abstractly, that

2+ 3 =05,

we do not need to ask “'five what?'’ It does not matter whether we
are adding avocados or artichokes or kumquats or none of these.
In this sense we have eliminated the ‘‘meaning’* from arithmetic.

When (as in Discovery) we develop an axiomatic approach to
arithmetic and algebra, we go even further in “eliminating mean-
ing.”' The phrase "eliminating meaning” is used (unfortunately)
quite differently in mathematics and in education. In education,
meaning is used to refer to intuition and heuristic. Naturally, we do
not wish to eliminate these. In mathematics the word meaning is
used to refer to something else —namely formal dependence upon
the past experiences from which abstract concepts have been
drawn. We do not wish to be confined to such dependence. Would
numbers be equally useful if we had one set of numbers for arti-
chokes, another set of numbers for use in dealing with avocados,
and yet a third set of numbers to be used in counting apples, and
so on? Quite evidently not; such "meaningful” numbers would
have too much meaning; they would be too highly specific; they
would lack generality. The abstract number 2 gains part of its
value from jts very broad generality; it can refer to two of anything
whatsoever, without restriction.

We now wish to take our truth tables, which were born of our
study of how our friends used the English language, and get for
these ideas an “‘abstract’’ existence that will free them from the
need to refer to specific English verbal behavior. We can do this
by using three ideas: sets, Cartesian products, and mappings.

We shall do this as follows. First, we shall forget about the
“meanings” of “true” and '"false,” and shall consider, instead,
a set V which contains two abstract elements, T and F:

v =T, F}.

Now, we can construct the Cartesian product (see Chapter 2) of
V with itself:

Vox V= {1, DT, R R D, R, )
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Actually, we shall find it more convenient to display the set V x V
as a vertical column:

V x V
TT
TF
FT
FF

Finally, we shall consider mappings of V x V into V such as, for
example, this one:

TF

FT

I\

FF

Let’s now see how this will work out.

h CHAPTER 14
L Logic (by thinking like ANswers AND COMMENTS
a mathematician)
{page 44]
(1) Randy made up a truth table for “and,” like (1) Yes, he did.

this:

E A Dand/“\

P Q P and @

T T T
T F F
F T F
F F F

Did he use “and” the way we have agreed to?

(2) Lex’s father says that the relationships in (2) Yes, Lex's father is correct
Randy's table can be shown by using what mathemati-
cians call a mapping:

LA U |

TF\

FT e T

FF/
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He says that TT means that P is true and @ is true, and
that mathematicians call T the image of TT. Do you

agree?

(8) Debbie says that, if V = {T, F}, then
{TT, TF, FT, FF}
is just the Cartesian product
VxV
She says Randy has a mapping of V x ¥ into V.
VxV —V¥

What do you think?

(4) How many different ways can you map

VxV-—V?

(5) When they want to count something, mathe-
maticians sometimes make a special kind of a drawing
which is known as a tree or a tree diagram. Geoffrey
tried to count the mappings of ¥ x V¥ into ¥ by drawing
a tree diagram.

Geoff says you can map the

TT

either into T or into F. To show these two choices, he

started his tree diagram like this:
[page 45]
Image ot TT

T

Can you finish Geoff's tree?

(6) After you've mapped TT, Allen says you can
map TF either into T or into F:

image of TT Image of TF

F

Do you know what Allen means? Can you finish
this tree?

[STUDENT PAGE 45

(3) Debbie is right.

(4) There are 16 possible mappings.

The children may not be able to figure this out at first; in ques-
tions 5 through 11 we shall develop a systematic method (using
trees) to count the possible mappings of V x V into V.

(5) Geoff has made a good beginning. Your students may be able
to finish Geoff's “tree” immediately; if not, we shall work it out,
step by step, in questions 6 through 8.

(6) Allen ‘is continuing correctly.
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(7) Nancy says that after you’ve mapped TT and
TF, you can map FT either into T or into F:

Image of FT

Image of TT

Image of TF

Start

What do you think?

[page 46]
(8) Amy finished the tree like this:

image of TT Image of TF Image of FT tmage of FF

Can you trace a path through Amy’s tree that will
correspond to the mapping of “and”?

LOGIC (BY THINKING LIKE A MATHEMATICIAN)
(7) Nancy is continuing the tree correctly.
(8) Amy's tree is correct (and the tree is now finished).
For the mapping of and, we trace the following path.
(1) Map TT into T. \
(2) Map TF into F. T
(3) Map FT into F. F
(4) Map FF into F.
-
F
T
F
T
(4)
F
Start
T
F
T
F
T
This column records the j
possible images of TT. F
This column records the possible images of TF, after j T
a decision has been made for the image of TT. £

This column records the possible images of FT, after

decisions have been made for the images of TT and TF.
This column records the possible images of FF, after
decisions have been made for the images of TT, TF,
and FT.
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(9) Bill represented the mapping of “or” (meaning
the “inclusive or”™ with an arrow diagram:

TT\
TF T
FT

FF

Do you agree?

[STUDENT PAGE 4

Notice that one can think of this as if we had a rat running through

a psychologist’s laboratory maze. In the present example, at the
“first decision point” the rat chose the [eft branch of the maze.
At the next decision point, the rat chose the right branch; at the
third decision point, he again chose the right branch; finally, at
the fourth and last decision point, the rat again chose the right
branch. This particular route through the maze corresponds to the

mapping
7
TF\T
FT 7\F
FF

which, in turn, corresponds to the English linguistic behavior that
we have represented (using variables P and Q) as ‘P and Q.”

(9)

Bill's diagram is wrong. The correct diagram for “P or Q" looks
like this:

TF >¢T
- / F
FF/

We could also represent P or Q" as a “trip through the maze”
like this:

Start

This column records the H
possible images of TT. ——J

This column records the possible images of TF, after a decision
nas been made for the image of TT.

This column records the possible images of F T, after decisions have
been made for the images of TT and TF.
This column records the possible images of FF, after decisions have ) F
been made for the images of TT, TF, and FT.
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(10) Can you make a diagram of a mapping of

VxV —V
to correspond to each of the following mappings?

{a) or

(by If P, then Q.

cy P& Q
d) -~ P
e~ Q

) (~ Pori~ @

g) (~ Pyand ( P)
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(10) (a) See answer to question 9.

(b)

TT\
TF T
FT F
FF If P, then Q.

We can introduce some commonly used symbols, as follows:

Symbol
PvQ
PrQ
P=>Q
~ P

P Q

Meaning

P or Q (“inciusive or")

Pand Q

If P, then Q.

Not P

P has the same truth value as Q.

Consequently, the diagram above might be labeled P —= Q.

(c)

(d)

(e)

(t

®

T

TF§‘<T
FT F
FF

PSQ
TT
TF T
FT F
FF

~P
1T
FT »F
F
F -Q
7Y
TF =T
FT%F
FF

(~P v (~@

T
TF T
FT F
Ff

(~P) 1 (P)




144 CHAPTER 14

(11) How many possible mappings of
V¥V —V

are there? Can you show each of them by an arrow
diagram?

(12) Can you find names for each mapping of
VxV—V?

[STUDENT PAGE 46

(11) and {12) We shall answer these two questions simultaneously,

and hy two different methods.

First, using diagrams to show mappings of V x Vv — v, there
are two possible diagrams where all four elements of V x V
map into the same element of Vv:

17 T7

TF

TF

Fr F1

WV
V

FF FF
We might call these “4 - 0” diagrams. There are also “3 - 1"
diagrams, and “2 - 2” diagrams. How many of each? Evidently,
there are eight possible “3 - 1” diagrams; once we choose the
“1” mapping, the other three are determined; for each of the
four elements of v x v, there are two possible images in V:

TT\ TT

TF T TF T
= ==
FF FF

TT T

TF T

FI——————>F

FF

TT

TF

FT

FF

T7

TF

FT

WO

FF

-
-

-
-

— — - Ry
-n — - -
~ bl -

m
-

WA WY

-

-n
-

Finally, how many “2 - 2” mappings are there? For TT, we
have two choices in selecting an image (i.e., either T or F); for
each of these choices, we have two choices for TF. Now, if TT
and TF have been mapped into the same image, there are no
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further “free” choices: hoth FT and FF must map into the other
image in order to yield a “2 - 2" mapping. 0f this type, we then
have two mappings:

TT TT
TF

FT FT

Y
Y

FF FF

If, however, TT and TF have been mapped into different images,
then we have a “tree" choice for FT, but FF is thereafter deter-
mined:

TT

/q

W

TF T TF T
FT F FT F
FF FE

—
—

W

T7

T

FT

b
-

FF

Now, can we find “names” for each of these mappings, using
a vocabulary of the following symbols: P, Q, ~, vV, A, =, &,
and parentheses? The answer is that we can. We present below
the 16 possible pictures, each with an appropriate name. Many
other names are possible for each diagram.

—

L ol §

-
-
-

174

T

TF

FT

FF
PA(~P)

TT

TF

w

FF” whvi~a
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FfT——————>F

:

~ (P=>Q}
T
TF T
FF
~{Q=P)
1Al
TF T
FT F
- Py A (= Q)
7

If—>T

FF

T

TF

FT

FF

T

TF

FT

VARV

T 4 3
ow
n -

FF
~ (P&

[STUDENT PAGE 36

n -t —-
~ n -
n -

-
"

—
—

—
-

W

|
- —

-
-

Q=P

TT

TF T

FT

\n

F
PvaQ

Bt

F

5

WY

T

T
-

-

FT

F

-

pe

4
)

T

F

FF

There is a second abstract approach; instead of using dia-
grams to show mappings of vV x V into v, we can use a “tree”



STUDENT PAGE 46]

LOGIC (BY THINKING LIKE A MATHEMATICIAN) 147

picture, to show in one diagram all 16 pessible mappings. Here
is such a diagram, labeled with appropriate names:

T Pv(~P)
FPvQ

T Q=P

Start

F~@Q=P

T (~PYA(~-Q)

F™SF PA(=-P)

There is much more that can be done with this kind of question
and with this kind of concept. For example, we can seek other
names for each of these mappings. The mapping

T
TF T
2 F
FF

can be named (~ P) A (-~ Q); however, this same mapping can
evidently be named ~ (P v Q).

Our students usually discover this for themselves; this dis-
covery leads us to write

[(~Pr(-a]e] ~(Pva)

Some of our students, familiar with the distributive law of arith-
metic (see Discovery, Chapters 29 and 32),

(= (A +\) =[x )+ [T = V)
have called the statement
~(PvQ)s (~P)A(~Q)

“a kind of distributive law,” or a "‘law for the distribution of ~ over
v." This is a rather insightful description.
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There is another aspect which our students often enjoy. We have
succeeded in naming every one of the 16 mappingsof VxV —V
Ta da this, we have used a “vocabulary’ consisting of P, Q,

. =», <>, together with parentheses. The resulting names
were not unique. This raises several further questions immediately:
Could we use a smaller vocabulary, and still be able to name all
16 mappings? What is the minimal vocabulary that will sutfice?
How large is this minimal vocabulary? If we use the minimal vo-
cabulary, will the names then be unique?

There is still another direction for further exploration. We have
used a two-valued logic—that is to say, our “truth-value space"
V contains two elements. How would all of this work if V contained
three or more elements?

As observed on the pages of a book, this kind of mathematics
can look remote and formidable. Within our own experience, a
teacher who will explore these jdeas with his students can find
much that is intriguing, fun, and actually quite accessible. Good
luck in your exploring!
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Inference Schemes

i
[ ShEs

[page 47]

In several preceding chapters, we have looked at
logic from the point of view of the logical connectives
that commonly occur within sentences: connectives
such as “and,” “or,” "not,” “if ..., then...,” and so on.
We now wish to look at the logical relations that
often exist between sentences. Here are some examples:

(1) If Mr. Wilson is the guilty person, then he cer-
tainly had to be in New York City on July 10, 1967.
However, Mr. Wilson was not in New York City on
July 10, 1967. Therefore, Mr. Wilson cannot be the
guilty person.

Jerry has tried to take these statements about Mr.
Wilson, and represent them as an inference scheme:

Jerry lets P stand for “"Mr. Wilson is the guilty person.”

He lets @ stand for "Mr. Wilson was in New York
City on July 10, 1967.”

Can you now represent the statements about Mr.
Wilson, using Jerry’s P and @?

chapter ].5/ Pages 47-48 of Student Discussion Guide

INFERENCE SCHEMES

Inference schemes play an important roie in the application of
mathematical logic to high school mathematics —for example, in
the use of logicak language in discussing algebra and geometry.

Answers AND COMMENTS

(1) The statements could be represented like this:
Mr. Wilson is the guilty person. P
He was in New York City on July 10, 1967. Q
If Mr. Wilson is the guilty person, then he was

in New York City on July 10, 1967. P=>Q
He was not in New York City on July 10, 1967. -~ Q
Therefore, he cannot be the guilty person ~Pp
Putting all of this together, as in the argument in question 1,
we get:
P=Q
—_—Q
o~ P

A pattern such as this is called an inference scheme. In using
these patterns, we have two tasks:

(i) to translate from words to letters, as we have just done;
(ii) to determine whether the inference scheme is valid, or not.

Testing for Validity. There are various ways for testing whether
an inference scheme is valid or not. We shall now test the scheme

P=Q
~Q

. ~P

by the method of using a truth table:
P Q P=Q ~Q ~P
T T F F
T F F T F
F T T F T
F F T T T

149
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Since we are told that the — P = Q —
statement P = Q is true, we ~Q

know that, whatever truth values .~ P
P and Q may have, we cannot be
in the second row of the truth
table:
P P=Q ~Q ~P
T T T F F
-+ E = 4 £
F T T F T
F F T T T
Since we are told that the P=Q
statement ~ Q is true, we know — ~Q  —
that we cannot be in the first or So~p

third rows of the truth table:

P=>Q

~Q
T P
R ¥
T T

FlF T
We are now ready to see if ~P P=Q
is a "legitimate” and necessary ~Q
conclusion. We do this by scan- —_s S ~P e

ning down the column headed
~P, to see if there are any F's

remaining:
Ple |P=0a] ~a|-~F
7 T |
S £
—P———T——————F———L\F—@——
FiF T T

Since only T's remain in this column, the inference js valid.

It is worth pausing 8 moment to see what, if anything, we have
accomplished. Our work here has been purely formal —that is to
say, it has depended only upon the form of the argument. Obviously,
by purely formal means we cannot arrive at the “truth” —that is,
in the present:example, we cannot establish whether or not Mr.
Wilson really was in New York City on July 10, 1967. This is not &
formal matter, it is a statement about reality. It cannot be settled
by truth tables or other formal means, but must be established by
the testimony of witnesses. The truthfulness of witnesses is not a
matter of logic.

What we have done is to show that the form of the argument in
this example is legitimate. Consequently, we can conclude that if
the witnesses are telling the ltruth in their various separate state-
ments, then it is legitimate to conclude that the combined impact
of their separate statements establishes Mr. Wilson's innocence.

There are many aspects to “‘reasoning” and "judging,” and for-
mal logical inference is only a small part of what is involved — but
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{2) Marie says the statement, “If Mr. Wilson is
the guilty person, then he was in New York City on
July 10, 1967,” can be represented as

P = Q.
What do you think?

(3) Nancy says the statement, “Mr. Wilson was
not in New York City on July 10, 1967,” can be
Tepresented as

~ Q.
What do you think?

(4) Al says the whole discussion about Mr. Wilson
can be represented this way:
P=>4q -@
~ P
Do you see how Al's notation works?

(5) Consider these statements:

If Jerry believes that smoking causes cancer,
then he would be foolish to smoke. Jerry does
believe that smoking causes cancer. Therefore,
Jerry would be foolish to smoke.

Can you write out the inference scheme that seems
to be used here?

INFERENCE SCHEMES 151

even a small part can be important. We should not over-value formal
fogic, nor under-value the other parts of the process of “judging”
or ‘‘reasoning'’ —other parts, that is, such as intuitive assessment
of credibility, plausible inference, probabilities, and so on.

I suspect that many youngsters reject mathematics because
their elders made exaggerated claims for it, which inevitably re-
sulted in disillusionment. We surely want to avoid making exag-
gerated claims for formal logic. It is a small piece of the machinery
for seeking “'truth,” but it is an important one.

(2) Marie is correct.

(3) Nancy is correct.

(4) Either of these notations is in common use:

P—=>Q ~Q P=Q
T or
~Q
o~ P
(5) We might do it like this:
Jerry believes that smoking causes P
cancer.
Jerry would be foolish to smoke. Q

If Jerry helieves that smoking causes

cancer, then Jerry would be foolish P=>Q
to smoke.
P=Q
i
-

This is one of the most important of all inference schemes. It
was known by the ancient Greeks; today it is one of the foundations
for modern logic. It goes, incidentally, under the name of modus
ponens. We can check the validity of modus ponens by using a
truth table, as follows:

P=Q
=

L T )
M=EHITAH]O

F
T
T
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Since we are told that the — P = Q —
statement P => Q is true, we P
know we cannot be in the second s Q

row of the truth table:

P Q P=Q
T T T
T = -F—
F T T
F F T
Since we are told that P is P=Q
true, we know we cannot be in — P —
the third or fourth rows of the o Q
truth table:
P P=Q
T T T
—F f ~F—
—~—4—F —J—
—F F =
Now, we check whether Q is P=Q
a valid conclusion by scanning P
down the column headed Q to —_— Qe
see if any F’s remain.
P P=Q
T T T
F—-E E
- f F
- Tc .

Since only T's remain in this column, the conclusion is valid.
(That is, the statement Q must be true, if the other statements really

are true.)
[page 48]

(6) Consider these statements: (6) We can transiate into letters as follows:
If Mr. Harper was in San Diego at 10 AM,,
Tuesday, then he must be innocent. If he was
driving {rom Los Angeles to San Diego at 10 A M.,
Tuesday, then he must be innocent. Now, we know

Mr. Harper was in San Diego at 10 AM.
Tuesday. P

Mr. Harper is innocent

definitely that he was either in San Diego at If M. Harper was in San Diego at 10 A.M.,
10 AM., Tuesday, or else he was driving from Tuesday, then he must bhe innocent. P> Q
Los Angeles to San Diego at that time. Therefore, Mr. Harpe[ was d[iving from Los Angeles
Mr. Harper must be innocent. to San Diego at 10 A.M., Tuesday. R
Can you write out the inference scheme that seems to ] If Mir. Harper was driving from Los Angeles
be used here? to San Diego at 10 A.M,, Tuesday, then he
is innocent. R=Q

Either Mr. Harper was in San Diego at 10

AM., Tuesday, or eise he was driving

from Los Angeles to San Diego at 10 A.M,,

Tuesday. P v R
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We can now represent the argument by the following inference
scheme:

=
=

%
. Q

vav
P00

Now, we can check the validity of this inference scheme by using
truth tables as follows:

P Q R P=Q R=Q PV R
T T T T T T
T F T F F T
F T T T T T
F F T T F T
T T F T T T
T F F F T T
F T F T T F
F F F T T F
Since we are told that the — P = Q —
statement P = Q must be true, R=Q
we know that we cannot be in P v R
rows 2 or 6 of the truth table: . Q
P Q R P=Q R=Q PvR
T T T T T T
—T——F‘F‘ F 1‘;‘(——4'—&
F T T T T T
F FIT T F T
-+ttt
T F F F T T
F T F T T F
F F F T T F
Since we are told that the P=Q
statement R —> Q must be true, — R = Q «—
we know we cannot be in rows P v R
2 or 4 of the truth table: " Q
Q R P=Q R=Q PvR
T T T T T T
1+ f F 7 F—
F T T T T T
—+—1F F- F— —F— —F—
T T F T T T
E E —F F T—
F T F T T F
F F F T T F
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Since we are told that the P=Q
statement P v R must be true, R=Q
we know we cannot be in rows —> P VvV R «—
7 or 8 of the truth table: . Q
P Q R P=Q R = Q PvR
T T T T T T
—F F T— +—t—FF
F T T T T T
1T F— —L_ﬁ———T-——
T T F T T T
J—]—-F - F — F— ~——F—
£ T4 F ¥ S e e
£ -+ F— F s
Finally, to test the legitimacy F=Q
of drawing the conclusion Q from R=Q
this data, we have merely to scan P v R
down the column headed Q and s L Q —
see if any F's remain:
P Q R P=Q R=Q PvR
T T T T T T
J FH—— -———-E\—r—'f—~
F TIH T T T T
H— + e T
T iv(] F T T T
-t~ r—TtT7
+—H f —F—— —F__
A F T —F

Since only T's remain, the inference is valid.

(7) Here are some inference schemes commoniy

of which are valid and some of which are not

(7) Can you make up any inference schemes of
your own that seem to be valid?

P— Q P — (~Q)
Qe
P (not valid) .. ~P (valid)
PvaQ
~p P AQ
S Q (valid) P (valid)
P=Q PvaQ@vRe
Q=R — P
L —e
- o {valid) SR {valid)
P Q
Pvi{Q AR Q=R
~ P R—> 35
SQ (valid) SoP > S (valid)

suggested, some

PVvaQ

~ Q

P (valid)
P=Q
Q=R
—R__

S~ P (valid)
P v(QAR)
-

P (valid)



STUDENT PAGE 48]

(8) Toby made up this inference scheme:

P=Q Q=R
P=>R
Do you think it is valid? Can you give some examples,
using words?

(9) Can you find a way to test the truth of inference
schemes by using truth tables?

What good would such a method be?

(10) Sarah made up this inference scheme:

P:>Q’ ~P
- Q

Do you think it is valid? Can you give some examples,
using words? Can you test it by using a truth table?

(11) How many valid inference schemes can you list?

{12) Who might be interested in studying inference
schemes? Do you think mathematicians would? Do
you think logicians would? Do you think lawyers
would? Who else might be? What good would it do to
study inference schemes?
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(8) Yes, it is valid. Here is one example, with words:

if 1 go to Boston, I'll buy a recorder.
If | buy a recorder, I'll learn to play it.

Therefore, if | go to Boston, I'll learn
to play the recorder.

Note that, in our "vertical”notation, Toby's inference scheme
would be written:

P=>Q
Q=R
P =R

(9) We have discussed this extensively in the preceding questions.

One reason why our test of validity (by using truth tables) is val-
ued by some people is that it is a step —a rather small step—in the
direction of “objectivity,’” which has been a common goal in aca-
demic life in the twentieth century. By "objectivity” people seem
to mean that anyone is compelled to agree, or that any well-educated
person would necessarily arrive at the same conclusion. This is at
best an elusive ideal, and at worst a dubious one — but truth tables
do provide a tool that “we can all use the same way.”

(10) Sarai’s inference scheme is not valid. You can prove this hy
using a truth table.

(11) Obviously, there are a great many.

(12) Lawyers, mathematicians, and logicians probably all have some-
thing to gain from the study of inference schemes. So do psy-
chologists, teachers, linguistics experts, and anyone else inter-
ested in understanding how humans reason.

One might say that inference schemes play a role (although a
small one) in the task of building an explicit description of how
people reason. However, the goal of being explicit is not without
its own hazards.

You are encouraged to read the beautiful essay by Aldous Huxley
entitled The Education of an Amphibian, and also his essay £du-
cation on the Nonverbal Level [see Huxley (43), (44)].
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i The Game of Clues
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[page 49]

The rules for the game of clues are as {ollows:

One team (or one person) has a secret. Let’s call
this team TWS, for “team with secret.” The other
team seeks to discover this secret. Let’s call this team
DISC, for "discovery.”

1. TWS writes some numbers on a piece of paper
which then is sealed in an envelope, or otherwise put
where it cannot be read. (For example, someone can
fold the paper and sit on it.)

2. DISC seeks to force TWS to disclose the “secret”
numbers, and to let everyone read the paper.

3. Only positive integers are allowed. Repetitions
are allowed; for example, the secret numbers might be:

1,3,5,7,7,7,7.

chapter 16/ Pages 49-51 of Student Discussion Guide

THE GAME oF CLUES

The Game of Clues is actually a modified version of the game
Hidden Numbers which was introduced by Professor David Page
of the University of Illinois.* This game is always fun for the stu-
dents, but makes some demands upon the teacher.

The version of the game described in the Student Discussion
Guide is the final, sophisticated version. Before the students read
this chapter, you may want to prepare them by playing one or more
simpler versions. Matters will be made simpler by having the
teacher take the role of the TWS team and by having the entire
class take the role of the DISC team. We shall assume that you do
this. The simplest version is to make all clues true, and omit rules
6 through 14.

A slightly more complicated version is to use all rules, except 8,
9, and 11. That is to say, do not require DISC team to make a care-
ful, explicit list of which clues they are using when they claimacon-
tradiction. After using this version, you can introduce the require-
ment that the DISC team make careful, explicit lists of precisely
which clues are involved in a contradiction; you are then playing
the first, sophisticated version as it is described in the Student
Discussion Guide.

Why do we play this game? There are many reasons, but perhaps
the most important are these: We want to give the children expe-
rience with such mathematical ideas as implication, contradiction,
and uniqueness. This game gives us a lesson format within which
we can do & very broad range of mathematics —including “review"
of arithmetic — which is new, exciting, and fun.

ANswers AND COMMENTS

*At the time of this writing, Professor Page js working at the important
institution known as Educational Services, Incorporated, or “ESI” for short.
You may want to read the Quarterly Reports published by ES), which can be
obtained by writing to: Educational Services Incorporoted, 55 Chapel Street,
Newton, Massachusetts 02158.

156
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4. In guessing the secret numbers, DISC does not
have to guess the order in which they are written;
for example,

7,3,5,7,1,7,7
would count as the same list as the one given in the
rule preceding.

5. TWS writes clues on the board, labeling the
clues a, b, ¢, ..., and so on (it is desirable to omit “F”
and "T” as labels, since we have a different use
for them).

6. The clues may be true or they may be false.

7. Anytime that DISC believes there is a con-
tradiction in a certain set of clues, DISC lists the
clues in question and tries to show that there is a
contradiction in these clues.

8. DISC is right about the contradiction if the clues
they list do contain a contradiction, and if no proper
subset of the clues on the list contains a contradiction.

9, DISC is wrong about the contradiction if the
clues they list do not contain a contradiction or if a
praoper subset of the clues does contain a contradiction.

10. At the start of the game, DISC has 5 points.

11. Anytime DISC is wrong about a contradiction,
it, loses one point.

12. Anytime DISC is right about a contradiction,
TWS must mark T (for true) or F (for false) beside each
clue that is involved in the contradiction. TWS must be
correct in marking T’s and F's (even though TWS is
allowed to make some of the clues themselves false).

[page 50]

13. The game ends in one of two ways: If DISC loses
all 5 points, then TWS tears up the secret paper and
never allows it to be read (DISC has "lost™). If, on the
other hand, DISC is able to force disclosure of the
paper, then everyone on the DISC tearn is allowed to
read it, and DISC has “won.”

14. The procedure by which DISC may be able to
force disclosure of the secret is this: whenever it be-
lieves it is in a position to do so, DISC can list the
numbers that it believes must be written on the paper,
and can bet TWS that no other collection of numbers
would satisfy all the known truth values of the clues.
(That is, no other collection of numbers would make
true statements of all the clues labeled T and false
statements of all the statements labeled F.) If TWS
can find any other collection of numbers that will be
consistent with the T's and F's, then DISC loses the
bet, and DISC's points are reduced to zero. (Which, of
course, means the secret paper is torn up and the
numbers never disclosed.)

THE GAME OF CLUES

157
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If TWS cannot find any other collection of numbers
that will be consistent with the indicated 1"s and F's.
then DISC wins the bet, and TWS is forced to disclose
the secret.

In order to make the game interesting. TWS must
provide a growing collection of interesting clues.

Here is a sample game:

DISC begins, of course, with 3 points.

TWS begins by listing these clues:

a. 5 numbers on paper.

b. All odd numbers.

¢. Their sum is 26.

d. The largest number is 7.
e. The smallest number is 8.

DISC says there is a contradiction in clues e, b, and
¢, because an odd number of odd numbers cannot add
up to an even total.

Since DISC is right about

{u, b,r} ,
it is necessary for TWS to label a, b, and ¢ as either T
or F: TWS does this as follows:
F  a. 5 numbers on paper.
T 6. All odd numbers.
F ¢ Their sum is 26.
d. The largest number is 7.

e. The smallest number is 8.
TWS changes the clues to look like this:

a. 7 numbers on paper.
T & All odd numbers.
. ir is 12
¢. Their sum is 12. [page 51)
d. The largest number is 7.

¢. The smallest number is 8,

DISC says that
ia,b, c|
still contains a contradiction: an odd number of odd
numbers cannot add up to an even sum.
Since DISC is right about this contradiction, TWS
must label a. b, and cas T or F. They do this as follows:
T @ 7 numbers on paper.
T b, All odd numbers.
F ¢ Their sumis 12.
d. The largest number is 7.

¢. The smallest number is 8.

[NTUDENT

PACE
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DISC says that
{d.e}

contains a contradiction, because the largest number
cannot be smaller than the smallest number.

Since DISC is right about this, TWS must mark
T’s and F's on
[a.).

They do this as follows:
T a7 numberg on paper.
T  b. All odd numbers. -
¢. Their sum is 12.

d. The Jargest number is 7.

IO TGS

e. The smallest number is 8.
TWS changes the clues to read like this:

T a 7 numbers on paper.
T &6, All odd numbers.
¢. Their sum is 13,
T d. The largest number is 7. ~
F ‘e. The smallest number is 8.

Although they are not yet forced to do so, TWS labels
clue ¢ as T, in order to make the game move along
faster. The clues now look like this:

T  a. 7 numbers on paper.
b. All odd numbers.
¢. Their sum is 13.

d. The largest number is 7.

w8 3 2

d. The smallest number is 8.

(1) Can you finish this game? (0
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Atthis point DISC has 5 points and these clues are on the board:

T a. 7 numbers on paper.

b. All odd numbers.

¢. Their sum is 13.

d. The largest number is 7.
e. The smallest numberis 8.

= - -

What do we know frem this? Since we have only odd numbers,
the fargest of which is 7, we know that there is at least one 7 on
the paper and that the other numerals, if any, are 1, 3, and 5.

Now, since there are 7 numerals on the paper, they cannot be
too large, or the sum will exceed 13. Let's see, is 7,1, 1, 1, 1,
1, 1 possible? Yes, since 7+ 1+ 1+ 1+ 1+ 1+ 1=13.

But ... if we increase any number on the list the sum will be
too large! Hence, 7, 1, 1, 1, 1, 1, 1 is the only possible answer.
That is to say, the answer is now vniquely determined, as mathe-
maticians would describe it. (Remember, order does not count!
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(2) Why don't you write your own secret numbers,
and make up your own clues?

(2)

[STUDENT PAGE 31

We consider that 1, 1, 1,7, 1, 1, 1, is “not really different” from
7,1,1,1, 1,1, 1, and so on.)

The DISC team now bets that this must be what is written on
the paper. Since DISC is correct, TWS must disclose the hidden
paper for all to see.

You and your students will want to make up your own clues.
Here, however, are a few types of clues that we have found
useful:

The sum is 25. -

The product is 13.

The numbers are all odd.

The numbers are all even.

The numbers are not all odd.

The numbers are all different.

The smallest number is 3.

The largest number is 21.

The numbers are all prime.

The numbers are all multipies of 7.

The numbers are of theforma , a , « , 8 ,8 , ¥, where
a # B, B AV, %Y.

Two of the numbers, added together, make 12— provided

you pick the right two numbers on the paper.

... but it is hetter to invent your own kinds of clues.

?




Part Three

Measurement Uncertainties

chupter 17/ Pages 52-55 of Student Discussion Guide

MEASUREMENT UNCERTAINTIES

Traditionally, it has been all too easy for elementary school
children to get the idea that every question has exactly one right
answer. Further, they often believe that this right answer is ““per-
fect’” and “exact’” and so forth. This belief was probably en-
couraged, at least in part, by the kinds of questions the children
encountered.*

Now, in normal adult life, in matters of business, in matters of
art or history, and quite equally in matters of science and mathe-
malics, things are not this simple. Many questions have no answers
at all, some have many '‘right'" answers, and some have many an-
swers which are “almost right” —where we can never find an an-
swer that is exactly right.

How far is it from the earth to the sun? Obviously, we don't
really know, and every attempt to measure this distance will prob-
ably produce an “answer” different from all other attempts.

Again, what decimal name —by which we mean, ot course, a
“terminating” decimal name that you can actually write—is a
name for the square root of 27 It can easily be shown that there
is none. However, there are some decimal names which are reason-
ably good approximations. tf we square 2, we get 4, s0 2 is too
large. If we square 1, we get 1, so 1 is too small. If we square
1.5, we get 2.25, so 1.5 is too large. If we square 1.4, we get
1.96, so 1.4 is too small. As we continue in this fashion, we find
that 1.42 is too large (1.42* = 2.0164), that 1.41 is too small
(1.417 = 1.9881), and so on ... However, we shall never find a
terminating decimal whose square is exactly 2—that is, we can
never find a terminating decimal name for the square root of 2.
We can, however, find some very good approximations. What is the
“right'' name? Among terminating decimals, there is none. That's
just the way it is.

We need not go to such sophisticated questions as the distance
from the earth to the sun. If we try to measure the length of the
classroom, we shall find that small errors in measurement are
inevitably part of our answers. We cannot find exactly how long
the classroom is. No one can. (In fact, it can even be argued that,
when one considers distances as small as mijtionths of an inch, or
smaller, the length of the classroom keeps changing, due to tem-
perature changes, settling of the building, abrasive action on the
walls, plaster and paint flaking, and so on.)

Even if we agree that we shall measure from exactly this spot
here on the front wall to this spot here on the rear wall, we can-

*Some new mathematics material, being developed in Great Britain by
the Nuffield Foundation Project, under the direction ofGaoHrey H.Matthews
at St. Dunstan’s Collage, Llondon, makes excellent use of questions which
have no answers, questions which have exactly one answer, and 3o on.

The work cited in Appendix A, Schwab (1), is the finest discussion on this
that | have aver seen —and one which you should not miss reading.
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not expect that we can repeat the measurement many times and
get exaclly the same answer. In general we cannot do so. (Philo-
sophically it is sometimes important to notice that this ques-
tion can be formulated differently. To every measuring instru-
ment we can assign a '‘discrimination threshold” —that is, we
can try to guess to the nearest yard, or to measure to the near-
est foot, or {using a finer measuring tool) we can try to measure
to the nearest sixteenth of an inch, and so on. If this “discrim-
ination threshold” is large enough, then we can get absolute
agreement—but, of course, this is not agreement as to the actual
length of the room.)

In the present chapter, we have 10 students, working indepen-
dently and in secret, guess the length of the room. We take the
10 numbers obtained in this way, compute an average, and also
perform a computation to see how closely the 10 students agree.
Obviously, we expect considerable variation in the 10 answers.
We next have 10 students, working independently and secretly,
measure the length of the room, using 6-inch rulers. These are,
of course;, awkwardly small rulers for so large a distance; we must
move them end-to-end many times before we are done, and each
move entails the possibility of some error. Moreover, most 6-
inch rulers are far from precision instruments, and may well in-
volve errors in themselves. With the 10 numbers we get this way,
we again compute the average, and try to calculate the amount of
agreement or disagreement. (Obviously, we expect to find more
agreement—or less disagreement—~than when 10 students
guessed; however, we still expect considerable disagreement.)

We next repeat this procedure, using good-quality yardsticks or
meter sticks. We expect, in this case, to find somewhat greater
agreement. Finally, we go through the same procedure using good-
quality tape measures. This time we expect even less disagree-
ment — but we would still expect some disagreement.

By this time, we hope the children are coming to realize that
every measured ‘“answer'' is "‘wrong” --indeed, there is no way
to find the "right” answer—but that in some cases the error is
probably much smaller than in other cases.

A number of possible refinements can be made. For one thing,
you may get better results using a larger distance than the length
of the classroom —for example, use instead the length of the
school corridor. This, in effect, gives the children greater re-
finement in their measuring instruments, since there is a ten-
dency for them to use 55 inch, or 5 inch, as the smallest distance
they will bother to report. If we cannot get into finer discrimina- |
tion in visually reading meter sticks and rulers, then we can in
effect make 5 inch an "effectively smaller’ amount by measuring
longer over-all distances.

As another refinement in attempting to determine the amount of
disagreement, you may want to use either the variance or the
standard deviation. Thay are computed as follows:

Suppose the 10 numbers we got from the 10 children were

a, b,ec,de f g h k m
Then we find the average A as

A=a+b+c+d+e+l+g+h+k+m,
10
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CHAPTER 17

Measurement Uncertainties

[page 52]

(1) Can you measure how long your classroom is?

MEASUREMENT UNCERTAINTIES 163

For each of the original 10 numbers, we find its deviation from
the average:

Original number Deviation from average

a a-A
Fol b-A
c c—-A
d d~ A
e e — A
f f~A
g g - A
h h - A
K k- A
m m - A

Note that these deviations in some cases will be positive and in
other cases will be negative. (In fact, if you add up the '‘devia-
tions” cofumn, the “positives’” and ‘‘negatives’ should just can-
cel out, and the total for the column should be zero.)

We now take the 10 "“deviations’” and square each one:

(6 ~ A)?
(b - Ay
{c — A)?
(d — A
(e — A)
(f — A
(g - A»
th - A»
(k — A)2
(m— A2

We now add the column of squares, calling the total 7. We now
divide this number 7 by 10 (i.e., by the number of measurements
we started with). The result, ;5 x 7, is called the variance. The
positive square roat of the variance,

{

V 1

x T

ol

1]

is known as the standard deviation.

Before teaching this lesson, you may want to view the Madison
Project film entitled “Average and Variance.” If you wish to
study further the ideas of variance and standard deviation, con-
sult Mostelter (83).

ANswers AND COMMENTS

(1} This question is intended mainly to open the discussion. The
“simple” answer to this guestion may need to be scrutinized
more carefully —as we shall do in the remainder of this chapter.
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(2) Can you measure exactly how long the class-
room is?

(3) If you are in doubt about your measurement,
how doubtful are you? Could you be in error by one
yard? by one foot? by one inch? by one-tenth of an inch?
by one-hundredth of an inch? by one-millionth of an
inch? Would your measurement be exact?

CLASS EXPERIMENT 1

(4) Have 10 people, working independently and
in secret, guess the length of the classroom and write
their guesses on a piece of paper. Give these 10 pieces
of paper to a trustworthy person. We’ll work with these
numbers in the next few questions.

(8) How much doubt do you feel about these 10
guesses? Could they be in error by as much as 10 feet?
by as much as one yard? by as much as one foot? by as
much as one inch?

(6) Let’s write all 10 guesses on the chalkboard,
converting to the same unit in each case (probably
the foot, and its decimal parts, is the best unit to use).

(7) Can you find the average of these 10 numbers?
What is it?

(8) How much doubt do you feel about this average?
Could it be in error by as much as 10 feet? by as much
as one yard? by as much as one foot? by as much as
one inch?

(9) We want to see how well these 10 people agreed
with one another. (This is why we wanted to work
independently, and to write their guesses in secret!)
Mathematicians have thought of many different ways
of comparing how well different measurements (or
guesses) agree,

One method is to compute the range of the guesses.

For instance, suppose that the guesses were 31 ft,
30 ft, 33 ft, 27 ft, 32 ft, 32 ft, 29 ft, 30 ft, 34 ft, and 28 ft.
Then the range (in the sense of statistics) of the 10
guesses would be 7 ft.

Can you see how to find the range of any number of
guesses?

Do you think that range is a good measure of error?

(2)

(3

(4)

(5)

(6)

(7

(9)

[STUDENT PACE 52

By rewording question 1, we may be able to get some children
to wonder a hit.

Presumably the children will feel their error would be less
than one yard, and probably less than one-half yard, so that
their measurement to the nearest yard would be “exact”—but
only to the nearest yard. Not absolutely exact. They may aiso
feel that their measurement to the nearest foot would be exact.
When one looks for a measurement to the nearest inch, there
may be more grounds for hesitation. And, for the smaller frac-
tions of an inch, there is little doubt but that errors of this order
will inevitably appear.

Evidently, one is unlikely to find the absclutely exact “right”
answer! Since no one is likely to be able to find this, one can
ask — on the philosophical level —whether any absolutely exact
answer even exists! Surely, it is not known, in any event. No-
body knows the “right answers™!

If you are in doubt about how Class Experiment 1 might be
handied, we suggest you view the film entitled “Average and
Variance.”

This is a matter for class discussion.

Again, compare the film “Average and Variance.” The use of
decimal fractions of a foot is usually convenient.

As usual, you find the average of the 10 numbers by adding
them all up, and then dividing by 10.

Again, a matter for class discussion.

To find the range, look over the 10 guesses. See which one is
largest (we'll cail it L). See which one is smallest (we'll call it
s). Subtract the smallest from the largest:

L~ s
This answer is the range (which we might call R):
L-s =R

What number this will be, for your class, we cannot, of course,
predict in advance. Evidently, the smalier R is, the greater agree-
ment (roughly speaking) you have; the larger R is, the more dis-
agreement you have —at least, to the extent that R is a “rea-
sonable” measure of what you mean by “agreement.”
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[page 53)

(10) A second method is to plot our points on a graph, (10) This will depend upon the 10 numbers that your class has to
like this: work with.

Number

of peopie
making that
particular
guess

Number of feet

Suppose, for example, the guesses were: 30 ft, 33 ft,
35 ft, 30 ft, 25 ft, 32 fi, 30 ft, 28 ft, 35 ft, 40 ft.

For these 10 guesses, our graph might be made to
look like this:
Number

of people
3

|

i
T
25 30 35 40 Feet

This gives a kind of visual picture that suggests
how well the different guesses agreed.

Why don’t you make a graph using the 10 guesses
from your class? How well did the people agree?

(11) Another method is the method of average ab- {11) This, too, will depend upon your class.
solute deviation from the average. {The name makes
this method sound much harder than it really is. Notice that it is not the deviation from average which we use,
After a while this name will make sense to you, if you but rather the absolute value of the deviation from average. This
think about it.) We can illustrate this method, using point is not stressed in the student book—you may wish to em-
sample data. If the guesses were 30, 33, 35, 28, 25, 32, phasize it more yourself.
30, 28, 35, and 40, then we can find the average like this:

30

33

35

28

25

32

30

28

35

40 31.6

31—6 10J316 31.6 is the average.
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Now, 30 (the first guess) deviates from this average
by this amount:

31.6 - 30 = 1.6.

so 1.6 is the deviation of the first guess from the

average.
[page 54]

The next guess, 33, deviates from the average by
this much:
33 - 31.6 = 1.4,

Similarly, here are the deviations from the average
for the other guesses:

35 - 31.6 = 3.4
31.6 ~ 28 = 3.6
316 -~ 25 = 6.6
32 - 31.6 = 04
31.6 - 30 = 1.6
31.6 — 28 = 3.6
35 - 31.6 = 3.4
40 — 31.6 = 84

Consequently, the deviations (or deviations from the
average) are:

1.6,1.4,3.4,3.6,6.6,04,1.6,3.6,3.4,8.4.

What shall we do with these 10 numbers? The
answer is that we will average them!

1.6
1.4
3.4
3.6
6.6
0.4
1.6
3.6
3.4
8.4 3.4
34.0 107340

So, the average of the deviations from the average
is 3.4, using our sample data. Can you compute the
average absolute deviation from the average using
the 10 guesses made in your class? For your 10 guesses,
was the average absolute deviation from the average
greater or less than that of our sample data? Which
10 guesses are more in agreement, yours or the 10
guesses in the sample data?

(12) Why do you suppose we call this the average
absolute deviation from the average? Do you know
what we mean by absolute value?

[STUDENT PAGE 54

Notice that at this point we exercise some cunning in deciding
the order of subtraction. Our procedure is to choose the order of
subtraction so that the answer will be positive. This amounts to
“taking the absolute value” of the deviation-—hence the name
‘absolute deviation.”

(12) Here we call attention to the point mentioned in our answer
to question 11 above.
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CLASS EXPERIMENT 2

(13) Have 10 people measure the length of the room
with 6-inch rulers. As before, the 10 people must
work independently and in secret, and each must
write his answer before seeing what any of the others
have done. Give these 10 pieces of paper to a trust-
worthy person, who will keep them. We want to be
able to work with these 10 numbers, and to refer back
to them whenever we need to.

{14) How well do these 10 people agree? Could one of
them be in error by as much as 10 feet? by as much
as one yard? by one foot? by one inch? by one-tenth of
one inch? by one-hundredth of one inch?

(15) Compute the average of these 10 numbers. Do
you think the average could be in error by as much as

one foot? by how much?
[page 55]

(16) Compute the range of these 10 numbers. Did
the “6-inch-ruler” measurements agree more, or
less, than the guesses from Experiment 17

(17) Use the method of graphs. Do the “6-inch-
ruler’ measurements seem to show more agreement,
or less, than the guesses did?

{18) Use the method of average absolute deviation
from the average. Do the 6-inch-ruler measurements
show more agreement, or less, than the guesses did?

CLASS EXPERIMENT 3

(19) Have 10 people measure the length of the room,
using yardsticks or meter sticks of good quality.
How well do the 10 people agree?

CLASS EXPERIMENT 4

(20) Have 10 teams of people measure the length of
the room, using high-quality tape measures. How well
do the 10 teams agree?

(21) How would you find the exact length of the
room?
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(13) Compare, if you wish, the film “Average and Variance.”

(14) A matter for class discussion.

(15) Again, add the 10 numbers and divide by 10, in the usual
fashion.

(16) This will depend upon your class. The usual expectation—but
be prepared for surprises! —would be that the range is smaller
for the ruler measurements ant larger for the guesses.

(17) See answer to gquestion 16.

(18) See answer to question 16.

{19) This is shown in the film "“Average and Variance.”

(20) This, alse, is shown in the film “Average and Variance.”

(21) Evidently, you cannot!*

*Writers in general have been gaining o deeper understanding of the
nature of science. As o result, one finds quite a few perceptive references
to sci . Consider, for ple, the followi

. .. Finally Dundee turned around and
faced them.

“Facts are facts,” he said harshly.

Brager shook his head. “Net in science,”
he dectared. “A fact is o phenomenon observed
or recorded by an imperfect instrument.”

This surprisingly sophisticated and accurate bit of dialogue occurs in o
detective stary, The Sound of Murder, by Rex Stout (Pyramid Books, paper
back).
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There is much more you can do with this topic. You can apply it
to other measurement situations, to numerical determination of
the number @ , and so forth. The methods of testing the "con-
sistency,” or "degree of agreement,” in a collection of num-
bers can be applied to numbers obtained in many ways. How con-
sistent is an individual’s response in some specific physiological
situation? You can compare consistency for the same individual on
different days, or compare consistency from one individual to
another. How long, for example, can you stand on one leg? How
long can you balance a 12-inch ruler on end in the paim of your
hand?

You can probably think of many situations where consistency of
data might be of interest. How many cards can you draw, one at a
time, from a shuffled deck, before you draw an ace? How many
automobiles pass by the school in ten minutes? How much varia-
tion is there—is it always the same number of cars in any ten-
minute period?




Part Four = Identities, Functions, and Derivations

T CHAPTER 18
| ldentities

[page 56]
Which are true? Which are false? Which are open?

(¢} 29 + 51 =70

(2)

Nl

chapter 18/ Page 56 of Student Discussion Guide
IDENTITIES

By an identity we mean an open sentence that becomes true
whenever a ‘‘legal” numerical substitution for each variable
is made. For example,

(J+0-[]
Ox1-0
[Jxo-0
3+ (-1~
(L1xA)xo=0
CIxA =TI A
LlxA=Ax[]

are all examples of identities. If you are unfamiliar with the sub-

ject of identities, merely be patient. We shall explore this subject

in some detail in the next few pages.

The subject of identities is treated extensively in Discovery; its
inclusion here can serve as a review, or else it can serve to make
Explorations independent of any prior use of Discovery. Neither you

nor your students are expected to be familiar with the topic of iden-
tities; we shall begin at the beginning and go on from there.

w

ANswers AND COMMENTS

Questions 1 through 6 are intended partly to review the notions
of true, false, and cpen.

(1) False
(2) False

This question can play a diagnostic role; even students who
have not yet learned any algorithms for adding fractions should
recognize that this statement is false, provided they have some

reasonable intuitive idea of what + means, what 3 means, and
what + means. They might, for example, realize that § is a *‘good-

169
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sized share,” but that + is a ‘‘rather smalil share”; hence, 3
plus § should surely turn out to be more than £.

Alternatively, they can think in terms of the number line on
which + would be marked here

} ) } N -
o 1 2
1
2
and % would be marked here
— +— — }
0 t 1 1 2
12
3
so that, if we add these two lengths together
i
—
i +—1 } b
0 ¢ 1 2
1
31
2
we should get something closer to ¢
1 1
3 2
ey
i +—1 4 }
o 2
! \ 11
1 1
31 i
2

and certainly not +.
@ 2x3t=7 (3) True

This question, also, can play a diagnostic role.

@ s5+[]=6 {(4) Open
% 12+ ]=12 (5) Open
6 &+ 5 =3 (6) False

Can you find the truth set for each open sentence? -

M s+ =79 7 {1}
® s+ =7 ® {1}
@ B8+ ]=0 @ {8}
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am  ([J-2y=x({1-3)=0

av  [Jx[]=1e
az ] x[]=1e

{13) Can you make up an open sentence that will
become true for every legal substitution?

(14) Jerry says this open sentence will become true
for every substitution;

[1xo0=0.

Do you agree?

(15) Do you know what we mean by an identity?
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(10) {+2. +3}, or {2, 3}.

(11) {*4, -4}
(12) {*13,713}
At this point, the main topic of this lesson begins.
(13) There are many possibilities. (It is important to remember
that we must obey the rule for substituting, and put the same

number in every [], etc.) Here are a few that students often
make up at the outset:

DXO
0 x[ ]

(eI s LI0I © o

1

L]

HRRINNN

X

2

X X
X

+
+

L
2

x

i

+
-+

= 3 XD
7 +[ ]
(D+2)+1

+

n

+

I

You may wish to view the film “Second Lesson."

(14) Jerry is correct.

(15) Notice that in guestions 13 and 14 we began thinking abour
the concept of identity. Now, we introduce for the first time
the word identity. This gquestion may be rhetorical, and may
very likely have to be answered hy the teacher. Nonetheless,
we believe we get better attention from the class by asking this
as a guestion, instead of merely giving it as a statement. Here
are several possible “suitable” answers, which can be adjusted
to the sophistication ievel of your class:

“An identity is an open sentence that becomes true for every
numerical replacement of the variables.”
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(16) Sarah says that mathematicians use the symbol
“¥,” to mean “for all x,” and that they would write
Jerry’s idea this way:

Ve x-0=0.

(17) Can you make up any more identities?

IMPORTANT: For our future work we will need a long
list of identities. The best way to get such a list will be
for you to maintain a “cumulative” list of identities as
you make them up. Keep this list in a safe place where
we can refer to it whenever we may need to.

[STUDENT PAGE 56

“An identity is an open sentence that becomes true for every
legal substitution.”

“An identity is an open sentence where ‘every number works’;
the truth set is the set of all numbers.”

As a matter of fact, the various descriptions of what we shall
mean by an “identity’ are not completely equivatent. Consider,
for example, the open sentence

B

[]

Recalling that division by zero is never a legal operation, we see
that for this open sentence every /egal numerical replacement pro-
duces a frue statement, but it is not correct to say that “every
numerical replacement’’ does so. Other differences occur when we
“put A + B into the []" —i.e., when we use what is sometimes
called an "open name' as a replacement for a variable. These
differences are not, however, serious difficulties so long as the
basic concept of ‘‘identity’” is understood; the students recog-
nize the fact that our descriptions are merely attempts—more or
less imperfect —to put into words the idea of what we mean by an
“identity'’; the various exceptional cases are treated honestly,
if the need to do so arises.

(16) Sarah is correct The symbel ¥, means “for all x” or “you may
make any legal replacement for the variable x, and the following
open sentence will become true ... ,” or something of this sort.

For example,

V, x-0=0

might be read as “for ail x, x times zero equals zero,” or it might
be read as “you may make any legal replacement for the vari-
able x, and the open sentence x - 0 = 0 will become true.”

It is probably best to allow some small variation in our usage of
the symbol ¥x.

Incidentally, the symbol ¥y is taken from the subject of mathe-
matical logic, and is becoming increasingly important in ““‘modern”
approaches to mathematics. See Appendix A, Suppes (98). This
symbol is referred to, by logicians, as a ‘“quantifier.”” Present
Madison Project materials make extensive use of quantifiers at
the ninth-grade level. For the present, we merely introduce the
symbol in a relatively casual way, in order that it may be familiar
when it is needed in subsequent work. We would leave it out en-
tirely with very young children.

(17) There are, of course, a tremendous number of possibifities.

The Madison Project film entitled “‘Second Lesson’ shows a
group of children, from grades 3 through 7, learning about identi-
ties for the first time. You may want to view it when you are teach-
ing identities to your own students.

Be sure the students preserve their lists of identities carefully.
You may prefer to have individual students accumulate their own
lists, or you may prefer to have a single "official” list for the
entire class.
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MAakiING Upr SoOME “Big”
IDENTITIES BY PUTTING
TOGETHER “LITTLE” ONES

If someone shows you an open sentence and asks you if it is an
identity, you may have —at this stage in our work—no very satis-
factory method for deciding. For example, s

L=+ L

an identity? One method which students often use is to look at it
to see if it “looks’ —| suspect they mean *‘feels’ —like it ought to
be an identity. This method, in the hands of our students, is very
unrefiable. For the example above, they usually argue that it is not
an identity "‘because it has two boxes on one side, and three boxes
on the other.”” This argument is irrelevant and, in fact, quite wrong
in this instance.

A far better method is to go back to the definition: if every “le-
gal” numerical repiacement of the variable produces a true state-
ment, then the open sentence is an identity (as the children say,
“every number works’'). If you can find a single legal replacement
that yields a false statement, then you have the matter settied def-
initely and finally. In such a case, the open sentence is not an
identity, because you have shown that it is not true that “every
number works.” You just found one that didn’t!

Ah ... but what if every substitution that you try yields a true
statement? What then? You do not know that “‘every number works,"’
for you have only tried a few numbers. There are infinitely many
different numbers, and you can never complete the job of trying
them all. In this case, your result is only tentative; as far as you
know, the open sentence seems to be an identity. You cannot, how-
ever, be sure. Perhaps the very next number you try will yield a faise
statement. How can you be sure that it won't? You can't.

There are probably two other methods that childrer, use, in trying
to decide whether an open sentence is an identity. One is to see if
there seems to be any reason why it should be; for example,

D+O=D.

If you “don’t add any more," you still have the same number you
started out with. The other method is to see if you can retrace the
steps that the other person followed in making up the identity. For
example, in

[ J+12=1+2+[]+3+6+2

it seems clear that the man who made this up started with

[]+12=,

and, for that weird right-hand side, he broke the 12 up into bits and
pieces and sort of scattered them around. But, if you put them
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back together, the bits and pieces do add up to 12. Hence, you
might guess that this is an identity.

We shall not try to describe all this at the verbal level. it would
get too complicated. However, we do want to start building some
subverbal comprehension of identities in our students. For this pur-
pose, the following game seems to do nicely.

There are two teams, Team A and Team B. Team A makes up an
open sentence and shows it to Team B (probably by writing it on
the chalkboard). Now, Team B must try to decide whether or not
that open sentence is an identity. The teacher adjudicates, and
announces whether Team B is right or wrong (of course, the stu-
dents can argue, if they have any real evidence and can prove that
the teacher made a mistake). If Team B guessed correctly, they get
10 points. If Team B guessed incorrectly, then Team A gets 10
points.

Now the roles are reversed, and Team B makes up an open sen-
tence for Team A to classify either as an identity or as not an iden-
tity. The game continues until one team has, say, 200 points (or
you may use some other agreed-upon method for determining
when the game is over).

This game provides valuable experience that will be useful in
Chapter 19 and in other following chapters. [lf you object to the
competitive nature of team games, you can modify the rules. Efim-
inate the teams, and simply have students pose problems for the
rest of the class to discuss. For an interesting view of such matters,
consult Appendix A, Henry (42).

In the work thusfar on identities, we have made up cpen sen-
tences which we believed to be identities, and we have looked at
open sentences made up by someone else and tried to decide
whether or not they were identities.

All of this work was done in a preliminary, “intuitive,” nonver-
balized fashion. Having done some such work, we can now try to
describe it. As we make our description more fully explicit, and
more minutely detailed, we develop the idea of a derivation, the
idea of axioms versus theorems, and the explicit set of rules—
which we call a ““logic’' — for making up derivations.

This fotlows our familiar pattern of

(i} action,

(ii) intuitive “description’ of the action,

(iin) explicit description of the action.

We use this sequence again and again; in this we are probably
influenced by the work of Professor Jerome Bruner, of Harvard Uni-
versity, who describes “inductive” or ‘‘experiential’’ learning as
consisting of the sequence of

(i) performing an action,

(i) building mental imagery to represent cognitively a part of
what the action did in reality,

(iil) building explicit notation to name either the action or its
cognitive image.

Now, the explicit description of how we make up “big’ identi-
ties out of “little” ones—or new identities out of o/d ones—will, at
this stage of our work, depend primarily upon two processes: aur
old friends UV and PN.
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Bz}l Making Up Some “Big” ANswers AND COMMENTS
Identities by Putting
Together “ Little” Ones

[page 571

In making up identities, you probably had a method
—whether conscious or unconseious. For example, you
may have started an identity something like this

LT+ 3) e A< (A - 3)

and then thought to yourself, “Ah! If I now multiply
by zero, the result will be zero.” Consequently, you write

(=3 Alx (Al xo=0
In a simpler case, you may have begun
L=

and then thought, “Aha! If ] now add zero, the sum will
by unaffected by the addition of zero,” and so you wrote

(=L =o=[Jx[]

As a third line of reasoning, you may have begun with

C+9+ (02
and said to yourself, “Why, all you have to do is to put
exactly the same thing on the other side of the equals
sign, and surely that will give you an identity!” Con-
sequently, you wrote:

(Di’%)J“<h+3)=(D+%)*‘([E+3J.

In this chapter we want to investigate these methods
for making “fancy” identities out of other, simpler
ones.

Probably the best way to carry on our investigation
is to look at a few examples.

Example ]

Sometimes you use UV (use of variables).
You might start with a simple identity, like

O-A-A
and then you use UV to get a more complicated identity.
Suppose, for example, we do this:

Uv:4 + B — [ ]
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The result will be [page 58]

A+ B +/(-\=

which we would ordinarily write as

A+ B

i
ul
wie

+

wla
+

(_A+B)+(§+-})=(%+%)+(‘A + B).

We have made up this “more complicated” identity
by using UV.

If you prefer [ |'s and /\’s, instead of A’s and B's,
to indicate your variables, you can use UV again,
like this:

uUv: D — A

A»—)B
I+ A rGG+8) =G-8+ [T+ A)

Example 2

Sometimes you use PN (principle of names).

We might, for instance, start with the identity we
just got. We could make it still more complicated if
we want to. For example,

o [J+A=-A+0

and we just got the identity
@ (e A)r GG+ =(+3)
KAV

We could use PN —the method of “erasing” one name
and putting in its place another name for the same
thing —to get:

i (] A+ G+ =(3+1)
+ (A + D) PN from line (ii),
_— using line (1).
Q.ED.*

(Remember, the heavy underlining shows which
pame was “erased” and replaced by another name
for the same thing.)
[page 59]
(1) Try to make up some more identities to add to (
your cumulative list. (Remember to keep your list

carefully; we shall need it later.)

—

)

(2) Start with the identity (2)
Vro-W.
and use UV like this:
UV: 4+ B+3— \/.

*Q.E.D. stands for the Latin term quod eraf demonstrandum. It means we
have now proved what we were asked 1o prove.

[STUDENT PAGE 3y

This will depend vpon your class.

M N/ +0=\/
(i) (A+B+-;-)+0=A+B+-;~

UV: A + B +
in line ().

P =V
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What result do you get? Now replace the A’s and B's
by [Is and /\’s. What is your final result?

(8} Start with the identity
(HEVAVES U EXVANVIIRR N EWAY/
SN EEVANCRVA)?

Now use PN, and use these identities:
O+A-A+O

VAR AVIE NI EVAVERURERVIE

Can you get a more complicated identity as a result?

What result did you get? Can you write out each step
carefully?
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([ Asa)ro=[]r A

in line (it).

(3) There are several possibilities. Here is one:

@ ]+ /) +[]x (A +\H]
=(C1+ A+ [ (A + V)]

s A =/A+]
iy (L] + A)+ [ (A + V]
= A LD+ <A +V)]

PN, from tine (i), using line (ii).

w ([ ]+ /) + [[Tx (A + V)]
= (A LD+ (A + V]

Here we have repeated line (iii),
in order to make sure that the un-
derlining for our first use of PN
(using line ii) will not get con-
fused with the underlining for our
second use of PN (where we shall
be obtaining line vi by using line
v).

W (A +) =[x+ ([(1xV)
N EANEI (R EVANEX (N EAVA)
VAR HIES IERVANRVA)

PN, from line (iv), using line (v).

*In this identity we hove indicated the correct placement of parentheses.
That is to say, we hove not made a decision between (] + /) +4) vs. [}
+{/\ +1). There is a very good reoson why we have not done so: extensive
trials with children have convinced us that this question of “correct place-
ment of parentheses in addition problems” can profitably go through three
stages. First, we “just add,” and ignore porentheses altogether. This is—oat
first —a natural procedure for children. Ar the second stage, armed with ex-
periences where parentheses play a decisive role (as in the case of the “dis-
tributive law”), we raise the question of “"where the parentheses really
ought to go?” Finally, in the third stage, we “discover” {or recognize) the
associative law for addition, and thereofter can deal with the matter care-
fully whenever it seems appropriote o do so. Perhaps we should really rec-
ognize a fourth stage: once we know that we can deal with ALA carefully,
we allow ourselves to become careless in situations where meticulous care
seems unnecessary. But all of this is getting ahead of our story. We are now
only at Stage 1, where we are ignoring the question for the time being.
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SHORTENING LISTS:
“AXI0MS”’ AND “THEOREMS”

There are three mathematical ideas in this chapter.

(i) Sometimes introducing another variable permits you to re-
place a long list of identities by a single identity, without losing any
information. For example, if we have the list

D+1=1+D
[J+2=2+]]
[(]+3=3+[]
D+4 4+D

Il

]

we can replace this entire list by one single identity, namely
A=A+

Notice that, in doing this, we introduced another variable (which,
since the symbol had not already been used in this open sentence,
we chose to write as /\). Notice aiso that, in order to recover any
identity on the original list, we need only UV. For example,

uv: 3 — N\

gives us back the third identity on the original list.

(ii) In Chapter 19 we actually began writing out derivations (see
Chapter 19, problem 3). We can now use such derivations as an-
other means for shortening certain lists.

(iii) Finaliy, suppose that we made up the longest list that we
could, consisting of identities and true statements in arithmetic
and algebra. Suppose we then “shortened” this list by the two
methods just mentioned. We would finally end up with a list which
could not be shortened any further without actually losing some
information.

The statements or identities on this final list are what mathe-
maticians call axioms. The statements which were eliminated from
the list during our process of '‘shortening’ it are called theorems.

As usual, this will become clearer as we actually get into our
work. Compare, again, Professor Bruner's sequence for “experi-
“ential learning’: action, then imagery, then notation. What we
need now is some action, so we shall turn immediately to our
problems for this chapter.

178
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=] CHAPTER 20

Shortening Lists: Answers aND COMMENTS
“Axioms” and “ Theorems”

T

[page 60]
(1) Jeanne has this list of identities: (1) The three dots indicate that the list can always be extended
further. Obviously, you can make up lots more identities like
(D x [L) +3= (/;\ x D) +3 this. One fifth-grade class recently pointed out that we really
- , , .- have here a list that can be continued indefinitely in either
(E_J x /l\) + 4= (A x L‘) + 4 direction:

(Lx&)+5-(AYI—_§)+5
(iij)+6—?(Ax|:‘)+é (EXA*FQ

EUNEEE
What do you suppose the three dots at the bottorn mean?
Can you make up any more identities that “look like” ([:[ x A) +
those on Jeanne's list —that is to say, that have this
(L VAVE:

same pattern?
(D x A) + 2=
(EVAVER

i

o
1t
e T T e e
X
—
+
o

>
J

-
I

>
oU

(2) Albert says he can write one single identity (2) Here it is: IL—_] x A) +\/ = (A x D) +

to represent Jeanne’s entire list. Do you think he can?

How? Notice that we have introduced a new variable. (We chose to
write it as \/, but we might have written it with any ‘'variable”
symbol except [ ] or /\. We could not use [ ] or /\, since each of
these is involved in the open sentence already. We might, however,
have written itas [ N . [ ] . (O ., or what
ever. We do not use circles, because they can easily be confused
with zeros.)

(3) Suppose you had Albert’s single identity. Could (3) Take

you get the identity
. (R VAVERVENVAEN IS
(O Als= (Ao -V

from Albert's by using UV? How?

and use UV

w:5 — \/
(<N +s=(Ax[])+s

{4) Anne has this list of identities: (4) You could delete the identity A + (B x C) = (C x B) + A,
- so that Anne’s “shortened” list would become:
Cl=A=A~-L]

CI=A=Ax[1 e A=A
A+ {(BxC)-(CxB)+A DXA:AXE

Could you shorten Anne’s list, without really losing
anything?

to get
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(5) Marjory says she could shorten Anne’s list to

this:
EVARVAR N
[IxA=A~xL]
Marjory says that once you know these two, you can
always make up

A+(B><C)=(C><B)+A,

by using UV and PN. What do you think?
[page 61]

(6) Take your list of identities and shorten it as
much as possible, without really losing anything.
What does your final list look like?

(5}

(6)

[STUDENT PACE 6l

Thus, the two identities above might be taken as axioms, and
the identity

A+ (BxC)=(CxB)+A

would be a theorem. Now, we need to prove that, when we de-
leted

A+ (BxC)=(CxB)+A,

we didn‘t really lose anything. We prove this by showing how
to reconstruct

A+(BxC)=(CxB)+aA

from the other two identities, using only UV and PN. For con-
venience of notation, fet's number the axioms:

miom 1. [ ]+ AN\ =/ +[]
aiom2. [ | x /N\=/\ x[]
Here we go:
Step Reason
o []J+AN=A+1] Axiom 1.

(i) A+ BxC=(BxC +A UV:A—>D

in line (i).
i [ Jx N\ =/\x[] Axiom 2.
(WBxC=Cx8 w:s — [ |

c— A

in line (iii).

(v) A+ {(BXxC)=(CxB)+ A PN from line (ii),
using line (iv).

Marjary is right. (See the answer to question 4.)

This will depend upon your class. If your long list used enly ad-
dition and multiplication and if it avoids fractions and negative
numbers, your final “shortened” list may well look like this
{where we give the standard name for each statement, as well):
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(7) Do you know what mathematicians mean by
the word axiom?

(8) Do you know what mathematicians mean by
the word theorem?
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(7)

(8)

[]

I
o

[]= D Reflexive Property of
Equality (RPE)
EX: Addition Law for Zero
~ (ALZ)
[ ]xo Multiplication Law for
] Zero (MLZ)
3 x 1 = D Law for One (L1)
,:, Commutative Law
for Addition (CLA)
D Commutative Law for
Multiplication (CLM)

1+1=2

2+1=3

3+1=4 Definition of the Numerals*
5 2,3,4,...(Def. Num.)

4 +1 =

There are other identities that might also appear on your
“shortest list,” including these:

HESVANCRVA
= 1xA)+([]x\/) Distibutive Law (DL)
HESVANRVYS
= (D + A) + \/ Associative Law for

Addition (ALA)
LI (A=)
= (D x A) x v Associative Law for

Multiplication (ALM)

The “shortest list” of identities that you end up with will, of
course, depend upon the “long” list of identities that you started
with, and these long lists will be different for different classes.

An axiom is one of the “basic” or “building-block” statements
(or identities) from which all the rest of our mathematical sys-
tem can be derived.

A theorem is a true statement, or an identity, which is not an
axiom. (We try to keep our list of axioms as short as possible.)

*In some Madison Project materials these statements are referred to col-
lectively as “Changing Names” (CN). This designation wos given them by
a class of fifth-graders.
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CHAPTER 21
How Shall We Write
Derivations?

1

[page 62]
Debbie claimed that she could use

Axiom 1: L1=01
axom2 [+ A=A+
Axiom 3: ExA:AxD]
together with UV and PN and end up with
A+ (BxC)=(CxB)+a

George challenged Debbie to prove it, and so Debbie
wrote this:

Statement Reason

W[ ]=[]

Axiom 1.

chapter 2]. / Pages 62-63 of Student Discussion Guide

How SHALL WE WRITE
DERIVATIONS?

This chapter follows easily from Chapter 20. There is, however,
one decision to make. There are two possible ways to derive

A+ (BxC)=(CxB)+A

One method starts from

=0

(and is given on page 62 of the Student Discussion Guide), where-
as the other starts from

e A=A

(and is given on page 180 of the teachers' text).

We believe that the derivation starting from [] =[] is easier to
get started, but it is clearly longer. The derivation starting from
I+ A = 2\ + [ is shorter, but may be tricky to get started on.

Since students often say they “"don’t know where to begin,” the
longer derivation beginning with [} =[] may, in fact, actually be
easier.

Use whichever you and your students prefer (or, if you prefer, use
both and compare them).

Answers AND COMMENTS

182
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@ 4+ (BxC)=A+(BxC)
UV: A+(BxC)—] ],
in line (i).
wd [ ]x N\ =/ x[] Axioms.
ivVBxC=CxB Uv:B — [ ]

C-—»A

in line (iii).
M A+ (BxC)=4+(CxB)

PN from line (ii),
using line (iv).

(vi) D+A=A+Ij Axiom 2.
(vid A + (CxB) = (C xB) + 4
uUv: A—>D
CxB-—»A

in line (vi).

(vii) 4 + (B x C)

4

4+ (C x B)

Repeat of line (v), in

order to avoid confusing

the underlining for PN,
[page 63]

(ix)A+(BxC’)

It

(\'CXB)+A

PN from line (viii),
using line (vii).

Q. E. D
(1) Who won the argument, George or Debbie? (1) Debbie won. Her proof is correct (and very nicely written!).
(2) Andy says he can make an even shorter deriva- (2) Answers will vary.

tion that will be just as good as Debbie¢’s. Can you?
Do you think Andy can?

(3) Study Debbie’s derivation very carefully, and (3) Here we go:
then try to make your own derivation that uses the
axioms Step Reason

)= W [ 1= Axiom 1.
e A=A+ (i) (A+8)xC
CIxA=Ax[] =(A+B)xcC uv: (A +8) x €[]
and ends up with the theorem : in line (i).
(A+B)xC=Cx(B+4). (iii)D+A=A+D Axiom 2.
Try to give reasons, the same way that Debbie did. (v A+B=8B+A Uv: A — |:|

s

in line (iii).
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[STUDENT PAGE 63

W (a+ B) x C PN, from line (i), using
line (iv).
= (B + A) x C
i) (A +B)xcC Repeat of line (v), so that
' ' the underlining for our
=(B+A)xc first use of PN will not get

mixed up with our under-
lining for our second use
of PN, which follows.

(vii)Dx /\ = /\ % D Axiom 3.

(vii (B + A) x € UV: 8 + A —> D
=Cx (B+ A) c— /N
in line (vii).
(i) (4 +8)xcC PN, from line (vi)

using line (viii).
=C X (B + A) e (wili)

Q.ED.

Notice that a shorter proof is possible. It may, however, be trick-
ier to know how to start it. Can you see how to do it? (Hint: Try
starting with [ ]+ A = /\ + [, then use UV as

u: A+8— [ |
c— /)

| am sorely tempted to write it out here, myself, because | think
these are fun —but | fear that a teacher who has not had the expe-
rience of discovering original derivations herself will not honestly
believe that her students can discover derivations themselves.

Probably | should not even have given the hint. Oh well, here
is a new problem you can work on by yourse/f —| won't interfere:

Start with the axioms
[1-11
HENVARAVIRNIEVAVEN IERVS
LI=A=Ax]
and make up an original derivation for the theorem

Ax(B+C)=(’BxA)+(CxA).
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SUBTRACTION AND DIVISION

In making up a mathematical system, one always has the prob-
lem of where to start. When one assumes a computational or
“counting” point of view, addition is a "basic’" process—it is
new when one encounters it, and cannot be explained in terms of
anything that has preceded it. However, muitiplication, from this
point of view, is not “new’” —multiplication can be explained in
terms of addition (that is, in terms of repeated addition, 2 x 7 =
7 + 7, and so on).

If, instead, one begins with sets, then the union and intersec-
tion of sets are basic ideas, and addition and multiplication are
no longer basic; addition and multiplication can be explained in
terms of set operations.

In the present volume, we take neither of the preceding points of
view, but lean chiefly toward a third point of view— the one which
has been current in recent decades among those mathematicians
who study “modern algebra.” This is an axiomatic approach. Using
it, we take addition and multiplication to be our basic notions, and
do not try to explain them in terms of anything prior. The opera-
tions of subtraction and division, from an axiomatic point of view,
are then explained in terms of addition and multiplication.

We have all known this approach for some time; we use it when-
ever we use addition to “‘check” subtraction, or use multipli-
cation to ''check’’ division. If such “‘checking’ is possible, then
it must be possible for addition to tell us whether or not a subtrac-
tion has been performed correctly. But if addition can do this much
for subtraction, then there must be nothing Jogically new about sub-
traction —and, indeed, there is not.

There are several ways to reduce subtraction to addition. We
shall do it by means of additive inverses. |f we start with. a number,
say, '3, we can add a number so that the result will be zero:

B+ ___=0.
Obviously, the number to add is “3. We shall call "3 the additive
inverse of *3.

To make matters clearer, let's consider a few more examples.
What number would be the additive inverse of 77 It would be the
number we could add to *7, in order to get a sum of zero:

7+ _ . =0.
Evidently this number is “7; consequently, we say that “7 is the
additive inverse of *7.

What would happen if we sought the additive inverse of a nega-
tive number? As an example, what number would be the additive
inverse of “2? By the definition of additive inverse, it would be
the number that we could add to ~2 to get a sum of zero:

24 ... = 0.
Evidently, it would be *2; we could say that the additive inverse
of "2 is *2.

For practice, let's find the additive inverse of 3. That would be

“the number we must add to 7 to get a sum of zero™:

3+ _—.=0

185
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Again, it is clear what the number must be; in this case it is.
We can erpress this by saying that the additive inverse of % is ‘.

As a last example, and a particularly interesting one, let’s try to
find the additive inverse of zero. That is, we are seeking a number
that we can add to zero, to get a final sum of zero:

0+ _ = 0.
Evidently, the desired number is O:
0+ 0=0.

We can express this by saying that the additive inverse of zero is
zero, .or zero is its own additive inverse.

A word of caution! A few years ago, in an attempt to appeal to the
intuition, some mathematicians introduced the word opposite as
a synonym for additive inverse. Thus, using this word, we could
say "‘the opposite of *3 is "3.” This introduces a hazard we have
mentioned elsewhere: the word opposite now has a mathematical
meaning, and it also has an everyday meaning. These meanings
are not the same! In mathematics, the word must be used only
in its mathematical meaning; otherwise confusion wiil result. If
we even let ourselves think its everyday meaning, this can confuse
us. Consider the statement “‘the additive inverse of zero is zero."
Translated into “‘opposite” language, this becomes ‘‘the opposite
of zero is zero." Mathematically, what does this say? It says that
if you start with zero and add zero, the resuiting sum will be zero.

The everyday meaning of the word opposite, in this case, appears
to result in a ridiculous statement. One should never confuse
everyday meanings with mathematical meanings. They are dif-
ferent.

Now that we know what we mean by additive inverse (or, in its
mathematical sense, opposite), we can introduce subtraction with
no further effort. We shall now hereby officially agree that, when-
ever we say

A~ B
what we really mean is
A+ B,

where the notation "°B” denotes the additive inverse of B. That
is to say, whenever we are asked to subtract B, what we shali do,
instead, will be to add the additive inverse of B. This will dispose
of all of the questions involving subtraction; once we have seen
how this works out, we shall use a closely analogous procedure to
dispose of division (in terms of what we shall call multiplicative
inverses).

QOur present procedure of explaining subtraction in terms of ad-
dition, and explaining division in terms of multiplication, has
at least three important advantages.

(i It gives us a precise fanguage and precise criteria for set-
tling ali “doubtful” cases that may arise. For example, the dif-
ficulties involved in discussing “division by zero"” can be handled
precisely in this fashion, and do not require appeals to vague
arguments.
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CHAPTER 22
8 Subtraction and Division

e
1
a)
FRano! Jg_‘
I

)

Gadannat

[page 64)

(1) Nancy says that we know lots of important
identities involving addition and multiplication, but
we do not have any for subtraction or division. What
do you think?

(2) Tony says you can handle subtraction by turning
it into addition. Do you know what Tony means?

(3) Do you know what mathematicians mean by
the additive inverse or the opposite of a number?

(4) Can you find other names for these numbers?

(a) o( ‘1)
®»  23)
©  (-3)

@ (%)
© (o)
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{ii) Once we have handied subtraction, we can use almost
exactly this same procedure to discuss division. Thus *3 - "2
involves virtually the same ideas as % + ¢, although in traditionai
treatments this latter problem is usually much harder to under-
stand.

(ii) What we are doing can easily be extended to other future
mathematical systems, however abstract or pathological these
future systems may be. The “traditional” approaches usually
cannot be extended to modern abstract systems.

All of these matters will become clearer as we work through the
questions in this chapter.

Answers AND COMMENTS

(1) Obviously this depends upon exactly what you have done in
your class, but we would expect Nancy’s statement to be cor-
rect in most cases.

(2) This refers to what we discussed in the introduction to this
chapter. Your students, however, will probably not know at
this point. The question is not intended to be answered at this
stage. Rather, this guestion is intended to focus student at-
tention on the problem on which we now want to work.

(3) The additive inverse of, say, '1985 is the number we must
add to +1985 in order to get a sum of zero:

1985 + = 0.

Opposite, in its mathematical sense, means exactly the
same thing as additive inverse.

(4) Note: the symbol used in this question (a small raised circle,
to the upper left of a humber) means “the opposite of” or “the
additive inverse of.” Thus, °(*1) would be read as the opposite
of positive one, or as the additive inverse of positive one.

(@ °C1) = 1
() %23 = 2%
(©) %3 =3

This would be read as: “the oppasite of negative three is posi-
tive three,” aor as “the additive inverse of negative three is
positive three.”

() %) = 23
(e) °(0) = 0
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®  (3)
® (1)

m [%3)]

(i) o[‘2 + *3]

(5) Jean says Cynthia used to have a “rainbow
picture” to show what we mean by opposites. Do you
know what Jean is talking about?

(6) Debbie says the official definition of the opposite
of A is “the number that I can add to 4 so that the sum
will be zero.” What do you think?

{7) Which of these are identities?

(a) D+’D=‘o

{b) D+D=O
o O-0-0

{STUDENT PAGE 64

See the discussion at the beginning of this chapter. Notice that
part e is ane place where the'everyday’ meaning of the word oppo-
site could confuse you badly.

M A3 =3
(® °C3) = %3
= '3

m Ten] = Ty ]
= T3]
=3
M 2+ '3) =5 =75

Incidentally, you would have obtained this same result if
you had said

C2) + 03
=2+73
=79

Would these two different procedures afways yield the same
result? How could you write this, using variables?

2 + *3)

Il

(5) The “rainbow picture” (so named by some children in Weston,
Connecticut) looks like this:

L

T t — t T T + 4 v —t

-5 -4 -3 -2 -1 0 ‘1 2 *3 ‘4 5

The rule for using the “rainbow picture” is: “to find the addi-
tive inverse of a number, just go to the other end of the rain-
bow.”

(6) Debbie is correct.

(7) (a) This is an identity.

You may want to view the film “Second Lesson," in which this
occurs and is discussed.

(b) Not an identity.
(c) Not an identity.
This is included, however, because sometimes the children like

to *‘fix it up” so that it will be an identity. This occurs, for ex-
ample, in the film ““Second Lesson.”
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@ [J+[J=2x[]
@ (1= ="+ A
© (I xA) = CT) < ()

(g)

(h) ULU (JD)] = D
@ T
[page 65]
(8) Dan says you can change subtraction into addi-
tion by using the identity

O-A-O A
What do you think?

(9) We have seen how "additive inverses” and "sub-
traction” work. Do you know how “multiplicative
inverses” work?

(8)

(9)
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(d) This is an identity.
(e) This is an identity.

() This is not an identity. You can easily show that it is not.
For example, make numerical replacements for the vari-

ables:
L JPEN D
3, A
(2]« f3\) = (T2) « (73\)
(') (2) x (3)

'6 (which is false)

6

(Recall that “2 x ~3 = *6, as we have seen in our work with “post-
man stories.”)

(g) This is ar identity.
() This is not an identity.
() This is an identity.

Dan is correct.

Now we begin to see some of the payoff from this “inverse”
approach. Once we have attended to subtraction in class, the
children can go on and work out most of the treatment of divi-
sion by themselves!

First, however, we had hest take a careful look at how we
handied subtractions. To find the additive inverse of, say, *3,
we wrote

B+ =0

That is to say, we considered the open sentence

3+ ]=0

and we tooked for the (unigue) etement in the truth set for this
open sentence.

Now, if we want to use an analogous approach for division
and multiplication, we must translate

*3+[]=0

into multiplicative terms. In the first place, zero played a spe-
cial role in addition—as some of our children have said, “zero
is the unchanger”:

o pw
+ o+ o+

3
=4
5

O - I = K}
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Is there an analogous “unchanger” in multiplication? in
fact, there is. Consider

an h W
X X X

3
4
5

ok sk et
il

Evidently, for multiplication, the “unchanger” is one. We can
begin our translation:

“‘3+D

]

0
¢
=1

Presumably, we want to translate the + into x:

'3 +
l[]

X =

1]
¢
1

it

Hence, if we seek the multiplicative inverse of *3, we should
consider the open sentence ‘3 x| |= 1. The truth set, evidently,
is {"4}. Consequently, we say that the multiplicative inverse of
‘Jis'L

Another word, meaning the same thing as “muitiplicative
inverse,” is reciprocal.

We can now define division. Let us use the symbol r(*3)
to denote the reciprocal of '3, and rA to denote the recipro-
cal of A, ete. Then we shail define A - 8 to mean A x 7B.

Notice the paraliel: A — B means A + “B; A + B means
A x TB.

But wait! There is one small complication! f we try to find
rg, the reciprocal of zero, we must consider the open sen-
tence 0 x [] = 1. It is always true that “zero times any-
thing equals zero,” that is to say, we have the identity[ ] x0=20.

Because of the commutative law for multiplication, 0 x [
=[] x O, and hence, if we must always have (as we must)
[Jx 0 =0, then we must also have 0 x ] = 0, and,
since (in our usual arithmetic) O # 1, wecannothave 0 x[ J=1.

Therefore, the truth set for the open sentence 0 x =1
is the empty set. R has no elements in it, and when we search
around in it, seeking r0, there is nothing available. In fact,
there is no multiplicative inverse of 1ero.

This means that we con never divide by zero. Let us try
1o, and see what happens. If we want to find 4 = 0, we know
that means, really, 4 x 0. But 0 does not exist; consequently,
the division 4 = O cannot be performed. This difficulty will
always arise whenever we try te divide by zero. In fact, division
by zero is always impossible.

This discussion is far more precise than the usual discussions
of “division by zero.” It shows us far more clearly wherein the
limitation lies--and, incidentally, it shows us how we would have
to change our mathematical system if we wished to create a new
mathematical system within which division by zero would be pos-
sible!

Everything that we have said here will extend, very nicely, to
other, more abstract, algebraic systems which we shall encounter
in the future (for example, it will extend to the algebra of “‘ma-
trices,”” as we shall see later in this book).
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(10) Debbie says that the “multiplicative inverse”
of [] is “the number that I can multiply [ by to get 0.”
What do you think?

{11) Roger thinks Debbie is wrong. He says that the
“multiplicative inverse” of [ | is “the number you mul-
tiply ] by to get 1.” Do you agree?

(12) Can you find the truth set for each of these open

sentences?

(a)

(b)

(c)

(d)

(e)

0

2 x =1
0
R -0

(13) Roger says that mathematicians call the “mul-
tiplicative inverse” of a number [} the “reciprocal”
of [}, and that they write "[].

What is "7? What is (% + 3)?

(14) Which of these are identities?

(a)

(b}

(¢)

(d)

(e)

4y}

(g)

BENNES
PN
(NEVAVER(NEWAVAS
I+ A) < (T A) =

-0
-0
(-1

(15) Can you change division into multiplication by
using a “reciprocal”?

(16) Can you write a complete list of the axioms that
we seem to be using thus far? Do you suppose this list is
final? Will we ever want to change it?
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(10) Debbie is wrong. This question is meant to point the students’

attention to “multiplicative inverses.”

(11) Rager is correct. See the discussion in the answer to question 9.

(12) (a) o}

(13)

(14)

(15

(16

)

)

|-

t

{
o {3}
© {3}
@ {0}
© {3}

(H There is no number in the truth set of this open sentence
since whatever number is inserted in the box will resuit in
the sentemnce

[SP I

0=1

{which is false). See the discussion in the answer to
question 9.

Roger is correct See the discussion in the answer to ques-
tion 9.

T =4+ since 7x+=1
(+4) =)
=3

(a) identity.
(b) Not an identity.
(c) identity.
(d) Not an identity.

You can easily show that it is not. For example, make numeri-
cal replacements for the variables:

*2_>D
+4—)A

(F) +/4\) % (2] + /a\) - 1

(8) % (3+%) = (8) x (1) - ¥ - 3=
(which is false)
(e) Identity.
(f) Not an identity.
(g) Identity.

Yes, see the discussion in the answer to question 9.

An appropriate list of axioms is given at the beginning of Chapter
23, in the Student Discussion Guide. This list (presumably) is
not final, but is the result of our study and understanding of
algebra thus far. We might reasonably anticipate that as we
study further, we shall want to modify this list of axioms.
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{IEH Practice in Making Up
Your Own Derivations

[page 66]

In this chapter, we want to get some practice in
making up our own derivations.

To start with, we’ll need a list of axioms. Let's agree
to use this list, at least for the time being:

C1-[

Reflexive Property of Equality (RPE)

e A=A+

Commutative Law for Addition (CLA)

OxA-A=0

Commutative Law for Multiplication
(CLM)

HEVARAVORI B ENAVEX (I ERVY

Distributive Law (DL)

HEVARRVIEX EEVAVERV

Associative Law for Addition (ALA)

HESVACAVARN (HEWANERV

Associative Law for Multiplication
(ALM)

Addition Law for Zero (ALZ)
Multiplication Law for Zero (MLZ)

Law for 1 (L1)

T+1=2

2+ 1=

3+1=4 Definition of the Numerals 2,
: 3, 4, ... (Def. Num.)

chapter 23 / Pages 66-69 of Student Discussion Guide

PRACTICE IN MAKING UP
YOUR OWN DERIVATIONS

Answers aAND COMMENTS

192
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41 =

N
!
N -

3 =3 Definition of the Numerals *1,-2, ...

[page 67]

Every number has an additive inverse. If we use
the notation %(*2) to mean “the additive inverse of -2,”
then °(*2) is defined as the number we must add to ¢2
in order to get zero.

In general,

(- T-o

Law of Opposites (L. Opp.)

O-A-0- A

Definition of Subtraction (Def. Subtr.)

°("2) = 2 Definition of the Numerals-1,-2,73, ...

Every number except zero has a “reciprocal,” or
“multiplicative inverse.” If we write

2
to mean the “reciprocal of 2,” then
g =1
2x"2=1,
and, in general,

Der 1, 0—/4[:]*

Law for Reciprocals (L. Recip.)

Clx A 0 A

Definition of Division (Def. Div.)

]

T-A

The list above gives us a reasonable set of axioms for
our “algebra.” For our “logic,” we shall have two rules:
PN and UV.

Now let’s see if we can make up derivations.
Can you write a derivation for each theorem, using
Marjory’s method of writing?

(MW Ax(B+C)=4x(C+B)

*This notation is meant to remind ua that, in the axiom (I x '[] = 1, 2er0
must pever be used as a replacement for the variable [1.
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In the derivations given below, we use the ‘‘underlining” nota-
tion to indicate uses of PN. Some people find this helpful, espe-
cially when they are writing out a proof on a chalkboard, where
one can watch the order in which things are written. If you do not
find this helpful, | suggest you merely ignore the underlining.

(1) Here is one possible derivation:
W [ ]=[] RPE

() Ax (B+C)=ax(8+ <) UV:Ax(B+C)—~)D
in line (i)
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@DAx(B+C)=(B+C)xA

@ Ax(B+C)=(CxA4A)+ (BxA)

(2)

(3

W) Ax(B+C)=Ax(C+B)

Q.E.D.

(i) DXA:AXD

(i) Ax(B+C)=(B+C)xA

U EVAVER(MIERVY

(i) A x (8+C)

=(Axa)+(Axc)

i ]+ /\=/+[]

(ivv (4 xB)+(Axc)
=(AxC)+ (Ax8)

(v Ax(B+C)
=(AxC)+(\AxB)

vi) A x (8 + C)
= (A xc)+ (axB)

(vii)DxA:AxD

(viii) Ax C=Cx A

() Ax (B+C)
= (CxA)+ (AxB)

x) AX(B+C)

:(CxA)+(A><B)

(STUDENT PACE 67

CLA

UV:B—»D

C —>
in line (iii)

PN, from line (ii),
using line (iv)

B+C-—-—->A

in line (i)

DL

w: a — [ ]
s — A\

C —
in ling (i)
cLA

UV:AXB——-:»D
Axc—qA

in line (iii)
PN, from line (ii),
using line (iv)

Repeat of line (v),
in order to avoid
confusing the under-
fining

CLM

UV:AHD

C —
in line {vii) ,

PN, from line (vi),
using line {viii)

Repeat of line (ix}, in
order to avoid
confusing the under-
lining for two dif-
ferent applications

of PN

!
|
{
|
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(4) Lex made up a derivation for the theorem (4)
(C x B} + A

[page 68]
Cynthia complained that she couldn’t understand Lex's
derivation, so Bob tried to describe it.

A+ (B xC)=

Lex's derivation Bob’s description

A+ {BxC€)=41(BxC)
Actually, Lex really began with RPE:

L=

Lex knew this was an axiom. Then
Lex used UV

UV:d + (BxC)— [~]

to get
A+ (BxC)=4+(BxC)
A+ (BxC)=4+(CxB)
Now, Lex used PN. He erased the name

B x C,
to get
A+(BXC)=A+( =R ).
}V
(Gaping hole)

Then, into this gaping hole, he put
another name for the same thing.

A+ (BxC)=4+{CxB)

How did Lex know that (' x B named
the same thing that Bx € did? He used

CLM 5
(I« A = Ax[]
and used UV
uv:B — EJ
€ — /N
to get

BxC=0CxBhB,
which says that € x B names the same
thing that B x C does.

A+ (BxC)=(CxB)+4
Here, Lex again used PN. He began
with the identity
A+ (BxC)=A4+(CxB)
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(X) AxB=Bxa UV:A—QD
B —
in line {vii)

PN from line (x),

i) A x (B + €)
using line (xi)

= (Cx A) + (B x A)

Q.E.D.

This is really not a “question” to be answered, but rather a sec-
tion to be read by each student, and then discussed (as much as
necessary) by the class.
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[page 69]

He erased the entire right-hand side,
4+ (BxC) = W—
(Gaping hole)

and into the gaping hole he put another
name for the same thing,

(€ x B) + A,
to get
4+ (BxC)=(CxB)+A
How did Lex know that
(CxB)+ A
named the same thing that
A+ (CxB)

named? The answer is that he started
with CLA

LJ«A=-A~+[]

and used UV
UV:(CXB)-’D
4= A\

to get
(CxB)+A=4+(CxB),
which says that
(CxB)+ A
names the same thing that

A+(CxB)

names.

Do you understand Bob’s description of what Lex
did?

Can you write out a derivation for each theorem,
using Debbie's method?

(5) Theorem: D +[]=2x D

[STUDENT PAGE 69

In the derivation below, we introduce the symbol A to indicate
one variable, in order to avoid the confusion that might result if
we had too many different uses of the symbol [_].

(5

There are many possible approaches. Two excellent original
ones, by a fifth-grade class, can be studied from the tape record-
ing #D-1, available from the Madison Preject.

o O-] RPE

(i) 2xA=2xaA UV:2xA——~>D
in line (i)
(iii) DxA:AxD CLM
(i 2xA=Ax2 uv: 2 — [ ]
A—>

in line (iii)
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(6) Theorem:

A+ (B+C)=C+(B+A)

(6)

PRACTICE IN MAKING UP DERIVATIONS

v) Ax2=2xA

(vi)

(vii)

Ax2=2xA
2=14+1

wii) Ax (1+1)=2xa4a

LI (A+V)

(ix)

197

PN, from line (ii),
using line (iv)

Repeat of line (v)

Def. Num.

PN, fram line (vi),
using line (vii)

DL

ol EVAVESERVY

(x) Ax(1+1)
=(ax1)+(ax1)

o) Ax(1+1)=2xa4

(i) (Ax1)+(Ax1)=2x4

oii) [ =1 =[]

(xivy Ax1=A

(xv) (Ax1)+(Ax1)=2xA

(i) A+ (Ax1)=2xa4

(xvii)A+(Ax1;)=2xA

(xviii) A + A =2x A
(xix) D+D=2x1]
Q.ED.

0 [+ (A+V)
([N +V

(i A+ (B+C)=(A+B)+C

ain [ 1+ A=A+[]

(ivy A+B =8B+ A

uv:AﬂD
1—->A

1 —

in line (ix)

Repeat of line (viii)
PN, from line (xi),
using line (x)

L1

Uv: A —
in line (xiii)

Repeat of line (xii)
PN, from line (xv),
using line (xiv)
Repeat of line (xvi)

PN, from line (xvii),
using line (xiv)

UV: D — A

in line (xviii)

ALA

wv: A — [ ]
s — A\

C —
in line (i)

CLA

UV:A~—>D

B —

in line (iii)
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(7) Theorem: 3+ 2 =25 (7)

(8) Theorem: (A + B) + (C 4 D‘) (8)

=[D+(C+B)]+A

[STUDENT PAGE 69

W A+ (B+C)=(B+A)+ C PN tromline (i),

) A+ (B+cC)=(B+A)+C

(vii) (B+A)+c=c+(s+A)

(vii) A + (B+C)=C+ (B + A)

(i)
(ii)

Q.E.D.

-1

3+2=3+2

i) 2=1+1

(iv)

(v)

W) 3+ (1+1)=(3+1)+1

(vii) 3+2=3+(1+l)
iii) 3 + 2 = (3+1) + 1
(ix) 3+1=4

W 3+2=(3+1)+1
W) 3+2=4+1

(xii) 4 +1=25

(xiii) 3 +2 =4+ 1
Xiv) 3 + 2 =

Q.E.D.

3+ 2

[T+ (A+V)
i BEVAVERV,

3+ (1+1)

using line (iv)

Repeat of line (v)

UV:B+A——>D

Cc —

in line (iii)

PN, from line (vi),
using line (vii)

RPE

Uv: 3+ 2 —
in line (i)

Def. Num.

PN, from line (ii),
using fine (iii)

ALA

wv: 3 — [ ]
I—AA

1 —
in line (v)

Repeat of line (iv)

PN, from line (vii),
using line (vi)

Def. Num.

Repeat of line {viii)
PN, from line (x),
using line (ix)

Def. Num.

Repeat of line (xi)

PN, from line (xiii),
using line (xii)

RPE
uv: (A + B)

+ (C+D)—>D

in line (i)
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@i [ ]+ (A +V) ALA
(EVAVARY,

*(iv) A+ [B+ (C+D)] w:a — []
=(a+8)+(c+Dp) a——»A
C+D —
in line (iii)
v (A+B)+(C+ D) PN, from line (ii),

= A+ [B + (c+ D)] using line (iv)

1 (vi) B+(C+D)=(_B+C)+D UV:B——>|:,

¢~ A

D —
in line (iii)
wii) (4 + B) + (c + D) Repeat of line (v)
=A<+ [8B+(c+D)]
wiii) (A4 + B) + (C + D) PN, from fine (vii),
- A |(B . c) . D] using line (vi)
(x) (A +B)+(C+D) Repeat of line (viii)

=A+[(B+C)+D]

A=A+ o

(xi) B+C=C+ B uv:aHD
C —»
in line (x)

We shall finish this using a shorter notation:

(xii) (A + B) + (C + D) PN, from line (ix),
using line (xi)

(c+8 +D]
) oL
(xiii) (A + 8) + (€ + D)

+ [
)
A+[>D+ C+B‘]) "

(xiv) A+B + [(C+D

=[‘D+(C+B]+A
Q.E.D.

*This use of ALA is very common: one often has four terms (here: A, B,
C. D} to fit into the three frames [ ], /\, /. Since it is A which we wish to
isolate by itself (see the right-hand side of the identity we are trying to
obtain), we use UV as we do here.

Hn this step, we wish to isolate D. This fact gives us our best hint as to
how to use UV in ALA.
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(9) Theorem: (A + B) x (A + B) (9) For this problem, we shall use the shorter method of writing:
={(a x 4) + [(B + B) x 4]} ‘
+ (B x B) (A+8)x(A+8)=(a+B)x(a+8) RPE
bL
A+a)x(A+B) [(a +8) x a4 ‘)
+ [ A + B ]
CLM**

(A+B)x(a+8)=[ax(a+8)]

+[8x (a+8)]
DL’
(4 +8)x (a+8) [(AxA (a x 8)]

+[(8 ) + (8 x 8)
conteonaen )

ALA
+(BxA)]+(sxs)} \'
CLM
(A +8) x (A+s) (A xa)+ {[(ax8)
(a+8)x (a+B)=(axA)

+[AX(B+B + )
R
(A+B)x (a + B) AxA

8)

+ e
w/\

+[Ax(8+8 +(B
CLM
(A+BxA+B AxA

)
+ [(8 + B) xA]} an)

*The exponent 2 means that the axiom has been used twice in the step
taken.
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EXTENDING SYSTEMS:
“LLATTICES ”” AND EXPONENTS

We put this chapter in at this point in order to provide some
background in exponents, which will be helpful in following chap-
ters. While we are at it, however, we may as well kill two birds
with one chapter, so we are including another matter of consid-
erable importance: once people recognize the creative way in
which men build mathematical systems, they soon realize also
that, like medieval cathedrals and New York City, mathematical
systems are often unfinished and still in a state of being elabor-
ated and extended. One comes now and then to the “‘frontier”
or “growing edge’” of the system, and needs to build further in
order to move ahead.

Now, when this happens, there is a delightful interplay of cre-
ative freedom and originality on the one hand, and the restrictive
logic of the previously existing structure on the other hand. You
can see this interplay at work in art, music, architecture, and
literature, as well.

In general, when you are writing the third act of a play, you
have an important role for creative originality and freedom—a
very large role, indeed! Yet you are bound, in a subtle way, by
the logic of the first two acts. You should, in general, have the
same characters in the third act as in the first two. The unex-
plained appearance or disappearance of characters between acts
two and three would ordinarily be considered a weakness {unless,
as in Kafka, the logic of the preceding acts has already accus-
tomed the audience to such mysterious appearances and disap-
pearances). Moreover, each individual character should behave
in a way that is consistent with the personality you have estab-
lished for him in the previous acts. The important thematic ele-
ments of the first two acts should, ordinarily, be carried on into
the third act. You can find for yourself many other respects in
which the third act is expected to “‘grow naturally’’ out of the first
two.

So much for plays. Let us turn now to mathematics, and see how
these encounters at the “frontiers’ lead us to extend our mathe-
matical systerm in a way that is consistent with the already exist-
ing part of the structure.

The two mathematical structures we have chosen to study are
both interesting in their own right. One, the system of exponents,
was gradually elaborated over a period of centuries. Descartes
(1596-1650) made use of exponents on the level of elaboration of

3*=3x3x%x3x3x3=243,
and also with variables, such as
X3 = X+ XX

or what we should write as

[(T=00x0=]
(although, of course, Descartes did not himself use the symbol
] to denote a variable). Earlier versions of exponents can be

201
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Frequently, we build up a mathematical gystem for
some reason or other, and are proud of it because it is
our own creation and because it seems to “work.”

Then, on some black day or other, we discover that
our system does not “work” any longer. We reach a
point that our system cannot cope with. (This is some-
what like the feeling people had, before Columbus,
that if they came to the edge of the world they would
fall off. We have come to the “edge” of our beautifu]
mathematical system, and we seem to be in danger of
having nowhere else to go.)

Can we build on to our system? Can we extend it
further?

Let’s look at this, in two important cases.

1. THE SYSTEM OF “LATTICES”

Professor David Page, of the University of lllinois,
has introduced an interesting mathematical system.
which we might represent in the following way.

[STUDENT PACE 70

found, in various forms, for example in the writing of Nicole
Oresme (1312-1382). See Appendix A: Newman (158), Eves
(151).

An extension of the system of exponents, to include zero, nega-
tive, and fractional exponents, very much in the spirit of the
present chapter of Explorations, was given by the great English
mathematician John Wallis {1616-1703). Thus, it would be a
modest oversimplification, but perhaps reasonably accurate
nonetheless, to say that the ''simple” part of the structure of
exponents —using positive integers —was the work of the first half
of the seventeenth century (indeed, partly the work of our old
friend Descartes), while the systematic extension of this system
“beyond the frontiers” ~i.e., into zero, negative, and fractional
exponents —was the work of the later half of the seventeenth cen-
tury (in the writing of the Englishman John Wallis).

The other mathematical system which we shall consider is far
more recent. It is the creation of Professor David Page of the
University of lllinois, and is one of the original mathematical
explorations which Professor Page worked out in the classroom,
as a joint effort between himself and his class of elementary school
children. it dates from the 1950’s and 1960's.

We shall now develop these two systems. In each case, we shall
develop the “basic™ or "simple” system first; then we shall run
into the "frontier,” where the structure is not complete; and
then we shall extend the structure, so as to be consistent with
what had previously been built.

Answers AND COMMENTS
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To begin with, we write numbers inan array or “lat-
tice” like this:
t (andsoon}
31 32
21 22 23 24 25 26 27 28 29 30
11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 910

Now, this gives us a new way to write names for
numbers:

(1) What number do you suppose is meant when we
write
3= 7?

(2) What number do you suppose is meant when we
write
717
Can you find simpler names for each of these num-
bers?

@ 8-
(4) 9 «
5 511
6 3

(N 9 T«
[page 71}
(8) AR
[t)] K
(10} 3t el
1 24 ¢
(12) 26 v~
13 27 v =1
(14} 27 # =1 1
(15) 27 £ 1=
(16) 27 =21 ¢«

(an 27 v o

118} 27 i 2>
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First, we build up the “simple"” or “‘basic’ part of the structure. -
At this stage, Professor Page deliberately and wisely operates on
an intuitive level only. He refuses to explain "how" he is doing
these problems! To offer any explanation at this stage would make
it nearly impossible for the children to use any creative origi-
nality in extending the system later on. Each child is invited to
guess how he thinks these problems should be handled. Inci-
dentally, it is probably a good idea to write the array

41 42 43 .

31 32 33 34 35 36 37 38 39 40

21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 9 10

on the chalkboard at the front of the room, and keep it there
during this entire discussion. But—at this stage—do not show
how you are using this array!

(1) 3 — names the same number that 4 does:
3 - =4,

(2) 7 1 names the same number that 17 names. Recalling the mean-
ing of the symbol =, we can write

71 =17

3) 9 Notice that in these problems we are not
telling the students how to interpret the ar-

(4) 8 rows —we are merely telling them the results
of using the arrows. In particular, we are not

(5) 35 telling them to interpret the arrows as *‘mo-
tions” on the array of numbers! (Actually, it

6) 14 is virtually certain that the students are inter-
preting the arrows in this way, but we are not

(7) 17 allowing anyone to say so explicitly, because
we shall soon want to ask the children just

| 12 what the arrows really do mean.)

(9) 53

(10) 13

(11) 13

(12) 16

(13) 27

(14) 37

(15) 28

(16) 28

(17) 28

(18) 28
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(19)

(20)

1)

(22)

23

(24)
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[STUDENT PACGE 71
{19) 25
(20) 23
(21) 24
(22) 13
(23) 4
(24) 13

In questions 1 through 24, we have been developing, on an in-
tuitive level, the “‘simple” or "basic"” part of Professor Page's
mathematical structure, which he refers to as a “‘lattice.”

Now, with questions 25 through 30, we begin to arrive at the
“frontiers’”” or “incompleted growing edges” of this structure.
We have come to the edge of the world and are in danger of falling
off.

In problems 25 through 30, we suggest you do not point out
this danger to the students. They may see it, or they may not.
Don't worry. The discomforts of frontier iife will become apparent
to everyone as soon as we reach problems 31 through 34, and that
will be quite soon enough.

Of course, if a student does discover the frontier at this point,
take full advantage of his contribution.

Note: Before working on question 25, it may be advisable to ask
the class what an identity is. If your students have not noticed that
they have now reached the edge of the world, they will (presumably)
say that this is an identity. But if they have noticed the limitations
of the mathematical structure we have been using, they may be
much less certain.

Let us look at the difficulty. Since we have never, thus far, dis-
cussed with the children how they are handling these problems,
there is every reason to hope that different children have been
handling them in different ways.

Here are some ways they may have been using:

(i) Since we have the geometric array of numbers in full view
on the frant board, and since the symbolism of arrows

31
57
25 v
39 ] «

(and so on) makes a deliberate appeal to one's intuitive notions
of motion, we hope that most students are imagining actual
moves around the array of numbers. For example, for 17 1 such
students would be thinking of “moving” from 17, straight upward
“one step,” and consequently landing at 27.

31 32 ...
21 22 23 24 25 26 28 29 30
11 12 13 14 15 16 (7 18 19 20
1 2 3 4 5 6 7 8 910
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(ii} Some students may have done this. Having started out
thinking in terms of geometrical motions, they may have gone on
to notice that an *'upward' arrow, 1, seems to have the effect of
“adding ten’; a “downward” arrow, |, seems (usually!) to have
the effect of "subtracting ten’'; an arrow pointing to the right, -,
seems (usually!) to have the effect of “adding one'’; an arrow
pointing to the left seems to have the effect of “‘subtracting one'’;
an arrow like » seems to be equivalent to two other arrows, namely
- ¢%; and so on.

If a student has recognized this seemingly equivalent reinterpre-
tation of the arrow symbols, he may be making use of it. Indeed —
partly unconsciously, perhaps—he may have discarded the "geo-
metric movements” idea, and be handiing these problems entirely
arithmetically.

(iti) Still other student approaches are possible, but we leave
you to discover them from your own children. The two above are
perhaps the most basic.

Now, let's see what happens to these two kinds of student meth-
ods, when they encounter problems 25 through 35.

(i) Those students using the geometric motions approach may
(if they don't notice the imminence of falling off the edge of the
earth) reason that

- —

means start somewhere on the lattice, move one step to the right,
then move one step to the left. You get back where you started, so

——-0
is an identity.

You can try this out for yourself, using actual motions on the
array, starting at 13, or 22, or 5, etc. Here is one. Start at 14:

31 32 33 ...

21 22 23 24 25 26 27 28 29 30
11 12 13 {4 15 16 17 18 19 20
1 2 3 4 5 6 7 8 9 10

Move one step to the right:

31 ...

21 22 23 24 25 26 27 28 29 30
11 12 13 14-(9 16 17 18 19 20
1 2 3 4 5 6 7 8 9 10

Then (since you have just arrived at 15), turn around and move one
step to the left:

21 22 23 24 25 26 27 28 ...
11 12 13 (49<15 16 17 18 19 20
1 2 3 4 5 6 7 8 910
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Behold! You do get back to 14, Consequently, the statement
14 - « =14 is true.

But—here is the crucial question! Will this always work?

Suppose you start at 20. When you attempt to move one step to
the right:

31 ..

21 22 23 24 25 26 27 28 29 30
11 12 13 14 15 16 17 18 19 ~>
1 2 3 4 5 6 7 8 9 10

you have nowhere to go! There is no number at 20 —». But, if 20~
is meaningless, then it may be risky to build onto the meaningless
symbol 20 - in order 1o get 20 — «. Hence, it would appear that
20 -» « is meaningless, and so the statement 20 ~» « =20 can
hardly be classified as either true or false!

This appears to be chaos. We have reached the edge of the world,
and fallen off. Or, less metaphorically, we have gone as far as our
mathematical system will let us go.

The question, now, is can we extend our mathematical system?

Before we attempt to do this, let us look first at how this prob-
lem appears to those students who have discarded geometrical
motions, and are handling these problems arithmeticatly.

(ii) For the student who interprets — as “‘add one," and who inter-
prets « as '"subtract one," there seems to be no difficulty. The
expression []— < means merely “start with some number, then
add one, then subtract one."”

This can never lead ta difficulty, and will always get you back
where you started. Consequently, with this interpretation, ] — «
=[T] does appear to be an identity.

Does this mean that, for these students, the “'frontier” poses no
problems? Unfortunately, no—not, at least, if they think carefully
about the matter. For they arrived at their interpretation of - as
“add one’” because they believed that — always meant the same
thing as "add one.”

But now they have just seen that this is not so! The name 20
plus 1" clearly refers to 21, but ""'20 —"’ does not name any number
whatsoever, in the original geometrical sense. Hence, when these
students replaced geometric motions with arithmetic operations,
they may not have been justified in doing so!

Since the matter of extending mathematical structures is of very
great importance in the study of mathematics, it is worth devoting
some thought to this right now.

Many times a structure is built, and must sooner or later be
extended.

Here are some examples:

(i} The number system 1, 2, 3, 4, ... must sooner or later be
extended to include zero; i.e., it must be extended to the larger
system O, 1,2, 3,4,5,...

(ii} While there is choice as to which extension we shall make
next, the system Q, 1, 2, 3, 4, 5, ... must sconer or later be ex-
tended still further. We might, for example, extend to the larger
system ... "3,7°2,°1,0,'1,'2,°3, ...
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{iii) The system ... 3,72, '1,0,*1,*2,*3, ... must be extended
sooner or later (if this was not already done earlier) to include
fractions. (In this way, we arrive at the system of rational numbers:
this includes all integers, positive and negative; zero; and all frac-
tions, ‘‘mixed” numbers, terminating decimals, and repeating
decimals, whether positive or negative.)

(iv) Two further extensions of this number system must be made
sooner or later to get the system of real numbers and the systemn of
complex numbers, but we shall not discuss these at this point.

(v} The system of integer exponents

3*=3x3=9
33 =3x3x%x3=27
3*=3x3x3x3=281

must be extended to include zero exponents, 3° = ?; negative ex-
ponents, 3% = ?; and fractional exponents, 3%?= ?. (Even further
extensions, to real and complex exponents, must be made at a later
stage in one's studies.)

(vi) The system of factorials for positive integers

1l =1

20=2x1=2

' =3x2x1=6

4 =4 x 3 x2x1=24

5 =5x4%x3x2x1=120

must be extended to allow for zero factorial, 0! = 7, for the fac-
torials of negative integers, "11 = 7, "2! = ?; and for the factorials
of rational numbers, ¥! =7, 731 =7 ...

This latter problem was finally—and beautifully —solved in the
eighteenth century by Leonard Euler, one of the greatest mathe-
maticans who has ever lived.

(vii) Many other examples could be given, such as Abelian sum-
mation, Cesaro summation, analytic continuation, and so on, but
they are far beyond the scope of this book. Suffice it to say that
extending mathematical structures is one of the very important
problems that recurs throughout the study of mathematics.

in the present book, of course, we mean to look at this problem
in two very simple cases only: Page's “lattices’ and the system of
exponents.

Having argued that extending systems is important, let’s see how
it works.

Speaking somewhat roughly and intuitively, we have a system
that we have already built. For one reason or another, we bump into
the edge of our system somewhere, and realize that it does, after
all, have its undeveloped frontiers. What we usually do, then, is to
take a very careful look at the way our already existing structure
behaves. We then setect among these attributes of the "original”
system, and ask ourselves, which of them are so important that we
want to preserve them, that we want them to be attributes of our ex-
tended system as well?
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On the other hand, which are expendable, and can be allowed to
fall by the wayside?

Once we have decided which attributes to preserve, we use our
imagination to try to extend our structure in every way we can de-
vise (at least until our time and patience run out).

Then we Jook at each extension in turn, and ask ourselves, if we
extend the system this way, will the essential attributes still apply?
if not, we discard that method of extending our system. If they will
still apply, then we accept that method of extending our system —
and, behold, we now have a ‘“‘larger’’ system!

Let’s try it, on Pages's lattice. When we get to 20 —, we bump
into the undeveloped frontier of our system. We must find ways to
extend the system. Here are some actual suggestions, mostly made
by children (one or two, | must admit, were suggested by teachers):

(i) (Often suggested by children in grades 4 through 6.) Wrap the
paper into a cylinder, so that after 20, you come around again to
11. With this extension, we will have 20 - = 11.

(ii) (Often suggested by children in grades 4 through 8.) Wrap
the paper around into a kind of ““barber-pole'’ cylinder, so that after
20 you come around and start the next higher line.

With this extension, we will have 20 - = 21.

(iii) {Often suggested by adults; sometimes by children.) Imag-
ine that the array

1
21 22 23 24
11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 910

is on a rubber stamp, and just keep stamping the rubber stamp
down, to give a kind of wallpaper design:

31...

31 ...
27 28293021 2223 21222324252627 282930
1718192011 121314151617 18192011 121314151617 1819 20
789101234567 891012345¢67829I0

With this extension, we will have 20 - = 11.

(iv) Since — sometimes means '‘plus one,” pretend that it
always does. In other words, throw away the geometry and fall back
entirely on arithmetic. With this extension, we will have 20 - =21.

(v} (Suggested by a teacher from New Hampshire, where it
snows!) When you get to the edge and can't go any further, just sit
there and spin your wheels. With this extension, we get 20 —» = 20.

(vi) (Suggested by a teacher from Manhattan, which is really a
rather small island with rather a lot built up on it.) When you get to
the edge and can't move to the right, move up instead. With this
extension, we get 20 — = 30.

Probably you and your students can think of yet other ways to
extend our original system.

Now we have to choose among them! How shall we do it? Well,
let’s see how well they work. How satisfactorily do these various
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extensions preserve the really important attributes of our original
system? (This raises the question, which are the '‘really important"’
attributes of the original system, anyhow?)

System (i). Geometric motions on the cylinder will work generally
the same as on the piane, at least where problems like [ |- «and
[ ¢ < are concerned. Therefore, [T} « = [Jwil! be an identity
for this extension, and sowill[ ] # | « =[]}

However, the cylinder does not take care of another kind of dif-
ficulty, namely, 3 |. Consequently, ] | A « = []]will not be an
identity for this extension. (Can you extend it still further, so that
this, too, will work?)

We may, then, lose a kind of “‘commutative law,"” because » | «
may not work the same way as | / «.

Nonetheless, the cylinder extension is not hopeless. Use it if you
wish. (It is perhaps not the most convenient, but who says you have
to seek convenience? After all, it's your system that you are
building!)

System (ii). For this ''barber-pole” system, nearly everything can
be made to work out all right if you interpret things correctly.

System (iii). The “wallpaper” or *‘rubber-stamp’ extension is
really about the same as the "cyiinder” system. Can you extend it
so as to cope with 3 |, and so forth?

System (iv). The “'arithmetic"” system (really about the same as
the “barber-pole” extension, as a matter of fact) is a powerful and
convenient one. It can also be represented as 2 more complicated
kind of ‘‘wallpaper” design:

21 22 23 24 ...
9 10 11 12 13 14 15 16 17 18 19 2021 ...
"l 01 2 3 4 5 6 7 8 91011...
...710 ™9 8 7 & 5 4 3 271 0 1...
... 719718 717 16 "15 14 "13 712 711 710 9 ...

(Can you find our "original array” hiding somewhere in this new
“extended array"'?)

In this system, [J]= < = [JJ's an identity, 3 | =3-10="7'is
a true statement, and both [ ] # | «=[Jand[]} 2~ «=Jare
identities.

The symbols # | « turn out to mean the same thingas | / «
(so we have our "‘commutative law for arrows’), and so on. This
system works very well, because it is really arithmetic, and arith-
metic works well. (Notice that we have to include both positive and
negative numbers; without them arithmetic does not work well.)

System (v). In the ''spin-your-wheels” system, 20 - = 20. Con-
sequently, 20 ~» « means (20 —) «, which means 20 «, (using a
version of PN), which means 19. Hence, 20 — « = 19 (trace out
the motions geometrically to see what this means). Thus, D]-> P
=[] is not an identity. In fact, quite a few other things don’t work
out too nicely either.



210 CHAPTER 24

Which of these open sentences are identities?

(25) E]»<—=D

(26) [:[;-J,»zm

@y [Jrée=0]

@28 [Jrr7tbiee=[]
(29) Di‘?‘)’&ll(—(—c—z@

B [Jritititi-svett=]]

Can you find simpler names for each of these num-
bers?

(31) 15 1

(32) 9 - >

[STUDENT PPAGE 71

Adopt this extension only if you have a taste for asceticism,
self-denial, and the long-hard-road approach. (But the choice is
yours!)

System (vi). This system has the same genera! kind of complica-
tions that system {v) does.

Now that we know where we stand, let's return to the questions
in the Student Discussion Guide.

(25) (We can now discuss this more fully, at least among ourselves.
The class discussion with the students should be allowed to
grow naturally!)

If you don’t notice the difficulties at the edges, then you will
say that this is an identity. if you do natice the difficulties at the
edges, then you realize that the question is meaningless until
you make a suitable extension of your mathematical system!
Whether the open sentence { | — < = [_| turns out to be an
identity will depend upon which extension you select. Quite a
few different ones are passible.

(26) This question is similar to question 25. The motion [ ] » may
cause you to “fall off the edge.” Of course, in any “reasonable”

externssion,
-1~-0

will not turn out to be an identity.

(27) This question is similar to question 25. If, for example, you
choose the “arithmetic” extension, then the open sentence

o=

will be an identity. (Notice also the “closed triangle” pattern
of » (_J, J)

(28) Not an ijdentity.
(29) Similar to question 25.

(30) Similar to guestion 25.

Sprme students (and some classes) may not have detected the
pitfalis hidden in questions 25 through 30. For these students we
now make the issue sharper and clearer. Questions 32 through 34
are intended to cause every student to notice the ““falling off the
edge’' phenomenon.

(31) 25 (No difficuity here!)

(32) Here we encounter the frontier. The symbol 9 — — means, of
course, (9 —) -+, which we can analyze by using a form of PN.
The symbol (9 —) — names the same thing as 10 — does. But,
unfortunately, if we have not extended our original system,
the symbol 10 — doesn't mean anything at all!
If your class has not already extended the original system,
this might be a good time to do so. By now the need should he
apparent!
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38 12 & @ (33) 12 « « (12 /) « = 1

That is to say (recalling what = means!), the symbol 12 .,
names the same thing that 1 -~ names —but, unfortunately, 1 -
doesn't name anything at all. It is a meaningless symbol —un-
less we have extended our original system.

{If we use the “arithmetic” extension, of course 1 < will mean
zero: 1 — = 0.)

b 22 . (34) 22 « - (22 —) - 21 -

This says that the symbol 22 - < names the same thing that
21 « names. Unfortunately, if we have not extended our system,
the symbol 21 - is meaningless —it does not name anything.
Hence, neither does 22 -

(If you choose, say, the “rubber-stamp” extension, 21 « = 30,
and sg 22 - - 30. If, instead, you chose the “barher-poie”

extension, or the “arithmetical" extension, then 22 - - 20.)
|page 72)
15) Doug's teacher wrote this on the chulkboard (35) This depends upon your class.
Did you find a “"natural® extension that did not de
stroy the structure of Professor Page's syvstem?
161 Did yvou finally settle on any definite way, that (36) This depends upon your class. (My own choice is the “arith-
evervone in cliss agreed with, o extend Professor metic” or "barher-pnle” extension.)
Page's lattice?
We now build the “simple” or “basic' part of the system of
Il. THE SYSTEM OF EXPONENTS exponents,

We frequently encounter problems like the following

2% 2= 4
2x2%x2=8
2x2%x2%x2=16
I x 3 g
3x3x3 =27
3x3x3x3=8)

10 x 10 100
10 » 10 * 10 1000
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| We can often make these problems simpler, and
easier to think about, if we introduce the system that
mathematicians call exponents. Here is how it works:

2

22=2x2=4
P =2x2x2=8
2'=2%x2%x2x2=16
2 =2%x2x2x2x%x2=32
2 =2%x2%x2%Xx2x%x2x2=64
F=3x3=9
¥ =3x3x%x3=27
3*=3x3x3x3=8]

fpage 73)

5 =5x5=25 :
5 =5x5x5 =125

i 5=5x5x%5x5=625

l .

| .

R 10° = 10 x 10 = 100
10° = 10 x 10 x 10 = 1000

x
b 10" = 10 x 10 x 10 x 10 = 10,000
g %

10° = 10 x 10 x 10 X 10 x 10 = 100,000

Can you find simpler names for each of these num-

bers? *
3n 4 (37) 4 = 4 x 4 = 16
38y 7' (38)7"=17x17=49
39 1° B P=1x1Tx1Ix1x1=1
40y 2" 40)2° = 2 x2x2x2x2x2x2x2x2x2
= (2 x2x2x2x(2x2x2x2 x(2x2)
=16 x 16 x 4
= 256 x 4
= 1024
(4h 100’ (41) 100° = 100 x 100 = 10,000
‘ @4 7’ (42) 11 = 11 x 11 = 121
' @y (Y 43 (1Y ="1x"1="1
@ () 44) (1 = "1 x "1 x "1
= (1T x 1) x "1

T x 1
=1

i
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45 () (45) (' =1 x 1 x 1 x "1
=1 x 1) x (1 x "1)
=1 x "1
= /'I

e () (46) (1 =1 x "1 x 1 x 1x 1
=1 x 1 x 1 x 1) x1
="'1 x 1
=1

4D ‘nbs (47) 1|vas = 1

(48) ("] )"” (48) ( 1))765 = _,l

Obviously, we don't want to tackle this problem by brute force.
What we need here is an jdea! Let's group according to ALM,
much as we did in question 46. Thus ("1)""** will mean 1965 fac-
tors of negative one. If we group the first four together, we will
have

(_l)lvu = (—1)4 X (-1)196\'

since there will be 1961 factors left. Now, we saw in question
45 that (1" = '1; hence, 1™ =1 x 1) = (1™
If we group four factors of ~1, again, we have

DS = (1) x (D)7,

since 1961 -4 = 1957. Hence, (1) ="1 x (1) =(1)"".
We can "‘remove’’ four more factors of "1, by this same process of
groupling according to ALM, to get

(hl)l'lbs = (—1)1953

Where will this process end? Obviously, when we can't remove
any further groups of four factors of 1. Now,

949

+ 1945

+ 4 4 1941

+ 4 + 4 + 1937,

19563

Wit
N

and so on. If we remove all possible groups of four, we are left with
a "remainder’ of 1:

484 R1
4)1937
That is, we shall ultimately get down to

( 1)1965 . (-1)4 % .1

x 1

|1 -]

—

Thus the final answer is

D™ =L
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(50)

(51

(62)
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(1)

(_] )ﬂoo
(] )10\

]0100

[STUDENT PAGE 73

Once we see how this works, we can save a little time in the fu-
ture. We might merely have done this:

(—1)|965 - 7
491 R
4) 1965

From this we see at once that, after we have removed 491 groups
of 4, we shail be left with a *‘remainder” of one single factor of ~1.
Since each group of 4 meant merely multiplication by *1, the re-
sult is, finally, "1. (We could, instead, have removed groups of two
factors, since "1 x "1 ="1))

(49) Removing groups of 4,
266 R2
4) 1086 ,

s0, after we remove 266 groups of 4, we shall be left with a
“remainder” of 2 factors of “1:

CN' = [CN ] ¢
= ("1 x (1)
=*1 x (1)

1 x

=1

(Note that we might, instead, have removed groups of 2 factors
of 1)

(50) 1™ = *1

1§

(51) (1 = (1™ x 1
=* x "1

= "1

(52) 16" = 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10

x 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10
x 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10
x 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10
x 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10
x 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10
x 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10
x 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10
x 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10
x 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10
x 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10
x 10 x 10 x 10 x 10 x 10 x 10 x 10 x 10
x 10 x 10 x 10 x 10

= 10,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,00
0,000,000,000,000,000,000,000,000,0
00,000,000
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Which statements are true and which are false?

53) 2" <10 (53) False. Since 2'° = 1024 and 10° = 1000, the statement
2'° < 10° is really the same as (using PN} 1024 < 1000,
which is false.

t54)  2'° <10 (54) False. 2'° < 10% is really the same as 1024 < 100.

(55 2 < 10° (55) True. 2'° < 10" is really the same statement as 1024 < 10,000.

(561 5* < 4° (56) True. 5" < 4° is really the same statement as 625 < 1024.

(57) 3 <4 (57) False. 3* < 4° is really the same statement as 81 < 64.

Can you find the truth set for each open sentence?
Let's agree to use only positive integers.)

68 2= T (58)2° =2 x2x2x2x2x2
(2 x 2) x(2x2)x(2x2)
=4x4x4

=4

It

Consequently, the open sentence 2° =[1* has the truth set {4].
Notice that we could also write 2° = (2°)°.

59 3 =9 (59) 3* =3 %x3%x3x3
(3 x 3) x(3x3)
9 x9

92

(]

(I

Hence, the open sentence 3* = 9" has the truth set {2}
Notice that we could also write 3* = (3")%

[page 74]
(60} 5" - 257 (60)5° =5 x5 x5x5x5x5x5x5x5x%x5
= (5x9) x5 x5) x(5x5)x{(5x5)x(5x5)
=25 x 25 x 25 x 25 x 25
= 25°
Hence, the open sentence 5'° = 25° has the truth set {5} We
could also write 5'° = (5°)°. Does this suggest anything?
6li 22x2'=2" 61) 2° x 2 =2 x2x2) x{2x2x2x2)
=2 x2x2x2x2x2x2
= 21
Thus, the truth set is {7} It shouldn’t be surprising that 3 fac-
tors (of 2) plus 4 factors, turn out to be 7 factors.
62 2 x2 =7 (62) {8}
®3) 3 x3=7 (63) {5}
60 Fx[ =3 (64) {3}
65 22x5 =] 7T (65) (2x2x2)x (5x5x5)=(2x5)x(2%x5)x(2x5)
=(2x 5)°
= 10°

Hence, the open sentence 2° x 5° =[]’ has the truth set {10}
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’ (66)

¢
E (67)

(68)

(69)

(70)

CHAPTER 24

22)(3’:[]’

25 <7° < 50

2 <5 <2

(66} (2 x 2) x (3 x 3)

(67)

(68)

(69)

(70)

[STUDENT PAGE 74

il

2x3)x2x3
2 x 3
= 6

Hence the open sentence 2° x 3° =[ | has the truth set {6}

{1)

We might attack this prohiem as follows:

10" = 100
10° = 1000
10* = 10,000
2° = 512
2" = 1024

Our problem can be written as
512 < 107 < 1024,

The only power of 10 which falls between 512 and 1024 is,
evidently, 1000.

That is,

512 < 1000 < 1024
or
512 < 10° < 1024.

Consequently, the open sentence 512 < 10° < 1024 has the
truth set {3f
We might attack this problem this way:

7' = 49

7' = 343

Clearly, then, 25 < 49 < 50. In other words, the open sentence
25 < 7° < 50 has the truth set {2}.

2* =~ 64
2" = 128
So the open sentence
2 <5 <2
can be written as
84 < 5° < 128.

Now let’s see which powers of 5 might be candidates:

5 = 25
5 = 125

5* = 625

Consequently, the open sentence 64 < 5° < 128 has the truth
set {3}
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(71 10 < 2 <10 (71) 10 < 2° < 100

Which powers of 2 might be candidates? Let's look at a few:

2’ =4
2 -8
2 = 16
2 = 32
2° = 64
2’ = 128

So, evidently, the open sentence 10 < 2” < 100 has the truth
set {4, 5, 6}.

(720 10 < 3 < 10° (72) 10 < 3 < 100

Let's look at some powers of 3:

-9
3 =-27
3 = 81
3 = 243

Evidently, the open sentence 10 < 3° < 100 has the truth set
{3,4}.
(73 10” < 5" <10 (73) 100 < 57 < 1000

Let's lock at some powers of 5:

5% = 25

5 = 125
5 = 625
5 = 3125

The open sentence 100 < 5° < 1000 has the truth set |3, 4}.

We have now developed some familiarity with the simple,
"basic'” part of our mathematical system, namely, positive integer
exponents. We now begin to move toward the unfinished "'frontier”

If we use only positive integers as replacements for of our system.
the variables, which of these are identities?
ae [ Fx[f=[F {74) Not an identity. For example, try

UV:2—>D

2x2)x(2x2x2)=2x2x2x2x2x2

which is false.
(75} D’ x D’ = {:]' (75) An identity.
ae (L Jr=1¢ (76) An identity.

an ((Fy =T (77) Not an identity.
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(78 p® x q" = (p x g)°*? (78) Not an identity. For example, try
w:2 —
3 —
4 —

2 —

fo - TV~ B -}

to get 2° x 3% = (6)°, which is false.

(79) p° x pb = pext (79) Not an identity.

80) p® x pb = pe® (80) An identity.

(81 p® x gu={p x ¢)°¢ (81) Not an identity.

(B2 p% x g% = {p x ¢)° (82) An identity.

(83) p* + pb = pet (83) Here we encounter the frontier; p® « p® = p®~ % is an identity,

for positive integers, provided a > b.

Let’s try it out with some numbers.

uv: 2 — D
6 — a
3 —5b
We get 2% = 2° = 2° Is this statement true? Can we see “‘why”
it is true?
20 2x2x2x2x%x2x%x2 - 2x2%x2) % (2x2x2)
2 2x2x2 2x2x2
= 1x(2x2x2)
=2

That worked out smoothly enough. But, of course, we satisfied the
condition a > b.
Suppose, instead, we had a = b. What then? Let's try it.

Uv:2 ~s p
5 —>a
S > b

We get 2° = 2° = 2°. Now—what on earth can we mean by the sym-
bol 2°? Well,

2x2x2x2x2-
2x2x2x2x%x2

Consequently, /f we want to retain the identity p? = p# = p?—Yfor
the case where @ = b, we must agree {6 use 2° as a name for the
number 1, 2° = 1.

To summarize, for positive integers a, &. and p, the open sen-
tence p? = p? = p?~? is an identity, provided a > b. If 3 = b, we sud-
denly hit the frontier of our system; we get the symbot 2° or, in
general, po, which has no meaning.

We can extend our system by giving a meaning to the symbol p°,
where p is a positive integer.

If we want the open sentence p® + pP = p2 " P to continue to be
an identity, even for our extended system, then there is only one
meaning that we can give to p°. We must give it the meaning

p° = 1.
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(84) Do you see any need to extend our system of
exponents?

(85) Thus far, we have been using the set of positive
integers as the replacement set for our variables. What
other set might we use, instead of merely positive
integers?
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(Remember that here, p is some positive integer.) We have now ex-
tended our system of exponents to allow expononents O, 1, 2, 3,
... that is, positive integers for exponents, and also zero as an
exponent,

Can we extend our system still further? Well, as a matter of fact,
we more or less need to do so. For, the open sentence pd + p?
=p# Y is an identity provided a > b. But suppose a < b; what hap-
pens then? We get, for example, this sort of situation:

uv:

W N

L1

from which we get 2° + 2° =27%since 3-5= 2.
Now, what on earth can we possibly mean by the symbol 2°*? Well,

2+ 2 = 2x2x2
2x2%x2x2x2

- 2XBXx24 1
2x2%x2 2x2

=1
éz
Hence, if we want the open sentence p? < p® = p? =0 to be an iden-
tity, even for a < b, then we must give 2 2 the meaning

27 =1
22
In general, we ¢can extend our system to allow for negative inte-
gers as exponents. When we make this extension, if we want the
open sentence p? + pf = p? =¥ to continue to be an identity, even
for a < b, then there is only one meaning we can give to the symbol
pt. We must give it the meaning

p-? —3 l .
pz
(Similarly, p must be given the meaning
pr= L
p:l

the symbol p-+ must be given the meaning

=

QU=

and so on. Remember, p is some positive integer.)
We have now extended our system so that any integer — positive,
negative, or zero—can be used as an exponent.

(84) This has just been discussed above.
(85) We might include zero, negative integers, and fractions as ex-

ponents. (Actually, one could even go further, and would do so
in advanced mathematics.)
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[page 75]
(86) Do you see any reason to extend our system of
exponents?

Can your extended system cope with these problems?
Can you find simpler names for any of these numbers?

87 3

88 3
(89) 2°
90y 27
(v 3"
92 27
93 10°
94 107
9 10"
96y 10°
97 107"

98  10° + 10" =[]

99 2+ 20 =[]

(100) Mary says that if there really is such a thing as
9%, then
97 x 97 = 9.
1s Mary right? Do you think there really is such a

1
thing as 937

{STUDENT PACE 75

(86) This has already been discussed (although your class may
wish to carry the discussion further).

(87) 3 =3

We have not said much about this; we leave it to you and your
class. 1t may not even require discussion.

(88) 3° =1
(89) 2° =1
@y =1=1
2 2
©on 3 =1
3
922 =1 =1
2 32
(93) 10° = 1
a1
(94) 107 = 35 = 0.1

95) 107 = L = 1 _ 001
(96) 10 = -+, = 0.001

(97) 10°"° = =, = 0.0000000001

3=

(98) 10° + 10" = 107" = = 0.01

1
10°
That is. the open sentence 10° = 107 =[] has the truth set
{107}
99 {4}
(100) Yes, Mary is right

Here is a new frontier! What on earth can we mean by the symbol

97
Can we extend our mathematical system to cope with problems

like this? Well, p8 x p? = p2*0o,
Let's use UV this way:

Uv:

O Wi s
)
T T o
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Thus we get 9% x 9F = 9', or 9% x o7 = 9. Hence, we should
extend our system by using the symbol 97 o refer to some ele-
ment of the truth set of the open sentenceD X D = 9. Now,
this truth set is {*3, "3}. y
Which meaning shall we give to our "m‘eaningless” symbol 97?7
Shall we say 97 = ‘3, or shall we say 97 = ~3? Either might be
possible, but mathematicians have chosen to give 97 the meaning

9 = 3,

In other words, 9%t =\ir§, if we remember that the symbol \f’
always refers to the nonnegative square root (if there is one).

We have now extended our system to allow positive integers,
zero, negative integers, and fractions (either positive or nega-
tive) to serve as exponents. That is, we can now use any rational

Can your extended system cope with these problems? .
number as an exponent in our new extended system!

Can you find simpler names for any of these numbers?

1=

(10D 1007 (101) 100° = 100 = 10
(102)  27% (102) 273—what can this mean? That's easy:
273 x 27 x 271 = 27, s027 = 327 = 3.
(103)  1000° (103) 1000% = /7000 = 10
(104 10,0007 (104) 10,000 = 10,000 = 100
(105)  1024% (105) 1024%_what can this mean? Let's try this:

1024% x 1024% x 1024% x 1024% x 1024% = 1024

Now,
2"° = 1024
22 x2x2x2 x 2 =1024
and so
1024 = 27 = 4.
Using the symbol
e

to denote what is called the *fifth root” of a number, we can write
10243 = 1024 = 4.

We could have tackled this problem in many different ways. Here
is a nice approach. In the old system, (p7)° = p’s has been an
identity. If we want it to continue to be an identity in the new
extended system, we must have:

Uv: 2 —-p
10 - r

+ =S
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If we use rational numbers as replacements for the
variables @ and b, which of the following sre identities?

(106) | x [ |

r " e L a+h
1107 [ ] = | - Ij
(108) P xq =(pxaqg)f
|page 76|
lII‘}QI | = - |
(110}

ain ([ [

112) Can you describe how you extended the orig-
inal system of exponents? Why did you do it the way
that you did?

[STUDENT PAGE 6

Then rs= 10 % $= 2, al‘ld.'lﬂ fact, we have (2101,' = 23. 0 l.ij; 4
Using PN, we get (1024) ¥= 4,

(106) Not an identity.
(107) An identity.
(108) An identity.
(109) An identity.
(110) Not an identity.
{111) An identity.

(112) This discussion will depend upon your class.

'r"' j

e { ‘/



chapter 25/ Page 77 of Student Discussion Guide
GUESSING FUNCTIONS”

Before teaching this tesson, you may want to view the Madison
Project film entitled "‘Guessing Functions.” This film shows a class
of culturally deprived urban children in grades 6 and 7. (At least,
their teachers assure me that these children are culturally deprived.
You could never tetl it by looking at them or by working with them
on mathematical problems.)

What do mathematicians mean by a function? Well, let’s first
observe what we might call a rufe, and what we might call a formuta.

Here is a rule: Whatever number you tell me, I'tl double it, then
add six, and tell you the answer. Here is a formufa, which is a way
to use variables in writing a rule: Let [ | represent the number you
tell me and let /\ represent the number | answer back. Then the
preceding rule can be written down as the formula

(Dx2)66=/\,

Here is a different rule; Whatever number you tell me, I'll add
three to it, double the resuit, and then tell you the answer. The
formula for this second rule is

(Ll+3)x2=/\

Are these two rules (or formulas) different, or not? Well, they cer-
tainly can be distinguished from one another; one looks like this:

(‘_x2)+6=A_

And the other looks like this:

(:_ff-3)x2=£x_

So we have to admit that they are different. )
However, if we make up a table using the rule {[_|x 2)+ 6 = A,
we get:

LA

0 6
1 8
2 10
3

12

*This topic was suggested by Professor W. Warwick Sawyer of Wesleyan
University, Middletown, Connecticut. Professor Sawyer has been one of the
international leaders in mathematics curriculum reform for many years.

223
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If we make up a table using the rule ([] + 3) x 2 = /\, we get:

A
0 6
1 8
2 10
3

12

so we get the same table from either rufe*

Mathematicians express this by invoking a higher abstraction,
known as a function.! We say that both formulas represent the same
function. What, then, is a function? Well, it is more abstract. It re-
fers to the “‘commonality” or ‘‘sameness’ shared by both of our
formulas. (In a similar sense, the number two refers to the com-
monality shared by two fingers, two pebbles, two trees, two houses,
two boys, two legs, two letters of the alphabet, two avocados, etc.)

We can make up a set or collection or class of formulas, by agree-
ing to put a formula into the set if it produces the same table that
([] X 2) + 6 = /\ does; otherwise we agree to leave it out of the set.
"~ We have thus made up a set of all formulas which produce the
same table that ([Jx 2) + 6 = /\ does. Mathematicians call this
set an equivalence class of formulas. Here is part of what it looks
like:

{(CJ=2)+6=A(]+3)x2=A,

2x ([ J+3)= A\ 2x(3+[])=/\
6+ ([ x2)=/\+x[12+(]x4)]=/\..])

Consequently, we could think of a function as an equivalence
class of formulas that produce the same table. We would then say
that any formuia in the set “‘represents’ the function.

*Of course, the “/\” numbers must always come out the same, since

(Jx2)+6=(]+3)x2

is an identity.

tPleose notice the danger here. As 1o often happens, math ticians
have chosen to use an everyday word, but ot with its everyday meaning.
They hove given it a special new “"mathematical” meaning. When used in
mathematics, such words must not be given their ordinary meaning. This
common practice of using ordinary ds with special 1gs will give
us great difficulty if we are not on the alart. “Set” in mathematics does
not mean what it does in everyday life (as in “the gelatin will set’ or
“maental set,” or “set them down over there”). Here are some rore words
with special meanings in mathematics: ﬁmchon, radical, ring, gmup,
element, rational, irrational, real, pl Y, opp
power, prime, open, closed, integrote, dlfferonﬁcm:, limit, bound inﬁmty

. and lots more. In mafhemm:u, for '_' the opposite of the opp
need not be the original el t. One can b very confused if one fails
to separate the math tical ings of these ds from their averyday
meanings.
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There are other ways to explain what we mean by a function, One
valuable way (that takes some getting used to, at first, but is often
helpful intuitively) is to say that

a function is a mapping

which means, roughly, what we shall try to suggest by this picture:

b//
DO NOUhWN—O

If we pursue this notion, we shall be led to study what we mean
by mappings. This is an extremely important branch of mathe-
matics, but is too large to be dealt with briefly. (We shall study
mappings further in Chapter 36.)

One approach has been popular in recent years, and goes as fol-
lows. Since somehow the sameness of the “‘different” formulas is
revealed primarily by the table

LA

0 6
1 8
2 10
3

12

we shall focus on this table. Now, what is a table? It is a set of or-
dered pairs of numbers, such as

{(0.6), (1,8), (2.10), (3,12),...}.

If we say zero, we get the answer six; if we say one, we get the an-
swer eight; and so on. The order lets us distinguish the number that
we say (which always appears as the first number of each pair) from
the number that we get as an answer (which always appears as the
second number of the pair).

Now, for a rule to work smoothly, we want the function to be
single valued; that is, whenever we say a number, we want to get
a definite answer — not two or three answers. Not all functions are
single-valued, although recent authors of precollege textbooks
have tended to use "function” to mean the same thing as "'single-
valued function.” It is worth emphasizing that not every problem
has a single answer.

Perhaps because matters seem simplest when each question
has a single answer, we have apparently overemphasized this case
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with young children. As a result, our students often acquire the
quite erroneous idea that every question must have exactly one
answer. Clearly, this is talse. |f we say

F.D.R. was President in the year .

we can answer 1933, 1934, 1935, or ~in fact —any year until
1945, inclusive. Thus, the fruth sef for the open sentence

F.D.R. was President in the year . _

‘ is the set
| 11933, 1934, ..., 1945].
\ Again, if we use only integers, the open sentence
l; 3<[J+1x28
* has the truth set
{3.4,5,6,7}],

so this "‘question’ has five different “answers."”
If we ask, “What number, when muitiplied by zero, will yield 377"
the answer is '‘no number will!" The open sentence i

ox[3=37

has the empty set for its truth set. There is no “answer” to this
guestion, except to say that there is no answer.-which is, after all,
a kind of “‘answer.”

{Obviously, the language becomes considerably clearer and
simpler when, instead of speaking of “‘answers,”" we speak of truth
sets, and how many elements there are in the truth sets.)

The important point, here, is that in the present chapter we shall
be working with single-valued functions. But we must not let the
simplicity of this situation mislead us in the future. Not every im-
portant question has one single simple answer. Some have many
answers, some have none; and sometimes the “answer” is extremely
complicated, and may consist of many parts.

If the set of ordered pairs looked like the set

{(0,5), (0,3), (1.6}, (1,4), (2.7),...],

then we would not get one definite answer to each number that we
started with. tf we said, for example, zero we might get the answer
five or we /might get the answer three. If we said one, we might get
the answer six or we might get the answer four. What must a table
look like, in order to avoid this kind of ambiguity?

Evidently, if 1 appears once as a ‘“‘starting” number,

B WA
I

it can be paired up with any “answering number” (say, 12},

1A

1 12




GUESSING FUNCTIONS 227

but thereafter 1 can never appear in the [} column paired up with
any number other than 12 in the /\ column. For example, we must

not have:
HEFA
1 12

13
14

— W N

If we did, when we said 1 we might get either the answer 12 or the
answer 8 —the function would not be "single-valued."
Using letters to denote variables, we can say the same thing this

way: In the table
A

a r
b S

if 8 = b, then we must have r = s.

Most recent authors, consequently, have defined a function as
a set of ordered pairs, where two different pairs never have the same
first element.

1t might be best to leave it for you to decide how you want to dis-
cuss the concept of function with your students. The main idea is

that, although
([J x2) +6 = A

and

([]+3)yx2=/\

are different formulas, they produce the same table:

LA

0 &
1 8
2

Hence, we say they both represent the same function.

The function, then, refers to how we have paired up numbers in
our table, and not to the rule by which we did it. Different rules, as
we have seen, can result in pairing up numbers in the same way.

The study of functions is one of the most important topics in all
of mathematics. Moreover, it's easy and fun. One can use the idea
of this chapter quite effectively with elementary schooi children
or, for that matter, with high school and college students.

In these preliminary remarks we have tried to say what a function
is—and that is a somewhat cumbersome matter. But in the rest of
this chapter, and in our work with children, we shall merely be
“making up rules’ and “‘guessing rules,” and this will be easy and
enjoyable.
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amm

CHAPTER 25
it Guessing Functions

{page 77]

(1) Ranny made up a rule and Alec tried to guess
what it was.

When Alec told Ranny “zero,” Ranny answered “three.”
When Alec said “one,” Ranny answered “five.”
When Alec said "two,” Ranny said “seven.”

LIl A

0 3
1 5
2 7

Do you know what rule Ranny made up?

[STUDENT PAGE 77

AnNswers AND COMMENTS

(1) Telling somebody “zera” is usually revealing. Since Ranny an-
swered “three,” we can reasonably hope that Ranny's rule is
something like the following:

(___XD)+3=A
(CJ<Ch+3=A
3~ (. xf])=A
3-( < (I<[h=A

In the next chapter we shall try to be somewhat more systematic
in our approach to “guessing functions.” The present chapter is
concerped —from the student’s point of view — with a kind of "*back-
ground experience’ or readiness building. Hence we would not tell
the students, at this stage, how to go about “guessing.” But it may
be well for the teacher to know some systematic methods, even
though we won't tell them lo the children just yet!

In the present case, let us look for a moment at the possible
forms of the answer. We might have just a ""constant,” that ignores
the number Alec says; that is, Ranny always answers the same
number, regardless of what number Alec tells him. In that case,
since Ranny has already answered "three,” the table would look
like this:

mbww»—lolm
'wmwmww|D

And the “'formula’” would be:

3=/\

However, a quick glance at the actual table

LA

TN— O
TN T W

shows us that this is not the kind of rule that Ranny is using.
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Well, perhaps the next simplest rule would be one where Ranny
took Alec’s number, multiplied by some definite “‘fixed” number,
added some definite *‘fixed” number, and told us the answer. The
formuta for a rule of this kind would look like this:

(Dx3)+5=A

or perhaps

Ix1)+2=A

or perhaps

Ox2)+3=/

or whatever. In general, the “form” of the formula would be

(DXT)J“ - =A'

Some definite Some definite
“fixed"" number “fixed'' number
that Ranny chose that Ranny chose
in advance in advance.

Now, how can we tell if Ranny's rule is of this form? Actually,
there is a systematic way to tell! We arrange the [ ] numbers in
proper sequential order (1, 2, 3, 4, 5, ..., etc.) and then we look
to see if the differences between successive /\ numbers are the
same. Perhaps it is easier to show what this means than to try to
say what it means:

Differences

Now, if this pattern continues, for example, if Ranny's rule works
like the following,

INEVAN
0 3
1 5
2 7
3 9
4 11
5 13

then Ranny is using a rule of the form

O )+ —=A

+ T
Some definite Some definite
number number

On the other hand, if this pattern (of the differences all being
equal to 2) does not continue, then Ranny is not using a rule of this
type.
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Mathematicians have a word to describe rules of this type - they
are called linear. Thus, each of the following rules is linear:

+'10=A

)
([ jx2)+ a=/\
((Jx58)+ 3=/\
(Dx’l}f 8 = /\

We can use letters to represent “definite fixed numbers chosen
before the guessing begins,” and write such rules this way:

(mxa)+b=A.

Notice what their tables fook like:

LI A A
0 “10 0 4
1 9 1 6
2 8 2 8
3 7 3 10
4 4 12

6

Table corresponding
to (Lix1})+710=A

Table corresponding

to([Ix2)+4=A

(all differences between (all differences between
successive /\ numbers successive /\ numbers
equal 1) equal 2)
[EE VAN ara

0 3 0 8

1 8 1 7

2 13 2 6

3 18 3 5

a 23 4 4

Table carresponding
to((Ix5)+3=A
(all differences between
successive /\ numbers
equal 5)

Table corresponding
to([]x1)+8=A
(all differences between
successive /\ numbers
equal 1)

All of the preceding rules are Jinear, Let us look now at some ruies
which are not finear:
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How do we know this rule is nonlinear? We need only look at the
differences between successive /\ numbers:

-QA Differences
0 3) 4
1 7) 3
2 10
) 2
3 12 .

Since these differences are not all the same, the “rule’ (or "'for-
mula" or “function”) is nof linear. Therefore, it cannot be written
in the form

qjxanb:/\,

with some definite numbers for a and b. It would be a waste of
time, in this case, to try to work with the form

As 3 second example of a nonlinear rule, if we make a table for

the rule ([ ]x{7]) + 1= A\, we get:

[]
_o_
1
2
3

B

Differences

Ny =

.~ N S

1
3

S

We see that the differences between successive /\ numbers are
not all the same. Hence, this rule is not linear. It would be impos-
sible to write it in the form

([(lxa)y+o=/\

We could ask this same guestion in what looks like a different form,
“Fill in the missing numbers so that the open sentence

(ExD)+l=(Ex )+
T

Missing “definite,
fixed" numbers

b
§

will become an idenlity.”” The answer is that this task is impossible.
You cannot do it. (By contrast, if instead you had been asked to
fill in the missing numbers so that the open sentence

[ﬁ+3)x(m+3)

=[x P+ . x[ ]+
+
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would become an identity, you could do it; namely, as follows:

(LI+3)x(CJ+3) = (Ix[h+(6x[])+o.

Evidently, then, our work on “‘guessing functions™ cou/d be re-
lated to our work on identities and derivations. However, we strongly
recommend that you do not do this. It would be too “‘academic" for
most children. There are, however, many lovely relations lurking
just beneath the surface that some students may be lucky enough
to discover. Let the discovery be its own reward — well, you might
want to look honestly impressed if you feel honestly impressed by
any such student discoveries.)

Let’s return now to Ranny's rule in question 1. The table was

[
0 3

Differences

If the differences continue to be 2 as we extend the table — then we
shall know that Ranny's rule is linear, and we can write it in the

form
([(J+a)+b=/\ !

Indeed, by locking at the pairs

0 3

we see at once that b must be 3:

It is also easy to see that a must be 2 and that the rule must be

(Dx2)+3=A.

(Have you figured out, yet, how we knew that a must be 2?)

Let's recapitulate: For the students, at this stage, we would let
them merely “mess around”* with numbers until they somehow
found the correct rule. We believe this is good experience for them,
and should precede any later “systematic’ discussions. For the
teacher, however, a more systematic approach is possible, and may
be convenient. It consists of guessing separately the form of the

answer (for example, is it (] x a") +o=A(Ox)+c=/A

*The words "mess around” in this connection are borrowed from Professor
David Hawkins, one of the wisest philosophers and educators of our g a
tion. Some people find these words inelegant. There is, however, an intel-
fectual equivalent of finger painting, and children need to “mess around”
with ideas quite as much as they do with colors.
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(2) Can you write a formula for Ranny’s rule, using

[I’sand /\’s?

(3) Nancy says Ranny’s rule is

((d+3)r2=/A\

Do you agree?

(4) Kathy says Ranny’s rule is: “Whatever number
they say, double it, and add three.” What do you think?

(5) Can you write a formula for Ranny’s rule, using

@send As?

(6) Can you make a graph for Ranny’s rule?
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dx (OxO)+e = orfx([x ) + (gx[0) +h=/\ or what-
ever) and, separaiely, guessing what the actual numbers a, b, ¢, d,
... must be. Thus, with Ranny's rule, we say that the form must be

(Dxa)+b=A,

Once we had decided upon this form, we saw that the actual
numbers must be 3 — b, 2 — 3, so Ranny's rule had to be

((]x2)y+3=/A

If this discussion sounds too fancy for your taste, ignore it, and
just guess the rules as the children guess them. That may work
better, anyhow.

(2) (Dx2)+3=A
(3) No. Let's try out Nancy's rule to see if it works:
0 — D
(0+3)+2= D

3 +2=/\
s A

So Nancy's rule would give us a table that starts like this:

LA

0 5

Since this Is nor like Ranny’s rule, Nancy’s rule must be wrong.

(4) Kathy is correct.

5 ([ ]x2)+3=/\

Notice that we now return to question 2, a standard bit of Madi-
son Project “programing.”

(6) TA

oy
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We know that a function (or rule) is finear if and only if it can be

written in the form
(|:| X a) + D= A

where a and b are “definite, fixed"” numbers that are agreed upon
before the guessing starts. You might call this an algebraic criterion
for linearity.

From a second point of view, we can look at the table, and say
that a function is Jinear if and only if, when we arrange the [ jnum-
bers in sequence 0, 1, 2, 3, 4, .. ., the differences between succes-
sive /\ numbers are all the same:

[ ]] /\ Differences [ ]| /\ Dbifferences
o | 17 ) o Ty

1 18) ) 1 14)

2 19 2 11

3 20) ! 3 8) i

s | o2 ! 4 5)

5 22) 1 5 2) _3.

You might call this an arithmetic criterion for linearity.

Now, the graph of question 6 gives us a third criterion for lin-
earity: an equation is linear if and only if the graph of its truth set
is a straight line.* You might call this a geomelric criterion for
finearity.

If you reflect for a bit on what we have here, you can see why it
15 quite exciting and you will gain a deeper understanding of the
“modern’’ mathematics curricula; for what we have is something
that relates arithmetic to algebra and to geometry. The power of
this kind of thing is lost when (as in traditional cutricula) arith-
metic, geometry, and algebra are studied separately. One important
aspect of the “new’’ mathematics curricula is that we try to put
mathematics together as a single, unified whole, rather than frag-
menting it into little incomplete pieces by artificial lines of demar-
cation.

For emphasis, we can take two functions —one linear and one
nonlinear—and look at them from all three points of view.

Linear Example Nonlinear Example

An algebraic view:

([Ix3)+2=/\ OxCh-1=A

*Purists will insist, “if and only it the graph of its truth set is a straight
line which is not parallel to the /\ (or vertical) axis.” I think you con safely
ignore details of this kind most of the time, and nonetheless learn a great
deal of valuable mathematics. Whenever these details become important —
and usually their nuisance value greatly exceeds their honest importance —
then that is the time to cope with them. They are not likely to be important
in your work with children at this stage.
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(7) Joan made up a rule. When Alan said “ten,”
Joan answered “fifty-three.” When Alan said “five,”
Joan said “twenty-eight.” Do you know Joan's rule?
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An arithmetical view:
D A Differences D A Differences
0 2 ) 5 2=3 0 1 ) 0-"1=1
! ° ) 8- 5 _ 3 ! 0 3-0 ] 3
2 8 - 2 3/ T
) 11 - 8=3 ) 8-~ 3=5
3 1 14 - 11 =3 3 8 15-8=17
4 14) ST T 157 N
Differences are Differences are
all the same not all the same
{1.e., always 3). (1,3,5,7,...).
A geometrical view:
AL AL
O O

Graph points lie on

straight line.

Graph points do not lie on
a straight line.

(7) Llet's attack this problem by sheer guesswork, with no fancy
theory. The pattern

suggests

10
5

10
5

e

—>

53
28

50
25,

and therefore suggests “multiplying by 5.” Of course, this isn't
quite right. [n both cases we missed the target by 3: that is, we
got 50 instead of 53 and 25 instead of 28. This suggests add-
ing 3. So let's guess that Joan’s rule is: Whatever number you
tell me, Il multiply it by 5, and then add 3. To settle the mat-
ter definitely, we would now need to ask Joan if this really is
the nule she is using.
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(8) Can you write a formula for Joan’s rule?

(9) Can you make a graph for Joan’s rule?

(10) Why don’t you make up your own rule, and see
if people can guess it.

(11) Do you know what mathematicians mean by a
function?

(12) Do you know the difference between a formula
and a function?

[STUDENT PAGE 77

(8) The formula for this in [}, /\ notation, would be
(D x5)+3= A

(9) A A

E]V

(10) This will depend on your class.

You might wish to view the film entitled "“Guessing Functions.”

(11) See the discussion at the beginning of this chapter.

We strongly recommend that you underplay this, or even omit it
entirely, rather than overdo it with your children. But if you can
keep it simple, it is worth trying.

(12) You might say that

OxD+0-A
O-@+0-A

(or, better, use examples that arise naturally in your class) are
two different formulas, but they represent the same function.

and




chapter 26 /Pages 78-83 of Student Discussion Guide

GUESSING FUNCTIONS:
ForM vs. NUMBERS

In the preceding chapter, some children made up “‘rules,”’ and
other children tried to guess these rules. (In our own classes, as
you can see in the film "Guessing Functions,” we let children
guess first by describing the rule in words, and if they get this
right, they then try to write the formula in[_], /\ notation. If they
get the formula right, they select a couple of other students to help
them make up the next rule, and the game continues. All of this
is—we hope —made clear in the film.) The work of the preceding
chapter—as far as the children are concerned—~was a matter of
informal *‘guessing.” Children are invariably good at this, and
enjoy it. We might call this “‘experience with functions™ or "‘readi-
ness-building for functions.”

In the Teacher's Text, we presented a sketch of a somewhat more
systematic approach to determining what rule the children were
using. We would not ordinarily tell this to our students!

The essential feature of a systematic approach is to separate the
form of a rule from the actual numbers used. In particular, we saw
how to recognize the form

(D X A—‘) + T = A

Some deﬁn‘ite Some definite

number number
and to distinguish it from other forms (for example, by looking at
the differences between successive /\ numbers in a table, or by
marking points on a graph and seeing if they did, or did not, lie
along a straight line). This is a form which children often use, but
it is not the only form they use. (Incidentally, mathematicians call
this kind of rufe 'tinear.”)

Here are some different forms children sometimes use, which

are not linear:
(IxOx[=A
Cx[=A
CIxTh+7=A
- (O =A

36 -
DA

The idea of trying to guess the form and the actual numbers
separately is very powerful. In the present chapter, we shall try to
suggest this approach to the children. (The methods shown in this
chapter really were made up by a ninth-grade class at Nerinx High
School in Webster Groves, Missouri.)

This chapter is optional! Omil it if you wish!

237
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Guessing Functions:
Form vs. Numbers

[page 78]

The students in a class at Nerinx High School, in
Webster Groves, Missouri, have worked out some
methods to help them guess functions. If you think
these methods would help you, you may want to glance
at the following few pages.

L. IS THE FUNCTION LINEAR OR NOT?

Sometimes people make up a rule somewhat like

these:
((Jx3)vs5=/
([(Jx2)+3=/\
(Txs)s=A
and so on.

In general, any rule of this sort looks like this:

(L e —= A

2 N
tSome (Some
number number
here) here)

Rules (or functions) of this kind are called linear
functions.
Do you know why?

(1) If the rule we are trying to guess is of this form,

we can tell at once by making a graph and looking at it.
What will the graph look like?

(2) How can we tell by looking at a table?

[STUDENT P'AGE 78

ANsweErs AND COMMENTS

(1

(2)

The points will lie along a straight line. (Actually, along a line
not parallel to the vertical, or /\, axis, but we don’t usually men-
tion this detail at this stage.)

It we arrange the [ numbers in sequential order 0, 1,2, 3, ...,

LI A

chAWN—-O

and if we then look at the differences between successive /\
numbers, they will all be the same if the rule is linear. Other-
wise they will not be.

R U Py
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Which of these functions are linear?

3)

]

0

AW

A

4

7
10
13
16
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Example 1. [ ] [ /\ Differences

? 13) 1M1-7=4

2 ‘5) 15 - 11 = 4
3 19) 19 - 15 = 4
P 237 23 - 19 =14
5 27) 27 - 23 = 4

The differences are 3l the same (in this case, 4), so the rule
is linear and can be written in the form

Some definite Some definite
number number

Example 2. D

Differences

JAN
(—:) 4-3=1

0

! ] 6-4=2
§ 15) 10-6 =4
4 18) 18-10=

The differences are not all the same (being 1, 2, 4, 8, ...),
and so the rule is not linear. It cannot be written in the form

(Tx—)+—= A

1 i
Some definite Some definite
number number

We might summarize all of this by saying:

If the function is linear, the graph will be a straight line, the /\
differences will all be the same, and it can be written in the form
([ x a) + b= /\ where o and b are fixed, definite numbers.
|t the function is not linear, the graph will not be a straight line,
the /\ differences will not all be the same, and it cannot be

written in the form (] x a) + b= /\, where a and b are definite
fixed numbers.

3)

y 1-4-=3

) 10-7=3
13-10=-3
16 - 13 =3

A Differences
4
7

10
13)
164
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[page 79]
(5)

[STUDENT PACE

The differences ore all the same; the function is linear; its
graph will be a straight line; it can be written in the form

) v — =\

t t
Some definite Some definite
number mumhber

As a matter of fact, a formula representing this function is

CIx3)+a=/\

(You can verify this by checking this formula against the table
shown above.)

D A Differences
’ g) 5-3=2
2 8 8-5=3
3 ‘2) 12-8=4

The differences are not all the same (2, 3, 4, .. .); the function
is not linear; its graph will not be a straight line; it cannot be
written in the form

O —)r—=A

T 1
Some definite Some definite
ngmber number

The differences are not all the same {some are *2, others are “2);
the function is not linear; its graph is not a straight line; it can-
not be written in the form

Ox—)r—=A

t )
Some fixed Some fixed
Rumber number

As a matter of fact, its graph is
4

Dw

A formula representing this function is

3+ ()= A
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(6)

(D

8

.u,\,dolD

o>

'O*Ulhul\)—‘O‘D

— et -
N o =~ AN

101
10,001
1,000,001
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You can verify this formula by working it out:

0—[] 3+(1)=3+1=4
1 —[] 3+(1)=3+1=2
2—[] 3+(1)=3+'1=4
3—[] 3+(1)=3+"1=2

If you chose to omit Chapter 24, and have not studied exponents
elsewhere, you may prefer to skip this example.

(6) The differences are all the same (namely, *1), so the function is
linear. It can be written in the form

(1% )+ —=A
U 1

some number same number

We now know the form of the answer; all that remains is to
find the actual numbers.

(7) The differences are all the same (namely, ~3). Hence the func-
tion can be written in the form

(Ox—)+—=- A
Since we now know the form of the answer, all that remains is
to find the actual numbers.

Can you find these two '‘missing’” numbers by studying the fol-
lowing table?

A
0 17
1 14
2 11
3

8

(8) The differences are not all the same (since the first was 1, and
the second was 3), so the function is not linear. It cannot be
written in the form

e AN

T
Some definite Some definite
fixed number fixed number
here here
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[I. IS THE FUNCTION

Some functions have tab

-

1
1
2
2
3
3

For these functions, 1 get

EVEN OR ODD?

les like this:

JAN

4
4
28
28
108
108

s the same answer that 1

does, 2 gets the same answer that "2 does, and so on.

Such functions are called e

ven functions.

[page 80]

Some functions have tables like this:

JAN

2
"2
10
"10
30
30

In this table, the answer for "1 is the additive inverse
of the answer for 1, the answer for "2 is the additive
inverse of the answer for 2, and so on. Functions like

this are called odd function

S.

Some functions are neither even nor odd. Here is one:

[

1

R

TS

Which of these functions are even, which are odd, and

which are neither even nor

odd?

® (LA

WN N~ -

A A YO OO

(9)

Even

[STUDENT PACE 80
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(10) |:J
=+
1
2
2
3
3

(11} D
—
1
2
2
3
3

(12) Yy = X

Z_‘._.Il>

>

O N UL AN

14
51
51

a  ([J=[D=A

av ([Jxh=[1=A

(15) Y

8
%

(16) Y

I3
w
b

~»

an  @x[)+r2=/

{18) y=3x+2

(19) Y= x

(20) Yy = x* ~ x?

(21) y=3x24 2

it

22 y=x+x

[page 81]

(23) How can the idea of even and odd functions

help you to guess functions?
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{10) Neither even nor odd

(11) Odd

(12) Even
(13) Even
(14) 0dd
(15) odd
(16) Even
(17) Neither even nor odd
(18) Neither even nor odd
(19) Even
(20) Even
(21) Even
(22) Odd

(23) if the table indicates an even function, then the formula may
be a sum of even powers, as in

Xt + x? =y (OTD‘+D2=A)
x6_311+e.=y (urD"—3xU’+8=A)
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I1l. ELLEN'S METHOD

Sometimes, when she was trying to guess a rule,

Ellen would say,

“Use your rule on 10, and tell me the answer.”
When she got the answer to this, she would say,

“Use your rule on 100, and tell me the answer.”
When she got this answer, she would request,

“Use your rule on 1000, and tell me the answer.”

(24) Why do you suppose Ellen picked these numbers
to ask about?

[STUDENT PAGE 8]

If the table indicates an odd function, then the formula may be
a sum of odd powers:

(

(
T - 2 =y (7 x D—sz A\)
x’+8x3f2x=y(D+8xD+2xD A

if the table indicates that the function is neither even nor odd,
then the formula may be of a sum of some even powers pilus
some odd powers:

x? + x =y (
xt - x3 =y (
x+2=y (D+2=
Tx + 8 (
Ix + 3

]
<

fl
<
~3
X
L]
+
)
>

Notice that: 2 is an even power (2 = 2 - x°, so the exponent is 0,
which is even); 3 is (in this sense) an even function (3 =3 - x°, so
that again the exponent, which is the decisive point, is even)*; x
is an odd function (x = x!, so the exponent, which is 1, is odd); 4x
is {in this sense) an odd function (4x = 4 - x', so again the all-deci-
sive exponent is 1, and is therefore odd); 3x* is an even function
(since the exponent 2 is even); 4x? is an even function (since the
exponent 2 is even); and so on.

(24) Actually, using [_] numbers such as 10, then 100, then 1000,
and so on, helps to do two things: it reveals the “rate of growth”
of the function — an important mathematical idea which we shall
expiain presently—and it tends to separate the “dominant”
terms from the “minor” terms—again, ideas which we shall
explain in a moment.

*We have called y = 3 an even function, in the sense of functions. Of
course, 3 —regarded as a positive integer in the sense of number theory —
would be amn odd integer. Differont branches of mathematics often use
words differently (unfortunatelyl), so it often hecomes important to know
which branch of mathematics is involved. In the present instance, when we
are thinking in terms of function theory and are dassifying functions as
"even,” “odd,” or “neither,” then 3 it an even function. When we are
thinking in terms of number theory and are classifying integers as “even”
or “odd,” then 3 is an odd integer.

et oD e et et s = e At
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The easiest way to see what mathematicians mean by dominant
terms is to look at a simple example: Consider the function 2x + 3
=y. Here is part of its table:

X1y
1 5
10 23
100 203
1000 2003

10,000 20,003

From looking at this table, you can probably guess what mathe-
maticians mean by “dominant terms.”” When we used UV (UV:
1000 —» x), we got y = 2003. Here, y is approximately twice x; after
all, 2003 is very nearly equal to 2000. (A discrepancy of 3 in a
number as large as 2000 is almost never important in ordinary en-
gineering or measurement, unless—for some special reason—un-
usual precision is necessary. [f two cities are 2003 miles apart,
they are, for almost all sensible purposes, 2000 miles apart, and
$0 on.)

For x = 1000, the term 2x dominates the term 3. If we use an
even larger value of x (UV: 10,000 — x), the ""dominance’’ becomes
even clearer: y = 20,003. A discrepancy of 3 in a number as large
as 20,000 is (for nearly all ordinary purposes) even less significant
than an error of 3 in a number as large as 2000. The ‘‘dominance”
of the term 2x over the term 3 is even more pronounced.

If we used still larger values for x, the dominance of the 2x term
would become still clearer. (You may want to consider this ques-
tion: If we used very small positive values for x—such as UV: 35—
x or UV: 3 — x or UV: 1555 — x — which term would be “‘domi-
nant,” the term 2x or the term 37)

We shall not try to put into words explicitly what we mean by
dominant terms. Here, quickly, are a few more examples:

X-x+ 7=y If x is large, the dominant term is x2.

X+ 5+ % =y If x is large, the dominant term is x.

(You might say, roughly, that you would happily settle for the x?,
and forget about the -x* + 7, if x is a large number, This somehow
suggests Mark Twain's remark that he would gladly do without the
necessities of life, provided he could have all of the luxuries.)

Once we are able to “‘separate out’' the dominant term in the
“rule” for large values of x, then we can easily see what is meant
by rate of growth. .

For the linear function y = 2x + 3, the table, as we just saw, was

X y
1 5
10 23
100 203
1000 2003

10,000 20,003
100,000 200,003
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Evidently, if x is a large number, it is approximately true that when-
ever we multiply x by 10, the new y-value becomes 10 times as

large as the previous one.

For example:
X
10,000
Take a value of x
10 times larger
100,000

y

20,003
and you get back a
new y-value that is
(approximately) 10
times larger.

200,003

In such a case, we say that (approximately) y grows at the same

rate that x does.
For the function

y=x+17,
here is part of the table:
x|y
1 8
10 107
100 10,007

1000 1,000,007

For the function (or “'rule”), we see that whenever we multiply x
by 10, the corresponding new y-value is 100 times as large as the
previous y-value.

For example:
Multiply x Now, 1,000,000
by 10. is 100 x 10,000

{using simpler,
approximate numbers).

1000 1,000,007

When the table shows this pattern, it is usually a clue that the
dominant term involves x2, and not x (or x2, etc.). Hence, if we see
this pattern in the table, we can reasonably guess that the rule has
a form like
Xk X =y
T t t
Some Some Some

definite definite definite
number number number

or perhaps like this

Some definite number

|
o)
R y
T‘
Some
definite

number
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(25) Using her method, Ellen got this table:

0
=
10

100

1000

A

2

1001
10,000.01
1,000,000.001

Can you guess thi

s function?
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We would start looking for rules like

2x* - 3x+5 =y
X+ x+ 7=y

x’+%=y

10x’~%=y

Let us now try “Ellen’s method" on the rule in problem 25.

(25) We can notice several things:

(i) Evidently, the /\ numbers consist of two parts, the dominant
term and a small “correction” term. Let’s rewrite the table, to show
this even more clearly:

Dominant term | Small "“correction”

A in /\ number term in /\ number
1 2 impossible to tell
10 100.1 probably 100 probably 0.1
100 10,000.01 10,000 0.01
1000 | 1,000,000.001

1,000,000 0.001

As we use larger [Jnumbers, the pattern becomes clearer.

(ii) Looking only at the dominant term, we have:

[] I Dominant term in /\ number

10 100
100 10,000
1000 1,000,000

Here we see the rate of growth rather clearly. When we muitiply the
] number by 10, the corresponding /\ number (or, at least, its
dominant term) becomes multiplied by 100. This suggests that the

dominant term involves
L=}

Hence, we shall look for forms such as

T.)((1j)<|~:|)+1‘Xl:'-f- T_=A

Some Some Some
definite definite definite
number number number
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IV. LOOKING FOR THE RIGHT FORM

Another very good method, which the Nerinx students
often use, goes like this:

[page 82]
First try to list several likely forms. For example,
these forms are often used:

=ax + b

~ax+
X

:—-ax"-&g
X

¥
y
y=a+bxr+ex?
y
In these forms, a, b, and ¢ are definite numbers,
chosen by the people who made up the rule. The letter
x indicates “the number we tell them,” and the lefter
y represents “the answering number that they tell us.”
Once you have written your list of likely forms, try
to ask questions which will eliminate some of them or
confirm one of them. Here are some questions the
Nerinx students often use:

(26) “"Use your rule on 0, and tell me the answer.”
Suppose the answer is 3.
x| ¥
0 3

Which forms on the list preceding would be eliminated
by this answer?

[STUDENT PAGE 82

Or perhaps we shall look for forms such as

Some definite number
as numerator of this fraction

4
X X + ( ) =

To give some more specific examples, we shall be looking for
tules of the same general type as

[2x (T[] +7- A
O D+6xD-A
=0+ - A

(iii) But we can see even more from our table! Let's look at the
“small correction term’ which marks the difference between the
actual /\ numbers and the dominant term in the /\ numbers:

Small “correction'”

(:l term in /\ number (representing '‘minor” terms)
10 0.1
100 0.01

1000 0.001

This is reasonably obvious. The minor term seems to be

1
Hence, we guess

OO -A

(This is, in fact, the correct formula for the “rule’” in probiem 25.)

As written out in detail, this all seems rather cumbersome. Re-
lax—trust your ‘‘hunches’ or your "intuition” —and | believe you
will find that "guessing functions' is both easy and enjoyable.
There is a system—or at least fragments of a system—but don’t
try to be too systematic: it spoils the fun.

(26) This eliminates the forms

and

b
= 2 —_
y =ax’ + 2,
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(27) “Use your rule on 0, and tell me the answer.”
Suppose the answer is: “Our rule doesn’t work for 0.”

x |y

0 no answer

Which forms on the list would be eliminated by this
answer?

(28) Suppose the table was:

x
1

-1
2

-m—'th'oiﬁ
—_

-2

What forms does this table suggest?

GUESSING FUNCTIONS: FORM VS. NUMBERS
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(28)
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since division by zero would have been required with these
forms. if the students had heer using either of these forms, they
should have answered,

“Zero doesn't work in our rule.”

See answer to question 26. This time the rules ax + b = y and
a + bx + ex? = y are eliminated.

Let's look first for successive differences. In order to do this,
we must arrange the x numbers in proper sequential order:
x y

x increases hy 1. (2 3)
-1 5

y increases by 2.

1 9

C2 1‘I‘>

These are too few values to settie the matter definitely, but
it looks as if the rule is linear:

x increases by 1. y increases by 2.

y = ax + b,

where a and b are some definite numbers. Moreover, when we
increase x by 1, y appears to increase by 2, so that it seems
likely that

a=2
Moreover, if the linear pattern holds, then we would expect

that, if we told them O, they would answer with a number haif-
way between 5 and 9.

That is to say, we expect they would answer 7. Hence, the for-
mula seems to be

2x + 7 = y.

Notice that this was by no means the only way to think about this
problem. You might, instead, have noticed:

(i) The function is neither even nor odd; therefore it is probably
the sum of an even term pius an odd term.




250

CHAPTER 26

(29) Suppose the table was:

What forms does this

table suggest?

As you begin to see what form the function probably
has, you can try to find the actual numbers—that is,
the numerical! replacements for the variables a, &, ¢,

etc., in the form.

(30} Can you find this function?

- 1 i
owuww—-—o"«

100

99.990
9,999,999,900

lpage 83]
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(i) You could also have guessed at the rate of growth, aithough 3
this is a bit difficult when we have only used small numbers.

Still other methods would have been possible. For example, you ]
could have made a graph, etc. 1

(29) Perhaps the first thing we notice about this table is that it seems
to represent an even function:

2.

-2, which is the same as for x = 1.
1.

1, again, the same as for x = 2.

UV: 1 — x vyields y
UV: "1 — x yields y
UV: 2 » x yields y
UV: 2 - x yields y

i

I

Hence, we might guess the form 1

— x? + =y.
T 1

Some Some

definite definite

number number

To go on from here, we might say, “Use your rule on zero, and
tell us the answer.”

i
(30) We can see immediately, from the table, that we seem to be
dealing with an odd function. This suggests forms of the same

general type as

7x =y

X o=y

20 =y
2x + Ix =y
xs =y

XS - X =y

Let’s try to find the dominant term:

Dominant term Small “‘correction”

b y iny term, or "minor’’ term
0 hard
1 0 to ?
1 0 "
2 30 te
apparently
10 99,990 100,000 apparently '10
apparently
100 | 9,999,999,900 | 10,000,000,000 | apparently 100
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It appears immediately that the minor term is —x, so we have a form
generally of this type:

X - x
T

Some
definite
number

]
<

X —Xx=y¥
t

Some

definite

number

X" = X s
T

Some

definite
number

[13
<

Can we tell whether this first term is x2, x5, or x?, or whatever? Yes,
we can, by looking at the rate of growth of the function.

X I y | Apparent dominant term iny
10 99,990 100,000
When you the dominant
multiply y-term becomes
xby 10 multiplied by
100.000.

100 1 9,999,999,900 | 10,000,000,000

Since 100,000 = 10° this suggests that the dominant term in-
volves x5. Putting all of this together, we might guess that the
“rule” is

X - X =y,

which is, in fact, correct.




chapter 27/ Pages 84-89 of Student Discussion Guide

WHERE Do FuNCTIONS
CoME From?

In the two preceding chapters, some students made upa “rule” —
actually a mathematical function—and we tried to guess their rule.
Functions, however, need not come from a conspiracy of our col-
leagues, as they did in Chapter 25, They may also come from a
wide variety of physical situations, social situations, and so on.
In this chapter we shall study some functions obtained from vari-
ous puzzles and games, from hanging weights on springs, and soon.

In general, our task is to approach some situation or apparatus,
and to try to achieve some ‘‘understanding’ of it. Specifically, we
shall try to make up some “model,” or “cognitive structure,” that
witl crudely represent the complex reality in terms simpie enough
for us to be able to think about. This wili call for three mathematical
tools:

(i) The table, as in

7 3
9 2
11 1
12 1

(ii) The graph, as in

‘ A
1
)4
/
/
/V
]

(iil) The formula (or equation), as in

Ox3)+7= A

Because these will be our three principal theoretical tools, it is
useful to ask how, if we are given one, we may obtain the others.
In some cases this is very easy, while in other cases it can be quite
hard.

252
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Suppose, for example, we had obtained this table:

M,NH|D
s>

If we now wish to start from this table, and represent this sare
function by a graph, our task is easy enough. We have only to piot
the points (1, 2), (2, 3, and so on, on Cartesian coordinates, guite
as if we were playing tic-tac-toe, Here we have this same function,
represented by a graph:

pa

o

m

it is clear that, in general, starting from a table and making a graph
is quite easy.

End up with the same function represented by:
Table Graph gquation |

Start
with

the usually
function Table / easy
represent- /
ed by: /
7
Graph /
/A

7
%

i

Similarly, it we start with an equatiors, we can easily construct
a table, by merely making numericat replacements for the variables
{the process we call UV):

Ox0s3-A

(Lx1)+3=/\
1+3=A

Uv;1—+|:|
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Evidently, to obtain a true statement we must put 4 into the A:

4—>A.

Hence we have

LA

1 4

Proceeding in the same way, with 2 —» [], then with3 — [],
and so on, we can construct the table:

mwaHID
-mwmmb]D

(As usual, discovering patterns can make our work easier.)
If we think this example is typical, then we can fill in another
square in our chart:

End with:
Table Graph Equation

Start usually
with: Table A easy
Graph 7/A

usually %
Equation easy j

You and your class may wish to explore further the problem of
filling in other squares on this chart. How, for example, would you
start with a lable and obtain from it an equation?

This topic of *‘crossing back and forth” between tables, graphs,
and formuias is one we have met, at least briefly. in Chapter 25
and elsewhere (see also Discovery, Chapters 11, 15, 17, 18, 35,
and 49).

The three tools of tables, graphs, and equalions are not the whole
story, however. If we start with, say, weights hanging on springs,
we might make a table by recording, successively, various weights
and the corresponding distance that the spring was stretched. How-
ever, in measuring the distances that the spring stretched, we shall
inevitably make errors. Rulers slip, we misread them, and some-
times we do not look '‘levelly’’ from the ruler to the spring, etc. (To
make matters worse, the spring may jiggle a bit.)
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Consequently, we may, if we wish, make use of what we learned
about ““measurement uncertainties’ in Chapter 17. (You may also
wish to view the film ‘Weights and Springs.”)

There is a philosophical problem here that is worthy of a mo-
ment’s thought. The mode/ which we shall make for, say, the stretch-
ing spring will be oversimplified. Careful observation of real springs
will show that their behavior is extremely complicated. (Actually,
it depends upon many things, such as temperature, and even de-
pends upon the past history of that individual spring. {f we “‘mis-
treat"” a spring, it will behave differently from then on.) Since the
reality is complicated, and our model is relatively simple (just how
simple is for us to decide), our model only roughly corresponds to
the reality. In this sense, we might say that our model is ''wrong” —
and anybody else’s model will be “wrong," tco, although more com-
plicated models may match the reality more closely. (This does not
necessarily mean that they are better models, for more complicated
models will have the disadvantage that they are harder to think
about.)

Then, to make matters worse, our measurements of distances,
times, weights, volumes, etc., will contain some inevitable mea-
surement errors. In this sense, our numbers will also be “wrong.”

Does this make matters hopeless? By no means! Our models are
wrong, but useful. Qur measurement numbers are wrong, but use-
ful. (In a somewhat similar sense, one might say our schools are
imperfect, but valuable. Whatever is worth doing is worth doing
moderately well, if that's the best that is possible.)

It is worth recalling Piaget's ideas about cognition. All of our
“knowledge’* represents an oversimplification of reality, and in this
sense all of our knowledge is “wrong”—at the very least, it is
incomplete.

Now, by using expensive and intricate measuring devices, we
can obtain numbers where the measurement errors are smalier - but
stil not zero! By developing extremely complicated models and
mental imagery, we can match our mental imagery more closely
to the reality —but there will still be differences! By taking great
pains in our learning, thinking, and "‘understanding,” we can bring
our “knowledge’’ to an impressive level of sophistication. We can
cope with monumental tasks, like photographing the remote side
of the moon, or flying from St. Louis to New York in an hour and a
half. Nonetheless, even our best thought is “wrong.” It is imperfect,
and, by suitably heroic efforts, it can be made better.

In this sense our plight is one of perpetual open-endedness. We
never arrive at the final answer. However far we journey in our mea-
suring, our thinking, our reflecting, our philosophizing, our
studies ... the unknown always lies ahead.* The unknown ... and
the uncertain.

If newness, change, obsolescence, and a lack of ultimate an-
swers do in fact characterize our age as much as they seem to, then
this gives our schools a major task in educating our young people
so that they can cope with a future which always extends beyond
the horizon of our present vision.

This is, in large part, a new demand upon our schools —and upon
those of us who educate the young. The eminent physicist Robert

*That this is true: even within the “pure” fields of mathematics and logic
is indicated by some remarkable work of the great logician Kurt Godel, of
Princeton’s Institute for Advanced Study.
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Karplus, of the University of California at Berkeley, has introduced
the word fysophobia, the ‘'fear of leaving loose ends,” to describe
an attitude often found in our schools in the past. Lysophobia
means demanding final answers to questions that we give to our
students and that our students give to us. Of course, these are not
really "“final”" answers—they are counterfeit “‘final” answers. For
example: how many chemical elements are there? The “final” ans-
wer used to be 92. How many were there in June, 19657 "What-
ever goes up comes down'’ used to be a very ultimate truth, if you
will pardon the phrase, yet nowadays it may go into orbit about the
sun, among other possibilities.

For the opposite of lysophobia, Karplus has introduced the word
lysophilia, the “love of leaving loose ends.”’ He argues, and many
people are inclined to agree, that our schools must try to wean
themselves from a traditional addiction to lysophobia, and to ac-
quire instead a taste for lysophilia. It's probably somewhat like
giving up smoking.

For two very valuable discussions of this matter, on a philosophi-
cal level, you may wish to pore thoughtfully over Polyani (134) and
Teillard de Chardin (33).

This idea has been growing gradually, and is not entirely
new. Consider, for example, this excerpt from Ralph Waldo
Emerson.*

Where do we find ourselves? In a series of which we do not
know the extremes, and believe that it has none. We wake and
find ourselves on a stair; there are stairs below us, which we
seem to have ascended; there are stairs above us, many a one,
which go upward and out of sight.

| take this evanescence and lubricity of all objects, which
lets them slip through our fingers then when we clutch hardest,
to be the most unhandsome part of our condition. Nature does
not like to be observed, and likes that we should be her fools
and playmates. We may have the sphere for our cricketball,
but not a berry for our philosophy. Direct strokes she never
gave us power to make; all our blows glance, all our hits are
accidents. ..

Dream delivers us to dream, and there is no end to illusion.

If you tike the process of trying to study reality, you and your
students may get great enjoyment from Mathematics and Living
Things, School Mathematics Study Group (Stanford University,
Stanford, California).

A very pleasant relation between the mathematical concept of
slope of a linear graph and the physical concept of density —which
moreover gives children experience with ratio and proportion —has
been made into a teaching unit by Frederick L. Ferris, Jr., and his
coileagues, of the Junior High School Science Project of Princeton
University. For information, write to Professor Ferris.

*Ralph Waldo Emerson, Essays and Poems, selected and arranged by G.
F. Maine, with an Introduction by Delancay Ferguson (Collins, tondon and
Glasgow, 1962)
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[page 84]
THE EASY THREE-PEG GAME

(1) Suppose you have three pegs:

and three washers, of three different sizes:

© © ©

To play the game, you start with all three washers
on peg 4, with the largest washer on the bottom and the
smallest washer on the top.

A B c

You move one washer at a time, taking it off one peg
and putting it on another.

You are finished when you have all three washers
on peg C, with the largest washer on the bottom and
the smallest washer on the top.

A B C
Can you get the washers onto peg C this way?

[page 85]

(2) How many moves did you need to get all three
washers onto peg C?

(3) Could you have done it in fewer moves?
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ANswers AND COMMENTS

We start with a “‘counting” function, rather than a “*‘measuring”
one, so as to free ourselves, temporarily, from a need to consider
measurement errors.

(1) K you used the fewest possible moves, you proceeded like this:

= 1| ="t
== Ll e==
== 1|1 [

Since people do not usually count the initial starting position
as a “‘move,” you would probably count this as 5 moves.

(This is a simplified version of the ancient puzzfe known as '‘the
tower of Hanoi.”” The use of “the tower of Hanoi" in this context
was suggested by Donald Cohen, of the Clayton, Missouri, public
schools; this simplified version was suggested by Knowles
Dougherty, of Webster College. The simplified version, as we shall
see, leads to a straight-line graph—that is, to a “'linear function.”
The original version, as we shall also see, does not give us a straight-
line graph — mathematicians would say it gives us a "'nonlinear
function.”)

(2) i you used the fewest possible moves, you used 5.

(3) Not if you did it the way we did in question 1.
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(4) Suppose we change the rules of the game. Every-
thing else is the same, but we start with only two
washers:

A B C

Can you get both washers onto peg C, with the little
one on top?

A B c

(5) How many moves did you need?

(6) Jean made this table:

Number of washers Minimum number

N « of moves
1] A
2 ?
3 ?

Can you fill in the two missing numbers in Jean’s table?

(7) What would happen if you used four washers?

(8) Can you extend Jean’s table?

(9) What would happen if you used 100 washers?

(10) Can you write a formula for this function?

[STUDENT PAGE. 85

(4) Here is the whole story, starting with rwo washers:

LTI

L4l

(5) W you used as few as possible, you used 3.

(6) Number of washers Minimum number of moves
N re

A
3.?—,

(7)  You would require 7 moves:

Number of washers Minimum number of moves

N

awu‘[j

(8) Here is an extension—you could, of course go further:

AN

W= PO~ W -

. ot

(9)  You would require 199 moves.

o ([ x2)-1=/\
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(11) Can you make a graph for this function?

(12) Does it work the same way if you start with
only one washer?

THE HARD THREE-PEG GAME

(13) You play this game with the same rules as the
“easy three-peg game,” but you add one addijtional
rule: you must never, at any stage, put a larger washer
on top of a smaller washer.

With this additional rule, can you move the washers
from peg A to peg C?

*Note: Mathematicians have used the ideo of "function”
in several different ways. In the present three-peg game,
the function matches the reality only when the number of
disks is a positive integer. However, the notion of “extend-
ing systems” which we studied in Chapter 24 cun be ap-
plied in many places, including hers. In the graph shown,
we have extended the function to include zero and nega-
tive values. Of course, we should not be surprised if this
extended function fails to match the physical reality (as
represented by the game).
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(11) YA

From looking at this graph*, you can see why mathematicians call
this a /inear function.

(12) Yes; the same general pattern holds. You require 1 mave.

(13) We turn now to the original version, by adding the rule that you
must never, in any move, place a larger washer over a smaller
one. If you start with 1 washer or with 2 washers, you proceed
exactly as in the “easy version.” If you start with 3 washers, you

can proceed like this:
A ] c A 8 c
g tJ"ﬂﬂ
B c

4 |
Ll

=

o
c A 8 c
A B C A B c

This, evidently, required 7 moves.

A table, summarizing our work thusfar, would look like this:

Number of washers Minimum number of moves
N s
1 1
2 3
3 7

The hard three-peg game
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[page 86]
(14) Can you make a table for the “hard three-peg
game”?

Minimum number
~ ~ of moves

LA

Number of washers

(15) Suppose you used 10 washers, how many moves
would you need?

(16) Suppose you used 100 washers, how many moves
would you need?

[STUDENT PACE 86

Before going further, you may want to pause and work out for
yourself the case where you start with 4 washers, and the case
where you start with 5 washers. By then, if you reflect on what you
have done, you may be able to make up a complete “theory’ for
this game.

(14) Here is more of the table:

Number of washers Minimum number of moves
N e

LA
1 1
2 3
3 7
4 15
5 31
6 63

The hard three-peg game

(15) One way to answer this would be to extend our table:

1| A L] A
1 1 ‘ﬁiﬁ?@?a . 1 1
2 3 add 1 togeth 2 3a
3 7 add 1to etég
L] A LI | A
1 1 1 1
2 3 2 3
3 7 3 7
4 15 4 15
5 31 5 31
6 63 ™ double i) and 6 63
7 1 2 additogathiy 7 | 127
8 255
9 511
10 | 1023

So, the answer is, for 10 washers, we would require 1023 moves.

Notice the power of mathematics; it would have taken some time
to work this out directly, even if you can count to 1023 without
making any mistakes! Professor Warwick Sawyer has pointed out
that one of the reasons for knowing arithmetic is so we can recog-
nize patterns when they are lurking right before our noses. Well,
there is another patiern here that we have not yet exploited. We
will need it for the next problem. Can you find it?

(16) Our powerful method of problem 15 lets us imagine making 1023
moves without having to do it. Even that method, however, is not
powerful enough to handle this problem easily. We need a mare
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powerful method still. Can we find one? Well,the place to look
is usually for some pattern that can be put to use. Look at the
numbers

1,3, 7,15, 31, 63, 127, 255, 511, 1023, ...

Do they remind you of anything? They do, if you know enough
arithmetic. One fundamental pattern of arithmetic is

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...

These are the “successive powers of 2:

2 =2 2* = 64

22=2x2=4 27 = 128
2=2x2x2-=28 2 =256
=2x2x2x2=16 2° =512
22 =2x2x2x2x2=232 2°=1024

In the statement 2'° = 1024, the small, raised numeral 10
is known as the exponent. The number 2'° is read “2 to the
tenth power,” “2 with the exponent 10,” or simply “2 to the
tenth.”

Notice that we can group factors like this:

2 x2x(2x2%x2=2x2x2x%x2x2

Thus 22 x 2* = 2% In general, for whole numbers n and m, we
have 2" x 2™ =2"*",
We can also group factors like this:

@2xYPx@PxDx2x2)=2x2x2x2x2x2
Thus 27 x 2% x 27 = 2° or (2% = 2*,
Let’s try out all these patterns on our problem, and see if they

are powerfu! enough to let us handle it reasonably easily.
Evidently, our table is:

1]l A

'U'l-wa—‘l
NOOA~N
1
—t okt —h

€ =

The table can also be written as:

1l A
1 2' -1
2 22 -1
3 2 -1
4 2 -1
5 2> -1
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(17) Can you write a formula for this function?

(18) Can you make a graph for this function?

(17)
(18)

[STUDENT PAGE 86
Hence, further on in the table, we should find:

O 4

ga | 2¢ -

1
100 2" -1
-1

lQ] 2I0|

This is exactly what we want! if we use 100 washers, we shall
require 2'°° — 1 moves! Now, 2'® — 1 is really our answer.
To anyone who knows how to read exponents, this tells us ex-
actly how many moves we require.

Some people might prefer a way of writing the answer that
was less exact, but logked more familiar. Well, perhaps we can
do that, too. Now, we have seen that 2'° = 1024.

We would be approximately correct (our error would be less
than 3 percent which is usually considered reasonable) if we
said 2'° = 1000 = 10°. Now,

2100 210 x 210 % 2!0 X 210 X 2!0 % 2\0 X 2|u X 2!0 x 2|D % 2!0
3 (2\0)\0

(103)10

10°x 103 %103 x 10° x 10° x 10° x 10°x 10° x 10° x 10°
. 10%

1,000,000,000,000,000,000,000,000,000,000.

[l

ot

o

From a number as long as this, it would make next to no dif-
ference were we to add one,

1,000,000,000,000,000,000,000,000,000,001,

or to subtract 1, so we shall not bother with the “minus” part of
of our formula. If we use 100 washers, we shall require approxi-
mately 1,000,000,000,000,000,000,000,000,000,000 moves.

If someone bet you $100 that you couldn’t work the hard three-
peg problem starting with 100 washers, would you he wise to
accept? You can buy washers for one-tenth cent apiece, so 100
washers would only cost 10 cents. Would you accept the het?

20-1=A

l}/—\

DV
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(19) Larry says that if P, is the number of moves

you need for rn washers, then

Do you agree?

THE METAL-SPRING FUNCTION

(20) Hang up a coiled metal spring, and hang weights
on it. You can get a function like this:

Number of grams of Number of inches
weight attached to the spring stretches
spring . 7

A

(21) Can you make a graph for this function?

(22) Can you write a formula for this function, using

{'s and /\'s?

(23) How much would the spring stretch if you hung
27 grams on it?

(24) How much would the spring stretch if you hung
41 grams on it?

{25) How much would the spring stretch if you hung
1,000,000 grams on it?

(26) How much would the spring stretch if you hung
0 grams on it?

(27) How much would the spring stretch if you hung

75 gram on it?

THE RUBBER-BAND FUNCTION
[page 87]

(28) This is exactly like the “metal-spring function,”
except that you use a “chain” of rubber bands instead
of & metal spring. Can you make a table for this func-
tion? Can you make a graph for this function? Can
you write a formula for this function, using ['s
and /\’s?
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Notice that this graph is not a straight-line graph; this function
is what mathematicians call a “‘nonlinear function."

(19) Larry is correct.

(20) You may want to view the Madison Project film entitled “Weights
and Springs.” It's up to you what model you use. It is usually rea-
sonably accurate to use a straight-line graph. But is it really per-
fectly accurate?

(21) and (22) See the film “Weights and Springs,” or simply use
careful observation and analysis on your own spring.

(23) This will depend upon your spring.

(24) This will depend upon your spring.

(25) This will depend upon your spring; it might be badiy overloaded
long before you reached 1,000,000 grams.

(26) Presumably, it would stretch O inches.

(27) Unless your spring is very delicate, this will be too small to
measure. Your guess as to what happens is as good as mine.

(28) Usually rubber bands are far more complicated than metal
springs. You will prabably find that a linear function (that is, a
straight-line graph) is not satisfactory in this case. You need
a more complicated model.
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THE PULLEY-DISTANCE FUNCTION
(29) Arrange a pulley like this:

ZZ8 weignt

Make a table:
Number of inches Number of inches
hand moves N « weight moves

LA

{30) Can you make a graph for this function? Can
you write a formula for it, using [ J's and /\'s?

THE PULLEY-FORCE FUNCTION

(81) Use the same pulley as in questions 29 and 30.
Use two spring balances (or some other method for
measuring forces), like this:

LLLL L LLL L LY

Pull hard enough at A and B so that the two forces
“just balance,” and the rope and pulley wheels don't

move. [pﬂge 88]

Can you fill in part of this table?

Force at A\. lForoe at B

LA

Can you make a graph for this function? Can you write
a formula for this function?

e

[STUDENT PACE 88 |

(29) through (32) See what you can learn from your own laboratory
work and careful analysis. Don't worry that things never work
out exactly —that's fife!
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(32) Linda’s father says that physicists use conser-
vation laws. By looking at your work with the pulley,
can you find anything that is unchanged (or, as the
physicists say, conserved)?

(33) Jerry says that the hand at 4 moves farther,
but doesn’t pull as hard as the force at B. Jerry says
that the sum

F+d
is conserved, where F is the force and d is the
distance moved.

That is, if F(4) and d(4) mean the force and distance
at A, and F(B) and d(B) mean the force and distance
at B, then

F(A) + d(4) = F(B) + d(B).

Do you agree?

(34) Toby has some pieces of wood 1 cm by 1 cm by
5 em, shaped like a block or a brick:

= 1
-~
| =

What is the volume of one piece of wood like this?
What is the surface area?

(35) Suppose Toby glues tagether two of the pieces,
like this:

lem

-f-

T |""‘L"

SN

What will the volume be? What will the exposed sur-
face area be?

(36) Suppose Toby glues three pieces together,
like this:

J'-: :—-lcm
Vot
lcm-::o-]- —
1 Lo =
1 T
N ]

What will the volume he? What will the exposed sur-
face area be?

Ipage 89]
(37) For Toby’s “stairs,” can you fill in this table?
Number of blocks Exposed surface
of wood N area

O A
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(33) Jerry’s law does not work, as you should be able to show with
the data from your pulley. What law does work?

(34) The volume is 5 cubic . *ntimeters, which might be abbreviated
as either 5 cc or 5 cm>. The total surface area is 22 square cen-
timeters, or 22 cm2,

{35) Volume: 10 cm>. Total exposed surface area: 36 cm-.

(36) Volume: 15 cm?. Total exposed surface area: 50 cm=.

(37) Actually, we can make two relevant tables. The table for the
volume couldn't be simpler:

Number of blocks of woeod
N ¢

Volume (in cm?)

LA
1 5
2 10
3 15
4 20
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(38) Can you make a graph for this function?

{39) Can you write a formula for this function?

[STUDENT PACE 89

The table for the exposed surface area is a good bit trickier,
however:

Total exposed sur-
Number of blocks of wood face area (in em?)
N e

JAN

22
36
50
64
78

This problem, originally suggested by Professor David Page of
the University of lllinois, has been used with children of various
ages for many years, now, and has been written about in several
places. See Discovery, Teachers' Text, pp. 271-273; also Page
(172).

(38) A

=

O

(39) There are many possibilities (see Discovery, Teachers' Text,
pp. 271-273). Here are a few:

2+ [((]-1)x14]=/\
(which can be obtained by noticing that

after the first block, each additional
block adds 14 cm? of additional surface

area)
(18x[])+8=/\

(which can be obtained from the graph,
if we have observed carefully the “slope”
and “intercept” patterns on linear graphs)
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(40) If Toby used 10 blocks, what would the exposed
surface area be?

(41) If Toby used 100 blocks, what would the exposed
surface area be?

(42) If Toby used n blocks, what would the exposed
surface area be?
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(D:5)+(D:5)+'°+(D")+(D—')+2:D=A

t t T
Front Back Top Stairs Stairs Both
and “facing ‘““facing ends
hottom up” down"’

(40) The formula

(1ax[ [)+8=/\

is probably the easiest to work with, so we shall use it. (Would
the others give the same answers?) Making numerical replace-
ments for the variables:

uv: 10 — [ ]
(14x10) +8 =[]
140 + 8 = [ |
148 = [ ]

Evidently, to get a true statement we must put

148—>A,
Jla

s0 we have

10 | 148

The answer is 148 cm?,
(41) Again using UV,
uv: 100 — [ ]
(14 x 100) + 8 = /\
1408 = /\

To get a true statement, we must put

1408 — fo,

so we have:

The answer is 1408 cm®.

(42) UV: n —> [:]
(14 x n)+8= fo

The exposed surface area would be (14 x n) + 8 cm?,
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chapter 28 /P‘ages 90-92 of Student Discussion Guide
THE NOTATION f{x)

As often happens, one of our main tasks here will be to try to
avoid confusion. In traditional ninth-grade algebra, we used the
device of “writing letters together’’ to indicate multiplication, for
example,

AB = (A)(B) = A x B.

We now wish to use a somewhat similar-looking notation that does
not indicate multiplication, but refers instead to something quite
different.

Once we have had the experience of using “rules,” as in

(3x[D+ 7=/

or in studying the three-peg game, or in “guessing functions,” etc.,
we can, hopefully, think about the general process of using some
rule or other. Now, at the third stage in Bruner's Trilogy, we seek
a notation for writing this idea of ‘‘using some rule or other.”

Suppose someone has made up a rute. We tell them 3, and they
answer 7. We tell them 4, and they answer 9.

We tell them They answer
oo
3 7
4 9

The new notation we are seeking is sometimes written this way:

Written Read
f(3) =7 “f of three equals seven."
fla)y = 9 ‘f of four equals nine.,"

Alternatively, it is sometimes written this way:

3 —— 7
4 — 9
A third choice is to write:
Written Read
F:3—7 “Therule F maps 3 into 7.
F: 4 — 9 "The rule F maps 4 into 9.”"

Using the first of these methods, we could write the general case
for the rule as:

Written Read
I(D) = (2 x D) + 1 'fof box equals two times box
' plus one.”

268
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CHAPTER 28
The Notation f(x)

[page 90

Can you find the truth set for each open sentence?

O (%[~ (5 %))+ 20
@ ([ Jx[D-(sx[D+s=o0
@ ([« - (2% +15 -0
@ (%) - (ax D+ =0

(5)(DXD)—('3XD)+']O.
© (I - (ox[D+

i
o

[}
o

(7) Pam made up a rule, which worked like this

If you told her 2, she answered 5.
If you told her 3, she answered 6.
If you told her 4, she answered 7.

Debbie wrote the rule this way:

P:2—5
P:3 — &
P: 4 — 7

P:D——»E|+3

Can you complete these?

(a)
(b)
¢}
(&)
(e)
)
®

P:5-—
6 — .
— ]
X —
w— ..

: 1.002 — —
cX + 3 — e

R
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Using the third method, we could write:
Written Read

F: D_, (2x[ ])+1 “TheruleF maps boxintotwo
times box plus one.”

Naotice that A3) does not mean “multiply f by 3."”

Answers AND COMMENTS

These first six problems are *“‘warm-up™ questions to help the
students to recall the “'secrets” for quadratic equations (see Chap-
ter 10) before we begin our new work for this lesson, which will,
of course, deal with the notation f(x).

(L {13,2}
@ {23
3 {53
@ {4n
(5) {572
6 {45}

Now we start to work with “functions.”

(7) (@pP:5— 8
(b) P 6 — 9
(c) P: 12 — 15
@ P:x— x +3
@ Pw-—>wi+3
) p: 1.002 — 4.002
QP x+3 — x+86
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{8) Frank used Pam's rule this way (8) (a) P4) =17 (Read: “P of 4 equals 7.")
He wrote: He read it as: (b) P(1) = 4 (Read: “P of 1 equals 4.")
P2l -5 “P of 2 equals 5. (c) P{3) = 3% (Read: “P of 5 equals 34.")
P(3) =6 “p of 3 equals 6. (d) P(19) = 22 (Read: “P of 19 equals 22.")
. \ (e) Plx) = x + 3 (Read: “P of x equals x + 3.")
(L=L1+3 M PN =1+ 3
Frank wrote this on the chalkboard to explain how (g) Plw) = w + 3

he wrote Pam's role:

(W Pls + 2) =5 + 5 (Read: “P of 5 + 2 equals s + 5.")
(i) Ply + 4) = y + 7

[page 91

Can you fill in the missing imput or output numbers?

) Pl
(s P
(e Pi ,
W Pl ) =22
Plx)
iy Pt
(g0 Pl
hy Py ) =4+ 5
(ir Ply « &)
(9} John made the rule (9) (a) J: 3 — B

{(b) J: 4 — 1
(c) J: 5 — 18, ar 4: 3 - 18

J: x - X - 2%+ 3

Can you complete these?

Part (c) calls for a little wnting. If J: r » 18, then this means

(] J: 3
b J: 4 . -
@ S 18 coar e
id) J: ow &k ) . b oeide 4
R Subtracting 18 from each side, we get

r2 - 2r + 15 = 0,

a quadratic equation for which the truth set is {°5, 3. Hence, we
have J: 5 — 18 and also J: '3 = 18

(d) J: w v wi — 2w + 3
(e) J: s + 3 » (84 3) 2(s + 3) + 3§,
or J: s + 3 » 8% 4+ 43 + B
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(10) We can also use Frank’s method to write John's
rule:

J(.\') = x? - 2x + 3.

Can you complete these?

@  J(0) =

o  J)=__

@ J(2) =

@  J(r0o) =

© J(-.)=83

o Jt+2)=
® J(2xw)= __
I () Ep—
i) J(N) - —

(11) Ruth made up the rule
R - (L1x[CD - =)+ 0
Can you find the truth set for the open sentence
R([ ])=0?
(12) For Ruth's rule
R O — (% DD - 7 ) + 0]
Alex made up the open sentence

R(])- 2

Can you find its truth set?
[page 92}
(13) Al used Ruth’s rule and made up the open sen-

tence
R([]) = 4

Can you find the truth set for Al's open sentence?

(14) Can you find R(7)?

(15) Can you find R("1)?
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(10) (@ JO)
() J1)
(¢) J2) =
(d) J(100) = 10,000 — 200 + 3 = 9803
(e) K10) = 83, or J(8) = 83

i

i
w N W

This, too, calls for a little writing. If J(s) = 83, then we have

s?2 — 25 + 3 = 83,
or
s? -~ 25 + 80 = 0,
with the truth set {*10, ‘8}. Hence we have J(10) = 83 and also
J(°8) = B3.
® Jr+2)=(r+2) -2(t+2)+3

=1+ 2t +3
@I2xw)=(2xw) -2(2xw)+3
=4w? - 4w + 3

(h)J(D):(DxD)—(ZxD)+3

(i J(N) =N'-2N +3

an (] x{ D) -(x[]) «10=0; {52}
12 ((x[ D-@ax])+w0=2
adding 2 to each side, we get
(> D-0x[])+12=0{(43]
an (I« [P-0=xD +10=-4

subtracting 4 from each side, we get

(> -0x[])re=0 &)

(14) R(7) = 10 (Read: "R of 7 equals 10.”)

(15 R("1) =1+7+10=18
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(16) Ruth’s father says the idea of a “function” or a
“rule” is always something like this:

You put somathing
{usually numbers) in here.
“Input” hopper —e

“Output” spigot

|

In response, numbers
come out here.

What do you think?

(17) Charles says the three-peg game is a good
example of a function. If we use one ring, it takes one
move to complete the puzzle:

1 ({You use one ring.)

Three-
Peg
Game .
1
{it takes one move.)

If, instead, we use two rings, the puzzle requires three

moves:

Three-
Peg
Game l

2 (You use two rings.)

3
{1t requires three moves.}
Suppose we construct a “function machine” that will
match up numbers the same way that the three-peg
game does. What number would come out of the spigot
of this machine if you tossed “three” into the hopper?

(18) How many different ways of looking at functions
do you think there are?

[STUDENT PAGE 92

(16) This question is meant to focus the student's attention on the
input-output aspect of functions.

(17) It would take 5 maves to complete the puzzie. Here the student
is to recognize the pattern produced in the three-peg game; H
you use n rings it takes 2n — 1 moves to complete the puzzle.

(18) Functions have been described using tables, graphs, and equa-
tions. They have also been described as mappings,

n — n+ 3
as rules in sentence form,
if | tell you n, you tell me n + 3;
and as rules written in function notation,
f(n) =n+ 3

Finally, functions have been described in terms of input and
output numbers.

Perhaps your pupils will be able to describe functions in
other ways,
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Some Operations on Eguations

[page 93]

(1) Jerry says that two different equations may
have the same truth set. What do you suppose he means?

(2) Do these equations have the same truth set?
(Ox[D-(sx[+s=0
(-2 «([J-3)=0

(3) Do these equations have the same truth set?
(LI - (ax [y ra=0
3+[ =5

(4) Do these open sentences have the same truth
get? (Use only integers as replacements for the
variable [].)

3<E|+1<6
=0 - (7<) +2=0

(5) Do these open sentences have the same truth
set?
2<[ J+1<s5

CxLD-=D+w=o0

chapter 29 /Pages 93-97 of Student Discussion Guide

SOME OPERATIONS ON EQUATIONS

ANsSwers AND COMMENTS

(1) This probably is clear. As an example,

(2x[])+3=11
[]+10=14

are two different equations, but either has the truth set {4}

and

(2) Yes. Each has the truth set {2, 3}.

(3) Yes. Each has the truth set {2}

(4) Well, let's try it out and see, For

3<|:|+1<6

the truth set (using only integers) is {3, 4}.
Now, let's look at

((Ix[Ph-Ox[])+12=0

It evidently has the truth set {3, 4}.
Hence, both open sentences do have the same truth set.

(5) Let’s try it out. The inequality

2<D+1<5

has the truth set {2, 3}.
The quadratic equation

((Jx[N-(@x[J)+1w=0

has the truth set {2, 5).
Evidently, these two open sentences have different truth
sefs.

273




274

CHAPTER 29

(6) Eileen says that two equations which have the
same truth set are called equivalent equations. What
do you think?

For each of the following pairs of equations, can you
decide whether or not the two equations are equivalent?

(2x[ ) +1=177

(7

8)

@ |2x[ ] +n =2
SR
o {(3x[])+ 191 = 273
%(’gx[:])uoc,:ﬂs
an {(J+3=7
T oo
(12) +5=2
g[]+\o=42
ay Msx[ )+ =s
§(3XD)+22=‘°2
a9 ((3x[])+2=100
e
19 (o[ 0200
f(6 [T} + 4 - 200
(16) S(sxm,)-FZ:lOO
o x )+ 2= 20
an (3 x[])+2=100

(2x[7])+2=178
[(J+3=10

+ 5 =12

{page 94]

(6)

7)

8

9

(10)

(11)

(12)

(13)

(14)

(15}

(16)

(17}

Eileen is correct.

Equivalent

Equivalent

Equivalent

Equivalent

Equivalent

Not equivalent

Not equivalent

Not equivatent

Equivalent

Not equivalent

Equivalent

[STURENT PAGE 94
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(18) \D +3=10
?(2 x[])+6=20
(19) (13 x [_]) + 1791 = 2564

[(15 x [7]) + 1792

(20) There are certain things you can do to an
equation to produce a new equation. For example,
you might add 3 to the "left-hand side” of the equation.

i’

2565

If you start with the equation

D+10=100

and add 3 to the left-hand side, you get the new

equation
[+ 13 =100

If you add 3 to the left-hand side of one equation, in
order to get a new equation, do you suppose the new
equation will have the same truth set as the original
equation?

(21) Do something to the equation

(3x[J)+2=3s

so as to produce s new equation. Did you change the
truth set?

(22) Do something to the equation

[]+3=7

so as to produce a new equation which will have a
different truth set.

[page 95]
(23) Do something to the equation

D+3=7

so as to produce a new but equivalent equation.

(24) Beryl says that things you do to equations that
produce new equations with the same truth set are
called transform operations. What do you think?

(25) Can you use a transform operation on the

equation .
(3x[])+ 25 =857

What new equation did you get?

(26) Lex says that he knows five different kinds of
transform operations. How many do you know?
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(18) Eguivalent

(19) Not equivaient

(20) No, in general, it will not.

(21) The discussion here will depend upon your class.

(22) This will depend upon your class.

(23) This will depend upon your class.

(24) Beryl is correct.

(25) This will depend upon your class.

(26) (i) Adding the same number to each side of an equation
(ii) Subtracting the same number from each side of an equation

(iii) MuRiplying each side of an equation by the same number,
provided that number is not zero
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(27) Jerry said he thought Lex was wrong. Lex said,
“Let me give you a clue!” Then Lex wrote:

‘D+3=5
?D+103=IO5

sD+3=5
le )+ s

' =10
2=
|72
(2= a=e
e s

52x[j=102
lD+[_’]=102

Do you know what Lex meant?

(28) Jeannie started with nine equations and did
“something” to each one, to produce a new equation
in each case. Can you describe what Jeannie did in
each case? Was it a transform operation or not?

(a) Jeannie’s original equation: 3 + D = 21
‘Jeannie's new equation: 4 + D =21
(b) >Jeannie’s original equation: 3 + U = 50
'Jeannie's new equation: 4 * [3 = 55

Ipage 96]
(c) Jeannie's original equation:

(2x[ J)+s=10

Jeannie’s new equation:

(4x[ P +r0=120

(27}

(28)

[STUDENT PAGE %

(iv) Dividing each side of an equation by the same number,
pravided that the number is not zero

(v} Using PN, with any identity or true statement; for example,

2x[]=8
D+D=8.

can be changed to

Lex means to suggest:

Adding the same number to each side of
the equation

Multiplying each side by the same
{non-zero) number

Subtracting the same number from each
side of the equation

Dividing each side by the same
(non-zero) number

Using PN, pius an identity or a true
statement

(Here, the identity 2 x D =[O+
has been used.)

(a) She added 1 to the left-hand side, but left the right-hand
side unchanged. Not a transtorm operation.

(b) She added 1 to the left-hand side and added five to the
right-hand side. Not a transform operation.

{c) She muitiplied each side of the equation by 2. This is a
transform operation; the truth set was not changed by this
change in the equation.
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(d} [ Jeannie's original equation:
(J+[D+s=CJ+s
Jeannie's new equation:
(x[Drs-[Jes
(&) /Jeannie’s original equation:

([j+|_’j)+10=15

Jeannie's new equation:

00
) Jeannie's original equation:
@+ ro=so+l

Jeannie's new equation:

[ j+9=4

Jeannie’s original equation:
(2x[P+r7=m

Jeannie’s new equation:

(2XD)+]4‘—’62

Jeannie's original equation:
([ ]+3)=10
Jeannie’s new equation:

([(]J+3)+5=10+5
(1) Jeannie’s original equation:
(OxCD-(ex)+14=0

Jeannie’s new equation:

-2 =(]-7)=0

g

(h)

— T P,

(29) What do we mean by a transform operation?

(29}
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(d) She used the identity

(+O-2+[3

plus PN. This is a transform operation.

(e) She subtracted 10 from each side of the equation. This is
a transform operation. (That is to say, the truth sets of the two
eguations are necessarily the same.)

(f) She subtracted [ ] from each side of the equation. This is
a transform operation.

(g) She muitiplied some terms by 2, but left others unchanged.
This is not a transform operation,

{h) She added 5 to each side of the equation. This is a trans-
form operation.

(i) This is a tricky one, hut an important one. Jeannie used the
identity
(Ox[D-(exh+1=(C1-2)
x([J-17)
plus PN. This is a transform operation.
Actually, there are same subtleties here that may deserve dis-
cussion, but we ordinarily omit them at this stage. The children

don't think of them, and we prefer not to introduce them at this
time. Hence, we settle for the simpie statement:

A transform operation is something you can do to an
equation that will leave the truth set unchanged.

Or, on this same level of simplification:
A transform operation is a systematic procedure for start-

ing with one equation and obtaining a new, but equivalent,
equation.
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(30) Are these equivalent equations?

(Jx[Dh-1w6=0
[(CIx[D-16]+25=25

(31) John says that Lex's “five kinds of transform
operations” are not really all different. What do you
think?

[page 97]
(32) John wrote:
7~5=7+75
What do you suppose he meant?

(33) John also wrote:
(3x[])+10=25
[(3x[])+10]-10=25-10
[(3x[])+10]+10=25+"10

What do you suppose he meant?

(34) How many different kinds of transform opera-
tions do you know?

Can you find the truth set for each equation?

@ ((J=TD-(x1)+n0

[

4

li
‘
w
=

@ ([ Ix[D-0sx[]«s

@n ([ Ix[])-02x[]+2
-2+ (=)

eo ([~ {d+w)+01
(RSN (R R

@9)  (3x[ )+ 1951 =(2x [ ])+ 1500

(30

(3N

(32)

{33)

(34

fas

(35)

(36)

(37)

(38)

(39
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Yes.

John is thinking (correctly, to be sure) that “subtracting a num-
ber” is really the same thing as adding the “opposite” of the
number. Since we allow both positive and negative numbers, we
tan include “sublraction" within the notion of addition. The
same holds for multiplication and division.

The “subtraction” problem 7 — 5 is the same as the “addition”
problem 7 + 5.

Again, “subtracting” 10 from each side is really not different
from “adding” ~10 to each side. Hence, on Lex’s list of five
kinds of transform operations, we can delete two (namely, those
that speak of “subtracting” and “dividing”).

\

If you combine “addition” and “sobtraction,” and if you also
combine “multiplication” and “division,” then you would pre-
sumably list three “different” kinds of transtorm operations:

(i) Adding the same number to each side of an equation

(ii) Multiplying both sides by the same non-zero number

(iii) Using PN plus some identity or true statement

One method for solving this problem would be to subtract 4 from
each side of the equation, to get

(L= -(sx[]) +6=0 {23}
Similarly, you can get the equivalent equation
(Ix[D-@sx[ ] +368=0 [123}
Subtract

‘2+<IXD)

from each side, to get the equivalent equation
(CIx[-03x[])+22=0 {21}

[7} (How did we do it so easily?)

{‘451} (Can you do it without writing?)
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1409

Are these equivalent equations?

(| [=38)=5

(L]-23) =25

SOME OPERATIONS ON EQUATIONS 279

(40] No. For the equation

the truth set is |8/
However, for the equation
((]-3) =32

we can say thal either

-3=5 ar | -3 ="5

Hence, the truth set for

([(]-3) =2

is {8, 2|, Since (8] » (8, 2|, the equations are not equiva-
lent.
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CHAPTER 30
Some Operations on
Inequalities

[page 98]

When mathematicians say that two inequalities are
“squivalent,” they mean that both inequalities have
the same truth set.

In this chapter, let’s agree to use only positive inte-
gers as replacements for the variables.

{1) David made up the inequality

(2x[])+1<10.

Can you make up an equivalent inequality?

(2) Tom made up the inequality

D+5<8.

Can you make up an equivalent inequality?

chapter 30/Page 98 of Student Discussion Guide

SoME OPERATIONS ON
INEQUALITIES

This short chapter is intended to make sure that the students
notice that some of the transform operations on equations do not
work if they are applied to inequalities. For further reading, see
Appendix A, Dupree (72).

Answers AND COMMENTS

(1) Since we are using only positive integers as replacements for
the variables, the inequality

(2x[])+1<10

has the truth set {1, 2, 3, 4}.

Now, an “equivalent ineguality” would be one having this
same truth set. Hence (to give one possible example)

8<D+8<13

would be an equivalent inequality.

(2) Here are several possibilities:

D+6<9
[J+71<10
[]+a<n
(2x[])+1w0<18
D+4<7
[]+3<68
D+2<5
|:|+1<4
D<3

280
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(3) Are these inequalities equivalent?

[ J+3<10
(2x][ J)+e6<20

(4) Are these inegualities equivalent?

[]-2<4
I x([] - 2’)<—4

(5) Are these inequalities equivalent?

(6) What transform operations can you find for
inequalities?

(3)

(4)
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The inequality
D +3 <10

has the truth set {1, 2,3,4,5,6).
The inequality

(2x[])+6<20

has the truth set {1, 2, 3, 4, 5, 6}. Since the truth sets are the
same, the inequalities are equivalent.

The inequality

D-2<4

has the truth set T: = {1, 2,3,4,5}.
The inequality
Tx ([ ]-2)<4

requires a hit more thought Let's just try a few numbers “at
random” to see what happens:

ov: 1 — [ ]
MTx(1-2)< 4
Tx 1 <4
1<74 fFaise

Thus 1 is not an element of the truth set, T,, for this second in-
equality.

Since 1 € 7, and 1 T,, we know immediately that 7, = T,
and that the inequalities are not equivalent.

This exampte shows us that multiplying both sides of an inequal-
ity by "1 does not constitute a transform operation.

(5)

(6)

The inequality
[]+3<7

has the truth set T, = {1, 2, 3}. The inequality

D+4<10

has the truth set 1, = {1, 2, 3,4, 5}. The inequalities are not
equivalent.

(i) Adding the same number to hoth sides

(ii) Subtracting the same number from each side (if you choose
to consider this different from i)

(iii) Muitiplying both sides hy the same positive number

(iv) Multiplying both sides by the same negative number, and
at the same time replacing the symbol < by >, or vice versa

(v) Using any identity or true statement and PN
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“VARIABLES” vS. “CONSTANTS”

We have been using this distinction for some time now. In the
present chapter we try to make it more explicit. Perhaps our best
approach is by way of an example.

Example I. A teacher wants to write an examination for his stu-
dents, with the following five questions:

Examination
Find the truth set for each open sentence.
1.(DXD)~<5XDV +6=0
2 ([ Jx[h-@Bx[])+2=0
(= h-(sx[Hh+26=0
4, (DXI:I)——(Z] XD)+20=O
5. ((Ix[)-(s0x[J)+96=0

The teacher wants to make a brief memo to himself, indicating
all five questions with as littie writing as possible. He could write:

D D)— ax[:])+b=0

.UV: b — 36 — b
Ww:3-—232 — b
Uv: 15 — a, 26 — b
UvV: 21 — a, 20 — b
Uv: 50 — a3, 96 — b

AR B

in old-fashioned (but valuable) ianguage, the symbol [I:[Irepr&
sents a “variable" or an "unknown,” and the symbols a and b rep-
resent '‘constants.”

Example 2: If an equation f(x) = y leads to a straight-fine graph, we
have seen earlier in this book (and also in Discovery) that the equa-
tion can be written in the form

(Dx_)+_‘=A
t t

Some definite number here Some definite number here

For instance, if the *'slope'’ pattern is “‘over one unit to the right,
and up three units,” then the first missing number must, in fact,

bea 3:
((Jx3)+—— =/

If, further, this line intersects the A\ (or vertical) axis at the
point (0, 5), then the other missing number must be 5:

(Dx3)+5=A.

282
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The “blanks” or ‘missing numbers"

Ox-)r—-A

t

represent constants, whereas the [ ] and /\ represent variables.
If we use the notation introduced by Viete, and modified by Des-
cartes, we would write

(D X a) + b = A
or, alternatively, ax + b = y.

Now, it is important here that during the period of time while we
are working on a single problem, the numbers used as replacements
for @ and b must not be changed. During the course of working a
single problem, we will ordinarily use various different numbers as
replacements for the variablesDand /\- (Geometrically, this cor-
responds to the fact that we keep the line fixed, and do not move
it, but we do turn our attention to a variety of different points on this
line. The constants a and b determine which Jine we are talking
about; the variables [ Jand /\ determine which point we are talking
about.)

Let us give an example of what not to do. If, say, we allowed the
a number to vary during a problem, we might try putting the same
number in the ] and also in a, so that the equation would become
(for simplicity, let's use UV: 0 — b)

LI=Ll= A

but this is the equation of a parabola

14
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fiEH CHAPTER 31
Ladad “ Variables” vs. “ Constants”

[page 99]

In the seventeenth century Rene¢ Descartes, whose
work we have encountered earlier, decided to dis-
tinguish between different ways that we use [],
/A, x, g, 4, B, and so on. In some cases, Descartes
would say that we were dealing with constants. In
other cases, he would say we were dealing with vari-
ables.*

In order not to get mixed up, Descartes decided to
use letters near the beginning of the alphabet to
represent constants. (We shall do the same thing,
but we shall add also letters near the beginning of
the Greek alphabet; so we shall use a, b, ¢, «, 8,
7, and so forth, to refer {o constanis.)

When he wanted to refer to what he called vari-
ables, Descartes used letters near the end of the
alphabet. (We shall too, but we shall also use [],
/\, etc. Hence, when we want to refer to what Des-
cartes called variables, we can write: x, y, 2, w, u,
o,[ 1. A V. [_] ete)

Modern mathematicians and logicians do not always
use the words “variable” and “constant” in quite
the same way that Descartes did, but nonetheless
Descartes’ idea is really still valuable and is still used
in one form or another.

*In fact, Descartes was not the earlicst mathematician to decide to dis-
tinguish "variablea,” or “unknowna,” from "constants.” This distinction was
used earlier by the great mathematician Frangos Vitle (1540-1603), and
also by the Epglishman Thomas Harriot (1560-18211 (lncidentally, Sir
Walter Raleigh sent Harriot to (what is now) the United States W survey
(what in now) North Carolina.) Viéte and Harriot wrote the distinction diffec-
ently, however; they used vowels for "unknowns,” and used consonants to
represent “constants.”

[STUDENT PAGE %

and not the equation of a straight line at all. By allowing our *‘con-
stant’ to vary during the discussion of a single problem, we have
arrived at nonsense.

So—even if it is difficult to describe the difference —the fact
remains that “variables’” and ‘‘constants’ really are different.

Probably in most cases your intuition- and your own goad sense
are the safest guides in distinguishing the different roles assigned
to variables (like [} in the examples just given) and to constants
(like the a in the problem above). Don't worry too much about this
distinction; most people seem to use variables and constants cor-
rectly most of the time, even if they are unable to describe exactly
what the difference is.

In many cases, you can imagine that the person who makes up
the problem will assign numbers to the ‘constants’’; the person
who solves the problem will assign numbers to the variables, as the
occasion may demand.

Let's see what we can learn from going through the Student Dis-
cussion Guide.

ANswERrs AND COMMENTS
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Now, what was it that Descartes meant, anyhow?
Let’s give some examples first.

Example 1

Some airplanes have two engines, some have three,
and some have four. Perhaps, then, to the engineer
or designer who sets out to design a new airplane,
the number of engines is a "variable.”

Hoawever, to the pilot who flies the plane after it is
built, the number of engines is a “constant”—if he
takes off with a two-engined plane, he cannot simply
decide in midflight to change to three engines.

Example 2

Suppose a teacher is making up a test. If he wants
to put in one question about quadratic equations, he
can write:

Find the truth set for

(CI=CD-GxChre=0
. . [page 100}
Or, if he prefers, he can write:

Find the truth set for

(= -Gex[N+s5=0
Or he ¢an, instead, write:

Find the truth set for

(CI*x[D)-(20x[])+9=o0.

Hence, to the teacher who is making up the prob-
lem, the numbers to go here

O
U
o
F

0
O
T
o

are “variables.”

For the student taking the test, however, these num-
bers are constants. The student is supposed to answer
the question that was actually asked, and not some
other question that might have been asked.

Perhaps the important idea is that, while all these
letters (a, b, x, ¥, etc.) and frames ([T}, /\, etc.) really
name variables (and that is what the modern logician
would say), there may be a definite point in time when
we choose to make numerical replacements for these
variables, and that fime may come sooner for some
variables than it will for others.

Thus the pilot is still free to determine the direction
of the airplane—for him, that is still a variable —but
the choice of how many engines to put on it was made
long before he took off.
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To emphasize this distinction, we could write our
quadratic equation problem like this

(_Dxfj]~(ax|::l)+b=0
or else like this
x? - ax + b = Q,

To the modern logician, { ], x, a, and b all denote
variables. But the teacher will make a numerical re-
placement for the variables @ and b, so that—if we
are students—by the time the problem gets to us,
a and b will be constants,

(1) Suppose you are the teacher. Make numerical
replacements for the variables a and b in the equa-
tion

[ TV 3
((dx[D-(ax[D+b=o,
[page 101)
50 as to get a reasonably easy examination question.
{(Make sure you can solve it yourself!)

(2) Now suppose you are the student. Exchange
your paper with someone else, and see if you can
solve the quadratic equation he made up. (Also, see
if he can solve yours!)

{3) In modern language, we would call the [ |,
a, and b of question 1 variables. Descartes, however,
would have called some of them -variables and some of
them constants.
Which would Descartes call constants? Which would
he call variables?

(4) If we study these graphs, we notice two im-
portant patterns.

' WaN
SRR W W
11 i
T ';;P_'L:u o

N il ] 0 1 L S S 0
1 O O

_L__T 1 1 L9 b

e pememaenomaae:

PR

- - ol ._~—|L

#.il I ﬁ,.':.r_._su_.f.,,x._«_

(1)

(3)

(4)

[STUDENT PAGE 1ol

This will depend upon your class. Here are a few possibilities:
(@A U:7 — a 12 — b

((JxIDh-ax[])+12=0

(b) UV: 1968 — o, 1967 —> b

(L x[]) - (1988 x []) + 1967 = o;

{1957, 1}

(3.

(c)UV: 0 — a, 16 — b

((Ix[D+186=0 {44

dUV:5 — a, 0 — b

(DXD)—(5XD)=O;

This will depend upon your class.

(5.0]

Descartes would have said that o and b stand for constants,
whereas [ ] stands for “the unknown” or “a variable.”

The graph will intersect the vertical axis at (0, b).
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- D

X, A...?,[_

(5XD)+--2= A
We can say that if the equation is
(ax[)+o=A,

then the "slope” or “steepness” pattern is: “over one
to the right, and up @.” The number b also has a geo-
metric significance. Do you know what it is?

[page 102]

(5) In question 4, which would Descartes call vari-
ables and which would he call constants?

(6) Geoff says that before you start in on working a
problem, you choose definite numbers for the constants.
While you are working that one problem, you don’t
change these constant numbers. But once you finish
that one problem., if you want to go on to another prob-
lem, you may choose new constants. What do you
think?

(7) Can you give some examples of variables and
constants?

(5)

(6)

(7)
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The o and b stand for constants, whereas the [ ] and /\ stand
for variables. Or, as we have said, the o and b specify the par-
ticular fine we are talking about, whereas the [ ] and /\ deter-
mine points along that line.

Geoff's description is a very good one (but be forewarned — ex-
ceptions do occur!).

In addition to examples occurring earlier, here are some.

(a) In our work on guessing functions, whenever we guessed
the form first and then guessed the actual numbers later, we
were working with constants. The forms, as we did write them,
and as we should have written them include:




288

CHAPTER 31

[STUDENT PACE 102

As we did write them As we should have written them

+,(.._;w),=y q+g:y
b

(—)

(—)+ (==x)=A e+ (bx[]) =/
(—)+ (-~

=A a+be=A

=A a4+ bx +x2=y
or

o+(be)
e[ D)=

(b) En Discovery, Chapter 37, we studied what we called “ma-
chines.” What was meant was a process in several stages.

Stage 1: We solved various equations, all with the same pat-

" D+3=5 {2}
[]+21=100 {79}
D+‘7 :

]
'
-
N
——
ot
A

Stage 2: We used variables and constants to write the gen-
eral form for oll of the equations

D+a=b.

Stage 3: We found the general solution to the general form

of the problem
D +a=b {b - a}.

Stage 4: The general solution can now be used to solve any
specific problem by using nothing more than UV. Suppose we
wish to solve

D + '31 = "204.

We logk at the general solution

[(J+e=b {b-4}

and use UV

U: 31 — a
204 — b

The truth set is {204 31}, which can also be written { 235},
These “general solutions™ are also often called “formulas.”
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Plato’s Aristocrats and
Today's Digital Computers

T
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[page 103]

In his book entitled The Republic, the ancient
Greek philosopher Plato (born 427 B.C.; died 347
B.C.) wrote about the roles of the “aristocrats” and
the “nonaristocrats.” You can read about this in a
short modern essay, entitled The Teaching of Science
as Enquiry by J. J. Schwab.*

*J.J. S8chwab, "The Teaching of Science as Enquiry” (included in The
Teaching of Science by J. J. Schwab ond Paul F. Brandwein, Harvard Univer-
ai?’ Presa, Cambridge. Mags., 1962).

f you want to read what Plato himself had to say, there are many excellent
editions of The Republic that are available. One. in paperback, is Plato,
The Republic, translated by H, D. P. Lee (Penguin Books, Baltimore, Md.,
1956),

chapter 32/Pages 103-104 of Student Discussion Guide

PLATO’S ARISTOCRATS AND
TopAaY’s DiciTAL COMPUTERS

We continue the work on the general form of a probiem and on its
general solution, which we began in Chapter 31. (See also Discov-
ery, Chapters 37, 38, 41, and 50.)

Plato, of course, wrote about aristocrats or rulers who determined
what was to be done (in the sense of strategy), and administrators
or auxiliaries who attempted to carry out the policies of the rulers.

A somewhat parallel situation can be found in two instances in
today's technology. In the first instance, we have scientists and
creative engineers who attempt to determine what is to be done,
and then embody this knowledge in handbooks, textbooks, and man-
uals of various sorts. We then have technicians, assistants, or other
engineers who try to operate according to the knowledge that is con-
tained within the handbooks and manuals. The parallel to Plato's
society should be clear.

There is a second paraliel today, for we have machines —digital
computers —that do what they are told, and we have human beings
{computer programers) whose job it is to tell the machines what to
do.

In traditional mathematics curricula most students never did
learn why we use “formulas.” In effect, the “formula' or "‘general
solution’ is a communication from the strategist who made it up
to the technician who is to use it. We try to stress this distinction
in the present chapter. (Actually, of course, the same individual
person may function sometimes as strategist and at other times as
technician, just as he may be sometimes a pedestrian and at other
times a motorist.)

ANswers AND COMMENTS

289
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To get some idea of what Schwab (and Plato) are
talking ahout, imagine that Mr. Hawkins is a scientist
and that he has an assistant who knows

{a) the basic rules of arithmetic,

(b) how to use UV (use of variables) correctly;
but outside of this the assistant does not know any
algebra.

Now, Mr. Hawkins realizes that they will soon need
to solve a large number of problems, all of the same

type, like this:
3+[ ]=5

21 + [ ]| =38
o+ 1=mn
6+ =10

Consequently, Mr. Hawkins writes on a slip of paper

and gives it to his assistant.

(1) Will the assistant now be able to help solve
these problems?

(2) Suppose you want your assistant to help you
solve problems like these:

3x[ =27
2 X \:| = 4
5 x = 21
D [page 104]
What could you write on a piece of paper so that your

assistant will be able to help you, if he uses only UV
and simple arithmetic?

(3) Suppose you want your assistant to help you
solve problems like these:

(3XD)+ 5=11
(2x[ ) +15=29
Tl s-

What could you write on a piece of paper so that your
assistant will be able to help you, if all he knows is
simple arithmetic and how to use UV correctly?

oy

(2)

(3

[STUDENT PAGE 104

He should be able to solve the probiems, since ali that is now
required is the use of UV, followed by appropriate operations of
arithmetic, and we assume the assistant is competent to handle
such matters.

You could write:

When you encounter an open sentence of the form

axl:‘=b,

remember that the truth set is

i

Caution: This method will not work if @ = 0.

You might write:

Whenever you encounter an equation like

(axl:!)-%b:c,

remember that the truth set is

(==

Beware: This method will not work if & = 0.
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(4) Do you know what mathematicians mean when
they talk about “the general form of a problem’?
What do they mean when they say “"the general solu-
tion of a problem”?

(5) Mathematicians call the equation 3x + 5 = 0
linear (or “of degree one™), they call the equation
X2 — 5x + & = 0 quadratic (or "of degree two"), and
they call the equation x®* - 2x? + 3x -~ 5 = 0 cubic
(or "of degree three”).

4)

(5)
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Il leave this to you to try to clarity in discussion with your stu-
dents. As an example, see question 3. Notice that for problems
of the general pattern

(3x[ J)+rs5=11
(2x[])+15=29

1l

the general form of the problem is
(a X D) + b
and the general solution is
c—b
=t

Using our distinction between constants and variables, we can
say that

i
a

a=yora=/\ isof degree zero (a constant function),

ax +b=yor(ax[ |)+b= /\ is of degree one
(linear),

ax2+bx+c=yor(axD’)+(be)
+e= A is of degree two (quadratic),

o + bt +ax+d=yor(ax[ )+ (bx[])
+ (e x D) +d= A is of degree three (cubic),

and so on.

The classification for equations is similar to the classifica-
tion for functions:
ax + b =00r (a x | |) + b = 0 is afirst-degree equa-

tion (linear),

ux’+bx+»c=00f<axD’)+(be)

+ ¢ = 0 is a second-degree equation (quadratic),

ax“+bx"‘+cx+d=00r(axD3)+(bel)

+ (e x [:I) + d = 0 is a third-degree equation (cubic),
and so on.

With this system of classification, not every equation (nor
every function) has o degree. For example, none of the fol-
lowing do.

I3x + 2 =5
Tx? + 3x + 2 _

2x* - 1 B
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What do you suppose they would call each of the fol-
lowing?

(a) x? - 13x +22=0

(b) x4+ 2t = 16

(c) x-2=0

(d) 3+x=7

(e) x? = 4

(f) X+ X1 - x =)

(4] X 4+ xX—-x1Ex+9=0
(h) X -xT+x—-1=0

ll

(6) How could you write the general form for a
linear equation?

(7) Could you write the general solution for the
general linear equation?

(8) How could you write the general form for a
quadratic equation?

(9) How could you write the general solution for
the general quadratic equation?

(10) How could you write the general cubic equa-
tion? the general fourth-degree equation? the gen-
eral fifth-degree equation?

{STUDENT PAGE 104
Bx + 2=y

+

W | wa
XN

y =
y = Sin x
We could easily extend our system of classification to include
a few more equations and functions, but we shall not bother to do
s0 at this time.
(a) Quadratic (degree two)
{b) Cubic (degree three)
(c) Linear (degree one)
(d) Linear (degree one)
(e) Quadratic (degree two)
() Quartic (degree four)
(g) Degree seven
(h) Cubic (degree three)

(6) ax+b=00l’(axD>+b=0

{The general linear function would be ax + b = y.)

(7) ax + b = 0,{0—:} Note: o must not egual zero.

(8) There are several possibilities. The most commen is
ax? + bx + ¢ = 0,
where o = 0, but we could instead write
x4+ ax + b = 0.
In the present book, we shall find it convenient to write
x2 —ax + b= w

You may need to think —and to write —for a few moments to see
why these three different forms really say the same thing.

(9) We hope that, ot this stage, your students will not be able to an-
swer this question. (This question is inserted at this paint in or-
der to heip the student see where he stands, by locating the
“boundary” or “frontier” of his present knowledge. He can solve
the general linear equation; he (presumably) cannot solve the
general guadratic equation.)

(10) Again, there are many possibilities. Here is one:

General cubic X+ ox? + bx +¢c=10

General fourth-degree equation x4 + ax® + bx? + cx
+d=20

x* + ax* + bx? + ex?
+dx + e =0

General fifth-degree eguation
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(11) How could you write the general solution for (11) Presumably at this stage your students can solve none of these.
each type of equation in question 10?

Some people may wonder why we include questions that stu-
dents can’t answer. We feel very strongly about this: if you don’t
know the distinction between what you do know and what you don’t
know, then alf of your knowledge is suspect.

When, for example, you go to a physician, you are trusting him
to refer you to a specialist whenever your illness lies outside the
range of his own knowledge. We should all try to advance the fron-
tiers of our knowledge as far as possible, but we should know where
those frontiers lie.
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#4H Hints on How To Solve
Prohlems

T

[page 105]

One of the very important mathematicians of this
century is George Polya, of Stanford University. Pro-
fessor Polya has succeeded in solving many problems
that no one else had ever been able to solve. He has
reflected on this experience, and written a number of
suggestions on how to go about solving difficult or
puzzling problems.*

The kind of suggestions Professor Polya has made go
somewhat like this:

(a) If the problem is too hard, can you see which part
of the problem is making it hard?

(b) Is there any way to eliminate (or ignore) the
“hard part”? Could you solve the easy part of the
problem?

(¢) Could you find a different problem that might be
easier? (After you've solved this easier problem you
may have learned enough so that then you can solve

“George Polya, How to Sefue It (Doubleday Anchor Books, New York, 1957).

George Polya, Math ics and Plausible Reasoning, Two vol (Prince-
ton University Press, Princeton, N.J., 19541

George Polya, Mathematical Discocery. On Understanding, Learning, and
Teacking Problem Soleing, Two (John Wiley and Sons, New York.
1865).

chapter 33 [Pages 105.107 of Student Discussion Guide

Hints ON How TO SOLVE
PROBLEMS

When they are confronted by a problem, one of the most common
complaints of students is, "I don't know where to start!”’ One com-
mon answer is to show the student where to start.

In our view, this answer is usually unsatisfactory. it's too spe-
cific, It may get the student started on {hat problem — but how long
will it be before he encounters some new problem where, once
more, he says, ‘| don’t know where to start’’?

Actually, there is a better approach. This is the approach which
has been described in detail by Professor George Polya, and by
others. It consists of replacing one "hard’' question by a sequence
of easier questions. This method is of the greatest importance. if
we do not show it to our students, we leave them seriously handi-
capped for all their future work in solving new kinds of problems.

ANswers AND COMMENTS

294
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the hard problem. Obviously, you want the easy prob-
lem to be at least a little bit similar to the original
hard problem.)

(d) Can you change this new problem around, so that
it will turn into some kind of problem that you already
know about? This is often called ‘reducing it to a prob-
lem that has already been solved.”

(e) If you succeed in solving one kind of problem, you
may want to ask yourself if what you have just done
might let you go forward and solve some other harder
(or more general) problems.

In the next chapter, we want to work on a famous
mathematical problem, namely, the task of finding
the general solution of the general quadratic equa-
tion. Professor Polya’s suggestions can help us.

First, however, it may be wise to practice using some
of his methods. .

(1) Solving the general guadratic equation is a
fairly hard problem. Perhaps we should start with
some easier ones. Are there any quadratic equations
that you already know how to solve? Can you make up
some “easy” quadratic equations that you can easily
solve right now?

(1
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This first question is a goad example of what we mean. Suppose
someone asks you to solve the general quadratic equation. That
is a hard problem. Many — probakly most— students would have
the feeling that they didn’t know where to begin.

But fet's try to replace this hard guestion by several easy
questions. Do we know what is meant by a “quadratic equation™?
(If not, reread the answer to question 5, Chapter 32.) Can you
write down a quadratic equation or two, so we can get a leok at
one? Here are some:

- 5Bx +6=0

23x? + 1961x + 1066 = 1,000,037
x2 -4 =0
x2 = 8
x2 ~ x =0
x* - 2x + 1 0
x2-4x +4=20
x? — 20x + 96 =

0

Now that we've had a look at a few guadratic equations, let's
see if we can write down a few really easy ones that
we’ll be able to solve without difficulty. Here are some:

x2 -5 +6=20
x2— 15x + 26 = 0
x2—Tx+10=20

These are all easy; in fact, we made them up by thinking of
the truth set first, and then writing down the egquation. For ex-
ampie (see Chapter 10), if we want the truth set to be {2, 3} we
take the equation

X? — __ x o+ . =0
1 1
Some Some

number number

and find the missing numbers by saying 2 +3=5and 2x 3 =86,
and so we have x2 — 5x + 6 = 0.
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(2) Solving the general cubic equation is also a
hard problem. Are there any cubic equations that you
can solve right now?

(2)

[STUDENT PAGE 105

Are there any other easy kinds of quadratic equations? Yes;
it the equation is factored, as in

(x=8) - (x-27) =0,

the truth set can be found at once; in this example, it is { 5, 27}.
Furthermore, if in the equation

xX? -—ax + b =w

we use
UW:0 — o
0 — w,

we have
x2 +b =0

Naw, if b is negative, and a perfect square, as in
x2 - 16 = 0,
the truth set can be written down immediately; in this exampie,
itis {'4, 4}].
We now have three leads that we can tolfow: the first invoives
the coefficient rules

x2 —ax +b=20
{"n":}
Hh+tr=a
ror=b;

the second involves factoring | as in

x2 -5 +6=20
(x-2)-(x-3)=0
2.9}

and the third involves perfect squares.

‘We could foliow any one of these three paths, but the one we
have chosen to follow is the third: looking for equations that in-
volve perfect squares.

Well, if we know how to use the coefficient rules in this case,
we can think of the answer first, and then make up a problem to
go with it. Now, in this book (and in Discovery) we have never
studied the coefficient rules for cubic equations. However, such
rufes do exist; in fact, we can figure them out.

If the truth set is

{"v ra, "3}1

then the equation is

(x—r,)-(x—r,)-(x-r3)=0.
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{3) Let’s try reducing a new problem to an old one
that you already know how to solve. Suppose that
your assistant has a piece of paper that tells him how
to solve equations like this:

[J+3=10
[ ]+5=10
D+I=IO

Here, in fact, is what the paper says:

O +a = jo

{_lo—a.}

Now, one day your assistant is confronted by the prob-

[ |+18=2s

He can’t do this by merely using UV and the formula
on his piece of paper. Why not? What can he do?

lem

(4) Can you extend your solution to harder or more
general problems? You already know how to solve
the equations

x2=9
X7 = 16
x? = 121

and so on.

(3)
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If we “multiply this out,” we get

(x’ - (r, + r,)x + r,r,) . (x - r,) =0
2 — (r. +r, + r;)x’ + (r.r2 + iy + r;r;)x

- oy = 0.

Consequently, if we want the truth set to be {2, 3, 4}, then the
equation should be

x? — 9x? + 26x — 24 = 0.

Well, that method may (or may not) look very promising. Let's
see if we can find some athers.
If the equation is factored, as in

(x—5)~(x-—1)-(x—10)=0,

then we can write down the truth set immediately; in the present
example, it is {5, 1, 10,

If the equation involves a perfect cube, then we can write
down one element of the truth set immediately; for exampie,
x* =8, {2. ra, rg}. where we know the root 2, but we do not im-
mediately see what r, or r, should be. (In fact, they are more
complicated.)

Everything considered, cubic equations are harder than quad-
ratic equations, S0 let's not try to pursue them too far just yet.

If he knows about transform operations, he can subtract 15
from hoth sides of his equation, getting

D+3=1o.

Now, this new equation is of the type that he can soive by look-
ing at his piece of paper and using UV. Using UV: 3 — q, the
truth set is {10 - 3}, or {7}

In Polya's language, the assistant has reduced this new prob-
lem to an old problem that he already knew how to solve.

If your class is confused by this problem, and if you want to give
them a hint, you might say, ‘‘Suppose the assistant knows about
transform operations. Would that help him?”’

(4}

Yes. There are several ways to write this, or to think about it

One is to say that for the equation (x - 2)* = 49, the number for

the term (x — 2) must be either *7 or “7. Therefore, either x — 2

=*7orx—2="T7Hx-2="7thenx="9.1fx-2="7, then

){ = '5.} Hence, for the equation (x — 2)* = 49, the truth set is
‘9,75¢.
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Could you use this to help you solve

(x. - 2)2 = 497

(5) Again, try reducing a new problem to an old
one that you already know how to solve. If you can
solve the equation

(x - 3) =121,
can you use that to help you solve

X2~ 6x + 9 = 1447

(8) Can you solve the equation
X2 - 6x + 7 = 79?
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Notice that we could generalize this still further. The number
here

didn't have to he 2. It could have heen any number:
(x - 0)1 = 49,

Then either x — a = *7 or x — a = -7. Hence, either x = a +*7,
or x = a + -7 (which we might prefer to write as x =a + 7 or

= a — 7). Hence, tor the equation {x — a)* = 49, the truth set
is {a+7,0-7}.

Question: Does the 49 have to be 497 Could you generalize this
method still further?

(5) Yes, you can turn this unfamiliar new problem into a familiar
old one, by using the identity
x* - Bx + 9= (x-3).
Here is how it goes:
(i) x*—-6x+ 9 =14
(i) x*-6x+9=(x-3)

(i) (x — 3)" = 144 PN, from line (i), using fine ).

Now, the problem
(x - 3)2 = 144

is a familiar kind of problem that we can easily solve (see ques-
tion 4).

(6) This is a very good illustration of Professor Polya’s method of
breaking one big question down into several little ones. Using
our methad of looking for perfect squares, we know we could
solve a quadratic equation like x2 = 144, getting {*12, "12}.

We could extend the method, and solve (x - 2)* = 144, getting
{12+2,712 + 2}, or {*14, "10}.

We could ever soive x? — 4x + 4 = 144, since x* ~ 4x + 4
=(x - 2%

Now, how ahout x2 — 6x + 7 = 79?7 Can we use an identity of
the type

-6+ 7= (x- )7
1
Let's look at a few identities of this type to see how they work:
X~ 4x + 4 = (x - 2)
x: - 8x + 16 = (x - 4)°
x — 14x + 49 = (x - 7Y’
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Evidently, the number that goes here

x? — x+ = (x - )z
t
must be one-haif of the humber that goes here
x*—-_ x4+ ___ = (ix—b__)z.
?

Hence, in our present problem, the missing number must be 3:
x2—6x+7=(x—3)2.

~

Now, if we look back at the patterns for this kind of identity,
we see that the number that goes here

X+ _ = (x - = )z
1
must be the square of the number that goes here

X2 -

X - X+ .= (x - __)2.

T
Hence, in our present problem, this number
x—6x+7=(x-3)
+
must be the square of this number
x’-—6x+7=(x-—3)2.
' T

Unfortunately, it isn't: 7 5 3%
Indeed, we can now answer three Polya-type questions:

(i) What's difficuft about this prohlem? Answer: it has a 7
here:

x2 — Bx +7 =179,
T

(ii) What number would you like to see in place of the 77 An-
swer: 9.

(iii) s there any legal way to et a 9 there? Answer: Yes. Add
2 to each side of the original guadratic equation

[}

x2 —6x +7 =178,

to get
x? - 6x + 9 = 81,

(iv) Now we have turned this unfamiliar new problem into a
familiar old Kind that we already know how to solve! Here we

go:
() x2 — 6x +9

81
(i) x2 - 6x + 9 = (x - 3)
(iii)(x - 3)2 = 81 PN, from line (i), using line (ii).




300

CHAPTER 33

[page 107}
(7) Your assistant has a piece of paper which says:

For the @quation

X~ ax + b= w,

the truth set is

£% +VW, & -4

*— Note! This metnod
will woerk if

2
(2)° - *
This method twill not
work If

(&) b

o0
BEWARE ! 9

\\\—\_

Now, your assistant runs into this problem:

x2-8x + 10 = 19

What should he do?

(7)
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This last equation means that this number

( y-e

t

must be *9 or it must be "9. Hence, either x - 3="9 orx -3
="9. In the first case, x =*12; in the second case, x ="6. Hence,
the truth set for xz - 6x + 8 = 81 must be {*12,76}.

Now, we obtained the equation x2 — 6x + 9 = 81 hy adding 2
to each side of the equation x2 — 6x + 7 = 79. Since adding 2 to
each side is a transform operation, the equation x? — 6x + 7
= 79 must have the same truth set as the equation x? — 6x
+ 9 = 81. Consequently, x — 6x + 7 = 79 must have the truth
set {12, 6.

He should observe that & = 4 and that 4° = 16 10. Hence, he
cannot take the rule on the paper and use it for the equation

x? — 8x + 10 = 19,
Instead of a 10 here

x2 — 8x + 10

T

he wants a 16. Consequently, he should add 6 to each side of

the equation and then proceed accerding to the instructions on
his paper. (See guestion 6.)

18,
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i All the Quadratic Equations
in the World
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In this chapter, we want to solve the general qua-
dratic equation. We'll try to proceed by small steps,
and make use of Professor Polya’s suggestions.

(1) How can you write the general quadratic equa-
tion?

{2) Can you think of any quadratic equations that
are 80 easy that you can solve them just by looking at
them?

chapter 34‘/Pages 108-114 of Student Discussion Guide

ALL THE QUADRATIC EQUATIONS
IN THE WORLD

Answers AND COMMENTS

(1) There are many possibilities. We prefer to use
x? - Ax + B =W,

since this will be convenient for the weork of the rest of this
chapter.

(2) As we saw in the preceding chapter, we have three possible
lines of attack:

Using coefficient rules x? - 5x+6=0
2+3=05
2x3=26

Factoring (x-21) - (x ~4) =0

Looking for perfect squares x? = 16

In this book we shall follow the third line of attack (seeking per-
fect squares, a method known to ancient mathematicians as early
as 2000 B.C.*). If any of your more capable students wish, they can
write a chapter parallel to this one, in which they use the method
of factoring as their basic line of attack.!

*See Eves (151).

FThis is not really very different from our present method. In order to be
sure that

x2 - Ax + B =10

can be factored, you need to select a form that you know will factor. The sim-
lest choice is probably a difference of squares:

x* — R* = (x ~ R} - (x + R).
This means writing your equation of the form

{x —a) -g* = 0.
The rest is reasonably straightforward.

301
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Since we wish to follow the lead of seeking perfect squares, we
shall look carefully at all three easy types just mentioned, but it is
the type

xt =16

which we shall especially pursue.
Having solved

x2 = 16,

we shall now seek to generalize this (see problem 4 of Chapter 33).

(3) Can you find the truth set for the open sentence (3)

x? = 167
(4) Can you find the truth set for the open sentence (4)

(x - 1)’ = 497

(4.4

We proceed as in question 4, Chapter 33. Since (x —~ 1)* = 49,
the number inside the parentheses must be either *7 or 7.
Hence, either x — 1 = "7 orx — 1 = 7. In the first case, we
get x — 1 = '7, x = '8; in the second case, we get x — 1
= "7, x = “6. Hence, the equation (x — 1)’ = 49 has the truth
set {'8, "6},

You may prefer to have students think about this problem intu-
itively, without going into any verbal explanations such as this.

(5} Can you find the truth set for the open sentence (%)

(x - 3)" = 1447

(6) Can you find the truth set for the open sentence (6)
(x - 2) =812
(7) Paul wrote this on a piece of paper: (7)

for the open sentence

2z
(x=py = 144,
the truth set is

Then Paul gave the paper to his assistant. Suppose
his assistant needs to solve the equation

(x- 2 -

144.

Can he do it?

Since (x — 3)* = 144, the number inside the parentheses must
be either *12 or “12. Hence, either x - 3 = *12 or x — 3
= ~12. We can solve the two linear equations above by adding
3 to each side, getting x = *15 or x = 9. Hence, the equation
(x — 3)° = 144 has the truth set {*15, "9}

This is precisely similar to questions 4 and 5. You can discuss
it in exactly the same way. However, for the sake of variety, we
show a method which mathematicians often use, called “chang-
ing variables.”

Since “the number inside the parentheses” is x — 2, we intro-
duce a new variable ¢ by letting t = x — 2. Then 2= 81. Hence,
either + = *9 or + = 9. Now, using the definitionoft(t = x - 2)
we get either x — 2 = '8 or x — 2 = "9. Solving these last two
linear equations, we get either x = “11 or x = "7. Hence, the
equation (x — 2)? = 81 has the truth set {‘11, 7).

Yes. He uses UV: 2 — p to get the statement that the apen sen-
tence (x — 2)° = 144 has the truth set {2 + 12,2 - 12}, which
can be written as {*14,710}.
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(8) Jerry says that Paul was foolish to write 144"

on the paper. What do you think?

(9) What do you suppose Jerry wrote on the paper
that he gave to his assistant?

(8) Jerry has a point. The number here
x - p)P =144
t
doesn't really have to be 144. Any number k will do, provided
we can find the square root of k. If, instead of writing 144 here
(x - p)* = 144,
T
Paul had written

(X - P)2 = k:
T

then he would have solved a more general problem — he would
have given his assistant a more powerful procedure. The differ-
ence, of course, is that Paul’s assistant, as matters stand, can-

not solve
(x - 2)° = 49
{(x - 3 =36
(x - 5" =121

If Paul had followed Jerry's suggestion, the assistant would be
able to solve all of these.

(9) Presumably, Jerry wrote:

If you encounter the egquation
x-—pf =k

(where p and k are given numbers), remember that the
truth: set is

{p+ Vk, p - VK.
S i e

Modern mathematicians use the symbol vk to refer to the non-
negative square root of k. Thus, V144 =*12. Do not use Y144 to
stand for “12; this would be contrary to the best present practice.

Jerry’s method is not perfect; it works very nicely, provided we
are able to find the square root, \/? If, however, we cannot find this
square root, the method fails.

When can we find square roots, and when are we unable to? This,
of course, depends upon the sequencing of the mathematics cur-
riculum in your school. In our own practice, at this stage in a stu-
dent’s career, he can find the square roots of perfect squares, such
as

viz2l = '11
4~ 2
V3 = 3

and so on, but these are the only square rools he can find.

In fact, he can prove (more or less, anyhow) that, among the num-
bers that he knows, there is no number whose square is 2, and there
is no number whose square is 4.

The introduction of matrices will put matters inadifferent light —
but we haven’t reached this point yet.
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(10) Suppose the next problem was
(x-5) =81

Can Paul’s assistant solve this? Can Jerry’s assistant
solve it?

[page 109}
(11) For the problem

x - 1) = 144,
(x-1)

Paul’s assistant looked at his paper

For the open sentence

(x-p)* = 144,
the truth set Js
{p+i12, p-2}.
b e ]

and wrote:

Uv: | ——p
{r+i2, 1-123
{fs) ')I}

—_——————— T~ ]
Did the assistant do the right thing?

(12) Pretend you are Paul’s assistant. (That means
you know about UV and simple arithmetic, but you
don’t know anything about equations unless you can
read it on a slip of paper!) How would you solve

(x = 11)7 = 1447

(13) Stop pretending you are Paul’s assistant. Now
you are a very clever scientist. Can you find the truth
set for the open sentence

(x - k) = k?

(Remember, in Descartes’ words A and & are “con.
stants.” That means that somebody else will put num-
bers in for h and k, before they give you the problem.)

What will you write on the slip of paper you give to
your assistant?
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(10) Presumably, Paul’'s assistant cannot solve this, since it involves
an 81 at a spot in the equation where Paul's assistant can cope
only with 144,
Jestry's assistant, on the other hand, can solve

(x - 57 = 81,

by using UV as follows:
Uv: 5 —s p
81 — k

in his equation (x ~ p)* = k.

Then vk = V81 = *9 and the truth set is {5+9,5- 9}, which
can be written {14. ‘4}_ '

(11) Yes

{12) You would use UV, UV: 11 — p, in the equation (x — p)* = 144
s that the truth set would be {11+ 12, 11~ 12}, which can be
written {"23, "1}

(13) Give your assistant a slip of paper with the following written on it:
if you want to solve the equation
(x — h)* =k,

where you are toid definite numbers for h and k, and you
are trying to find values for x, then the truth set is

{h+\/?,h—\ﬂ}.

That means that if you put the number  + vk in for x,
you will get a true statement, and similasly for b — Vk.
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(14) Pretend you are Jerry’s assistant. How will you
solve each of the following equations? (Whenever you
use UV, write it down as UV: 3 — A, substituting for
3 whatever number you do use, and so on.)

@ (x-)

9

(b (x - 4)° = 169

v

(¢) (x - 15)* = 225

il
0

@ (x - 10)?

[page 110]

Before we can go any further, we'll need to use some
identities. It might be a good idea to practice a few
identities right now.

(15) What do we mean by an identity?

(16) Is this an identity?

-39 =-»-CIx0h -

If you have trouble seeing why we wrote this, you can think about
the equation

x — hY? =k

the same way that we did with problems 4, 5, and 6, earlier in this
chapter.

(14) Jerry's assistant can use UV, as follows:

(@ix-1=29 \

w:1 — p
9 — k
vk = \/9 ="3
{1 + 3,1 —3},or{4,‘2}

{h) (x — 4)* = 169

uvfeg : : These solutions
vk = 169 = *13 make use of
. - the “‘piece of
{4 + 13,4 - 13},0r 17,9} pamer” which
) (x — 15)* = 225 Jery gave to
Uv: 15 — p his assistant.
225 — k See question 9,
vk = Y225 = 15 page 303.

{15 + 15,15 - 15}, or {30, 0}
) (x - 10 = 9

Uv: 10 — p
-9 —k
i = 8 = 3

{10+ 3,10 - 3},or 13,7} _/
(15) Here is one way to say what an identity is:
An identity is an open sentence that becomes true when-

ever you make a legal numerical replacement for the vari-
ables.

The students often say this more colloguially as:

Any number works.

To say this very precisely is difficult, and usually unnecessary.
Sufficient unto the day is the rigor thereof. One can always make
things more precise as the occasion requires.

(16) No. For example, try

((4]-3) x([(8]-3) = ([4] x[2)) - o
4-3)x4-3)=(4x4-9
1 X 1 =16 -9
1 1 False

If
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(17) Is this an identity?

(R+S) =R +2RS +§

(18) This is the beginning of a triangular array of
numbers that mathematicians call “Pascal’s triangle”:

1 3 31
1 4 6 41

Can you fill in the next line across? Can you fill in the
line after that? and the next?
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Consequently, the open sentence

-3 < d-9)-(dxLh-o
is not an identity (if it were, then putting 4 into the [ would have
yielded a ¢rue statement).

(17) Yes. You can prove this — which takes a bit of writing — by making
a derivation. We can sketch out the derivation here in brief form:

@ (R +5)" = (R +5) x (R + s) Definition of the exponent *
(h)(R+s:’=[(R+s)xn]+[(k+s)xs'>:L2
© (R+5) =[Rx (R+s$)]+[sx(R+5)]

DL?

)

o [R + RS] + [SR + 8%

)
)
)
)
@ (R +5)" = {[rR + &S| + sR} + s’) .
)
)
)
)

|

“= {rR* + [Rs + SR]} + s’%

R+ [Rs + Rs]} + s’\ .
R? + [Rs-l + Rs-l]}

x

+5
? o+ (RS - [1 + 1])} + S’) .

{
{ Def. Num.

B (R+s) =[rR+Rrs-2} +5°

' ) ) CLM
= {r* + 28s} + 8
® (R+5) =8+ 2RS + s’c)
The elimination of the braces
is possible because of the
agreement that R* + 2RS + §?
means carry out the multiplica-
tions, then add R + 2RS, and to
this result add s*
Q.ED.

(18) This triangular array of numbers is of considerable importance
in various parts of mathematics. it has been named after the great
French mathematician Blaise Pascal (1623-1662), who studied
it carefully. Actually, Pascal was not the first mathematician to
study this array; according to Eves [Eve-s (151), pp. 257-261 ],
the earliest known reference is in the work of the Chinese alge-
braist Chu Shi-kie, in 1303. Here are some additional lines:

1 8 28 56 70 56 28 8 1
T 9 36 84 126126 84 36 9 1

Have you discovered the pattern that lets you fill in the next line?
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{19) Can you see how Pascal’s triangle can help you
remember these identities?

(R+S8) =R =1

(R+8) =R +§

(R+S)' =R+ 2RS + §

(R +S) =R+ 3RS + IRS" + §°
)

(R + S)* = R + AR’S + 6R’S” + 4RS’ + §'

(20) Can you write down the missing part for each
of these identities?

@ (R +S) =R+ 5RS + 10RS
+____+5RS§ +§°
t

b (R +S) =R+ — 15R*S"

+20R°S+ __+ 6RS* + ___
B 1

@ (R+8Y =R+ ... —~—
[page 1111

(21) Which identity in question 19 does this picture
suggest?

(19) This is, of course, purely a mnemonic device; it is not a proof.
Here is how it works:
Suppose we want to expand (R + §)°. We know that the first
term will be R®:

(R+S)’=R’+._ S

Now, we fill in afl the R and S terms, omitting (for the moment)
their coefficients. There is a pattern to the R and S terms, which
goes fike this:
(a) The exponents of R decrease as 3, 2, 1, 0;
(R+S)°=~R’+__R’,.+ﬁkﬁ+,_
(b) The exponents of S increase as 0, 1, 2, 3:
(R+s) =R+ _RS+__R+ __5§
(c) As a check, the last term should be S°.
(d) As a further check, the sum of the exponents in any term

should be 3:
R’ 3+0=3 (R® = R’S%)
RS 2+1=3 (R’s = R’S")
RS? 1+2=3 (RS* = R'SY)

s® 0+3=3 (5°=RS)
We now turn to the task of filling in the coefficients

R+5=_ R+__RS+ .__ RS+ ___. §?
T T t T

which are given by the line
1 3 3 1
in Paseal's triangle:

R+S8°’=1-R+3RS + 3R>+ 1.8
= R + 3R’S + 3RS + S°

(20) (a) 10R%s’

(b) 6R’s, 15R’S*, §°*

(c) TR*S + 21R°S? + 35R*S> + 35R’S* + 21R’S® + TRS* + §’

(21 (R + S = R + 2RS + §°
If we indicate the dimensjons by letters,

: .

! 1 i
— 53— e p—ad

————
\
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(22) Here you get your choice of two versions of this
picture. Both versions show a cube sliced up into pieces,
some of which are themselves cubes.

(a) The cluttered one

e
f
| i
P v
RN S W
I
wload ol nl g
s 1 A"
! 1 1 1
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I
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1 i ]
P L
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(b) The uncluttered one

1
|
!
N T
\ I
\\I
\ |
I
t
\
\ A%
]
t

\

\

L~

Whichever picture you choose, they are both supposed
to represent the same big block of wood, which has been
sliced into smaller pieces.

How many small pieces are there?

[STUDENT PACGE 111

then we see that the largest square is a + b on a side; hence its area
is (a + b)”. But this is equal to the sum of the areas of the two smal-
fer squares, plus the two rectangles. These areas are as shown in
the following figure.

ab bt

Thus their sum is a? + 2ab + b2

However, the picture seems to show all these little pieces fitting
together "just right” to make the big square; if this is correct, their
areas must be equal:

(@ + by = a* + 2ab + b*
This obviously suggests
(R +38)=R + 2RS + S%

we can get either from the other by using UV.

(22) There are 8 small pieces that, together, make up the large cube.
The large cube itself has the volume {A + B)’. The medium-sized
cube in the lower left front has the volume A°. The small cube
in the upper right rear has the volume B> The three “flat”
pieces have the volume A’B. The three “brick-shaped” pieces
have the volume AB”.

Now the picture seems to show all of these smaller pieces
fitting together “just right” to make up the total cuhe. M this is
correct, their volume must add up to the volume of the total cube:

(A + B) = A" + 3A°B + 3A8* + B’
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Can you find the volume of each of the small pieces
if the faces have the dimensions shown below?

!

8

f——— A e B —

[page 112]

(23) Which identity in question 19 do these volumes

suggest? (In fact, if you really “believe” this picture,

it virtually gives you a proof of one of the identities.
How come?)

(24} If you were not sure of your answer to question
21, suppose the dimensions were written in like this:

!

B

A B

Compute the area of the large square (of side A + B) by
two different methods.

Now, which identity in question 19 does this suggest?
(In fact, if you “believe in” this picture, you have almost
“proved” the identity. How come?)

(256) Anne says that she remembers

(R~+8)
by saying:
“The square of the first term R’
plus twice the product of the R* + 2RS
iwo terms
plus the square of the second R + 2RS + §*
term.”

Can you complete this identity?
(4+B) =4+
(26) We've spent enough time looking at identities.
Let's get back to work trying to solve
x+ Ax + B = W.

Where were we? How far had we gone?

(23) See the answer to question 22.

(24) See the answer to question 21.

(25) 2aB + B?

{26) See the answer to question 14. At that point we had worked out
a formula which allowed us to solve any guadratic equation of
the form

{x -~ p) =k

(provided we could find the square root, \/ k).




310 CHAPTER 34

{27) Solve
{(x - 3) =169

(28) Suppose you saw this problem:

[page 113]
When you find the missing piece of paper, what number
do you hope will be written on it?

Solve these equations.

W2

29 {x-10) =9

30y (x-1) =19

#

By (x-7) =36

Q32 Xt~ Yb6x + 64 = B)

[STUIFNT PAGE 113

(27) (x - 3)" = 169
uw: 3 —p
169 — k
vk = {169 = 13
{3 + 13,3 - 13}, 0r {16, "10}

(28) Our system depends upon the fact that, if you look at this number

x? — B6x + ... = 49,

)‘.

if you take one-half of it,

and if you square that, you should get the number that goes here

x? — Bx + ... = 49,
1
Hence, the number we should like to see there would be
3 =9,

If you are not sure where we got this idea, try out a few examples:

x+ 17 =x 4 2x + 1, Ix2=1 1" =1
(x+ 2 = x2 + 4x + 4, Ix4=2 2°=4
(x + 3)" = x* 4 6X + 9, I x6=3 3=

Xx+4=x+8+ 16 tx8=4 4"=16
x+57=x*+ 10x + 25, +x 10=5, 5 =25

If you want to prove this in general, you can consider

?

).

2
(x+g) = x2 + Ax + |

N>

{29) (x — 10)* = 9

Uv: 10 — p,
Vk = v9 = '3

{10 + 3,10 - 3], 0r {13, 7}

(30) (x — 1)* = 196
Uv: 1 ——>p,]95 — k
Vk = 196 = 14
{1+ 14,1 - 14}, 0r {15,713}

(31) (x - 7" = 36
UV: 7 -— p, 36 —= k
vk = V36 = '6
7+86,7-86}0 {13, "}

{32) Oh! Here's some trouble! Our paper lets us solve equations of
the form

(x - p) = k;
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(33)

(34)

(35)

Xt - 20+ 1 =4

x? — 14x + 49 =9

x? — 20x + 100 = 121

ALL THE QUADRATIC EQUATIONS IN THE WORLD 311

(33)

(34)

(35)

but this new equation

x2 — 16x + 64 = 81

is not of this form!

However, following Polya’s suggestions, let's see if we can
turn this new problem into some familiar oid probiem. Can we
write

x? ~ 16x + 64
in the form
(x — p)*?
Hooray! We can! Here is the way to do it:

We take 3 x 16, which is 8, then square it and that is the num-
ber we find here

x? — 16x + 64.
t

Consequently, x2 — 16x + 64 = (x ~ 8)°.

We now use this identity to change the new problem into a
famifiar ofd problem:

M) x - 16x + 64 = 81
(i) x* — 16x + 64 = {x — 8)° This is an identity.
(iii) (x - 8)* = 81 PN, from line (i),
using line (ii).
Now,
(x - 8)° = 81

is the type that we do know how to solve:

UV: 8 —> p,
81 — & (Here we are using the note
vk = V8Y = '9 Jerry gave to his assistant.

{8 +9,8 - 9}| or {«17' —1'} See question 9, page 303.)

Similar to question 32. Use the identity x2 — 2x + 1 = (x — 1)°
to change the equation to (x — 1)° = 4, which we can now solve
using the formula on aur paper:

UW: 1 — p,4 — &k

vk = V4 =2

f1+21 - 2}, or 3,1}

X - 14x + 48 = 9

x -7V =29
U:7 — p,9 — k
vk = V8 = 3

{7+37 -3}, 0 {104}

(x - 10 = 121

UV: 10 — p, 121 — &

yk = V12T = ‘11

{10+ 11,10 - 11}, 0r {r21,71}
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Jt is important to bear in mind that these last {ew problems have
been working smoothly because in each one, if you take the number

here
X - _ X+ =,

t
divide it by 2, and square the result, then you do get the number :
here

X — __ X+ .= _...
t

If that were not so, what could we do?
Anyhow, question 36 is another easy one:

X - 6x+9 =16

t
¥ x6=3 E
3*=9
x2 - 6x+ 9 =16
t
and thisisa 9.
(36) x2-6x+9=16 (36) (x - 3)" = 16
UV: 3 -5 p, 16 — &
vk = Vi6 =4
{3+4,3-4}0 {7, 1}
(37) Can you find the truth set for the open sentence {37) This, too, is of the easy type, since if we take the number here

a 2
2 - + [ = = ? R
o (2) v x2 — ax + (%)2 = w,
t
divide it by 2, and then square this, we find that this is the number
here

x? — ax + (g)a = w.
T

Hence we have

and the truth set is

o a
3+ W3- VW),
NOTE:

Questions 38 through 44 present a typical Madison Project se-
quence. Question 38 sets the task. {/f a student solves this, well
and good. {f not, he should go to the following problems.) Questions
39 through 44 discuss various ideas for attacking question 38.
Question 44 is really a recapitulation of question 38. By then, stu-
dents should be able to answer the question.

(38) Can you find the truth set for the open sentence (38) {g + Jw — b+ (52'-)7, % - \/w - b+ (‘—2’)’}

x -ax+ b=1w?
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If a student was able to solve question 38 on its first appearance,
he presumably did something like this:

(i) Possibly

is true, and possibly it's false. | don’t know for sure.

(ii) But, in order tc use the paper

x - pi2 =k
o+ vk.p - ki

| must be sure that, if 1 take the number here

X2 —-ax +b=w,

take 5 of it

N

and square the result

this will be the number here

X2~ ax + b =w.
,T

(iii) Since | am not sure about b, I'lf move the & out of the way
(by subtracting b from each side of the equation):

Xt — ax =w - b.

(iv) Since | know | must have
a 2
(5)
in the spot here

X2 — ax =w - b,
t

il put it there (by adding it to each side of the equation):

2

x~z—ax+(%)1=w—b+(g).

(v) Now, | can use the identity
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(39) Ellen gave her assistant a piece of paper which
said:

Paper 137w

O

For the equation
x* ~ax *+b = w,

ask yourgelf these questions, and follow the
po.tns indicated by your answers.

Ty g, R—

O Goto

pa.per 123A

1Q is b larger Subtrdct the Lame
tnan (§)0 2 — '—‘ number from each
side of the
' Lyuetion, 50 a3 to
3

make b (3 )' .

E\“\r\a'l Add the same number Go to
to both staes of thel—. paper
O €quation 50 4% tO 123A
mo.ke .
- {3
o (3.

[page 114]
What do you suppose it says on Paper 123A?

(40) Pretend that you are Ellen's assistant. How
would you solve the equation
xz — 10x + 15 = 397
Trace out your path on Ellen’s “map” (which mathe-
maticians call a “flow chart”),

[STUDENT PACE 114

Here we again use the note that Jjerry gave 1o his assistant (see
question 9, page 303).
(vi) But this last equation is like the one on my paper! | can solve
it by merely using UV:
a
Uv: '-2- — p o
w-b+ (5) — k

Thus the truth set must be
5T —
{ +\/w—b+(%),%—\/w—b+(%) }

1
This last formula represents the general solution for the general
quadratic equation. (Don't worry that it looks different from the “tra-
ditional” formula. See question 1, Chapter 35))

(RS

(39)x? —ax + b =w Paper 123A

Use this method only it (g)z =b.
The original equation is equivalent to

(- -

and the truth set is

G+ w. 3- Vw}.

(40) The paper that Ellen gave to her assistant contains an example
of a so-called “flow-diagram,” as used in modern electronic dig-
ital computing work. Flow-diagrams of one sort or another are
often found on the walls in classreams these days; for example,
here is one made up by some children:
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Is i
Alarm it yes T“f'f" Go back
0es Saturd | o
goﬁ a u?r ay, alarm to sleep
1§
No Get Get - Eat
up dressed 771 breaktast
Go to
church
Get on
Go to -
school [«&
school bus school bus

Fiow-diagrams are valuahle when we want to see in very explicit
form the framework of decision making that is invoived in solv-
ing some problem. if we follow our path through Ellen’s diagram,
in order to solve the equation x2 — 10x + 15 = 39, here is the

result:

N
=

: Does (g)ﬂ

equal b?

a

@: Dees (5

:

equal b ?

i

A ]

than

/j

(3)7

Q: Is b larger

a

@Q: Does (~2=

X

equal b?

i

2
5

than (

@: Is b larger

x? — 10x + 15 = 39

% x 10 =5
5 =% 15
The answer
is “no.”
a=10
b=15
a.?
(3) =25
15 < 25
a-
b < (5
The answer
is ‘'no."”

Add the same number to both
sides of the equation so as to

make R
A
b:(i).
15 + 10 = 25
t
x* — 10x + 15 + 10 = 39 + 10
xz2 — 10x + 25 = 49

Now, go to Paper 123A.
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(41) Pretend that you are Ellen’s assistant. How
would you solve the equation

x? - 12x + 45 = 187

Again, trace out your path on Ellen's flow chart.

(42) Pretend that you are Ellen’s assistant. How
would you solve the equation

x? ~ 22x + 121 = 1967
Trace out your path on the flow chart on Paper 137W.

(43) Can Ellen’s assistant solve any quadratic
equation in the world?

(44) Anne and Jeanne worked out a general solution
for the general quadratic equation this way:
- Ax + B =W
x2 — Ax =W-B

x’—Ax+(é)2=W—B+({;—),

2

2 1
3w

2 2

What is the truth set for this open sentence? (Remem-
ber, in Descartes’ words, x is the “variable” or the “un-
known,” whereas A, B, and W are “constants.”) Mathe-
maticians call this method “completing the square.”

{STUDENT PAGE 114

When we refer to Paper 123A, we find that it enables us to
solve the equation

x2 - 10x + 25 = 49
without difficulty:
(x — 5Y = 49
Uy: 5 — —;— )
49 > w
N \ag = 7
{58+ 7.5 -7} = {122

(41) {9, 3}. Follow the same general procedure as in the answer to
question 40.

(42) {'25. ‘3}. Follow the same general procedure as in the answer to
question 40. Notice that 1 x 22 = 11, 117 = 121, so the answer
to the first question is “yes.”

(43) Yes, provided she doesn't encaunter trouble in finding the square
root.

(44) This is in our familiar form:

x - p)Y =k

{P + \/IV'P - \ﬁ;}
Hence, we salve it by using UV:
A
UV: E —> p

w—s+(‘—;)—>k.

The truth set must be

{g +Vw - B+ (‘%‘)2 g—\/w- B +‘@’}-



CHAPTER 35
Some History

[page 115]

There have heen two advanced periods of civiliza-
tion in European or Western history. The first was the
civilization of the ancient Greeks (and their neigh-
bors, such as Sumerians, Persians, and so forthj. If
we try to identify the early beginnings of this ancient
civilization by using mathematics as our criterion, we
might decide that it was well under way, in Babylonia,
by 2000 B.C.¥

Just before 1000 B.C., the site of the “most ad-
vanced” civilization began to shift from Egypt and
Babylonia to the areas inhabited by the Hebrews, As-
syrians, Phoenicians, Greeks, and at least as far west
as Sicily. Of this newly developing society, Howard
Eves writes, “The static outlook of the ancient orient
became impossible and in a developing atmosphere of
rationalism men began to ask why as well as how.!

Some great mathematical thinkers of this period
were Thales (around 600 B.C.), Pythagoras (born
about 575 B.C.; died about 500 B.C.), Zeno (495-435
B.C.), Eudoxus (408-355 B.C.), Diophantus (horn about
400 B.C.). Euclid 1330-275 B.C.), Archimedes (287-
212 B.C). and Hipparchus (born about 160 B.C.).
Using these men as guides, we might say that the
“golden age” of Greek mathematics began roughly at
600 B.C., and began to vanish around 200 B.C. Some
Greek mathematicians were still at work as late as
250 A.D. (e.g., Pappus). but by then the “golden age”
was well over. Indeed, all of ancient civilization was
gradually destroyed as a living society, although frag-
ments of it remain, in various forms, even today.
Human life in the Western world entered the period
known as the “Dark Ages."!}

(Mathematical activity was not confined solely to
Europe. Indeed, very important mathematical discov-

‘Compare the interesting accounts given in: Howard Eves, An Introduction
10 the Historv-of Mathematics, Resieed Edition, pp 30-31, and elsewhere tHolt,
Rinchart, and Winston. New York, 1964,

ibid..p 52

1Compare Eves, op. cit.. p. 165 and Chapter ¥

chapterv?)S/Pnges 115-121 of Student Discussion Guide
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Schwab (1) and Eves (151), see Appendix A, provide excellent
background for this chapter.
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eries were made by the Hindus, particularly with re-
gard to better methods for writing mathematics.
These Hindu discoveries were later to play a very im-
portant role in Western mathematical progress, but
the Hindu results were largely unknown to the ancient
Greeks.)

The dates for the Dark Ages may be taken as roughly
450 A.D. until 1000 A.D. Of this period, Eves writes:

The period starting with the fall of the Roman Empire in the
middle of the fifth century and extending into the eleventh
century is known as Europe’s Dark Ages, for during this period
civilization in western Europe reached a very low ebb. Schooling
became almost nonexistent, Greek learning all but disappeared,
and many of the arts and crafts bequeathed by the ancient world

were forgotten. Only the monks of the Catholic monasteries, and
a few cultured laymen, preserved a slender thread of Greek and

[page 116}
Latin learning. The period was marked by much physical vie-
lence and intense religious faith. The old social order gave way
and society became feudal and ecclesiastical.

The Romans had never taken to abstract mathematics, but
contented themselves with merely practical aspects of the sub-
ject associated with commerce and civil engeering. With the fail
of the Rorman Empire and the subsequent closing down of much
of east-west trade and the abandonment of state engineering
projects, even these interests waned and it is no exaggeration to
say that very little in mathematics, beyond the development of
the Christian calendar, was accomplished in the West during
the whole of the half millennium covered by the Dark Ages™

Around 1000 A.D. Western society “started moving
again” —started building along a “new frontier” of
civilization, as we today might describe it - although
for the 500 years from 1000 A.D. until 1500 A.D. the
pace was fairly slow. This rebirth occurred in part as
a result of Asian culture reaching Europe, particu-
larly by way of Spain. The case of the French mathe-
matical scholar and churchman, Gerbert, is interest-
ing and points in the direction of what was to come.
Gerbert was born in Auvergne, France, about 950 A.D.
He traveled to Spain, where he studied in a Moslem
school, and he may have been the pergon who intro-
duced into Europe some of the Hindu methods for writ-
ing mathematics. He may also have designed clocks
and musica) instruments. In the year 999 he became
the leader of the Roman Catholic Church, assuming
the title of Pope Sylvester Il.

As we have seen earlier, in the early part of the thir-
teenth century (just after 1200 A.D.) something new
was added to European life: the great universities
were started, particularly at Paris, Oxford, Cam-
bridge, Padua, and Naples. A new civilization was be-
ginning to appear - the one of which we, today, are the
most recent part.

As history goes, our civilization is surprisingly new:
even being generous, we would say that it is less than
1000 years old; looked at more narrowly, we might
date it from about 1453, in which case it is more like
500 years old. Many parts of the United States are of
the order of 100 years old (e.g., the state of Colorado),

“Eves, op. cit, Chapter 8.

[STUDENT PAGE
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and others (such as the city of St. Louis, Missouri) are
about 200 years old. Of course, all of our “civilization”
in the United States has been built upon the civiliza-
tion of Europe, and in surprisingly many ways we have
even built upon what we have learned from the civili-
zations of the ancient Greeks and their neighbors. We
are nonetheless in many important respects a surpris-
ingly new society. and we clearly have the feeling that
we are headed for new frontiers—although, as always
when civilization is moving forward to new and un-
precedented heights, we cannol see where we are
going.

In all of the approximately 4000 years from the ear-
liest beginnings of ancient civilization, through the
Dark Ages, and up until the present time, at what
point did the study of quadratic equations appear?

Clearly, were you able to show a problem in quad-
ratic equations to a “typical” man of the Dark Ages,

[page 117]
he would have been unable to solve it. Presumably he
would even have been unable to understand what it
was that you were trying to do. Quite likely he would
not have cared, anyhow.

But the question is, was this ignorance of something
that the ancients had worked on and finally came to
understand, or was it ignorance of new mathematical
discoveries that were not made until after the Re-
naissance? Had this knowledge been “lost,” or had it not
yet been discovered?

When did men first learn to work with quadratic
cquations, and to understand them?

A Broad Perspective of History Shown on a Number Line

g 38.8 8 g g g
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Greek Christ B Periods

Mathematics

The auswer is surprising, if not nearly incredible.
The study and understanding of quadratic equations
is very old indeed. It dates from the early beginnings
of ancient civilization. Here is what Eves writes about
if:

“By 2000 B.C. Babylonian arithmetic had evolved
into a well-developed rhetorical algebra. Not only
were quadratic equations solved, both by the equiva-
lent of substituting in a general formula and by com-
pleting the square, but some cubic (third degree) and
biquadratic (fourth degree) equations were discussed.”*

We need to clarify one point. The way that we today
write quadratic equations is du¢ to Descartes, who
lived in the seventeenth century. Hence, the ancients
clearly did not have our modern method of writing
quadratic equations. (But, then, they also wrote num-

“Eves. op. cit.. p. 33

SOME HISTORY
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bers differently, so that does not necessarily put them
out of the running for understanding quadratic equa-

tions and being able to work with them.)
It might be well for us to recapitulate the process

of “completing the square.” Here it is, using num-
bers:

(a)x’—bx+-‘1=11
(b) We see that this number is not what we wish
it were. Why? In fact,
$x6=3
3’ =9,

and so we wish that this number were 9.

(c) Consequently, we decide to add 5 to each side
of the equation, so that we have
¥~ 6x + 9 =T6.
[page 118]
(d) Now, we can rewrite this as
(x-3) =16

(e) Evidently, the truth set for the equation in line

@ is:
{7.1}.

(D) Unfortunately, we have solved the wrong problem.
The set {7. ~1} is the truth set for the equation

(x - 3) =1e.

However, we were asked to find the truth set for the
open sentence
x' - 6+ 4=11.

(g) Fortunately, the two changes in the equation
which we have made were both “transform operations.”
Hence, the equation

X —6x+4=1
has exactly the same truth set as the equation
(x - 3)" =8
(h) Hence, the truth set for the equation

X~ bx + 4 =11

{7.1}.

If we use Descartes notion of “constants” and “vari-
ables,” we can use this same method of “completing the
square” to derive the general solution of the general
quadratic equation.

(a) The general quadratic equation can be written
in the form
x' -~ Ax + B = W.

{STUDENT PAGE 118
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(b) Now, we want to make sure that

(3 x 4)" = B.

2

Since we do now know, in general, whether or not
this is true, we can avoid the matter entirely by sub-

tracting B from each side of the equation:
X -Ax =W- B

{c) Now, since we want to see

B

inserted on the left-hand side, our simplest procedure
will be to put it there. How can we do this in a legal

[page 119}
fashion (that is, by using a “transform operation”)?
The answer is simple: we shall add

B

to each side of the equation, which gives us:
2 B 2
x’—Axd-(é) =W—B+(d>.

2 2

(d) Since we have now made the left-hand side into
a "perfect square,” we can write:

gy

5

(e) For this equation, the truth set is

N I TR e i
§_+ W-B (-> ——\/W—B+<‘i)}.

2 2 2 2

We can now hand our assistant a piece of paper that
says:

For the open sentence
& - Ax

the truth set s

Thts i» & mecrel feom antiguita.  War 41 in good health!

+ B=w,

{1} Many books in the first half of the twentieth cen-
tury wrote the general quadratic equation in the form

ax? + bx = ¢ = 0.
Use the formula which we just obtained to find the truth

set for this equation.

Although the ancients solved the general quadratic
equation, and also some cubic and quartic equations,

(1
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Starting with the form ax? + bx + ¢ = 0, we know that o~ O (for
otherwise the equation would be linear and not quadratic). Con-
sequently, we may divide both sides of the equation by a, getting

x’~+éx+£=0. 1)
o a
This is almost our form
2 — Ax + B = W. (2)
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they were never able to solve the general cubic equa-
tion nor the general quartic equation. In large part they
must have been handicapped by their lack of our mod-
ern methods for writing mathematics. (Imagine doing
mathematics, for example, with your eyes closed!)
[page 120]
When did man first come to understand the general
cubic and quartic equations? Here is what Eves writes,
describing the event:

Probably the most spectacular mathematical achievement of
the sixteenth century was the discovery, by Halian mathemati-
cians, of the algebraic solution of cubic and quartic equations.
The story of this discovery, when told in its most colorful version,
rivals any page written by Benvenuto Cellini. Briefly told the
facts seem o be these. About 1515, Scipione del Ferro(1465-1526),
a professor of mathematics at the University of Bologna, selved
algebraically the cubic equation x*+ mx == a, probably basing his
work on earlier Arabic sources. He did not publish his result but
revealed the secrel to his pupil Antonio Fior. Now about 1535,
Nicolo of Brescia, commonly refurred to as Tartaglia (the stam-
merer) because of a childhood injury which affected his speech,
claimed to have discovered an algebraic solution of the cubic
cquation x* + px* = n. Believing this claim was a bluff, Fior chal-
lenged Tartaglia to a public contest of solving cubic equations,
whereupon the latter exerted himself and only a few days before
the contest found an algebraic solution for cubics lacking a qua-
dractic term. Entering the contest cquipped to solve two types of
cubic equations, whereas Fior could solve but one type, Tartaglia
triumphed completely. Later Girolamo Cardano, an unprincipled
genius who taught mathematics and practiced medicine in Milan,
upon giving a solemn pledge of secrecy wheedled the key to the
cubic from Tartaglis. In 1545, Cardano published his Ars magna,
a preal, Latin treatise an algebra, at Nuremberg, Germany, and
in it appeared Tartaglia's solution of the cubic. Tartaglia’s vehe-
ment pratests were met by Lodovics Ferrari. Cardano’s most
capable pupil, who argued that Cardano had received his informa-
tion from del Ferro through a third party and accused Tartaglia
of plagiarism from the same source. There ensued an acrimonious
dispute from which Tartaglia was perhaps lucky to escape alive.

Since the actors in the above drama scem not always to have
had the highest regard for truth, one finds a number of variations
in the details of the plot.

The solution of the cubic equation x* + mx = n given the Car-
dano in his Ars magna is essentially the following. Consider the
identity

{a— b)Y +3abla— b) =a*- b

If we choose a and b so that
3ab = m, at— b =n,

then x is given by a — b. Solving the last two equations simulta-
neously for 0 and & we find

- O @

and x is thus determined.

It was not long after the cubic had been solved that an algebraic
solution was discovered for the general quartic for biquadratic)
equation. In 1540, the ltalian mathematician Zuanne de Tonini
da Coi proposed u problem to Cardano which led to a guartic
equation. . Although Cardano was unable to solve the equation,
his pupt! Ferrari succeeded, and Cardano had the pleasure of
publishing this solution also in his Ars magna.”

(2) Explain Cardano's solution of the equation

X + mx = f.

*Eves, op. ¢il., pp. 220-221.
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It we rewrite equation (1) as

“b
<
x2 -~ —x+ - =0,
o o

then we can solve it by using equation (2) and UV.

Q)
c

UV:E~—>A,————>B,O—-'>W.
a a

Then, the truth set

— — e P

VA A A T A

[§+VW_B+(-§)'§~VW‘B+L§)s
hecomes

Vb e B b e R

| 2a a 4’ 2a YV a 4da?y-

We can put these over a common denominator of 2a, getting
{-b + Vb ~ 4ac  ~b — Vb7 — dac |
| 2a ! 2a V7

and, if we write this in traditional notation, we get the traditional
formula

_-b £ vb? -~ 4ac
X = —2'0———'* .

Note: There are good reasons for avoiding the “traditional”
notation +. This notation has been used ambiguously in the past.
Sometimes it has meant that either sign might be chosen and
would necessarily be correct. At other times it has been used to
mean that one sign or the other was correct, but not necessarily
both.

(2) Whether hy good luck, or otherwise, Cardano had an opportun-
ity te think about the identity

(a = b)* + 3abla -~ b) = - b (1)
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The similarity of the two forms which Tartaglia per-
haps observed is illustrated in the diagram below:

x, 0T a—b,
goes here

m, or 3ab, n, Of a®— b3,
must go here must go here
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and to observe its similarity to the equation he wished to solve,
X+ mx = nm (2)

There is a striking similarity of form between the two; each
involves some number cubed,

43
()
plus this same number to the first power, with some coefficient,
3
(Ve ()

set equal to something else,

; 3

()y+—)-=

If we want to solve equation (2), can we first turn it into equa-
tion (1)? This would require

x=@a-b
m = 3ab
n=a -b

But this works out very nicely! If we are given the equation
x* + mx = n,

that means we are given m and n, and asked to find x. But if we
are given m and n, then the equations

m = 3ab
n=a -~ b

can be used to determine o and b (we shall work this out in just
a moment).
Now, since we know o and b, we can determine x,

x=a—b,

which completes the job. (Weli, there might be some other pos-
sible values of x that we have overlooked, but at least we have
made a heginning.}

Perhaps we should go backwards 2 moment, and see how we
got from m and n to o and b. We had

m = 3ab (3)
n=a — b? 4)

If m = 0, we know x = 7. Hence, assume m » 0. Then a 0
and b > 0, and we can divide both sides of equation (3) by 3b,
getting

which can then be used to eliminate o from equation (4).
The rest of the work is straightforward, provided you are care-
ful with radicals and exponents.
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(3) Cardano, in effect, had written this note:

Far the equaticn

a
X ¥mx=hn

Xe & -b,

wheare

SEETEs]

[page 121)

(Today we konow that there may be other solutions

for this equation, but Cardano’s work iy correct as far
as it goes.

Suppose Cardano met the equation
X +vax® + bx+ e 0.
What would he da?
| Hint: He would use Polya’s idea of “reducing it to

some oLher problem that he nlready knew how to solve.”
Ome way (o do this is Lo write

X .‘-u,]

Can you finieh this problem?

(3)

[STLDENT PPAGE 121

If we let
X =1+ i,
and substitute into the equation
¢ =0,

% + ax’ + bx 4
we get
(t+a) +alt+a) s+ bt +a)+ec=0
which is

B+ 3tha + 30t 4+ a? + aoff + 20ta + aa® + bt
+ ba + ¢ = 0

2 4 (3a + alP [3u= + 200 +
|a* + ga? + ba + ¢) 0

b +

We now (having looked carefully at this last equation above)
select « such that

3-‘1-‘—0-0;

that is, so that « = -, thereby getting a cubic equation for ¢ in
which there is no = lerm. We can then use Cardano's procedure.




Part Five = Matrices

chapter36/Pages 122-130 of Student Discussion Guide

. A 4
THE IDEA OF “MAPPINGS’
[1 °
OR “CORRESPONDENCES’
In a formal sense, mapping, correspondence, and function all
refer to the same thing. Psychologically, however, they do not, and

the way we think about mathematics is every bit as important as
the way we write it or explain it.

CHAPTER 36

The Idea of “ Mappings” ANswers AND COMMENTS

or “ Correspondences”
[page 122]

Mathematicians nowadays think that the idea of
correspondences is very important. Let’s see if we can
figure out what they mean when they use the word
correspondence.

Jerry made this correspondence:

: S0
B ﬁ

%

S
3w
!
J.\r
x @
(1) In Jerry’s scheme, what corresponds to A? (1) A corresponds to the Kite,
A > -t
(2) In Jerry’s scheme, what corresponds to W? (2) w corresponds to the face.
W N
(3) In Jerry’s scheme, what corresponds to (3) The car comresponds to B.

325
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(4) Andy made this correspondence:
| -—— 100

4 3
9 ~-—p 21

In Andy's scheme, what corresponds to 1?

(5) In Andy’s scheme, what corresponds to 2?
{page 123}
(6) Suppose that A is this set;

0
lef

\ % l

- ;“ P
6.1 . O o |

And suppose that B is this set:

A\
Can you make a correspondence between the ele-
ments of 4 and the elements of B?

In your scheme, which element of B corresponds to
¥ '\
R

%oah

Ry

\T

?

Will others in your class have a correspondence

different from yours?
Which correspondence in your class is correct?

[STUDENT PACE 123

{4) 100

(5) 86

(6} This will depend upon your class, and each student's correspon-
dence may, indeed, be different and correct.

The correspondence need not be one-to-one. For example, here
is a one-to-one correspondence:

p S,

: [}

Every element of set A corresponds to exactly one element of set
B, and every element of set B corresponds to exactly one element of
set A. (This is often called "“one-to-one onto.”)

Let’s look at what mathematicians mean when they say a map-
ping is "‘one-to-one into." Let set W be {A, 8, C} and let set U be
{R, S. T, V}. Then the following mapping is "‘one-to-one into"":

A——>R
B—— S
C T
\ v
To say it more fully, we have ‘‘mapped set W one-to-one into set
U." Since set W contains three elements, and set U contains four

elements, we cannot possibly map set W one-to-one onto set U.
We could describe the idea of a "‘one-to-one into’ mapping by

saying:
Set X is mapped one-to-one into set Y if every element of set
X corresponds to exactly one element of set Y, while every ele-
ment of set Y either corresponds to exactly one element of set
X. or else to no element of set X.

The mapping

P —
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(7) Joe says this is a mapping of the set 4 into the

set B:
ST

What do you think?

(8) Tom wrote Joe’s mapping like this:

s o—= B

Y
L L2N

X%,
J ‘*}T"-v —_ IB

A
J b —_— %
J o %

[page 124]

Can you make up another mapping of the set A into

the set B? Can you write it the way Joe wrote his? Can
you write it using Tom's method?

{9) How many different mappings of set 4 into set
B can you find? How many different mappings of 4
into B do you suppose there are altogether?
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is not one-to-one because the element R corresponds both to A and
to B.

You need not worry about these ideas at all at this point, unless
you wish to.

{7) Joe is right. We say we have mapped set A into set B if every
element of A corresponds to exactly one element of 8, but not
necessarily vice versa. This, then, is a mapping of A into B. We
use the more restrictive phrase “mapping A onto B” if every
element of B is the image of at least one element of A —that is
to say, “all of B is covered.”

In the present example, the mapping is not “onto,” since «
and [ _] are omitted —they are not the images of any elements
of A.

{(8) Tom's notation is the most important idea in this chapter. |
hope it is clear how this notation works. (If not, wait until you
have seen a few more examples.)

(9) These are 256 different mappings.

Let's try to count them:

(i) We can map <=~ infour different ways (into 5, i, ~Jp= .
or {7 ). Perhaps, to keep track of all the possibilities, we should
make a {ree diagram, as we did in Chapter 14.

1

This column shows the
four possible images of

o—0o
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[STUDENT PAGE 128

(it} After choosing one of these four possibilities, we face a new
decision point (as the tree diagram will show). We can map-
into any of four different images (remember, we are not re-
quiring the mapping to be one-to-one):

This column shows  This column shows

the possible the possible
images of images of
- »‘\ v
=0 w?

by
once the image of
A
has been selected. .

(iii) After making our second choice {(namely, how to map , ),
we again come to a new decision point, and again have four choices

for mapping &:

Possible Possible Possible
images of images of images of

_((" ?}& o S

T once the
once the 'mages of
image of ‘O{ :;}\
@“’_13\, and
has been s
selected. e

have been
selected.
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(10) Al says one way to show a mapping of set A into
set B is to list the elements of 4 in a column here

Elements.
of

4

and to list the elements of set B in a column here

Elements
of

B

and then to draw arrows from each element of 4 to
some of the elements of B, sort of like this:

YYYY

Can you make up a mapping and write it this way?
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{iv) Finally, for each choice of the image of (5, there are four
possible ways to map «:

Possible  Possible  Possible
images of images of images of images of

Ny

Possible

.

Now, we claim that every possible path through this “maze” (or
tree diagram), remembering that each arm is a one-way street, cor-
responds to exactly one mapping of the set A into the set B; also,

conversely, every mapping of A into B corresponds to a trip through
this “maze."” There are evidently

4* = 256
“exits’’ from the maze, which (remembering that each arm is a one-

way street) means there are 256 different paths through the maze,
which means there are 256 different ways to map A into B.

(10) This will depend upon your class.
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(11) Sam used Al's method to write "F and Q" as a
mapping of {TT, TF, FT, FF| into [T, F} like this:

T —_— T

TF\
FoT
RE— £

P and @

What do you think?

112) Can you use Al's method to write “P or @ as a
mapping of {’I‘T, TF, FT, FF} into {T, F‘} ?

(13) Can you use Al's method to write
P=>Q

as a mapping of {’I"I‘, TF, FT, FF} into {’I‘, F} ?

(14" Can you use the operation

v — ]
to map the set {'1, *3,*4,-10} intotheset {'l, 3,410, ’4}?
Can you write the mapping by Al's method?

[page 125]
(15} Can you use the operation

U : u —_— QD
to map the set {*1,°2,°3,5,0} into theset {1, 2,-3,4,
*5,1,°2,%5,0}?

Can you use Al's method to write this mapping?

(16) Can you use the operation

v: [ ="
to map the set {'1, 2,73, "5} into the set {'1 ,0,72, ‘4}?

Can you use Al’'s method to write this mapping?

{STUDENT PAGE 123

(11) Sam is correct.

(I12y 11
T

TF

FT
— F

FF

TF
F
FF
P=>Q
(14) 1 - 1
'3 - 3
"4 ‘10
(15) "1 > 1
2 » "2
"3 > 3
5 -4
0 5
“1
*2
‘5
0

{16) No. The “image” set { '1,0, 2, ’4}does not provide for an image
of *3 and an image of *5 under the mapping

U3 — 3
U: '5 — 5.
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(17) Can you take the mapping
1

.

[re

20

W

WA

200
and write it, using Tom's method?
Mappings appear in many different disguises. Mathe-
maticians try to see through these disguises and recog-
nize the mapping, whenever they can.

(18) Tony says that the "Guessing Functions” game
is really a mapping in disguise. What do you think?
Can you make up a rule and show how it can be written
using Al's method?

(19) Elizabeth says that hanging weights on a spring
gives you a mapping. What do you think?

(20) Toby says that using a magnifying glass gives
you a mapping of “pictures” into “large pictures.”
Suppose you used a magnifying glass on these pictures:

JAN
ya
%

A

What would you get? Can you write this, using Al's
method?

(21) Ellen says that you can use equations like

(UXD)_('T—XU)+ =0

1

to map the ordered pair (5, 6} into the nonordered pair
(2, 3). Can you figure out how she does it?
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(17) We need to choose some lefter to stand for the “rule” or “map-
ping” itself. Let's use R. Then we can write;

R 1 — 3
Ri 2 — 4
R: 10 —> L
R: 20 —
R: 100 — £
R: 200 —

Tom's method was presented in problem 8, page 327.

Incidentally, we could also write this mapping using the function
notation from Chapter 28. Again, we must choose a letter to stand
for the rule itself. Suppose we choose r. Then we would write:

1) =% (Read: r of 1 equals one-third.)
n2) = % (Read: r of 2 equals one-half.)
10 = ¢ (Read: r of 10 equals cne-fourth.)
n20) = ¢ (Read: r of 20 equals one-fifth.)
(100) = + (Read: r of 100 equals one-fourth.)
(200} = & (Read: r of 200 equals one-fifth.)

(18) This will depend upon your class.

(19) Yes, it does.

P RAY >

yavy >

Y

Q"

[

(21) Ellen is correct. She puts the ordered pair (5, B) into the equa-
tions as coefficients (Descartes’ “constants”),

(DXD)—(SXD)+6=0,

and then finds the truth set
{ 2, 3}.

Why does order make a difference for the pair (5, 6}, when we
use the numbers this way? Why does order not make a difference
for (2, 3)?
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[page 126]
(22) Using Ellen’s method, the ordered pair (8, 15)
would map into

Since Ellen maps {5, 6) into (2, 3),
(5, 6) — (2,3),
mathematicians say that

“(2, 3) is the image of (5, 6).”

(23) When you use Ellen’s mapping, what is the
image of (8, 15)?

(24) When you use Ellen’s mapping, what is the
image of (9, 14)?

(25) When you use Ellen’s mapping, what is the
image of (13, 22)?

(26) Can you write Ellen’s mapping, using Al's
method?

(27) The world globe is (approximately) a sphere.

How could you make a flat map of the world?

[STUDENT PAGE 126

The notation we are using here works as follows: where order
is important, we use parentheses; wherever order is not important,
we use braces.

@ ([ |x[]P-(8x[])+15=0
f5.3)

So Ellen’s mapping, thus far, might be written
£:(5,6) — {23}
E: (8,15) — {5, 3}
What would this be: £: (6,5) — ?

Could we say £: (8, 15) — {3, 5}? Yes, because it does not mat-
ter which root of an equation we say first. Hence, in this case,
order is not important,

(23) {5, 3} is the image of (8, 15).

Or, we could also say {3, 5} is the image of (8, 15). [But you
must not change (8, 15) to (15, 8)!}

oy ([ Jx[P-(ax[])+14=0
(2.7)

{2, 7} is the image of (9, 14).

(25)([:|x[:])—(13x|j)+22=0
{11, 2}
{n, 2} is the image of (13, 22).
Could we also say {2, 11} is the image of (13, 22)?7
(26) (5, 6) ———— {2, 3}
8, 15)——— {5, 3}
(6, 5)——-—-{5, 1}
© 14— 7, 2}
(13, 22)——»{11, 2}

We could also write Ellen’s mapping, using functional no-
tation:

(
E(9,14) = {72}
(

E(13,22) = {11, 2}

(27) There are many possible methods.



STUDENT PAGE 127)

(28) Lex used this method

He mapped point A (on the sphere) onto point B (on
the cylinder), He mupped point € {on the sphere) onto
point D (on the cylinder)

What will Lex's fiat map look like? Will a country
be the same size on the flat map as it is on the sphere?
If not, will it be larger or smaller on the cylinder than
¢n the sphere?

(29) John says that when we use exponents we are
using a mapping in disguise
John wrote:

E:[ | — o

Can you find the image of 2, using John's mapping?

[page 127]
(30) Use John's mapping on the set |1, 2, 3, 4], What
is the image set?
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You may want to refer to the Encyclopedia Brittanica article on
maps, especially the section on projections. (You may also be in-
terested in the article on Mercator.)

George Reynolds of the Scarsdale, New York, Public Schools has
made an excellent teaching unit out of the ideas of map projec-
tions. Dr. Reynolds has used his unit at the elementary school level,
but similar unils could surely be used for secondary school or col-

lege,

(28)

(29)

(30)

The dimension of a country from north to south will be greater
on the sphere than it is on the cylinder; by contrast, the dimen-
sion of a country from east to west will be greater on the cylinder
than it is on the sphere. Countries near the north or south pole
are affected more in hoth of these ways than countries near the
equator. (Indeed, right on the equator the east-west dimension
is not changed at all.)

If we start with a country on the sphere and consider its image
on the cylinder, we see that the image has been enlarged in the
east-west direction, and diminished in the north-south direction.
What, then, has happened to its area? Depending on the precise
amount of these two changes, the area might have become
larger, or smaller, or stayed the same. A careful use of similar
triangles and trigonometry —an argument that we would not use
below the high school level —enables you to show that, to a first
approximation, tire area of a country is not changed.

E: 2 — 100 (Read: E maps 2 into 100.)
E: 3 — 1000

E:1 — 10

E:0 — 1

E1 — &

E: 2 — %

Or, using functional notation:

E(2) = 100
E|.3] = 1000

{ Read: £ of 2 equals 100. )
( Read: E of 3 equais 1000. |

The image of 2 is 100,

E(1) = 10
E[2) = 100

E(3) = 1000
E(4) = 10,000

Hence, the image set is | 10, 100, 1000, 10.000:‘.
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(31) Can you use Al's method to write the mapping
in question 30?

32) Using John’s mapping, what is the image of 5?

{33) Bill mapped the figure

! | J —
] .

R i

|
|
|

L [0
into the number 12.

Using Bill's mapping, can you find the image of the
following figure?

(34) Using Bill's mapping, can you find the image
of this figure?

[page 128]
t351 Can you write Bill'smapping, using Al’s method?
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(31 E: 1 — 10 (Read: £ maps 1 into 10.)
E: 2 — 100 { Read: £ maps 2 into 100.)
E: 3 —» 1000 (Read: £ maps 3 into 1000.)
E: 4 — 10,000  (Read: E maps 4 intc 10,000)
(32) E: 5 — 100,000; so, the image of 5 is 100,000.
(33) 40
(34) 6
(35)

- 40
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(36) Debbie says that Bill mapped plane figures
into numbers, by using the idea of area. She says she
will map plane figures into segments, by drawing the
figure on a grid, pretending the sun is directly overhead,
and mapping the figure into its shadow on the x-axis.
Debbie is pretending that the x-axis is the ground.

Sun’s rays are parallel {aimost). |
! | I T B 1
|
\ ] 1B | |

] { I ] |
! i/ I
! ! o I
! S B |
1

) ' ; &:
AT
I i : i { [
! | !
1 [ !
I t \ t | |
4 1 L L ! -

A B C

Figure 4 is mapped into its shadow 4’,
Figure B is mapped into its shadow B’,
Figure C is mapped into its shadow C".
Using Debbie’s mapping, can you find the image of
this triangle?

T
R
H

(37) Using Debbie’s mapping, choose some figures of
your own, and see if you can find the “shadows.”

(38) Using Debbie's mapping, what is the image of
the point (3, 4)?

i39) Suppose 0 < b. Using Debbie’s mapping, what
is the image of the point (a. §)?

(40) Suppose b < 0. Using Debbie’s mapping, what
is the image of the point (a, £)?

(41) Can you use a light bulb or a flashlight to map
some physical objects into their shadows?
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(36) 4

The image is the segment
{x l 2<xzxg 7} .

(Read: The set of alf peints with the name x, suchthat2 < x<7;
or more briefly, the set of all x such that 2 < x <7.)

(37) This will depend upon your class.
(38) The image of (3, 4) is (3, 0).

(39) If 0 < b, the image of (a, b), under Dehbie’s mapping, is (a, 0).
Since Debhie’s mapping is called a “projection,” we might repre-
sent it by the letter P. We could then write

p: (a,b) — (a,0), if0 < b.

(40) Debbie’s rule does not work clearly for the point (q, b), if b < 0.
Can you extend it so that it will? (Of course, there are many pos-
sible ways to extend it.)

{41) This can be fun. In fact, there is a great deal of mathematics
that can be studied through shadow pictures, as shown in the
following example.
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[page 129]
(42) Earle says you can map the plane (which mathe-
maticians write “E,") into itself.
Earle made up this mapping:
X = X g T 5

new

Y =Y

new old

He used his mapping to transform the figure

into this figure:

P

What do you think?

(43) Dexter used Earle’s mapping to find the image of

this figure.
Y

[STUDENT PACE 129

Aim a flashlight obliguely at the wall. Hold a circular disk in
the light, so that it is parallel to the flashlight lens (i.e., perpen-
dicular to the center line for the cone of Jight).

Disk

View looking down from
the ceiling

What shape will the shadow on the wali be?
Turn the circular disk.

Rotating the disk whiie keeping
its vertical diameter stationary
can produce other positions, two
of which are shown here.

Prove, mathematically, that there must be two different posi-
tions of the disk which will make the shadow on the wali cir-
cular. (One argument you can use to prove this depends upon
continuity, and is essentially topological!)

(42) Earle’s mapping moves any figure 5 units to the right, but leaves
it otherwise unchanged. You can easily verify this for yourself
by using the numbers that are the coordinates of key points,
such as (perhaps) the vertices.

(43) Dexter is wrong. He moved the figure five units up instead of five
units to the right (See answer to guestion 42.) To understand
this you may wish to notice that the original center of the circle
is located at (2, 2). Under Earle’s mapping, this becomes
(2 +5, 2), which is (7, 2).
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He got:

i ’ I I |
Do you agree? Can you draw a figure in E, and then
find its image, using Earle's mapping?

(44) Bernie mapped E, into E,, using this mapping:
Xnew = Yua
Yoew = oXold

Using Bernie’s mapping, what is the image of (1,0)?
What is the image of (0,0)? What is the image of
(0, 1)? Can you show this by Al's method (as Al did in
question 10, earlier in this chapter)? If you start with
the set {() 0), (0, 0), (0, 1,}, what is the image set?

(45) Nancy mapped E, into E, by this mapping:
Xoew = “You

Yiew = XoId

Can you draw a figure in E, and then find its image,
using Nancy’s mapping?

[page 130]
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(44) Again, let's try a few points, and see it we can discover how this
mapping warks. Let's caii the mapping B.

8: (0,0)————»(0,0)

B: (1,0)————(0,1)

8: (0, 1)———=(1,0)

The image set of {(1, 0), (0, 0), (0, 1)} is {(0, 1), (0, O),
(1, 0)}.

AY

Before After

-.. and the mapping B seems fo rotate everything 90° in o
clockwise direction.

AY AY

ooadeda

Before After

Here, again, you can verify this by performing the arithmetic
on the coordinates of a few selected points.

(45) Let's try a few points, first.

AY AY
{1, 34—

¥
i
=Y

Before After




338 CHAPTER 36 [STUDENT PACGE 130

Here are some more:

N: (0,0) — (0,0) (Read: N maps (0, 0) into (0,0).)

N: (1,0) — (0,1) (Read: N maps (1,0)into (0,1).)
Ay AY

7 T

=Y
xY

.‘V

Can you give a geometrical description of what seems to be

happening?
N: (1,1) — (1,1)
A 4 ‘Y
T
i ¢
N: ("1,1) — (1,71)
AY AY

K"
xY
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(46) Draw some figure in £,. Can you find its image
using Bernie’s mapping?

(47) Ted mapped E, into E , like this:
Xnew = CXo)d
yne,w = Yo!d

Can you find the image of (0, 0), using Ted’s map-
ping? Can you find the image of (1, 0)? Can you find
the image of (O, l)? Can you show the mapping of
{(1.0), (0. 0), (0, 1)}, using Al's method?
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The mapping N rotates any figure 90° counterclockwise.
The point (0, 0) remains fixed. For example:

AY

Before A y

°
A
0909096

After

(46) See answer to question 44.

(47) Again, let's just “play around” for a moment; let's try a few points
and see what happens:

(All points on the y-axis are left where they were! They are not
moved at all!)

Let’s plot a few of these:
Ly Betore After

x

1 x 1 %
——— . . . /
All points on the y-axis are left in
place; they are not moved at all.
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(48) Draw some figure in E,. Can you find its image,
using Ted’s mapping?

[STUDENT PAGE 130

... and the mapping T “reverses” everything symmetrically
ahout the y-axis. Mathematicians call this a “reflection in the
y-axis.”

AY AY

xY
xY

Before After
Using Al's method, the mapping of {(1, 0), (0, 0), (0, l)} is

T:{1,0) — ('1,0)
1: (0,0) — (0,0)
: (0, 1) — (0,1)

(48) See the answer to guestion 47.



CHAPTER 37
Candy-Store Arithmetic

[page 131]

Mathematicians have often built important and
elaborate mathematical systems by starting with a
very “commonplace” idea, which they have been able
to extend in some significant way. Let’s see if we can
do it.

(1) Andy goes to a candy store that sells pepper-
mints (for 2¢ each), chocolate almond bars (for 10¢
each), and chocolate-covered ants (for 50¢ a box). We
can write this as:

2
10
50

Suppose that today Andy buys three peppermints,
one chocolate almond bar, and zero boxes of chocolate-
covered ants (as a matter of fact, Andy always buys
zero boxes of chocolate-covered ants). We can write

this as:
(31 0)
The numbers
2
10
50

are called a price matrix, and the numbers

(3 1 0)

are called 2 demand matrix.*

Can you multiply the demand matrix

(3 1 0)

*With the introduction of matrices we are turning to the mathematics of
quite recent times. Indeed, the algebra of matrices was introduced in the year
1857 by the English mathematician Arthur Cayley (1821-1895;. {The siogular
form is matrix. The plural form of the word 18 matrices.)

chapter 37/Pnges 131-140 of Student Discussion Guide

CANDY-STORE ARITHMETIC

You may want to view the film entitied ''introduction to Matrix
Multiplication.” This topic appears also, briefly, in the films “Solv-
ing Equations with Matrices' and "‘Matrices.”

For a good reference on matrix multiplication, see Kemeny (82).

ANswers AND COMMENTS

(H 3 1 O)x/ 2
10 {3 x2)+ (1 x 10) + {0 x 50)
50 6

+ 10 + ]

= 16¢

341
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by the price matrix

10
50

to get the amount of money that Andy spent?
(310) x /2
0] =7
50

(2) Joan says that you write:
(310)x /2
10 | =(3+2)x(1+10) x {0+ 50)
50

5 x 11 x 50

it

2750¢

Do you agree?
(page 132]
(3) Nancy says that you write:

(310)x /2

10 | =(3x2)+ (1x10) + (0 x 50)
50/ =6+10+0

= 16¢
Do you agree?

{4) Jill says that you write:

(310)x /2

10 ] = (3x50)+ (1x10)+(0x2)

50/ =150 +10+ 0

= 160¢
Do you agree?
(5) Suppose that Andy goes to the store on Thurs-
day and buys
(4 2 0).

What did he buy? How much money did he spend?

(6) Toby went to the store and bought
(v 3 0).
What did he buy? How much money did he spend?

(2)

(3)

(4)

(5)

(6)

[STUDENT PAGE 132

No. Compare with the answer to question 1.

Yes.

No.

Andy bought 4 peppermints, 2 chocolate almond bars, O boxes
of chocolate covered ants. He spent:

4 2 0)x/ 2
10

]

4 %2 +(2x10) + (0 x 50)
0/ 8 4+ 20 + 0
= 28¢

Toby bought 1 peppermint, 3 chocolate almond bars, 0 boxes of
chocolate covered ants. Toby spent:

(t 3 0 x/ 2
10
50

i

(1 x2) + (3 x 10) + (0 x 50)
2 + 30 + 0
32¢

fi
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(7) Ome day the store had a special sale. For that
day only their prices were

5|
25

How much did each item cost at the sale price?

(8) On the day of the sale, Nancy bought
(4 3 0).
What did Nancy buy? How much money did she spend?

(9) Up until now we have been dealing with a candy
store that sells peppermints and chocolate almond
bars, and tries to sell boxes of chocolate-covered ants.

Suppose we now try to build an abstract system. We
will forget all about stores and prices and guantities.
All we will remember is the pattern of what we have
been doing. Using this same pattern, let’s multiply
these two matrices:

(5 2) x (4 ) _ s

3

(10) Can you use this same pattern to multiply the
following two matrices?

(v 302) x/5

[page 133]

(11) Suppose that someone knew all about [, A,

a, b, ¢, x, y, .. . notation, but did not know matrix nota-

tion. Could you write something that would show him
immediately how matrix notation works?
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(7) Peppermints were 1¢ each, chocolate almond bars were 5¢ each,
and chocolate covered ants were 25¢ per box.

(8) Nancy bought 4 peppermints, 3 chocolate almond bars, O boxes
of chocolate covered ants. She spent:

4 3 0) x/ 1
5 |= (4 x 1) + (3 x5) + (0 x 25)
/- a4 4+ 15 + 0
= 19¢
(9) (5 2)x(§'\):(5X4)+(2x3)
= 20 + 6
= 26

(1001 3 0 2) x 5
O . (1 x5 +@x0) +(0x19)
19
+ (2 x 8)
8
= b5 4+ 0 + 0 + 16
= 21
(11)(A B8 C) x/W
X |=(AxW +(BxX)+(CxY)

Y

This use of variables to enable us to '‘pass instructions along to
our assistant” is of great importance. Just to be on the safe side,
let's pause for a moment and make sure that we agree that this nota-
tion really does do what we claim it does.

Since we will want to indicate replacements of variables by num-
bers, it may be convenient to rewrite our answer to question 11,
using frames instead of letters. (This makes no rea! difference: we
do it only for convenience.) The answer to question 11 could, then,
be written:

(OAN) xS
)= (5 £7) + (A x )
N+ () xD)
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(12) Jane says she could show him matrix notation
by writing:

(ABC)x/D
(E):(A+D)x(B+E)x(C+F)
F

Do you agree?

(13) Hal says he could explain matrix notation by
writing:

(ABC)x /4
<B>=(A xA)+(BxB)+(CxC)
c

Do you agree?

[STUDENT PAGE 133

The rule for substituting now does the rest of the job! For example,
whatever number is put in the first [] must be put in all the [ ]'s
(there is ane other). If, for example, this number were 3, we should
have

BIA V)=
N\ =( < LT7) + (/\ D)
[N (N >,

If you continue in this way, you will see that, once we have written

AV T
A RO x) < (A x)
[N+ (V=)

the rule for substitution now compels us to use correctly what is
called the "inner product’ pattern!

(12) Jane has, of course, written the pattern incorrectly. Her x and +
signs are located incorrectly.

The correct answer would bhe

(A B C)x/D
E ={AxD)+(BxE+(CxH,
F

which is identical with our answer to question 11. (It makes no dif-
ference whether you mark a location in the formula with A or[ Jor
whatever, just so long as the same symbol is used

@ g8 )% /0
1 (e =(axa)+ (8% €+ (v x )

here
A )
and also here

and nowhere else! —and so on for all the other variables.)
(13) No. Hal's paper will only altow us to muitiply when the first two

numbers are the same, the second two numbers are the same,
etc. But it is not enough to be able to multiply

3 4 0)x /3
4
0

We also want to be able to multiply

3 4 0)x /5
61
3

and so on.
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(14) Ellen says she could explain matrix notation by (14) Ellen is right.
writing:

(ABC)x /D
(E)r—-(AxD)+(BxE)+(CxF)

F
What do you think?

(15) Courtney says he would write: (15) Courtney is also carrect

A N) <[]
C ==L+
YAVARVAS S
(V> [)

What do you think?

(16) Joe says that the way to multiply matrices is (16) | do—but every man to his own taste.
by pairs

® O Q®
YO
@

and “from left to right on the left and from top to bottom
on the right,”

[page 134]
which we might also draw like this:

Do you think this is a good description?

(17) Can you multiply these matrices? (173 7 10y x /2

(2]
]

(3 7 10) x /2 (3 x2) + (7 x5) + (10 x 8)
51= 72 = 6 + 35 + 80
8 =121

w
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118) Can you multiply these matrices?

(8 12 15) % J10

(19) Can you multiply these matrices?

(A B (') = /Wy
Y

120} Can you extend the idea of matrix multiplica-

tion, still using the same pattern, #o that vou can mul-

tiply these matrices?

(12 3y /5
0 11 10/ (7) ’
4

STUDENT I"AfCE 2]

(18) (8 12 15} » /10
(8 « 10) + (12 « 5) « (15 « 2)
2, 80 ' 60 30
170

(19) See the answer to question 11,

(20) Here we come to something new! Since we are asked to "extend”
something, we are entitled to be creative. Perhaps no answer is
absolutely right, or absolutely wrong. You may want to entertain
any reasonable suggestion from any of your students. However,
you also want to end up with the same system that professional
mathematicians have agreed to use. Here is how il goes:

(i) The “answer” is itself a matrix, with two numbers in it:

(A):

(ii) We always take our rows from the left-hand matrix and our
columns from the right-hand matrix. Hence, we continue to use
this pattern:

One number here

The other number here

\J

{iii) For the first row, first column number in the answer, we
choose the first row (from the left-hand matrix) and the first
column (from the right-hand matrix):

Use this mw—-t’ g ,[.__"]]} (3) (I_ )

0 11 10/
4
(1«8 +{2+7+(3x4
5 + 14 + 12
31
(-\1 2 3| /5 [31]!
0 11 10/ (7 ( N
4/

{iv) For the second row, first column number in the answer, we
choose the second row (from the left-hand matrix) and the first
column {from the right-hand matrix):
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(Z1) Lex says the idea is to use rows from the left-

-

and to use columns from the right-hand matrix.

(22) Ellon says that the answer has this form:
A matrix with some number here . .. T

(o 1) * O ( ‘ )

hand matrix

What do you think?

4
and with some number here.

If we write
[ O % s\ /[
(o 1 10) 7 ( "
4 } l[pngv 135]

what number should go in the [ ] in order to make a
true stutement?

(23) What number should go in the A7

(241 To find the ["] pumber, Eva wrote this:

%I
1 x5 +{2=x7)+ (A3 x4)=5+ 14+ 12

= 31
Do vou agres?

CANDY-STORE ARITHMETIC. 37

( 1 2 3, /5 f 31
se s row - | INTAINDN )" | 7 ( n
.4 L
0«5 + (11 =7+ (10 = 4)
0 + 77 + 40

117 —» f_’_‘
((1) 111? 13) X(?) (31)
' 4 117
(v) The matrix
- 31
(117)

is the final answer. We do not try to “simplify” it any further.

(21) Lex is right.

(22) Ellen is right. 31 goes into the | | (See the answer to question
20.)

(23) 117 (See the answer to question 20.)

(Z4) Yes
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(25) To find the /\ number, Marilyn wrote this: (25) Yes
—H—1o—~

77 + 40
nz

(0x5) + (11 x7) + (10 x 4)

1

Do you agree?

(26) Can you multiply these two matrices? (26) (l 0 2) « [ 3 D
2 Ny 5 0 11 14'=A
S 4] 11 14 ——

10
[]:+8-2—-13

10
(Nancy says the answer should be a matrix with two 1
numbers in it. Do you agree?) 1

(0 x 3)+ (0 x 14) + (2 x 10)
3 + 0 + 20

23_,[:]

A:—s—a—n-.-
1
1

5 x3)+ (0 x14) + {11 x 10)
15 + 0 + 110

125_>A

Thus the final answer is the matrix

)

that is,
1 0 2 3
(5 0 n> x (14 = (ég)
10
{27) Can you multiply these two matrices? (27) Here, again, we must extend a bit further; but by now the matter
may be clear. You have three rows (in the left-hand matrix) and
s 7 2 one column (in the right-hand matrix). Consequently, the answer
0 3 0 x 9] = will be a matrix with three rows and one column!
4 6 B n

L]
JAN
\V/

D:(lx2)+(5x9)+(7xﬂ)
2 + 45 +77

‘24——-)D
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(28) Hal says the answer should be a matrix like this:
4
B

(29) Tom says the answer to question 27 should be

a matrix like this:
A
B
C

(30) Jane says the answer to question 27 should be

a matrix like this:
A B
C D

What do you think?
(31) Can you extend the idea of matrix multiplica-
tion, so that you can multiply “2 - by - 2” matrices?

¢ o-@n-=2)

Do you agree?

Do you agree?
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A: (16 x 2) + (3 x 9) + (0 x 11)
20 + 27 [}

+
47 - /\

V: 4x2) +(6x9) +(8x11)
8 + 54 4+ 88

150 — \/

Thus we have

157 2 124
10 3 0 |x
4 6 8 11 150

(28) No. See the answer to question 27.

(29) Yes

(30) No

(31) Here we extend one more time! But the pattern by now may be
clear.

(i) As always, take rows from the left-hand matrix and columns
from the right-hand matrix.

(ii) For, say, the second row, first column number in the answer

select the second row (from the left-hand matrix) and the first
column (from the right-hand matrix).

A B X\ /[— —
)¢ WO )
(iii) Once you have selected the correct row and column, you

proceed as in questions 1, 3, 5, 6, and 8 (see also questions 9
and 10).
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[page 136}

(32) Lex says that the iden i& to use rows from the

left-hand factor

-.4—#1;*
{ ;

and columns from the right-hand factor

; +
What da you think?

(33) Ellen says that
(‘ 3 5y [a 7\ (42 ?o')
\ 2 1 ) { 6 n ) 14 25
What do you think?

(34) Jerry says that Ellen got the "42" by saying

[3x<4) + |56 42
What do you think?

(351 How did Ellen get the "25"7

(36) How did Ellen get the "74"?

STUDENST PAGE 156

Here is the result:

A 8 ‘WX

\c D) [.G e
('(A‘W)-fB=GJ (A - X) i-vaH))
(C W)+ (D-G} (€ Xj+(D-H)

(32) Lex is right.

(33) Ellen is correct (See the answers to questions 34 through 37).

(34) That is correct. (This was the first row, first column number in
the answer, so Ellen chose first row and first column, following
Lex's advice in guestion 32.)

(35) This is the second row, second column number in the answer,
Hence (remember question 32), we choose the second row (from
the left-hand matrix)

2 1
and the second column (from the right-hand matrix)

7
11,

and then praceed as in question 9:

27+ 11
14 11
25

So Ellen was right on this number.

(36) The 76" is the first row, second column number in the answer,
Hence, we select the first row (in the left-hand matrix) and the
second column (in the right-hand matrix}:
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(47 How did Ellen get the "14"7

138) Can you multiply these two matrices?

(0 2= G &)= )

1 8/

(39) Amy knows all about [T}, A, A, B. C, ..., and
#0 on, but she does not know how to multiply 2-hy-2
matrices. Can you write something that will show Amy

how to multiply 2-by-2 matrices?

CANDY-STORE ARITHMETIC 351

3x7)+ (5 = 11)
21 o 55
7% — [ |

Ellen was again right.

(37) The 14" is the second row, first column number in the answetr

First column

G I

Second row—

s0 we select the second row (from the left-hand matrix) and the
first column (from the right-hand matrix):

3 5 AN \
() <@ 17) - ] )
(2 x 4) + (1 x 6)

8 + 6

14— |

Ellen, once again, was right!

(38;{ 7
0

A

D =

1‘] |3 5)_"A 31'
2 1 8/ 'c o/
= {7 = 3) + (1 = 1)
& 21 1 - 22

= (7 « 5) - (1 8)
35 + 8

43

=03+ 2x1N

0+ 2
2

(0 -8 - (28
0+ 16
16

Thus we have

{(39) (A
.C

7 / 5 (22 3
Lo 1)(? 8) {2 ?GJ'
)2 2)
x| |) + (8x\/)(ax ) 4
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(40) Jerry wrote:

GaGH-(3

Does this show Amy how to multiply 2-by-2 matrices?
(41) Steve wrote:

A\ (/¥ x
(v Q) X(v z)

(W (AxY) <Dxx>+(sz>>
“((\7w>+(a «¥) (Vxx)+((] x2)

Does this show Amy how to multiply 2-by-2 matrices?

[page 137]
(42) Mary wrote:

(A B W X
cp) “\r z
: (AxW)+(BxY) (AxX)+(BxZ)
(Cx W)+ (DxY) (CxX)+(DxZ)
Does this show Amy how to multiply 2-by-2 matrices?

(43) Who is right, Steve or Mary?

Can you multiply these 2-by-2 matrices?
(44) 1 7 < 3 4y _
2 0, 5 V]
(45) 5 1
3 0
(46) 5 7
3 2
47) fa b
c d

(48) Jill says that we add matrices like this:

A B W X\ [A+Ww B+X
c p/t\y z) \c+vy D+2

What do you think?

x
TN
oW
~- O
~—
) ]
TN TN TN

b3
TN
LT Y
o™
~——
)
TN

(49) Can you add these two matrices?

6 ()

[STUDENT PAGE 137

(40) No; you cannot retrace Jerry’s steps merely by looking at his
answer.

(41) Yes. Now all Amy needs to do is to use UV.

(42) Yes. Again, all Amy needs to do is to use UV.

(43) Both. They both say the same thing.

(44) (38 4
6 8
(45) /10 1)
6 0
(46) (m 14)
6 4

(47) (ae + bg

af + bh
ce + dg

cf + dh

(48) }ill is correct; this is the way that mathematicians have agreed
te add matrices.

This is, of course, a rhetorical question. There is no way (ordinar-
ily, at this point) for the students to know. Nonetheless, we prefer
to ask this question anyway — perhaps because it helps to get the
children's attention.

(49)13'+0 2\ /(1 s
17 5 3 10 10 15
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(50) Can you write some axioms for arithmetic and
algebra?

(51) Do you know an identity that is called the “com-
mutative law for addition”?

(52) In arithmetic and algebra, what is special about
the number 17

(563) Can you write the identity that is known as the
“law for 1”7

(54) In arithmetic and algebra, what is special about
the number 0?

(65) Can you write the identity that is known as the
“addition law for zero”?

(56) Can you make up an “addition law for zero” that
will apply to 2-by-2 matrices?

(67) What 2-by-2 matrix corresponds to the num-
ber 07

(58) Is there a “multiplication law for zero” that
works for matrices?

[page 138]
(59) Can you write what might be called a “law for 1”
for matrices, instead of numbers?
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(50) Hopefully, the students can write a list of such axioms ((}=[),
O+ A=A+ CJx1=[] and so forth).

sl ]+ A =/A+[]

(52) []x 1=[]is an identity (that is, multiplying by 1 “doesn't
change anything”).

53) [ | x 1 =[]

(54) [J+ 0=, (that is, adding zero “doesn't change anything").
65 [ ]+0=[]
(56) (A B\ (0 0\ (A B
C D 0 0o/ 'C D
(57) <0 0)
0 ¢
(58) /A B . 0 0y /0 O
c D 6o o, \0 0

(59) Here we reach a crisis! The obvious thing to try is

(.
(& D=0 -0 )

... hut when we multiply these last two matrices, we encounter
trouble. ..

ABX‘II_A+B
c D 1 1/ \C+0D

and
A+B A+B A BY,
c+p c+0/*\c )

Here we face a dilemma: Qur attempt to find a matrix that “be-
haves like the number 1” has failed. Is it because there is no
matrix that behaves like the number 1? Or is it because we have,
ourselves, made some error or left our work unfinished? In the
first case, any further search will probably he in vain. In the sec-
ond case, all we need to do is to get back on the job; persis-
tence and shrewdness will ultimately be rewarded.
But which is it?

A+ B
C+D
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(60) Jerry says the “law for 1" for matrices would
look like this:

( Any 2-by-r2) The same 2-by-2
, matrix X =| matrix that you
i started with
The “1” ma-
trix, what-
ever that
may be

Can you use the 4, B, C, D, .. . notation to write Jerry’s
law?

(61} Mary wrote this:
A B A B
X f =
¢ D 1 C D
The “1”
matrix, if

there really
is any

What do you think?

(62) Can you find the "1" matrix to put into “Mary’s
law”?

(63) Don says the “1” matrix should be
Go)
1 1

(64) Can you write the “law for 1" for matrices?
What is the “1” matrix?

[STUDENT PAGE 138
This point is made very clearly in the filmed lesson entitled '*Ma-
trices’; it would be worth your while to view this film at this point.

In point of fact, there is 3 matrix that “behaves like the number

1. K 1S

and, using it, we get a perfect parallel:

Numbers

(1=

2-hy-2 Matrices

€l 9-E )
@i )3

The 1" matyix,

if there is one

(yau and | know there is, but the students
may not at this stage)

(61) Mary is correct.

(62) See the answer to question 59.

(63) This is a good guess; unfortunately, it won't work. (See the an-
swer to gquestion 59.)

(64) See the answer to question 59.

Notice that thjs is another typical Madison Project sequence of
questions. Question 59 states the task (a student might be able to
answer it completely at this point). Questions 60 through 63 con-
tain hints, methods of attack, and so on - they ‘"nibble away at the
problem,” breaking it into a sequence of easier questions. Finally,
question 64 is a restatement of question 59; by this point the stu-
dents should be able to answer it.
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(65) George says that, for numbers, there is an axiom
that says that every number except zero has a multipli-

cative inverse, so that

Ax 4=

Do you think this axiom applies to the system of ma-

trices?

(66) Can you multiply these two matrices?

GG o)

(67) George says that if we use 4 to mean

L

then the multiplicative inverse A would be

What do you think?

173

[ v
'
~ie

(65)

(66)
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Well, more or less. The parallel is not perfect:

The number 0 has ne multiplicative inverse.

o o

has ne multiplicative inverse,

The 2-hy-2 matrix

The numbers 2, 3, 4, etc., have the inverses 4, 1, 2: 2x 3 =1,
3 x+ =1, and so on.

Some 2-by-2 matrices have multiplicative inverses:
( 5 2\ ( 3 2\_/1 o
7 3 -1 5/ \0 1
Some 2-hy-2 matrices are not the zero matrix
0 o
0o 0/

and yet they have no inverses; here is one:
(6 %)
0 0
3 3)
2 2

There is no parallel, among numbers, for the matrices that
are not zero, but still don’t have inverses.

(However, after you finish Chapter 47 you may want 1o return
to this problem and think about it some more.)

NG )6 )

so that
(3 4)
F

is the multiplicative inverse of

G %

Here is another:

ul& o

~w

(67) George is right.
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)

3 5
<2 1) See the answer to question 66.

[page 139}
(68) Can you find the multiplicative inverse of this (68)
matrix?

A o

-t
7
2
3

{69) Can you find the multiplicative inverse of this (69) If you haven't already noticed it, you should now notice that
matrix? matrix muitiplication is not always commutative.
For example,

(b ot -G 3

o
~h '

-
Sl vle
P

whereas

so that

1 0 2 3 (2 3 (1 u)
o o/*\a s5/%\a 5/ o)

In other watds, if we use 2-by-2 matrices as replacements
for the variables [ | and /\, then [ | x /\ = /\ x[ ] is not an
identity!

Now that we have noticed that matrix multiplication does not
olways commute, we can be properly surprised to find that
every matrix commutes with its own inverse!

Hence,

and

is the multiplicative inverse of

-l 5
v 7
)
(70) Do the matrices (70) Yes, they do; but this is not typical of matrix multiplication in
< P - general. (See the answer to question 69.)
and 7
) ()

satisfy the commutative law for multiplication?

Slw
ol Ml

(71) Do all matrices satisfy the commutative law for (71) No. Sometimes a particular pair of matrices will commute, and
multiplication? a few matrices commute with any other matrix, but these cases
are exceptional. In general, matrices do not satisfy CLM.

(72) Can you multiply these two matrices? (72) (0 2>

20 ) L
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(73) Can you multiply these two matrices?
( o 1 ) 2 0) ( )
x =
10 (0 1
(74) Can you find the multiplicative inverse of this

matrix?
0 2

(75) Can you find the multiplicative inverse of this

matrix?
0 3

Can you find the multiplicative inverses for these
matrices?

(76) (4 0)
(o 4
(17 (p 0
o)

(78) (1 0)
0o 1

where p is a number, and p # 0.

(79) (0 l)
1 0
(80) (—;— O)
o 3
(81) (2 0>
0
(82) <3 0)
o 1
(83) (2 0)
o 3
(84) (O 2)
2 0

(85) (0 2)
3 0

[page 140]

(73) (D
2
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o)

{Compare the answers to questions 71, 72, and 73.)

(74) ( I

(75) (%

o

(76) (%
0

(77 <’p
0

(78) (1
0

0

Dualg 2o 3 7)

M- O
g

0> . where rp denotes the multiplicative inverse of

‘p/ the number p.

)

This matrix is its own inverse!

(79) (0
1

y

This matrix is its own inverse!

(80) (2
0

2)

— —

o
~—— ~——

o

e

o -

=
N — S—

|~
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(86) (0 0)
.0 O

(87) <1 0)
0 0

(88) (1 1)
0 0

(89) Can you add these two matrices?
( 1 9) (3 5) ( )
+ =
no2 6 4

(90) Can you find an additive inverse for the num-
ber7?

[STUDENT PAGE 1o
(86) We can easily prove that this matrix has no inverse:
0 0y (a 8y (0 0
0 Y o b/~ \0 0

Hence, no matter what matrix we put here, the answer will

always be
0 0
o 0/’

and hence will pever be

Consequently, the matrix
o o)
0 0
(87) Again, we can prove that this matrix has no inverse:

(o< 5)-(a 5

No matter what 2-hy-2 matrix we write here, the “answer” ma-
trix will always have a zero in the lower right-hand corner:

G o

T

o 9

Notice that we can use UV: 1 — A, 0 — B; but this only gives
us the first row; there is no way to get the 1 in the lower right-
hand corner.)

has no inverse.

Therefore it will never be

(88) Again,

(o alx(a B)-(25c =50

Hence there can be no inverse. (See the answer to question 87.)
(89) [ 4 14
17 6

(90) "7; thatis, "7 + "7 = 0.
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{91) Can you find an additive inverse for the num-
ber -3?

(92) Can you find an additive inverse for the num-
ber 07

{93) Can you find an additive inverse for this matrix?

('2 ‘3)
V0 M

{94) Can you find an additive inverse for this matrix?
5 2
a7
{95) Can you find an additive inverse flor every
matrix?

(96) Can you find an additive inverse for this matrix?
(‘7 ‘3
-1 0

(97) Can you find an additive inverse for this matrix?

(s o)
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(91) The additive inverse of ‘3 is *3; that is, 3 + "3 = 0.
(92) The additive inverse of 0 is O; thatis, 0 + 0 = 0.
Remember, when we say we are seeking the “‘additive inverse of

the number p’* what we mean is that we are concerned with the
truth set for the open sentence p + [ ]= 0.

(93)(2 '3)
.0 1.

That is,

(94) (*5 '2)
“ 1

(95) Yes. This is exactly analogous to the situation with numbers.

(96) (-7 3)
M 0/

(97) Yes, the additive inverse of

(o 0)
Y.
is
(o o)_
\o o/
that is,
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2L Ricky's Special Matrix

[page 141]

{1) Can you multiply these two matrices?
(1 5 . (4 1o)=( )

3 2 0 6
(2) Can you multiply these two matrices?

(e oG W)

(3) Ricky says that he has found a special matrix:

b %)

Can you tell what is “special” about Ricky’s matrix?

chapter38/l’ages 141-143 of Student Discussion Guide
RickY’s SPECIAL MATRIX

This chapter continues (and in part retraces) the work of Chap-
ter 37. The present chapter paralleis very closely the content of
the film "Matrices.”

Matrices is a very open-ended subject, as we shall show even
more forcefully in the following few chapters. One can continue
finding fascinating new properties of matrices, and new uses for
them, virtually indefinitely. There is no point of completion —no
ultimate "finished" picture of the entire matrix story.

Nowhere in the Madison Project materials is the “light touch” more
important than in these lessons with matrices. We recommend that
you drop the subject of matrices the moment they cease to fas-
cinate you and your students—if possible, before they cease to
fascinate you and your students.

In an attempt to provide for various student responses, we have
included far more material on matrices than you will probably
wish to use. If our extensive treatment seems somewhat heavy-
handed, we apologize, and suggest you follow our advice and not
our example.

ANswers AND COMMENTS

(1) (4 40)
12 42
(2) (AR + BT

CR + DY

AS + BU)
CS + DU.

or, in full notation (which often seems preferable for use with
children at this stage),

((AxR)+(sxT) (A

(¢ xR) + (DxT)

xs) + <axu>)

(c xs)+ (bxu)

(3) it plays (for 2-by-2 matrices) the same role that the number 1
plays for numbers. Specifically, for numbers,

x1-00

whereas, for 2-by-2 matrices, we have

oG -t 3

360
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(4) Can you find any other “special” matrices? What
is “special” about them?

(4)

RICKY'S SPECIAL MATRIX 361

There is no end to the list of possible “special” or “interesting”
matrices. Here are a few (you probably should try writing some
of this out for yourself, on scratch paper, as you read this list):

((2) g) plays a role analogous to the number 2.

(g g) plays a role analogous to the number 3.

0 1 .
(1 o) will reverse columns —for example,
A B 0 1\ _ (B A)
¢c o/*\1 o7\ ¢f
also, it will reverse rows, if used as a left multiplier:
o 1\ (a &) _ (c D)
1 [} € Db/ \A B
0 2 . .
2 0 combines the properties of
2 (] 0 1)
(o 2) and (1 o)'
that is, it reverses rows or columns, and also doubles them.

1 0 reproduces the first column, but inserts zeros for
0 0 the second column:

A 8y (1 0)_(a 0)_
c D 0 0/, \¢ o/
also, if used as a left multiplier, it deals similarly with rows:
( 1 0) (A B _(a B)
0 0 c p/ \D 0/
2 0 . . 1 0 2 0
(0 0) combines properties of (0 0) and of (0 2).

Do you see what it does?

<; g) ,when used as a right multiplier, leaves the first
column unchanged, but doubles the second column:

(A B) (1 0) A (2x8)
X = ~ H
cC 0 2 ¢ (2x0)
also, when used as a left multiplier, it deals similarly with rows.

(: :) , when used as a right multiplier, replaces each entry
with the sum of all entries in its row:

<A B\ (1 I_<A+B A+B)
C D 1 1/ ¢+D C+0D/




362 CHAPTER 38

(5) Mary says that she has found a special matrix:

L o)

Can you tell what is “special” about Mary's matrix?

(6) Can you multiply these two matrices?

e o0 ol

)

(7) Can you multiply these two matrices?

e o)l o~

(8) Jeﬂ says that
( )
0 1

is a "special” matrix. What does it do?

)

[STLDENT PAGE 141
(:) _?) replaces a matrix by its additive inverse (opposite);
it plays a role analogous to the number -1.

Evidently, one could go on like this forever. Among other pos-
sibilities:

09 9L 90 )
KT

These possibilities are listed here only to convince you that the
subject is, indeed, open-ended, and to help you be prepared for
some of the matrices that your students may ‘‘discover.”

Your students may not discover any of the matrices on this list,

or they may discover other “interesting” matrices that are not on
this list.

It is probably wise not to “show” them or “tell” them these ma-
trices. Which “special” matrices—if any—they discover is refa-
tively unimportant. What /s important is that the children under-

stand what it is that their “special” matrix does that makes it “spe-
cial."

(5) Mary’s matrix, when used as a right multiplier, reverses columns:
A 8\ (0o 1) _/(s A).
cC D 1 0o/ \p ¢/’
when used as a left multiplier, it reverses rows:
<0 1, (A B) _ <c D)
1 0 ¢ b/ \A B8/

(if you use Mary's matrix twice —on the same side—you get
hack to where you started.)

6 (B A
D ¢

7 (g g), what is “special” about this?

(8) Whsen used as a right multiplier, Jeff's matrix replaces the first
column with zeros, but leaves the second column unchanged:

A 5@ 9-( 9

when used as a left multiplier, it replaces the first row with
zergs, leaving the second raw unchanged:

o e -G o
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(9) Can you multiply these two matrices?
( 7 n) (o 0)
X =
1319/ "0 <
(10) What “special” thing did the matrix

o %)
0 1
(7 H)?
13 19,

Would it do the same thing to every 2-by-2 matrix?
Can you prove it?

do to the matrix

(11) Can you multiply these two matrices?
( 7 n) (0 1) < )
% =
13 19 1 0
(12) What “special” thing did
0 1 7 1
do to
1 0 13 19,
[page 142]

Would it do the same thing to every 2-by-2 matrix?
Can you prove it?

(13) Nora says that
1 i
I
is a “special” matrix. She says she found out by
multiplying

A N

What “special” thing does
b o
0 0

<A B) 2
C D

Would it do the same thing to every 2-by-2 matrix?

do to

{14) Can you find any other “special” matrices?

(15) Can you find a matrix that would just double
each element of any 2-by-2 matrix?

(16) Dexter says that “double each element” means:
You start with any 2-by-2 matrix

e o)
C D
and multiply by your “special” matrix to get

e o )G %)

b
Dexter’s special matrix
What do you think?

RICKY'S SPECIAL MATRIX 363
9 (o 11)
0 19

(10) See the answer to question 8. The secret of proving it, of course,
is to use variables rather than numbers.

(11) <n 7)
19 13
(12) It reversed the columns. The “proof”’ again depends upon using

variables:
(A B) y (0 1') (B A
c D 1 o " \o ¢f

(13) (o B <1 A2
c o 0 o7\ ¢
It leaves the first column unchanged, and replaces the second
column with the first. (This may be a case where the algebraic
equation expresses the idea more simply than words.) Since we
have “proved” this by using variables (“A,” “8,” “C,” and “D”)
instead of numbers, we know that it would do the same thing
thing to every 2-by-2 matrix.

(14) Again, there is no end to the potential supply. Drop the subject
before it becomes tiresome.

(15) (2 o)
0 2
(16) Dexter is right. You may want to emphasize to the children that

“2A” was used here to mean “2 x A,” “2B” means "2 x B”,
and so on.
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(17) Can you multiply these two matrices?

GG -0 )

(18) Can you multiply these two matrices?
e a6 90 )
c D 0 4

(19) Can you multiply these two matrices?

o 9 o0 )

(20) Can you multiply these two matrices?

e oG o )
c b/ \2a o

[page 143]
(21) What does the matrix

G o

do to the matrix

(22) Can you find a “special” matrix that will turn
& )
c D

(i B

What is the special trick in doing this?

into

[STUDENT PACE 143
a”n ( 9 15)
21 3

(18) (4 X A

4XB)
4 x C 4 x D

(19) The result is the same as in question 18; the matrix

4 o)

0 4
has the peculiar property that it commutes with every 2-by-2
matrix:

/4 (1} A B A B 4 0
X = X .
0 4 c D (4 D, 0 4,
An interesting (and pleasantly easy) question is: find the set of

all 2-by-2 matrices with this same property (namely, that they com-
mute with every 2-by-2 matrix.)

2xA>
2xC

(21) According to what happened in question 20, it reversed the col-
umns, and doubled every entry.

(20)(2)(8
2xD

What would have happened if we had used
2 0

as a left multiplier, instead:

G o€ o
X =7
2 0 c D
(22) The “special trick” is that we must use our “special” matrix on
the left, whereas in questions 1 through 21 we have been writing

our “special” matrices on the right.
Here is the solution to question 22:

YL (]
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Matrices: A New
Mathematical System

2358
tost

[page 144]

We have now built up a new mathematical system —
namely, the system of 2-by-2 matrices. Although, like
much modern mathematics, this system was made up
“just for fun,” it turns out to be a very valuable system.
If you continue the study of mathematics, you will find
yourself using this system again and again.

But this is not our concern right now.

We have created a new mathematical system. Let us
now explore it! See if you can think of any interesting
questions to ask.

Here are some that other people have asked.

(1) Jean wants to know: Do 2-by-2 matrices satisfy
the commutative law for addition?

(2) Hal wants to know: Do 2-by-2 matrices satisfy
the commutative law for multiplication?

(3) Jerry wants to know: Do 2-by-2 matrices satisfy
the addition law for zero?

(4) Ellen wants to know: Do 2-by-2 matrices satisfy
the multiplication law for zero?

(5) Andy says that every integer or rational number
has an additive inverse. Does every 2-by-2 matrix have
an additive inverse?

chapter 39/Pages 144.145 of Student Discussion Guide

MATRICES: A NEW
MATHEMATICAL SYSTEM

ANswErRs AND COMMENTS

(1) Yes. To prove it, you should use variables.
(2) N, not in general. For example,
(1 2) 9 (1 2) _ (3 2)
3 4 Y| o/ " \17 6
(1 2))((1 2)_(7 10>
1 0 3 4/ " \1 2

SRR I R R

Compare the answers to question 69, Chapter 37, and gues-
tion 19, Chapter 38.

(3) Yes. See Chapter 37,
(4) Yes. See Chapter 37.

(5) Yes. See Chapter 37.

365
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(6) Does every number have a multiplicative
inverse?

(7) Does every 2-by-2 matrix have a multiplicative
inverse?

(8) Do you know what mathematicians mean by
algebraie closure?

(9) Is the set of positive integers closed under
addition?

(10) Is the set of positive integers closed under
subtraction?

{(11) Is the set of positive integers closed under
multiplication?

(12) Is the set of positive integers closed under
division?

(13) Is the set of 2-by-2 matrices closed under
addition?

(14) Is the set of 2-by-2 matrices closed under

multiplication?
[page 145]

(15} Is the set of matrices of the form

G o

closed under addition?

[STUDENT PAGE 145

(6) Yes, except for zero.
(7) No. See the answer to question 65, Chapter 37.

{8) A set S is algebraically closed under a binary operation, de-
noted by v, if*

[(+€s)and (B es)]| = (« *8)ES.

Let's look at some examples:

(i) The positive integers are closed under addition because
whenever you try to add two positive integers, you can always
express the answer as a positive integer.

(it) The positive integers are not closed under subtraction
because if you try to subtract one positive integer from another,
you may nhot be able to find a positive integer for an answer (be-
cause the answer may he a negative integer, as in “10 - “13
="3).

(9) Yes; see the answer to question 8.

(10) No; see the answer to question 8.

(11) Yes; that is 1o say, if you muitiply a positive integer by a positive
integer, the result will necessarily be a positive integer.

(12) No; for example, 8 + 3 is not the name of a positive integer.

(13) Yes; that is to say, if you add a 2-by-2 matrix to a 2-by-2 matrix,
the result will be a 2-by-2 matrix.

(14) Yes

(15) Yes

Let's try it:

6 o+ (c o= o)

*We are using here some standard notations from informal “set” language.

if, speaking informaily, we think of a “set” os hing like a “bunch” or
a “collection,” then we write
a € S

to mean S is (more-or-less) a collection, and « is one of the individual things
included among the collection. if this mildly abstract language seems con-
fusing, you con forget it.

The illustrotive examples probably make clear what we mean by “alge-
braic closure.” (See, if you wish, Appendix C, for a further discussion of “sets.”)
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(16) Jerrold says that you can match up pumbers
and matrices like this:

0 0
0 <« (0 0)

o )
1 «—

0 1

2 0
2 (0 2)

3 0
3 e (0 3)

What matrix would Jerrold match up with the number
7? with the number 1?7

(17) Debbie says there is something special about
Jerrold’s matching:
If you add two numbers,
2+ 3=235,
you get a result that
corresponds to adding the
“matched” matrices:

G 96 9-6G 9

MATRICES: A NEW MATHEMATICAL SYSTEM 367

and since this "“answer’' matrix is stitl in the form

|

this set of matrices is closed under addition.
We could ask, is the set of matrices

0 A
0 0
closed under meltiplication?
Let’s try it:

6 o< o=l o

1
Any two matrices yield a result of
of this form this same form
(UY: 0~ A).

Hence, this set js closed under multiplication.
We can keep exploring special sets of matrices in this same
way. For example, is this set of matrices

o

closed under multiplication?

Let’s try it:
(o A)X<O C)_(AD o>
B 0 D 0/ \0 BC
Any two matrices yield a result which is
of this form not of this form.

Thus this set of matrices is not closed under multiplication.

(16) 7 <« (; g)

1 (“1 0)
0 1

(17) Yes, it does. For example:

Numbers Matrices

L I P
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Does Jerrold's “matching” also work out like this for
multiplication?

(18) Nancy says that Jerrold’s matching is what
mathematicians call an isomorphism.
Do you agree?

(19) Debbie says you can match numbers like this
to get an isomorphism with respect to addition:
> 2

>

AN L.

4
«> 6
«— §

What do you think?

(20) Nancy says Debbie’s matching is also an iso-
morphism with respect to multiplication. Do you think
Nancy is right?

(21) Charles made this up and claims it is a strange
kind of isomorphism:

Do you see how it works?

[STUDENT PAGE 145

(18) Nancy is right.

(19) Debhie is correct. Here is an example of how Debbie's isomor-
works: since we have

1 e 2

2 «s 4,
if we add the left-hand numbers
1+ 2,

the result should correspond to the result of adding the right-
hand numbers:

2 + 4.
That is, we should have
14+ 2 «> 2+ 4,

The question is: do we? This would mean that we should expect
the correspondence
3« 6,

and if we look at Debbie’s table, we find that she does have 3
corresponding with 6, so the correspendence is an isomorphism.
(Of course, checking one instance is not really a proof, but it
does give the idea of how isomorphisms work.)

Try some other examples. Can you use variabies to show that this
isomorphism always works?

(20) Nancy is wrong. Here is a counterexample:
1 x2«>2x4

In other words, 2 should correspond to 8 in our matching.
Does it? No!

2 <> 4

So Debhie’s matching is not an isomorphism with respect to
multiplication.

(21) Charles is correct This is a strange kind of isomorphism. Here
is an example of how it works:

101 + 202 «> 2 x4 =8
Does 303 «— 8 in our matching? Yes!

Can you see how the numbers in the second column were ob-
tained? Can you use variabies to show that this isomorphism always
works? (Actually, what Charles has here is called a "“table of log-
arithms," and it is useful for changing muttiplication problems into
addition problems.)
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i Matrices and Transformations

1
1
T

s

v

T

[page 146]
(1) Ted has a method for using matrices to map a
plane into a plane. Suppose he is using the matrix

(6 o)

He would start with a point—say, (1, 2)—and write it

( )
2
and multiply like this:

2 0) 1 (2
X = .
(o 2 (2 4
He would say: The 1mage of (1, 2) is (2, 4).
Can you find the image of (3, 1) using

G o

as a column matrix

(2) Can you give a geometric description of Ted's
mapping?

chapter 4‘0/Page 146 of Student Discussion Guide

MATRICES AND TRANSFORMATIONS

in Chapter 36 we studied transformations; in Chapters 37 through
39 we studied matrices. In Chapter 40, we bring the two ideas
together. Bringing together ideas from different parts of mathe-
matics is almost always a source of greater power and deeper insight.

ANswers AND COMMENTS

(1)

(2)

Notice that in Ted’s method, the “input” point, with its coordi-
nates written as a column matrix goes here:

6 2

Input

The “answer” (or “output” matrix or “image”) goes here:

2 0\ ~
0 2 -
t
Image point (“output™ or “answer”)

Hence, to find the image of (3, 1) —that is, to find

T: (3,1) — _2_(read: T maps the point (3, 1) into what?) —

o 2-()-()

and so the image point is (6, 2):
T: (3,1) — (6,2)

we would write

Ted’s mapping works like a “magnifying glass” or a “uniform
stretching,” by a factor of two. The point (0, 0) remains fixed,
and every figure is doubled in size (as judged by linear dimen-
sions). For example:

AY LY

¥

Before After

369
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(3) If you use Ted’s idea, but use the matrix

G 9
G 3

can you describe the mapping geometrically?

instead of

(4) If you use Ted’s idea, but use the matrix
o o
0 o/’

can you describe the mapping geometrically?

In the first and second quadrants, this is *'Debbie’s
mapping.” One could, therefore, use the present
matrix mapping as an “‘extension’ of Debbie's map-
ping, in the sense of Chapter 24.

(5) If you use Ted’s idea. but use the matrix

G,

can you describe the mapping that you get?

[STUDENT PAGE 146

{3) Again, this is a “uniform magnification” or a “uniform stretch-
ing,” but this time by a factor of 3. If you are in doubt, pick a few
points outlining some simple figure, map each point as in ques-
tion 1, and see how the image compares with the original figure.

(4) Let's try out a few points, and see what seems to he happening:

@ 9=Q)-0)

o o/ \o/” \o/

s0 M: (0, 0) — (O, 0); the point (0, 0) is not moved at all.
1 0 N LAY
0 1] 0/ \0)

so M: (1, 0) — (1, 0); the point (1, 0) is not moved at all.
6 966
0 0 o/ " \o/

so M: {a, 0) — (a, 0); any point on the x-axis is left unmoved.

o a)<()-(6)

soM: (0, 1) — (0, 0); the point (0, 1) is mapped into (O, 0).

o o) (e)- ()

s0 M:(a, b) —> (a, 0); any point is “projected” onto the x-axis.

This mapping is what mathematicians call “a projection onto
the x-axis.” For example, any point in the first quadrant will be
mapped into the point on the x-axis directly beneath it.

AY AY
® @ Original
Some original point point
in the first quadrant
o ——>
x s x

image

What happens to points in the other quadrants? (See question
36, Chapter 36.)

(5) Let's say the original point (the “input”) has the coordinates

{xg1g + Yoiq )» and the image point has the coordinates (x,,, .

Ynew /-
Then we have

0 o) () = ().
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{(6) What muapping do you get from this matriz?

0)

[
\o =1/

(73 Make up some 2-by-2 matrices yourself, and see
If you can find what kinds of geometric mappings your

matrices produce?

(6)

(7)
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and, by multiplying out these matrices, we get

new ~ Yoid *

Yoew = Xoua
But this is precisely “Nancy's mapping,” from guestion 45 of
Chapter 36.

As in our answer to question 5, we write

(o 1) <(ae) = Coe)

and we get

x = "x
new old "

Yoew = ya!d '

so that this is precisely “Ted's mapping” of question 47, Chap-
ter 386.

This can be a lot of fun. Have the students make figures (such as
the letter “A" or Christmas trees, circles, squares, or whatever)
and compare the figures “before™ and “after.” When in doubt,
use the numerical coordinates and carry out the matrix multi-
plications. What happens is a bit like the “weird mirrors™ you
sometimes find in amusement parks.
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Matrices and Space Capsules

T
T

[page 147]

You may find it easier to think about matrices and
transformations if you know something about where
they are used.

One example, very much in the spirit of the preceding
chapter, comes from space science. Suppose we have a
rocket or a space capsule (or, for that matter, an
airplane)

which is moving in space. Its motion can be very com-
plicated. It can "move along a path from one spot to
another,”

but—really at the same time as the motion above—it
can also change its orientation (or, as it is known in
space science, its attitude). For example, it can rotate

like this:

Or it can “flop over” like this: -

G

chapter4‘]./Pages 147-152 of Student Discussion Guide

MATRICES AND SPACE CAPSULES

If the preceding chapters have seemed somewhat confusing,
this chapter—which is fun and easy —may help to make sense out
of these various ideas.

ANswers AND COMMENTS

372
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Now, it is essential to predict, and to observe, the
motion of space capsules very precisely, using appro-
priate mathematics and high-speed digital computers.

The "flopping” kinds of motions are observed using
“before” and “after” pictures of the kind we have just
been studying. The “flopping” itself is regarded as a
transformation, and is studied by means of its corre-
sponding matrix. [page 148)

(1) Suppose a space capsule is represented by this
set of points:

|
[

“Before’
The set of points plotted on the graph above is the set

{(2,1), (3,2), (2,3), (1.2), (-1.1), (-3,0), (-4.71).
(-5.72), (-4,-3), (-3, a), (-2.5), {-1.-4). (0,-3),
(1.71). (21). (1, 2)}

Now, at this instant, a computer down on earth sends
up a signal which causes the capsule to fire some small

“flipping” rockets and “flop over.” The computer on
earth made a transformation using the matrix

(0 I)‘
0l 0
Assuming that the rockets all worked correctly, and

the capsule did what the computer ordered, what is the
new “position” or “attitude” of the space capsule?

(2) Suppose that the capsule started in this position
[

and the computer used the matrix

-

MATRICES AND SPACE CAPSULES 373

U Gl =)

new . Youd

Yoew = Oxold M

(Alternatively, you could avoid the use of variables here, and
map one point at a time, using numbers:

el

This gives us this set of paints:

{ (1,72),(2,73), (3, 2),(2,71),(1,1),(0, 3), ("1,4), ("2, 5),
(3,4),(4,23),(5,2),(4, 1), (3,0, ("1, 1), ("1, 2),
(2, 1}

If we now plot these points, we get:

LY

(2) and (3) We suggest you represent the capsule by actual number
coordinates, as we did in question 1, and then use the same gen-
eral method that we used there.
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[page 149]
What would the capsule’s position be after the maneu-

[STUDENT PACGE 14y

ver was completed?
(3) Suppose the capsule started in this position
| AR 1
T
S N W T - -+ - H
o 13 _+“ T
i

o

ERSSER i .
g :Et; T
i sl

and the computer called for a “flipping” movement
according to the matrix

6

How would the capsule look after this maneuver was
completed?

(4) Suppose the capsule started in this position

tl L
bbb

mEENEES EHI"

T ﬂfl"
e
fr:F T

and the computer called for a shift in attitude based on
the matrix

5

1 o/
But ... as soon as this maneuver was completed, some-

one discovered that the computer had made a mistake!
Instead of calling for the matrix

G
1 0/’
the computer ought to have called for a shift based on

the matrix
0 B
1 o)

What matrix will get us back to where we ought to be?

I
5

t—

ISR S!

(4) The matrix
oo
1 o
maps (1, 0) and (0, 1) as
M: (1,0) — (0, 1),

Mm: (0,1) — (1,0

and represents a rotation through 90° clockwise.

® Point B Image of
Point A
Point A
Image of
Point B
Before Aftter

So what hos actuolly occurred has been a rotation through 90°
clockwise.

Now the matrix

maps {1, 0) and (0, 1) as

N: (1,00 — (O, 1),
N: (0, 1) — (1,0
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[page 150]
(5) Suppose the space capsule started like this

4

[
%_
|

|

—

H

aeschi gt

| ! [
and the computer called for a shift based on the matrix

(5

‘1 o/

After this maneuver was completed, the computer
called for a shift based on the matrix

(o O

MATRICES AND SPACE CAPSULES 375

and represents a rotation through 90° counterclockwise.

& Point B ¢ Image of Point A
Point A Image of
Point B
Before After

So what should have happened was a rotation through 90°
counterclockwise. Yo get things back the way they ought to
be, then, we must rotate through 180° counterclockwise. This
means we want to use the matrix

H

twice; but that is equivalent to using the matrix

R R Ok

You can verify this, if you wish, by working everything out with
numbers, as in questions 1 through 3.

once.

(5) After the fourth maneuver the capsule has rotated 90° counter-
clockwise.

To understand this problem, let's pause and look at a little aige-
bra. The first manuever went like this:

(_O 1) x (Xold) = (;new) (N
1 0 yold new,
We can write equation (1) in a more succinct notation:

the matrix

0 1 .
<_1 O) we can write as M;

the column matrix

X
old . R — %
( ) we can write using the symbol x* ;
yold

*Column mctrices are often written using a letter with an arrow over it,
as we have done here; they are frequently called column vectors.
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After this second rnaneuver was completed, the com-
puter called for a third, using the matrix

G o

y o/

After the third maneuver was completed, the computer
called for a fourth, using the matrix

b o)
1 0/
What was the space capsule's position after the fourth
maneuver had been completed?

[STUDENT PAGE 150

the column matrix

X . -
< new) we can write as x,.
new

Then, the equation (1) becomes
T A

Now, for the second maneuver let us write the matrix

(5 3

as R, and the new coordinates as x;, . Hence, we have
R - %, =%

For the third maneuver, we again use the matrix M; let us call the

.-> .
new coordinates X,’. Hence, we can represent the third maneuver
as

-,

M. X, = 7,’1'.

Finally, if we write the matrix
0 '1)
1 0
as S, and the resulting new coordinates as ’)’(,’,”, then we can write
the fourth maneuver as

Now, let’s put all this together. Remember that our original co-
ordinates are X, and our final coordinates are x”' Then we have

- 2 2
M S- %' =x Fourth maneuver

i -2, 2.
(i) M- %, = x,

It

Third maneuver

Gi) S (M- ‘x’,’,) = X" PN, from line (i), using line (ii)

(iv) (S . M) . *x:,l’_ =X ALM (which works also for
matrices!)

v R-X =% Second maneuver

W (S M) (R-TF)

=% PN, from line (iv), using line (v)
(vii) [(S M R] - X,
= X5 ALM

i) M - X, = X, First maneuver

i [(s - M) - R] -
(M ) X5 PN, from line (vii), using line
(viii)
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® (s M) R] M}
1 ALM

0 n

Hence, we see that the matrix
[(s-m-R] M

will take us from the first initial coordinates directly to the final
coordinates. Let’s see what the matrix is:

0 °1> 0 1 1 o0
S M (1 o/ (‘1 o)z (o 1>
1 0 1 0 1 0
(- M- R (o 1) ' (o -1> :<o '1>
10 0 1> 0 1
[(s- M- R] - m: <o -1)'(-1 0=(1 o)
Hence, the single matrix which we shall call £
0 1
o
represents the result of all four maneuvers together! Now, what does
o 1
-
do?
Let's try (1, O) and (0, 1):

F: (1,00 — (0, 1)
F:(0,1) — (1,0

. Image of
¢ Point 8 ? Point A
Point A fmage of
Point B
Before After all four maneuvers

Consequently, the combined effect of all four maneuvers is a ro-
tation 90° counterclockwise.

We can also do this geometrically, using almost no algebra! Here
1s how:

(a) The first maneuver used the matrix

!

We saw (in question 1) that this corresponds to a rotation of 90°
clockwise.
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[STUDENT PAGE 150

(b) The second maneuver used the matrix

5 9

which [as you can easily verify for yourself by studying what hap-
pens to the points (1, Q) and (O, 1)] corresponds to a rotation
through 180° (for 180°, it doesn't matter to the final position
whether we turn clockwise or counterclockwise).

(c) Putting the first two maneuvers together, we get 90° clock-

wise
.

then 180° counterciockwise

which amounts to 30° counterctockwise

p

(d) The third maneuver again used the matrix

!

that is, another rotation 30° clockwise; hence the resuit of all
three maneuvers thus far is to return to the original orientation

7l

(e) Finally the fourth maneuver used the matrix
0 "1
1 0/’

$: (1,0) — (0.1)
$:{0.1) — ("1,0)

which works like this:

p Point B ¢ 'mage of
. Point A
Paint A Image of
Point B
Before After

Thus this fourth maneuver is a rotation through 90° counterciock-

wise
.

This, then, is the final result of all four maneuvers together: o
rotation counterclockwise through 90r.
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(6) A space capsule went on a long flight, lasting
seven months. At the beginning of the flight, the cap-
sule’s attitude was like this:

L |

|
i |
i
s
!

- T o et
] I ? +

[page 151]
During the flight, the computer called for 260 shifts,
according to this list:

31 shifts, each based on the matrix
G o
1 o/’
26 shifts, based on the matrix
SN
-1 o/’
203 shifts, based on the matrix
(o %)
0 Ry

What was the attitude of the space capsule after all of

T
/!
T
I

these maneuvers had been completed?
A TABLE OF MATRIX INVERSES

You may find it convenient to have this table of
matrix inverses available in case you ever need to

b )

use it.

D6 Y-

- — ———
- O W (=
o - w o N O
Rl —— ——
X x x
L — ———
- O w- O -
o~ el © »- O
e N N ——
i} 1§ n
P T —
o — O wi- O =

v O - o
- Q

X %

o

55 &%

[A M=) )

Il i

P

o = =

e ze°

(6)
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Putting all these shifts together, we have 31 rotations counter-
clockwise, each through an angle of 90°. Now, every four such
rotations gets you back where we started; hence, 31 - 28 = 3,
and the result thus far is three rotations counterclockwise
through 90°, which is eguivalent to one rotation clockwise

through 90-:

We then have 26 rotations clockwise, each through an angle of
90°. Again, four get you back where you started; 26 - 24 =2, so
this is equivalent to one rotation through 180°. Combining with
the preceding result gives us

AN

the equivalent of one rotation through 90° counterclockwise:

Va

Then we consider the 203 rotations through 180°. Now, any two
of these get you hack where you started; hence, 203 - 202 =1;
this is equivalent to one rotation through 180°. Combining with
our previous resuit, we have

ARy

which is equivalent to one rotation clockwise through 80°:

Y

Hence, the finol orientation is:

ﬂ\Y

X‘r

~
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[page 152] This table of matrix inverses will be helpful in Chapters 42 and 43.

606 Y6 D6 9 )

1111 11 0 0 11T 00
0111 0110 011 0
0011"001—12001-1
0001 0001 001

tr1 1000
X(OI'II ___0100>
0011 0010
0001 000

124 12 12 8 124
456X“23]0='2 3 10 |x14 56

J 11 171 11 3 J 11

100
ot1o
001



}
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CHAPTER 42
Simultaneous Equations

[page 153]

(1) These are known as “simultapnecus equations™

§D+A=10

(O-A-e

The same number must go in both [ ]'s, and the same
number in both /\'s. Can you find the { ] number and
the /\ number to make both statements true?

(2) Can you find the[ Jnumber and the /\ number
to make both statements true?

'D+A=25
(-A-

chapter 42 [Pages 153157 of Student Discussion Guide

SIMULTANEOUS EQUATIONS

In this chapter we cover a lot of ground, Although we deal with
only one topic ~ solving simultaneous linear equations — our meth-
odology develops rapidly. We begin by merely guessing. This method
is valuable, and has been unjustly disparaged in the past. Unless
we inhibit our students, they enjoy guessing; and "‘looking at the
problem until you can find a clue that leads you to the answer"
gives a very deep insight into the nature of the problem. Hf we let
our students develop an expectation that they do not need to ex-
plore, that they can merely wait until we tell them the answers (or
at least until we show them the method), then the students almost
visibly wither before our eyes-after awhile, they never seem to
discover or explore on their own; they just sit there and wait until
we tell them.

The preceding paragraph attempts to defend our first method
of approach in this chapter: by guessing (or, more accurately, by
looking for clues). We quickly move on to other methods. The prob-
lems are arranged so that the students learn to turn a "'simulta-
neous linear equation'” problem into a ‘‘matrix” problem. They
can solve the resulting “matrix”’ problem by using the Table of
Matrix Inverses given on pages 151-152 of the student book. This
approach should be easy enough if the students have had suffi-
cient experience with matrices in the preceding chapters.

Finally, in question 15, we suggest a parallel between simuita-
neous linear equations and one equation in one unknown. If ques-
tion 15 seems too sophisticated for the children in your classes,
then please leave it out.

ANswers AND COMMENTS

in questions 1 through 5, the “‘method’’ is merely that of ‘‘look-
ing carefully at the problem.”

(1 9—>D
1——>A

(2) 24_>D
1——>A

381
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(3) Can you make a numerical replacement for the
variable 4 and a numerical replacement for the vari-
able B, so that both statements will be true?

‘§A+B=16
lda-B=12

(4) Can you make a numerical replacement for the
variable x and a numerical replacement for the vari-
able y, so that both statements will be true?

g.\' + ¥ 101
X -y =99

)

(6) Can you find the truth set for this pair of simul-
taneous equations?
$A+(2xB)=104
ta - (2 x B) =96
(6) Can you find the truth set?
§(2XA)+(3XB)=‘03

'(5xA)+(5><B)=255

[STUDENT PACE 153

3) 14 — A
2 — 8

(4) 100 — x
—

(5) 100 — A
2 —

(6) 50 — A
1 — B

This is the first problem where the students may be unable to
guess the answer.

Here we start a more systematic method. First, we take our two
equations:

(2 x A) + (3 x B)
(5 x A) + (5 x B)

103,
255.

il

Then we rewrite them in matrix notation, as

2 3y (A) ~ (103)
5 5 B 255/
Next we look in the Table of Matrix Inverses to find the muitipfica-

tive inverse of
5 5 '

o9

Now we “‘left-multiply’” both sides of equation (1) by the inverse
(—1 3 (2 3) (A‘ (‘1 3;) 103)
= X .
1 2/ \s s/ \s 1 2/ “\255

Next, we use ALM:

GG g@-C -G

which is

W o

ofw
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(7) Debbie has a secret method for solving simul-
taneous equations. She used her secret method on the
pair of simultaneous equations

{(2xA)+ (3xB)=14
| (4 x A) + (5xB) =26
and she says the correct replacements are
4 s A
2 — B.
Is Debbie right?
[page 154]
{8) Debbie explained her secret method like this:
First, she took the equations
{(2x4)+(3xB)=14

| (4x A)+(5xB)=26

and rewrote them as a problem in matrix multipli-

- 2)<(5)- (o)

Then, she looked in a table to find the multiplicative
inverse of the matrix

(2 3
4 5/
What she found was

3 2

2 2

3
Then, she took this inverse, and wrote
(3 2+ - G)-(G ) o)
2 1 4 5 B 2 26

Then she used the associative law tor multiplication
(ALM), and got

G 3630 -G -G

Then, she said

GG -6 )

and so she wrote

G Ve 2 )(ae)

SIMULTANEOUS EQUATIONS

Finally, we carry out the matrix multiplications
(1 0) (A) (‘103 + 3 x 255)
0o 1/7°\8/ \103 - % x 255/

(&)- (%)

so that A=50and B=1.

383

(7) and (8) This is the same method that we used in answering gues-

tion 6.

T
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Finally, she carried out both of these matrix multi-
plications and got

A\ /(% % 14) + (3 x 26)
(13)_((2 x 14) + (1 x 26)>'
which is the same as
A=($x14)+(3$x26)=35+39=4
B=(2x14)+ (1 x26)=28-2=2
Can you understand Debbie's "secret method”? Do you
think you can use it to solve simultaneous equations?
(9) Try Debbie’s “secret method” on this pair of
simultaneous equations:
f(2xa)+(3x8)=23
1(4x4)+(5xB) =060

Were you able to make it work?

[page 155]

Can you solve these pairs of simultaneous equations?

1o ((5 x 4) + (6 x B) =183

(3 4) + (4 xB) =15

(9) (i :) »

G

[STUDENT PAGE 155

)~ (6o)

The table tells us that the inverse matrix is

S0 we write:

(
K

(10) {95 6 »
3 4

N su N wlw
R N QT
~—— ~——
X X
=

(8

)- (%)

The table tells us the inverse matrix is

S0 we write:

—
ad N e N
i
e 0
~—
X

bR

G 3)
HEY W R R
(6) - (s 3ms)

3 x 183 + § x 115

[ERY

_(366—345 )
T \3x91F+5x 57%

_ (21
B/ \13
A = 21
B =13
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D A7 x A) + (10 x B) = 440
I(5x A) + (7 x B) = 310
12y {(3x4)+ (7 xB)=12

I(s x 4) + (12 x B) = 20}

Can you solve these systems of simultaneous equa-
tions?
(13) s(]xA)+(2xB)+(4XC
)(AXA)A— (sxB)+(6%xC
)

[(1x4) r (1 xB)+ (1 xC) =15

14 A +(2xB)+(4xC)=35
(4x4)+ (5xB)+(6xC)=46
B + C =7
[page 156]
{15) Mary Frances says that Debbie’s method for
simultaneous equations is really like a method for
solving “one equation in one unknown.” To convince
her friends, Mary Frances wrote this:

(11)

SIMULTANEOUS EQUATIONS

b 505

The table tells us that the inverse matrix is

('7 1‘0)
5 7
S0 we write:
-7 10) (440)
X
5 -1 310

e - |
o () - (e )
<

(‘1 o) y (A) _ (3080 + 3100)
0o 1y T\ 2200 - 2170

385

———~ @
L Y
N—
i

w
non
w N
o o

You can solve problems 12 through 14 by the same method.

(12) A =
B =3
(13) A = 1
8 =12
C =2

(14)

(15)

Notice that in this problem the matrix equation is

1 4 A 33
4 5 6{x|B|=|761L
1 1 1 C 15
A="1
B =2
c =10
| myself think Mary Frances’ remark is interesting and valuable.

Admittedly, it is a bit complicated.

The point here is to suggest a close parallel between simul-
taneous linear equations and the theery of one equation in one
unknown.

School children may regard this mainly as an interesting cu-
riosity, and we would leave it at that for the time being. Actu-
ally, it is a very suggestive curiosity, pointing toward the great
value of the modemn theory of linear operators on function spaces
or linear spaces. At present “linear spaces” constitute a very
advanced (and somewhat esoteric) mathematical topic, but one
which may become much more familiar in the years ahead.
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Debbie’s “Secret” Method

Mary Frances' “Short-
hamd” Way of Writing
Debbie's Method

An example of "One Equa-
tion in One Unknown™

The original problem:

Identify the coefficients
of the "unknowns";

Find the mulliplica-
tive inverse for this
coeficient:

"Lelt-multiply” the
original equation by
this inverse:

Use ALM:

Use the "inverse” prop-
erty.

Use the Law for L, in
appropriate form:

Ang get:

Complete any unfin-
ished muitiplications:

G D@

GG 5= -G )

HOR ¢ SR

D@ = G

o~

DG 3 - (D=

G V@ - G D@

—
o

G =@ -

L]

(3= G D)

(&)

1

"Tx20 ¢ (10 % )s_))
((Sx 27) -+ (71X19)

() = (i "T5)
@ - Q)

1A

2-B

tor the truth set 15 1, 2)} ;

Do you think Mary Frances has a good idea here, or
not? What is wrong with her idea? Is there anything

good about it?

e - . . I
*We are using arrows over letters (as with u) to indicate onlumn matrices

let M stand for the matrix

G

let & ffor “unknown™)
stand for the olumn
matrix*

(8)

R tfor "known™ stand
for the column matrix

)

then, the matrix problem
can be written as:

M =K

Mxo=K
!
here

M % M =], where | stands
for the matrix

G

M X (M )=

K

CMXMixas MK

Ixu="MxK

us MR

u— MxKisas far as you
can go in the “shorthand”
nolation.

IXN=12

IXN=12
1

here

3=

[page 157]
IXBxMmyxi2

(—}XS)X.‘\" $x12

TxNv=%x12
TxN=N

N-fxi2

N~=4

AN

(or, the truth set is [4}}

[STUDENT PACE 157



CHAPTER 43
gl Taxis, Widgets,

and Alpha-Beta-Gamma Mix
[page 158]
(1) The Hurry-Up Taxi Company owns some sedans
and some station wagons. In 1945 they owned 3 station
wagons and 7 sedans. In 1966 they owned 5 station
wagons and 12 sedans. In 19465 the company earned a

i

chapter4‘3/l’ages 158-159 of Student Discussion Guide .

Taxis, WIDGETS, AND
ALPHA-BETA-GAMMA MIX

The purpose of this chapter is to give a few word problems that
lead to systems of simultaneous equations; the problems, and es-
pecially the first problem, give some idea of the somewhat oblique
way that mathematics relates to reality.

For example, in problem 1 there are no “numbers,” or any other
mathematics, in reality itself. In order to use mathematics we must
talk about not reality itself, but simplified abstract ‘models” of
reality.

Jo put this same idea another way; in problem 1 we are asked to
determine a purchase of vehicles, sedans and station wagons, that
will maximize a taxi company’s profit in the year following the pur-
chase.

Can we possibly "figure this out’’? Obviously, we cannot — not in
actual reality. To do so would require us (or the taxi company) to
predict the future for one year in advance, and not even mathe-
matics can predict the future. For example, it could turn out that,
in the production of new cars, certain defects (this year!) might
appear in station wagons but not in sedans. The taxi company
could not know this in advance. Again, after the company bought
station wagons, the town council might pass a law making it ille-
gal to use station wagons as taxis and limousines. Again, the com-
pany might not be able to predict this in advance.

There are many other aspects of the future that the company can-
not necessarily predict in advance: Will business for large groups,
traveling in limousines, increase or decrease next year? Will any
unusual services the company provides begin to “catch on” and
create new demands for service? Will their accident record next
year be better or worse than this year? (That can make a difference,
since station wagons cost more than sedans.)

What, then, are we to do? We must make some simplifying as-
sumptions if we are to make use of the data given us. Our con-
clusion will be valid to the extent that these assumptions are good -
approximations to reality, and only to this extent.

Additional problems (and easier ones) leading to systems of
simultaneous equations can be found in Discovery, Chapter 46.
Also, some interesting problems (arising in geometry) are given on
pages 248, 249, 250, and 252 of Brumfiel (75). See also Beber-
man (87).

ANswers AND COMMENTS

(1) Let us assume, first, that the situation is not changing rapidly
over a three-year period, so that we can assume things are the
same in 1985, in 1966, and in 1967. Let us also assume that,
averaged over an entire year, every sedan earns as much as
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profit of $53,560, after all expenses were paid. In 1966
the company earned a profit of $91,000, after all ex-
penses were paid.

For 1967 they can buy a few additional cars. Should
they buy sedans or station wagons?

(2) The Acme Widget Company sells widgets. How-
ever, they also sell wigglyups. On the day before Christ-

(2)
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every other sedan, and every station wagon earns as much as
every other station wagon. With these assumptions, we can
make use of the data given to us.

Suppose that the average earnings, after all expenses are
paid, for one year for a sedan are represented by D dollars and
that the annual earnings after expenses of a station wagon are
w dollars.

Then, for 1965, we have

(3 x w) + (7 x D) = 53560,
and for 1966 we have
(5 x w) + (12 x p) = 91,000.

In other words, we have this system of simultaneous equations:

§(3 x w) + (7 x D) - 53560
)(5 x W) + (12 x D) = 91,000.

In matrix form, this would be

G ) () - (o)

Using Debbie's method, we solve this as follows:
127\ ( 7\ (W) _ (12 7\, (53560
5 3 5 12 p/)| {5 3 91,000
(12 -7) 5 (3 7 w\ _ (12 7y (53560
5 3/"\s 12/ *\p 5 3)

91,000

<
6 9--12 Y-

w) (12 x 53,560) + (“7 x 91,000)
p/ \(5x 53560)+ (3 x 91,000)
w\ (5720
D,/ \5200
In other words, after paying afl expenses, a sedan earns a
profit of $5200 per year, or (on the average) $100 per week,
whereas a station wagon earns $110,
if the company can buy the same number of new station wag-
ons as they could sedans (charging off the higher wagou cost as
part of the “expenses already paid” before reporting these fig-
ures), then they will be better off to buy all new wagons, getting
no new sedans. Hf they could buy more sedans, then they must
balance this against the fact that wagons earn 10% more after

all expenses are paid. (This might depend upon how the com-
pany went ahout the task of raising additional capital.)

w

One way to tackle this problem uses simultaneous equations
and “Debbie’s method.”
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mas they were hurrying to get all their orders packed
into cartons, sealed, addressed, and shipped off.

Somebody found two cartons which had been packed
and sealed, but not labeled! What was in them?

Well, they were either the order for Smith’s Depart-
ment Store or the order for Edward’s Emporium. But
which were they?

The Smith’s order called for 2 cartons, one containing
7 widgets and 10 wigglyups and the other containing 5
widgets and 7 wigglyups.

The Edward’s order called for 2 cartons, one con-
taining 6 widgets and 10 wigglyups, the other con-
taining 5 widgets and 8 wigglyups.

One man suggested weighing the cartons. They did
and found that the first carton weighed 59.4 pounds.
The second carton weighed 41.8 pounds.

Larry, one of the men in the shipping room, said,
“Now 1 know; this must be the order for Smith's!”

Bill, another shipping room man, said, “I'm sorry,
Larry, old fellow, but you're wrong! That must be the
order for Edward's!”

Was either man right? What do you think?

(8) The Cochran Chemical Company had a large
supply of three chemicals, which we’ll call alphathane,
betathane, and gammathane.

They also had a District Manager who wrote all of
his records on old envelopes and then usually lost the
envelopes.

The First Vice-President telephoned the District
Manager and asked how much alphathane, betathane,
and gammathane he had in his storage spaces.

But the District Manager had written the amounts
on an envelope, and he couldn’t find the envelope. Then
the District Manager spotted an old envelope where he
had worked out some calculations, and he read this to
the First Vice-President:
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Let D be the weight of one widget and G be the weight of one
wigglyup. #f this is the Smith order, we have

§(7 X D) + (IO X G) = 594

<

[(5x D)+ (7x6) =418

which can be written

710\ (o) _ (594
5 7 G/  \418)
Using Debbie's method, we get
<D> _ <7 10) y (59.4)
G/~ \5 7 41.8
(‘7 x 594) + (10 x 41.8) = 2.2
(5 x 59.4) + (7 x 41.8) = 44

It

D
G

1]

This seems to be consistent with the data given to us. Appar-
ently the order could be for Smith's!

But wait! This does not yet settle the matter! Perhaps the Ed-
ward's data will also prove to be possible! if the order is for
Edward’s, we have

S(B X D) + (10 x G) = 594
|(5 x ) + (8x6) =418

6 10 b\ (594
5 8)%\e/ \a18
D\ (4 5 59.4
6 ~\3 3/ \as8
D = (74 x 594) + (5 x 41.8) = 209.0 + 2376
Without going further, we see that
D <0,

which is clearly impossible. This cannot be the order for
Edward's!

(3) Suppose the district manager has A tons of alphathane, 8 tons
of hetathane, and C tons of gammathane. H he used oll of his
alphathane, A, plus twice his amount of betathane, A + (2 x B),
plus four times his amount of gammathane, A + (2 x B) + (4 x C),
he would end up with 370 tons of soft mix,

A+ (2x8)+ (4xc)=370
If he used four times as much alphathane as he has,(4 x A),
plus five times as much betathane as he has, (4 x A) + (5 x B),

plus six times as much gammathane as he has, (4 x A) + (5 x B)
+ {6 x C), he would end up with 880 tons of ardinary mix,

(4xA)+(5xB)+(6xC)=880.
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“If 1 wanted to make 370 tons of soft alpha-beta-
gamma mix, | would need all of the alphathane I have,
[page 159]
plus twice as much betathane as I have, plus 4 times
as much gammathane as | have. If 1 wanted to make
880 tons of ordinary alpha-beta-gamma mix, I would
need 4 times as much alphathane as I have, 5 times as
much betathane as I have, and 6 times as much gam-
mathane as | have. But, on the other hand, 1 could
mix together all the alphathane, betathane, and gam-
mathane that I have, and I would get 180 tons of hard
alpha-beta-gamma mix. Does that answer your
question?”

Does it?

[STUDENT PAGE 139
If he had put all of his alphathane, A, plus ail of his betathane,

A + B, plus all of his gammathane, A + B + C, together, he would
have had 180 tons of hard mix;

A+ B + C = 180.

Conseguently, we have the system

~(1 x A} + (2 x B) + (4 xcC) =370
(4><A)+(5><B)+(6xc)=880
)('lei)+(‘1xB)+(_1xC)=180

1 2 4 A 370

4 5 6lx|B]|=|880

1 1 1 C 180

A 1 2 8 370

B|= (2 3 10 ;x |880

C 1 1 3 180

A= (1x370)+ (2x880) + (8 x 180) = 50
B = ("2 x 370) + (3 x 880) + (10 x 180) = 100
Since
A+ B+ C =180,
we must have
c = 30.
Consequently, the district manager has — or, perhaps, the ex-

district manager had — 50 tons of afphathane, 100 tons of beta-
thane, 30 tons of gammathane.



CHAPTER 44
New Ways of
Writing 0ld Numbers

[page 160]

(1) Dan made up a number system with numbers like

@, B, y. 8. €. A, v, &, -+ . Dan’s system worked like this:

BEAVAR VRN (N EVAVERY/
HERVARAVIRR (MEVAVERV
[

Is Dan's system really a new system or is it just a new
way of writing an old system?

chapter 4‘4‘/!’«;;9,5 160-161 of Student Discussion Guide

NEw WAYS OF
WRITING OLD NUMBERS

Before teaching this chapter, you may want to view the fiim
entitled “Complex Numbers via Matrices.”

ANnswers AND COMMENTS

(1) Actually, Dan’s description is not complete, but as far as it
goes it appears to he a description of the nonnegative integers.

Dan’s identity
(e e -0

suggests that « is reaily another name for our old friend
zero. This interpretation is also consistent with Dan's identity

(e e,

which appears, then, to be saying

[Jxo0=o
[Jxe =[]

- suggests that 3 is really just a new name for our old friend 1.
In that case, Dan’s statement

B+ B =

indicates that v is merely a new name for our old friend 2.

Our verdict woutd be that this does not appear to be a new
mathematical system. Dan has merely given new names to a
familiar old system.

Dan’s identity

We could express this by saying that there exists an isomorphism
between Dan's {a ,B.7,a,...} and the set of nonnegative in-
tegers {O, 1,2, 3, } Now, as we have seen earlier, an isomor-
phism is a one-to-one correspondence, in this case belween {a,

B,v,a,...} and {0, 1, 2,3,...}:

a «—>
B «— 1}
YT e 2
o «> 3

391
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(2) Sarah says Dan’s system is really an old system.
Dan just writes it a new way. Sarah says she knows
what « really is. Do you?

(3) In Dan’s system, what is 8? How do you know?

(4) In Dan’s system, what isv?

[STUDENT PACE 160

In this case, the correspondence has the property of ‘‘preserving”
sums and products. For example:

« x B = a D (1’ Ox1=0
B e 1
B +7 =38 Y e 2 l1+2=3
§ &« 3
We could also say this by saying that if S{e, B, v, ...) is any
statement involvinge , 8, v, ...,and if (0, 1, 2, .. ) is the cor-
responding statement involving 0, 1, 2 ..., then S{«, 8,7.,...)

is true if and only if S(0, 1, 2, ...) is true,

S(e,B,7,...) & 8(0,1,2,...).

Some descriptions are '"complete’” in the sense that they specify
exactly one thing. Other descriptions are "incomplete” in the
sense that they might refer to one thing, or perhaps to a second,
and so on.

Thus, ''Mrs. Brown" is an incomplete description: you cannot be
sure who is meant, since there are surely several people who fit
this description.

""The tall lady with the red hair and blue eyes" is an incomplete
description, since surely there are several of these.

“Miss Cynthia Parsons, who in September, 1964, lived in an
apartment house at the corner of Massachusetts Avenue and
Beacon Street in Boston, Massachusetts, U.S.A." is probably a
complete description, since it probably identifies exactly one
person.

Now, in mathematical Jogic, a description which describes
exactly one thing (which will usually mean '‘exactly one math-
matical system") is called categorical.

Obviously, as the examples above show, the ordinary work of
the world is handled by using incomplete descriptions. Complete
descriptions are usually long and awkward.

The same is true in mathematics, and in this book we shall use
incomplefe descriptions of mathematical systems -- that is, de-
scriptions which are not logically categorical. For example, Dan’s
description is not categorical.

That means we have to agree to give one another credit for
generally good intentions: since Dan's description is not cate-
gorical, you can't tell, for sure, just what mathematical system
he is talking about. Hence, you can't be sure whether it's a
"new” one, or just a renamed “old"’ one.

But just as we do when someone says “the lfady in the brown
coat,”” you have to assume that we mean more or less what we
appear to mean. We are not “throwing any curves” - at least,
most of the time, we are not.

(2) « is merely Dan’s way of writing zero.

(3) B8 is merely Dan’s way of writing one.

(4) 7 is merely Dan's way of writing two.
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(5) Is Dan’s system really a new system, or is it
really a new way of writing an old system?

(6) Ellen made up a number system, with numbers
like ¢.&.u,L, 0,k 7,4, - -. Ellen’s system worked
like this:

R VARRVIR I EWAV ARV,

(A x V) =[x A) <V

VARRVARS(MENAVEX(ERVS
]

X

L]

il

(+ -

Dx £ [page 161)
[xe =01

b « &

¢ + €& =

E + & = K

B+ &=

L +¢ = 0

Is Ellen's system really a new system or is it a new
way of writing an old system?

(7) Jerry says that Ellen’s system is really an old
system. Jerry says that ¢ is really 0, £ is really 1, n is
really 2, and so on. Do you agree?

(8) Martha says that Ellen’s system is really a new
system, because ¢ is somewhat like 0, but not entirely
like Q. What do you think?

(9) Louis made up a method of writing numbers
using 2-by-2 matrices. How do you suppose Louis
wrote 07

(10) How do you suppose Louis wrote 1?7

(11) How do you suppose Louis wrote 27

(5)

(6)

(7

(8)

9
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it appears te be our old friend, the system of nonnegative in-
tegers ‘

{0.1,2,...}

At first glance, we see

e =0

which can refer to a familiar old system only if ¢ is a new
name for zero. But we also have

[Jxe =1
which appears (at first glance) to require that ¢ he a name for
one.

These two identities, considered together, seem to say that
Ellen’s system musf be a new one, quite unlike any we've seen
before.

But, there is a catch here: Perhaps ¢ is a name for zero, and
ali Ejlen’s other symbols also name zero. This witl make every-
thing come out all right, and we shall have described the system
which contains only zero. But there is one obstacle to this inter-
pretation, namely, Ellen’s statement

¢ ¢,

which says that ¢ cannot name the same thing that ¢ names,
Putting all of this together, we conclude that Ellen’s system
must be a new one.

No. Jerry's interpretation will not work. It would require

Dx§=§ to mean Dxl=1,
[]x ¢ =[] tomean [ 1xo0=[],

¢ = £ to mean 01,

These statements cannot be reconciled with any of our previous
mathematical systems.

Martha is right.

touis wrote zero as (0 O
0 Q/

(10) Louis wrote 1 as (:) ?)

. 2 0
11 te 2
(11) Louis wrote 2 as <0 2) .
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(12) How would 2 x 3 = & be written, in Louis's
system?

(13) How would 2 + 3 = 5 be written, in Louis’s
system?

(14) How would Louis write "4?

(15) How would Louis write the integer A?

(16) Bernjice says that Louis has set up an iso-
morphism between our usual numbers and a subset of
the set of 2-by-2 matrices. What do you think?

(17) What subset of the set of 2-by-2 matrices did
Louis use?

(18) Under Louis’s isomorphism, what *old-fash-
ioned” number corresponds to the following matrix?

b )

[STUDENT PAGE 161

(15) <A 0)
0 A

Nate: The correspondence

0= (5 4
o 9
2= (5 2
A e (g 2) where A is any integer

is an isomorphism. This is the meaning of questions 12 and 13,
and other similar questions.

(16) Bernice is correct.

(17 (A 0)
0 A
if you assume A is an integer, this system of matrices is isomor-
phic to the system of integers. If you require A merely to be a

rational number, this system of matrices is isomorphic to the
system of rational numbers.

(18) None. This matrix does not appear in Louis's system.



CHAPTER 45
The Hesitant Search
for New Numbers

1
i

[page 162]

The origin of the basic ideas of counting surely dates
back to quite early prehistoric times. Of course, as we
have seen, our present method of writing the numbers
that we use in counting (that is tosay, 1,2, 3,...) comes
from the Hindus. Our method may have been intro-
duced to France and Italy, by way of Spain, by Pope
Sylvester I, who, as a young man, had studied in
Spanish schools run by the Moslems. The date for this
is about 1000 A.D.

However, it appears that the method of writing

1,23, 4,...

was perhaps the only number idea that Pope Sylvester
n brought'back from Spain. He appears not to have
brought back the important idea of zero, although the
Hindus had conceived the idea of zero at least as early
as 800 A.D.

There is a strange theme of searching and rejecting
that threads through the history of mathematics, from
the ancients down until nearly the present day: this is
the hesitant search for new kinds of numbers.

If, in fact, you know only the “counting” numbers,

1.2,3,4,...,

then what do you do when you want to cut a pie, or
divide up a candy bar, or give number names to all of
the points on the number line?

This, and similar problems, led men to invent num-
bers such as

wi-

1=
N
~i-
win

and so on.

Y

chupzer4‘5/[’ages 162-164 of Student Discussion Guide

r B
'HE HESITANT SEARCH
FOR NEW NUMBERS

Before teaching this lesson, you may want to view either the film
"Solving Equations with Matrices’ or the film ““Complex Numbers
via Matrices.” Another relevent film, showing small-group instruc-

tion with a class of sixth-grade children is entitled "'Small-Group
Instruction: Committee Report on Rational Approximations.'

ANswers AND COMMENTS
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In 1484 the French mathematician Chuquet worked
out many ideas about exponents. He came to recognize
the role of negative integers as exponents, which we
have seen in such problems as

X3 -
F = X2
Over a century earlier, Nicole Oresme (born in Nor-
mandy about 1323; died in 1382) had worked with the

number line:

Both of these notions create a natural role for nega-
tive numbers, but their introduction and acceptance
were gradual. People needed them, but they “didn’t
really believe in them.”

For example, in 1544 the German mathematician
Michael Stifel (1486-1567) published a volume entitled
Arithmetica Integra. In this book, Stifel recorded the
lines of “Pascal’s triangle” as far as the line for

(R+8)" =R” + 17R*S + --- + S".
[page 163]

He used letters to represent “unknowns,” and used
the modern symbols + (for addition), — (for subfraction),
and V (for square root). However, when Stifel encoun-
tered negative numbers as elements of the truth set
for an open sentence, he rejected them, apparently not
considering them “really appropriate,” or something
of the sort.*

In 1572 Rafael Bombelli worked effectively with
negative numbers, and appeared to have a considerable
understanding of them.

But, even after you have the counting numbers!

1,2, 3,4, ...
and also zero

0,1,2 3, 4,...
and also fractions and “mixed numbers”
0,1,2 % % 3% 2% ...
and also negative numbers.
0,12 %+ 3 325,71, 2
you still encounter the need for new kinds of numbers.
Why?

*Compare Eves, op. cit., p. 212
{ Nowadays, in the twentieth century, you can find different books by different
authors that use the words “counting numbers™ to have different meanings.
'This, of courye, 18 inevitable. Not all authors agree, no matter what the topic
under discussion may be. In particular,one will nuwadays sometimes see the
words “counting numbers” used to refer to the elements of the set (I, 2, 3,
4,...} and in other bocks these words will refer to the elements of the set.
{0.1,2,3.4,...}. If we construe that "counting” refers to the process most of us
us¢ when we "count on our fingera,” then it seema reasonsble to say that the
counting nurbers are 1, 2, 3, 4, .. .; on the other hand, as is sometimes con-
venienl, if we choose to regard the counting numbers as the ordinary answers
o questions of the form “how many?” then it is reasonable to assume that we
ara talking about the et {0, 1, 2, 8, 4, ...}, since it may well happen that
when someone says "How many brothers do you have?” the answer will turn
out to be 0. Some people wish that all books were in complete agreement, but
there ia reason to feel thal as long as life goes an this will not occur. sad per-
hape it 18 & good thing that it won't,

i

[STUDENT PAGE

163
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We have said earlier that the ancients, and the early
Renaissance mathematicians, had worked out the gen-
eral solution of the general quadratic equation. That
was S0, in a purely “procedural” sense that paralleled
our own derivation of the solution of the general qua-
dratic equation. They knew what to do— provided it
worked out satisfactorily!

Now, there is one step in the procedure that will
sometimes fail to work out satisfactorily: this is the
process of taking the square root.

This can be written either as

X -Ax+B =W

e Nw-B (@ 4-w-n (@]

or else as
ax? + bx + ¢ =0
o b:VE
2a
If

W—-B’+(‘g)z

is a perfect square, such as 16 or 49 or 121, there is
no difficulty. But there are two cases in which there
[page 164]
are difficulties —difficulties which early Renaissance
mathematicians found quite serious. One case occurs
if we encounter square roots such as
V2  or V@5 or VAT,
and so on.
The other case occurs if we encounter square roots

such as
VY or ] or V=49,

and so on.

(1) What can you say about these two kinds of
square roots (for example, V2 versus V-4)?
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(1)

In the case of seeking numbers whose square is 2, we can
“come close " For example:

1 =1 Too small

14° = 1.96 Too small, but very much closer

1.41% = 1.9881 Too smali, but quite close!

1.414* = 1.999396 Too small, but wouldn’t you cali that
close?

2" = 4 Too big

15° = 2.25 Too big, but much closer

1.42° = 2.0164 Too large, but close!

1415° = 2.002225 Too large, but surely close!

Continuing this process, we can get as close as you like (al-
though one can prove that we shall never get exactly 2).

Now, the case of
D X |::| =4

is entirely different. Every number we know has a nonnega-
tive squore; hence, we cannet get any “closer” to "4 than to use

0 =0,

B
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(2) What can you say about the truth set for the
open sentence

x? = 47

(3) Here is a research problem. Using the isomor-
phism
A 0
A <

0 A

to guide you, develop some new numbers, so that you
will be able to solve the equation
X? = 4,

If you check for algebraic closure under addition and
under multiplication, you can work out an entirely
new mathematical system. (Incidentally, the system
you make up here is one which Descartes encountered,
but he rejected it as not making sense. Today it is
one of the most important mathematical systems that
we know about.)

(2)

[STUDENT PAGE 164

In this case, we cannot even get close! Nonetheless, it is actu-
ally easier to handle equations like

x2 = 4
than it is to handle equations like

x? = 2,

Using numbers we already know (i.e., rational numbers), this
truth set is empty.

The equation
x2 =74

becomes, when translated into matrix language, the equation

€ o= a-0

We'll leave this for you and your class to study. It's really a
rather exciting prohlem.
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Hilld Determinants

i

[page 165]
Don made up a mathematical system, like a game,

by making up some rules.

(a) Don would begin by writing 4 numbers, like

these:
7 8

1 2

(b) Don did not want these to be the same thing as
a matrix, because he already knew about matrices,
and he wanted this to be a new system. So Don did not

write:
(-
1 2

Instead he used straight lines and wrote:
7 8
1 2

(¢} Don said, "Whenever 1 write

what I really mean is
(7x2)-(8x1}”

(1) What number does Don mean when he writes
7 8 9
1 2

(2) What number does Don mean when he writes
1 2
3 4

?

(3) What number does Don mean when he writes
3 2 9
15 10

chapter 46/Pages 165-166 of Student Discussion Guide

DETERMINANTS

Be careful not to confuse determinants with matrices. They are
quite different. Note in particular that, whereas a matrix is really
a whole array of different numbers, a determinant is merely a fancy
way of writing a single number.

ANswers AND COMMENTS

14-8=86

it

(1) (7x2)—(8x1)

4 -6="2

ii
it

) (1x4)-(2x3)

(3) (3x10) -(2x15)=30-30=0
A very fancy method for writing zero.

399
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(4) What number does Don mean when he writes
4 2
3 8

?

(5) Jane doesn’t know Don’s system, but she does
know all about how variables work. Can you use vari-
ables to show Jane exactly how Don’s system works?

(6) What number does Don mean when he writes

1 1
3 7

?

(7) What number does Don mean when he writes

1 1
7 3

?

(8) What number does Don mean when he writes

3 7 ?
1 1
[page 166}
(9) What number does Don mean when he writes
1796 301,
255  186|

(10) What number does Don mean when he writes

301 1796
186 255

(11) Sandy’s father says that somebody else, who
called these things determinants, already invented
Don’s system before Don did.

(12) Alice says that Don’s system doesn’t lock like it
will ever be good for anything. What do you think?

PAGE 166

[STUDENT
4) (4x8)-(2x3)=32-6=28
(5)
Paper 1,000,372-W)
A B
=(AxD)—(BxC)
c o )
® (1x7)-(1x3)=7-3=4
7N (1x3)-(1x7)=3-7="14
® (3x1)-(1x1)=3-7="14

What happens when you reverse the columns of a 2-by-2 deter-
minant? Suppose you reverse the rows?

9

(10) Simiiarly, 301 x 255 — 1796 x 186 = "257,301.

1796 x 186 — 301 x 255 = 257,301

(11)-(12) Sandy's father is correct. Wait until Chapter 47 to see
whether determinants will be useful.
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HILE] Matrix Inverses:
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As we saw in Chapter 33, Professor George Polya of
Stanford University has tried to describe some of the
methods that scientists and mathematicians use in
research.

We can try to practice some of these methods our-
selves. First, we need a problem to work on. Here is
one:

Problem: If you are given any 2-by-2 matrix, say

( )
Y Z
such that

&0 D0 %

¢ D Yy z/ ‘o v/

That is to say, if you are given a 2-by-2 matrix, can you
find its multiplicative inverse?

Suggestion: Can you read about this problem some-
where?

can you find a matrix

Answer: Actually, you could read quite a bit about
this problem. However, that may not be necessary just
yet. Here is one problem that somebody else has already
figured out:

If you are given the matrix

6 )

chapter 4‘7/ Pages 167-168 of Student Discussion Guide

MATRIX INVERSES:
A RESEARCH PROBLEM

Among the most important tools of contemporary applied mathe-
matics are the various methods for computing matrix inverses.
Some of the greatest mathematicians of the twentieth century
have spent time trying to devise effective methods for soiving this
problem, particularly by using electronic computers.

What we do in this chapter is, of course, quite elementary — but
at least we are working on the same problem that great mathema-
ticians have worked on in recent years.

ANswers AND COMMENTS

Presumably, if your students study carefully the illustrative

example,
(3 7’) (12 -7) ) (1 o)
5 12/ °\s5 3 \o 1)

they will notice a peculiar pattern. Does this same pattern always
work the same way? We'll try it and see. What we are seeking is a

matrix
v )
Y Z

12 "7>x w X)_(l o>

5 3 y 7/ o 1)
There are two easy ways to solve this problem. For the first method,
the pattern of the illustrative example seems to work as follows.

For the matrix
(3 7
5 12/

the inverse is found by taking the upper left-hand number and
writing it in the lower right-hand spot:

)
5 12

such that



402 CHAPTER 47

its inverse is

That is to say,

G- 26 )

Can you see a pattern?

Let's see if we can use this idea to help us to find the
inverse of each of the following matrices.

(D (12 ’7)
-5 3,

[STUDENT PAGE 167

Then by taking the lower right-hand number and writing it in the
upper left-hand spot:

b@
")

Then by taking the lower left-hand number, taking its ‘‘opposite”
or “"additive inverse,” and writing that in this same lower left-hand
spot:

3 7')
12
5 — 75
Take additive inverse

12 )
53

Finally, we use a simifar procedure on the upper right-hand spot:

(3
5 12

7 — "7

Take additive inverse
12 ‘7)
('5 3
Suppose, now, we try this same pattern on the matrix of question

1. Will it work? Let’s try it, and see! We can suggest the pattern by
schematic pictures.

(1) (a) '7)

(b) (12 7
"5

{c) (12 -7)
@®_3
5 — 5

Take additive inverse

7 — 7T
Take additive invh‘
(s 1)
‘5 12
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Now let's try it out and see if it worked:

(12 7 ( 3 +7>
- X = 7
5 3 5 12

We can compute this by matrix multiplication,

(s D=l w)-6 %)

so the pattern did work!
We could describe this pattern, using variables, like this:
The inverse of any 2-by-2 matrix

o)

is (if the pattern above always works!)

e )

As a matter of fact, a really ambitious student might try this out
at this point, 1o see if it really does always work. Here is what he
would find:

A B <D 03) AD + B°C A°B+BA>
c b/ *\c  A)T\cD+DC (B + DA

(AD—BC 0 )
=\ o0 AD - BC

1 0
AD - BC) x 0 1

I

Obviously, this method works if and only if AD — BC # 1. Other-
wise, we must divide by AD — BC. Consequently, here is a rule that
always works, provided AD — BC # O:

If AD — BC # 0, then the matrix
e o)
C D

D °B
AD - BC  AD - BC
°C A
AD - BC AD - BC

has the inverse

[1t is possibie to show, without too much trouble, that if AD — BC

= Ov ﬂ en the n atlix
C D

has no inverse whatsoever. Hence our failure to find one in this case
is not merely excusable, it is creditable.]
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Of course, in this discussion we have gotten way ahead of your
class. Let us now return to your class, who are presumably working
on questions 1 through 6.

A second method for solving question 1 goes like this: It is true
that matrices do not ordinarily satisfy the commutative law for mul-
tiplication (CLM), but in some special cases matrices actually do
satisfy CLM. In particular, every matrix commutes with its own in-
verse. Hence, if (in the illustrative example)

(3 7) y (12 -7) ~ (1 o)
5 12 5 3 \0 1/
then it must also be true that
(12 '7) y (3 7) ~ (1 o)
53 5 12/ \o 1/’
But this last equation tells us that
G )
5 12
is precisely the inverse we are seeking!

(2) (a) 5>

4 — 4
Take additive inverse

{d) (3
4 7
5 — 5
Take additive inv‘g\—\\
7 5
4 3
Now! Did it work? Let’s try it out and see:
(3 5) ( 7 -5)
g x |- =7
4 7 4 3

Multiplying these two matrices together, we get

GG -6
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3 < 2 3 )
5 8

4) (1 3 2)
6 1

(5) (9 1 0)
8 9

(6) ( 0

e
O -
Ry
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$0 it did work! The matrix

@3

has the maltiplicative inverse

& )

(5 (9 'lO)
8 9

(6) (0 "1)
1 0

Problem 7 is an example of what the Madison Project calls “tor-
pedoing.” We have led the students to making a generalization
(what J. Richard Suchman would call a “theory”), and the students’
theory is a good one as far as it goes. But it does not go very far! In
fact, we find in problem 7 that the students’ method no longer works.

That is not catastrophic. In fact, a result like this is part of the
daily experience of scientists, and actually probably of most people,
if they are alert enough to notice.

(7

Let's try the same “pattern” method we have been using, and
see how it works.

(2) 2)
5 6/
(b) <2 2

) (2 2)
6
5 — 5

Take additive inverse

(d) (2
5 6
— "2

Take additive inverse -—/—‘"\

(s 2




406 CHAPTER 47 [STUDENT PAGE 168

Now ... did it work? Let's try:

b o -

Multiplying, we get

G 96 2-6 3

which is not what we want. However, it is close! We just got
twice what we want. Therefore, all we need to do is to take

( )
_5 2
Ir.l.'|2|

G )

Now let's see if this won't work:

(2 2) (3 ‘l) ’
X =1

5 6 % 1

We multiply,

(2 2))((3 -1 _(1 0)
5 6/ \3 1 o 1/
and so the correct inverse is

3 "1>

G

Perhaps this is a good example of what Jerrold Zacharias has
called “the exploitation of error.”

(8) 4 6) (8) 1 -3\ This is similar to question 7.
S (‘% 2/
[page 168]
(&) 1 0) (9 1 0\ This, again, is similar to question 7 (although
(o 2/ 0 1) there are also other ways to solve problem 9),
(10) 5 9) (10) f2 3 Similar to question 7.
- <2 4 _] % -
(/s o> (1) /5 -3\ Similar to question 7.
(8 10 4 ey

- 25

12) (25 23) (12) ( 3 "?) Similar to question 7.
; .
z 7z
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s /8 5)
(1 1

(14) (9 5)
1 1,

(15) (7 5)
1 i

(16) (7 4>
1 1

an (A B)
1 1

Some of these problems seem to be harder than
others. If we can see which problems are “easier” and
which are “harder,” that may give us a clue as to how
to proceed.

If any of your answers thusfar have been wrong,
those problems deserve special attention! Professor
Jerrold Zacharias, a physicist at Massachusetts In-
stitute of Technology, has suggested that the "exploita-
tion of error” is a powerful tool in scientific research.
What can we learn from looking carefully at the
problems that were wrong? How were they different
from those we got right? In what way were the wrong
answers “wrong”? Were they completely wrong or
almost correct?

If you want, make up some matrices yourself and try
to find their inverses, If you have trouble, see what you
can learn by “exploiting error.”

Some people claim that the idea of determinants,
from Chapter 46, can be heipful to us. If you wish, see
if determinants really can be helpful.
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(13) /¥ %\ This is somewhat similar to question 7, except that
a - in problem 13 it is necessary to divide by 3, instead
of 2.

L
3

Can you find a method to tell in advance whether you will need
to divide or not, and if so, by what number? (1t is not necessary, but
at this point you could go back to the remarks following the answer
to question 1 and see what ideas they may suggest.)

(14)(%

(15) <% ’%) Similar to question 7.
—% -

(16)( ]

(17) Let’s try the method that was suggested by the remarks following
the answer to guestion 1.

it AD — BC = 0, then the matrix
e
(o4 D,

D °B
AD - BC AD - BC
°oC A
AD - BC AD - BC

%\ Similar to question 13, except that in problem 14
2] you need to divide by 4, instead of 2 or 3.

wiv

wl~

‘3‘>’ Similar to question 13.

o}

has the inverse

To apply this method to guestion 17, we use UV, as follows;
uv: —
_—

—

_.—wb
OO ®n

—

Then AD - BC = A — B, and the method will not work if A~ 8 = 0.
(You can easily show that in this case there is no inverse what-
soever.)

However, if A — B = 0, the inverse should be

1 °B
A~-B A-B
"1 A
A-8B A-B

Let's try it out and see if it works:
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(18) Can you find the inverse for any matrix

e b °

(19) When can you find the inverse for the matrix

e 7

[STUDENT PAGE 168
Multiplying out, we get

1 B
(A B) A-B A-B
X
LI 1 A
A-B A-8
A-B AX(B+°B)
A-B A-B

1T -1 B + A
A-8 A-B

-G 9

(18) it is not possible to find the multiplicative inverse lor every
2-hy-2 matrix. If AD ~ BC = 0, then the matrix

-

does not have any multiplicative inverse.

(19) At this point we can state the complete rule:

Case 1. If AD — BC = 0, the matrix

e o)

does not have any multiplicative inverse.

Case 2. If AD - BC = 0, then the matrix
e o
C D,

D °B
AD - BC AD — BC

oC A
AD - BC AD - BC

has the inverse

Hopetully, thinking carefully about the questions in this chapter
should have led your students to conjecture this resuit (at least
for case 2, which is the one we presently care about).

But once you guess this result, it is perfectly easy to try out
your -guess and see whether or not it really does work:

D °B
<A B)X AD - BC AD — BC

oC A
AD - BC AD — BC




STUDENT P'AGE o)

MATHIN INVERSES: A RESEARCH PROBLEM

We multiply out:

D 8
(A a) ,_(Fsi‘ AD - BC
\c D c A
AD - BC AD - BC
AD + B'C A8 + BA
AD — BC  AD - BC
€D + DC  CB + DA
AD - BC  AD - BC

AD - BC A(B + “8)
( AD - BC AD - aE)
Cx(D+D AD - BC
T AD - BC AD — BC/
“\a 1t/

=2
-1
g‘
o
m=

1
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Suggestions for Further Reading—

An Annotated Bibliography

The study of mathematics is more than life long. No
one achieves, within his lifetime, a complete knowledge
of all mathematics. (To make matters worse, the same can
be said of education, psychology, history, or any of the
other subjects with which a teacher deals.)

| am sure that most readers will have questions that are
not answered in this text. The following books may heip.

PEDAGOGY AND PHILOSOPHY —I

Perhaps the most immediate questions will relate to

what Explorations (and the ‘‘new curriculum™ projects in
general) are trying to accomptish for children. There is,
fortunately, an excellent essay which may answer many of
these questions:
(1)  Schwab, J. J., “The Teaching of Science as Inquiry,”
in J. J. Schwab and Paul F. Brandwein, The Teaching
of Science (Harvard Univ. Press, Cambridge, Mass.,
1964).

Also of considerable interest are:

(2) Bruner, Jerome S., Toward a Theory of Instruction

(Harvard Univ. Press, Cambridge, Mass., 1966).

(3) Holt, John, How Children Fail (Pitman, New York,
1964).

4) Mearns, Hughes, Creative Power (Dover, New York,
1958).

PEDAGOGY AND PHILOSOPHY -1t

(5)  Ashton-Warner, Sylvia, Teacher (Simon and Schus-
ter, New York, 1963).

(6)  Avers, Paul W., “A Unit in High School Geometry
Without the Textbook,” The Mathematics Teacher,
Vol. LVIl, No. 3 (March, 1964), pp. 139-142.

(7)  Berne, Eric, Games People Play (Grove Press, New
York, 1964).

(8)  Boole, Mary Everest, The Preparation of the Child
for Science (Oxford Univ. Press, New York, 1904).

(9) Boulle, Pierre, The Test (Popular Library, New

York, 1960).
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(10

(11}
(12)
(13)

(14)

(15)

(16)

17

(18)

(19

(20)

(21)

(22)

(23)

(24)

Brecher, Ruth, and Edward Brecher, "'Gifted Chil-
dren Need Freedom to Learn,”” Parents’ Magazine
(June, 1962), pp. 44 ff.

Bruner, Jerome S., The Process of Education
(Harvard Univ. Press, Cambridge, Mass., 1963).
——, "The Course of Cognitive Growth,” American
Psychologist, Vol. 19, No. 1 (1964).

Cantor, Nathaniel, The Dynamics of Learning (Henry
Stewart, New York, 1961).

Clarkson, David, ‘‘Taxicab Geometry, Rabbits, and
Pascal's Triangle— Discoveries in a Sixth-Grade
Classroom,” The Arithmetic Teacher, Vol. IX, No. 6
(October, 1962), pp. 308-313.

Cleary, J. Robert, A Study of Test Performance in
Two Madison Project Schools and One Control
Schoot (Madison Project, Webster Groves, Mo.,

1965).
Cohen, Donald, "'A Lesson on Absolute Value,"” The

Arithmetic Teacher, Vol. 11, No. 8 (December, 1964),
pp. 561 and 562.

Courtis, Stuart A., “Our Choice: Revolution or
Destruction,” Educational Leadership, Vol. 20, No.
8 (May, 1963), pp. 520-522.

Davis, Robert B., “‘Solving Problems and Construct-
ing Systems—Quadratic Equations and Vectors,”
Report of an Orientation Conference for SMSG Ex-
perimental Centers, Chicago, lllinois (September
19, 1959), pp. 97-101.

, The Madison Praject: A Brief Introduction to
Materials and Activities (Madison Project, Webster
Groves, Mo., 1962).

, Notes on the Film: A Lesson With Second
Graders, Booklet to accompany film (Madison
Project, Webster Groves, Mo., 1962).

, Notes on the Film: First Lesson, Booklet to
accompany film (Madison Project, Webster Groves,
Mo., 1962).

, Notes on the Film: Matrices, Booklet to
accompany film (Madison Project, Webster Groves,
Mo., 1962).

, “The Evolution of School Mathematics,”
Journal of Research in Science Teaching, Vol. 1
(1963), pp. 260-264.

, "Report on Madison Project Activities, Sep-
tember, 1962 —November, 1963,” Report sub-
mitted to the National Science Foundation{Decem-
ber, 1963).
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Education, and Welfare).
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ster Groves, Mo.).

, "The Madison Project’'s Approach to a
Theory of Instruction,” Journal of Research in
Science Teaching, Vol. 2 (1964), pp 146-162.

, “Recent Activities of the Madison Proj-
ect,” American Mathematical Monthly (January,
1965).

, "What Do We Mean by Discovery?'' Paper
written for presentation at the meeting on '‘dis-
covery” learning, Social Science Research Council,
January 28-29, 1965.

, "Math Takes a New Path,” The PTA Maga-
zine, Vol. LVil, No. 6 (February, 1963), pp. 8-11.
, ""Some Remarks on ‘Learning By Dis-
covery',” (Madison Project, Webster Groves, Mo.,
1965).

de Chardin, Teilhard, The Phenomenon of Man
(Harper Torchbooks, New York, 1961).

Dienes, Z. P., Power of Mathematics, pp. 17-25
(Hutchinson Educational Ltd., London, 1964).
Feynman, R. P., R. B. Leighton, and Matthew
Sands, The Feynman Lectures on Physics (Addison-
Wesley, Reading, Mass., 1963).

Gallagher, James J., Research Trends and Needs
in Educating the Gifted, A Critique (U.S. Department
of Health, Education, and Welfare, Office of Educa-
tion, Superintendent of Documents Catalog No. FS
S. 235:35036, 1964).

Gibb, Glenadine, Phillip Jones, and Charlotte
Junge, The Growth of Mathematical Ideas, Grades
K-12 (24th yearbook of the National Council of
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Goodman, Paul, Compulsory Mis-education, pp.
53, 54, and 81 (Horizon Press, New York, 1964).
Gross, Ronaid, “Two-Year-Olds are Very Smart,"”
The New York Times, Magazine Section (Septem-
ber 6, 1964}, pp. 10-11.

, “What We Don't Know May Help Us,”
New York Herald Tribune, Book Week (February 7,
1965), pp. 5 and 15.

Hawkins, David, “On Living in Trees” (Karl Muen-
zinger Memorial Lecture, Univ. of Colorado, Boul-
der, Colo., 1964).

Henry, Jules, Culture Against Man (Random House,
New York, 1963).
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Huxley, Aldous, “The Education of an Amphibian,”
in Tomorrow and Tomorrow and Tomorrow (Signet
Books, New York, 1964).

, "Education on the Nonverbal Level” in
Alfred de Gratia and David A. Sohn, Revolution in
Teaching: New Theory, Technology, and Curricula
{Bantam Books, New York, 1964).

Kaufman, Bel, Up the Down Staircase (Prentice-
Hall, Englewood Cliffs, N.J., 1964).

Kelley, Earl C., The Workshop Way of learning
(Harper, New York, 1951).

Kemp, C. Gratton, “‘Comparison of Manifest Needs
of Open and Closed Minds,” Journal of Research in
Science Teaching, Vol. 2, Issue 2 (June, 1964).
Kersh, Bert Y., ““Learning by Discovery: What is
Learned?,” The Arithmetic Teacher, Vol. 11 (1964),
pp. 226-232.

Matthews, Warren N., "Letter to the Editor,” The
Mathematics Teacher, Vol. LVIl, No. 3 (March,
1965), p. 231.

McClelland, David C., The Achieving Society
MINNEMAST Project, An Overview of the MINNE-
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Grade (Univ. of Minnesota, Minneapolis, Minn.,
April, 1965).

Murphy, Lois B., et al., The Widening World of Child-
hood (Basic Books, New York, 1962).

Neill, A. S., Summerhill (Hart, New York, 1960).
Page, David, “Well-Adjusted Trapezoids,”" Up-
dating Mathematics, Vol. 4, No. 8, Section 11
(Croft Educational Services, New London, Conn.,
1962).

Pincus, Morris, '‘An Adventure in Discovery,”
The Arithmetic Teacher, Vol. 11, No. 1 (January,
1964), pp. 28-29.

Polya, George, Mathematics and Plausible Reason-
ing, 2 volumes (Princeton Univ. Press, Princeton,
N.J., 1954).

——, How To Solve It (Doubleday, New York,
1957).

, Mathematical Discovery: On Understand-
ing, Learning and Teaching Problem Solving, 2
volumes (Wiley, New York, 1965).

Reik, Theodor, Listening With the Third Ear (Farrar,
New York, 1948).

Rockcastle, Verne N., et a/., Piaget Re-discovered. A
report of the Conference on Cognitive Studies and
Curriculum Development, March, 1964 (School
of Education, Cornell Univ., lthaca, N.Y.).

Rogers, Carl R., Client-Centered Therapy (Houghton
Mifflin, Boston, Mass., 1959).

, On Becoming a Person (Houghton Mifflin,
Boston, Mass., 1961).

Report of the Cambridge Conference on School
Mathematics, Goals for School Mathematics (Hough-
ton Mifflin, Boston, Mass., 1963).

Sanders, W. J., “The Use of Models in Mathe-
matics Instruction,” The Arithmetic Teacher, Vol.
11, No. 3 (March, 1964), pp. 157-165.
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(67)

(68)

(69}

(70)

(71)
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Sawyer, W. Warwick, Vision in Elementary Mathe-
matics (Penguin Books, Baltimore, Md., 1964).
Skinner, B. F., “Why Teachers Fail,” Saturday Re-
view (October 16, 1965), pp. 80 ff.

Smedslund, Jan, ‘“Internal Necessity and Contra-
diction in Children's Thinking,"" Journal of Research
in Science Teaching, Vol. 2, No. 3 (September,
1964), pp. 220-221.

Snyder, Henry D., *‘An Impromptu Discovery Lesson
in Algebra,”’ The Mathematics Teacher (October,
1964), pp. 415-416.

Tolman, Edward Chace, "“Cognitive Maps in Rats
and Men,” Behavior and Psychological Man, Chap-
ter 19 (Univ. of California Press, Berkeley, Calif.,
1958).

Torrance, E. Paul, ‘'Creativity”” Research Pam-
phiet Series, What Research Says to the Teacher,
#28, April, 1963 (Department of Classroom Teach-
ers, American Educational Research Association of
the National Education Association).

Whitehead, Alfred North, Aims of Lducation (Men-
tor Books, New York, 1929).

MATHEMATICS

For most readers, the critical need will probably be
for further help in the study of mathematics itseif. Here
are some fairly basic books:

(72}

(73)

(74)

Dupree, Daniel E., and Frank L. Harmon, Modern
College Algebra (Prentice-Hall, Englewood Cliffs,
N.J., 1965). This is fairly similar to Professor
Fine’s book (reference 74), but is possibly some-
what easier. Topics match closely with Explorations:
logic, sets, functions, graphs, complex numbers, ex-
ponents, open sentences, inequalities, simul-
taneous equations, determinants, matrices, the
exponential function, the binomial theorem, etc.
Hummel, James A., Vector Geometry (Addison-
Wesley, Reading, Mass., 1965). Despite its ap-
parently specialized title, this volume provides
a good general mathematical background for much
of the material dealt with in Explorations.

Fine, Nathan J., Introduction to Modern Mathe-
matics (Rand McNally, Chicago, ill., 1965). This is
a very good book, carefully written by a very good
mathematician. It deals with many of the same
topics found in Explorations: logic, functions, sets,
graphs, axioms, matrices, simultaneous equations,
probability, isomorphism, transformations, etc. It
does not require a strong previous background in
mathematics —it starts from a high school level.

Some teachers may feel that what they really need 1s a
modern approach to ninth-grade algebra. Several good
books are available, for example:

(75)

Brumfiel, Charles, Robert Eicholz, and Merrill
Shanks, Algebra 1 (Addison-Wesley, Reading, Mass.,
1961).

In the general area of relatively simple books dealing
with the ideas which we have encountered in Explorations
there are many that might be recommended. Here are a few:

(76}

(76a)

(77)

(78}

(79)

(79a)

Allendoerfer, Carl B., and Cletus Q. Oakley, Prin-
ciples of Mathematics (McGraw-Hill, New York,
1963). Topics include matrices, logic, sets, axioms,
isomorphism, simultaneous equations, functions,
graphs, complex numbers, going even into ideas of
calculus., This book has been popular for a long
time (it was originally published in 1955), and is
usually considered quite readable.

Byrne, J. Richard, Modern Elementary Mathematics
(McGraw Hill, New York, 1966).

Fletcher, T. J., et al., Some Lessons in Mathemat-
ics. A Handbook on the Teaching of “Modern”
Mathematics (Cambridge Univ. Press, New York,
1964). This is a very valuable book. Teachers in the
United States will be intrigued by the point of view
of their British colleagues, as revealed in this
book and in others that may be forthcoming from
this same group of authors. Topics inciude geomet-
rical mappings or transformations, graphs, ma-
trices, vectors, sets, logic, binary numerals, and
industrial applications.

Montague, Harriet, and Mabel Montgomery, The
Significance of Mathematics (Charles Merrill Books,
Columbus, Ohio, 1963). Topics include matrices,
sets, logic, axioms, history, and statistics.

Sanders, Paul, Elementary Mathematics—A Logi-
cal Approach (International Textbook Co., Scran-
ton, Pa., 1963).

Howard, Charles F., and Enoch Dumas, Teaching
Contemporary Mathematics in the Elementary School
(Harper and Row, New York, 1966).

Of somewhat different interest are these books:

(80)

(81)

(82)

Exner, Robert M., and Myron F. Rosskopf, Logic in
Elementary Mathematics (McGraw-Hill, New York,
1959). This is a valuable book for those who wish
to pursue logic further than we have been able to
go with it in Explorations.

Jones, Burton W., Elementary Concepts of Mathe-
matics (Macmillan, New York, 1947). This is a par-
ticularly good reference for anyone who is puzzled
by the “symmetry,”” '‘reflection,” and *“‘transfor-
mation’ ideas in Explorations, and who wishes to
understand these ideas better. (For this same topic,
consult the film “Reflection,” produced by David
Roseveare of the British Broadcasting Corporation
(BBC), and pages 16-23 of the BBC pamphlet
Middle School Mathematics, Autumn, 1964. These
are not readify availabte, but they do exist; con-
tact David Roseveare, Kensington House, Room
505, London, England.)

Kemeny, John, Laurie Snell, and Geraid L. Thomp-
son, [Introduction to Finite Mathematics (Pren-
tice-Hall, Englewood Cliffs, N.J., 1956). This book
contains some unusual topics, particularly in re-
lation to matrices and to trees.




(83) Mosteller, Frederick, R. E. K. Rourke, and G. B.
Thomas, Jr., Probability: A First Course (Addison-
Wesley, Reading, Mass., 1961). An excellent book

- for those who wish to pursue the ideas of statistics
and probability.

For those who have an adequate knowledge of the con-
tents of the books listed above, and who want to go on
to more advanced mathematics, the field is wide open.
| shall fist three books, out of several hundred possible
choices:

(84) Birkhoff, Garrett, and Saunders Maclane, A Survey
of Modern Algebra (MacMillan, New York, 1944).
This book has long been, deservingly, the standard
reference book in algebra.

(85) Britton, Jack R., R. Ben Kriegh, and Leon Rutland,
University Mathematics, Vol. 1 (Freeman, San Fran-
cisco, Calif., 1965). An introduction to calculus,
from a point of view that appears to be consonant
with that of Explorations.

(86) Eves, Howard, and Carroll V. Newsom, An /ntroduc-
tion to the Foundations and Fundamental Concepts
of Mathematics (Holt, New York, 1958). An excel-
lent book.

Also of interest:

(87) Beberman, Max, and Herbert E. Vaughan, High
School Mathematics (D. C. Heath, Boston, Mass.,
1964),

(88) Crouch, Raliph, and David Beckman, Linear Algebra
(Scott Foresman, Chicago, lIl., 1965).

(89) Cumry, Haskell, Foundations of Mathematical Logic,
(McGraw-Hill, New York, 1963).

(90) Levi, Howard, Elements of Algebra (Chelsea, New
York, 1960).

(91) Lister, Frederick M., Sheldon T. Rio, and Walter J.
Sanders, Freshman Mathematics for University Stu-
dents {Prentice-Hall, Englewood Cliffs, N.J., 1964).

(92) Maria, May Hickey, The Structure of Arithmetic
and Algebra (Wiley, New York, 1958).

(93) Mendelson, Elliott, /ntroduction to Mathematical
Logic (Van Nostrand, Princeton, N.J., 1964).

(94) Moise, E. E., Elementary Geometry from an Ad-
vanced Standpoint (Addison-Wesley, Reading, Mass.,
1963).

(95) , The Number Systems of Elementary Mathe-
matics (Addison-Wesley, Reading, Mass., 1966).

(96) Newman, J. R., and E. Nagel, Gddel's Proof (New
York Univ. Press, New York, 1960).

(97) Ohmer, M. M., C. V. Aucoin, and M. J. Cortez,
Elementary Contemporary Mathematics (Blaisdeil,
New York, 1964).

(98) Suppes, P., and S. Hill, First Course in Mathe-
matical Logic (Blaisdell, New York, 1964).

(99) Swain, Robert L., *Logic: For Teacher, For Pupil”
in Enrichment Mathematics for the Grades. 27th
Yearbook of the National Council of Teachers of
Mathematics.
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RESEARCH

Those interested in on-going research efforts related to
the kind of educationa! experiences discussed in Ex-
plorations may want to read the following, in addition to
the books and articles listed earlier:

(100) Arons, A. B., and A. M. Bork, Eds., Science and
/deas (Prentice Hall, Englewood Cliffs, N.J., 1964).

(101) Ausubel, David P., Implications of Preadolescent and
Early Adolescent Cognitive Devejopment for Secon-
dary School Teaching (mimeographed), (Bureau of
Educational Research, Univ. of lllinois, Urbana, |11.).

(102) Barnes, Fred P., Research for the Practitioner in
Education (Department of Elementary School Prin-
cipals, N.E.A., Washington, D.C., 1964).

(103) Beberman, Max, An Emerging Program of Secondary
School Mathematics (Harvard Univ. Press, Cam-
bridge, Mass., 1958).

(104) Boring, Edwin G., History, Psychology, and Science,
Watson and Campbell, Eds. (Wiley, New York,
1963).

(105) Brown, Roger, Social Psychology (The Free Press,
New York, 1965).

(106) Callahan, Raymond E., Education and The Cuit of
Efficiency (Univ. of Chicago Press, Chicago, Ill.,
1962).

(107) Coddington, Earl A., “Scholastic Aptitude Tests
in Mathematics,”” The American Mathematical
Monthly (August-September, 1963), pp 750-755.

(108) Combs, Arthur W., et al., Perceiving, Behaving,
Becoming (Assoc. Supervision and Curriculum De-
velopment, N.E.A., Washington, D.C.).

(109) Committee of the College and University Examin-
ers, Taxonomy of Educational Objectives, I: Cogni-
tive Domain, Benjamin S. Bloom, Ed. (Longmans,
Green and Co., New York, 1956).

(110) Day, Robert C., and Robert L. Hamblin, ““Some
Effects of Close and Punitive Styles of Supervi-
sion,” American Journal of Sociology, Vol. LXIX,
No. 5 (March, 1964), pp. 499-510.

(111) de Charms, Richard, Virginia Carpenter, and
Aharon Kuperman, “The ‘Origin-Pawn' Variable in
Person Perception,’ Sociometry (to appear).

(112) Dexter, Lewis A., The Tyranny of Schooling {Basic
Books, New York, 1964).

(113) Erikson, Erik H., “ldentity and the Life Cycle,”
Psychological Issues, Vol. 1, No. 1 (1959), mono-
graph 1.

(114) Flavell, John H., The Developmental Psychology of
Jean Piaget (Van Nostrand, Princeton, N.J., 1963).

(115) Gage, N. L., Handbook of Research on Teaching
(Rand McNally, Chicago, 1ll., 1963).

(116) Gagne, Robert M., The Conditions of Learning
(Holt, New York, 1965).

(117) Gleason, Andrew, et al., Goals for School Mathe-
matics, The Report of the Cambridge Conference on
School Mathematics (Houghton Mifflin, Boston,
Mass., 1963).
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(118) Goutard,
(Education
1964).

(119) Hadamard, Jacques, The Psychology of Invention
in the Mathematical Field (Dover, New Yark, 1945).

(120) Hardin, Blanche C., “Math—Not New,” The Arith-
metic Teacher, Vol. 12, No. 4 (April, 1965), p. 252.

(121) Heath, Robert, Ed., New Curricula (Harper, New
York, 1964).

(122) Hilgard, Ernest R., Ed., Theories of Learning and
Instruction (Univ. of Chicago Press, Chicago, IlI.,
1964).

(123) Holt, John, “How to Help Babies Learn—Without
Teaching Them,” Redbook, Vol. 126, No. 1 (No-
vember, 1965), pp. 55 ff.

(124) Hoyle, Fred, The Black Cloud (Harper, New York,
1958).

(125) Hunt, J. McV., “Revisiting Montessori,”” in Mon-
tessori and Hunt, The Montessori Method (Schoken,
New York, 1964).

(126) Inbody, Donaid, ““Helping Parents Understand New
Mathematics Programs,” The Arithmetic Teacher,
Vol. 11, No. 8 (December, 1964}, pp. 530-537.

(127) Karplus, Robert, “The Science Curriculum Im-
provement Study,” Journal of Research in Science
Teaching, Vol, 2, Issue 4 (December, 1964), pp.
293-303.

(128} Krathwoh!, David R., et al., Taxonomy of Educa-
tional Objectives, II: Affective Domain (David Mc-
Kay, New York, 1964).

(129) Lewin, Kurt, Field Theory in Social Science, Dorwin
Cantwright, Ed. (Harper, New York, 1951).

(130) Manheim, Jerome H., and Sylvia R. Manheim, “Con-
nectionism and the Teaching Machine,” The Mathe-
matics Teacher, Vol. LVIll, No. 3 (March, 1965),
pp. 200-204.

(131) May, Kenneth Q., Programed Learning and Mathe-
matical Education (Committee on Educational Me-
dia, Mathematical Association of America, 1965).

(132) Moise, E. E., ‘“Activity and Motivation in Mathe-
matics,” American Mathematical Monthly, Vol. 72,
No. 4 (April, 1965), pp. 407-412.

(133) Pfeiffer, John, “When Man First Stood Up,” New
York Times, Magazine Section (April 11, 1965).
The date was omitted from this printing of the
Magazine Section, but April 11 appears to be the
actual date.

(134) Polanyi, Michael, Personal Knowledge (Univ. of
Chicago Press, Chicago, Ill., 1958).

(135) Rosenbloom, Pau! C., Ed., Modern Viewpoints in
the Curriculum (McGraw-Hill, New York, 1964).

(136) Sealey, L. G. W., The Creative Use of Mathematics in
the Junior School (Blackwell, Oxford, England, 1961).

(137) Smith, Lewis B., '“Pegboard Geometry,” The Arith-
metic Teacher, Vol. 12, No. 4 (April, 1965), pp.
271-274.

(138) Tagiuri, Renats, and Luigi Petrullo, Eds., Person
Perception and Interpersonal Behavior (Stanford
Univ. Press, Stanford, Catif., 1958).

Madeleine, Mathematics and Children
Explorers Ltd., Reading, England,

{139) Teevan, Richard, and Robert Birney, Eds., Theories
of Motivation in Personality and Social Psychology
(Van Nostrand, Princeton, N.J., 1964).

(140) Thelen, Herbert A., “Educational Dynamics: Theory
and Research.” The Journal of Social Issues, Vol.
6, No. 2 (1950).

(141) Vygotsky, Lev Semenovich, Thought and Language,
Hanfmann and Vakar, Trans. (M.L.T. Press, Cam-
bridge, Mass., 1962).

(142) Wann, T. W,, Ed., Behaviorism and Phenomenology
(Univ. Chicago Press, Chicago, I, 1964).

{143) Weil, Andrew, “Harvard's Bruner and His Yeasty
Ideas,”” Harper's Magazine (December, 1964), pp.
81-89.

(144) Werner, Heinz, and Bernard Kaplan, Symbo/ Forma-
tion (Wiley, New York, 1963).

(145) Wertheimer, Max, Productive Thinking (Harper, New
York, 1959).

(146) Wittrock, M. C., “The Learning by Discovery Hy-
pothesis,” mimeographed (U.C.L.A., Los Angeles,
Calif., December, 1964).

HISTORY

(147) Ardrey, Robert, African Genesis (Dell, New York,
1963).

(148) Barck, 0. T., Jr, and H. T. Lefler, Colonial Ameri-
ca (Macmillan, New York, 1958).

(149) Bell, Eric Temple, Men of Mathematics (Simon and
Schuster, New York, 1961).

(150} Clark, G. N., The Seventeenth Century (Oxford

Univ. Press, New York, 1953).

de Heinzelin, Jean, “lIshango,” Scientific Amer-

ican (June, 1962), pp. 105-116.

(151) Eves, Howard, An Introduction to the History of
Mathematics, rev. ed. (Holt, New York, 1964).

(152) Haskins, Charles Homer, The Rise of Universifies
{Cornell Univ. Press, Ithaca, N.Y., 1357).

(153) Hofstadter, Richard, Academic Freedom in the Age
of the College (Columbia Univ. Press, New York,
1955).

(154) Kramer, Samuei Noah, History Begins at Sumer
{Doubleday-Anchor, Garden City, N.Y., 1959).

(155) Leasor, James, The Plague and the Fire (Avon,
New York, 1961).

(156} Lloyd, Daniel B., “Recent Evidences of Primeval
Mathematics,” The Mathematics Teacher, Vol. LVII,
No. 8 (December, 1965), pp. 720-723.

(157) Rowe, Anne, "Psychology and the Evolution of
Man,”" Harvard Educational Review, Vol. 36, No. 2

(Spring, 1966) pp. 139-154.
(158) Newman, James R., Ed., The World of Mathematics,

4 volumes (Simon and Schuster, New York, 1956).
These four volumes deserve to be in your classroom.
(159) Orlich, Donald C., “The Dawn of Scientific Episte-
mology: 1564-1964,” Journal of Research in Science
Teaching, Vol. 2, Issue 2 (June, 1964), pp. 95-99.
(160) Tax, Sol, Ed., Evolution After Darwin, 3 volumes (Univ.
of Chicago Press, Chicago, Ml., 1960).

(150a)



(161) Woodward, G. W. O., A Short History of 16th Century
England: 1485-1603 (Mentor Books, New American
Library, New York, 1963).

(162) Wright, Louis B., The Cultural Life of the American
Colonies, 1607-1763 (Harper, New York, 1957).

NEW CURRICULUM PROJECTS

Teachers usually also want to know about the various
“new curriculum” projects in mathematics and in sci-
ence. Many of these are temporary (though this does not
mean they are less valuable), so a definitive listing is
not feasible. There are, however, excellent sources of
up-to-date information concerning these various projects,
and similar matters. Six of the best are:

(163) The Arithmetic Teacher (National Council of Teach-
ers of Mathematics, Washington, D.C.).

(164) The Commission on Current Curriculum Develop-
ments of the Association for Supervision and Cur-
riculum Development (N.E.A., Washington, D.C.).
Several reports of this Commission have appeared,
and others presumably will in the future.

(165) Information Clearinghouse on New Science and
Mathematics Curricula (Science Teaching Center,
University of Maryland, College Park, Md.). Their
Third Report, compiled by J. David Lockhard and
dated March, 1965, has just been released. Single
copies are available free of charge.

(166) Journal of Research in Science Teaching (National
Association for Research in Science Teaching, New
York). Despite its title, this excellent journal deals
with both science and with mathematics.

(167) The Mathematics Teacher (National Council of
Teachers of Mathematics, Washington, D.C.).

(168) Mathematics Teaching (Association of Teachers
of Mathematics, Kent, England). An important
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group of educators now active in England publish
through this organization.

CLASSROOM MATERIALS

Teachers may also be interested in books and other
materials that are suitable for use in the classroom, for
various grade levels from kindergarten to college.

| shaft not fist basic textbooks, for such a list would be
far too long. Here, however, are sonie less well-known
texts that may be useful:

(169) Churchill, Eileen, Counting and Measuring (Rout-
ledge and Kegan Paul, London, England).

(170) Davis, Robert B., Discovery in Mathematics (Addison-
Wesley, Palo Alto, California, 1964). This book,
which we have referred to earlier, is a companion
volume to Explorations.

(171) Faber, Norman, Phyllis Gross, and Robert Hansen,
Mathematics and Living Things {School Mathematics
Study Group, Stanford Univ., Stanford, Calif., 1964).

(172) Page, David A., Number Lines, Functions, and
Fundamental Topics (Macmillan, New York, 1964).

Useful materials are available from the following sources;:

Cuisenaire rods, and other materials, are available from
the Cuisenaire Company of America, Inc., 9 Elm Ave., Mt.
Vernon, New York 10550.

Games and puzzles (such as the Tower of Hanoi), many of
which pose interesting mathematical questions, are avail-
able from World Wide Games, R.R. 1, Radnor Rd., Dela-
ware, Ohio 43015.

Z. P. Dienes, of the University of Sherbrooke, Canada, has
many interesting pieces of physical apparatus for use in
the classroom.

Some unusually important books have just appeared or
just come to my attention. Probably the best explanation
of how to operate an elementary school mathematics pro-
gram on the basis of student activity, using physical ma-
terials, is given in the various new publications of the Nuf-
field Mathematics Project. These bear titles such as / Do —
And | Understand (which accompanies a film with this
same title), Desk Calculators, Beginnings, Computation and
Structure, Shape and Size, and Pictorial Representation.
These books are available from the Nuffield Foundation
Mathematics Teaching Project, 12 Upper Belgrave Street,

London, S.W. 1, England.

In addition, for those who are curious and confused about
“what's going on," it may be valuable to see the present
curriculum revision movement in an appropriate historical
perspective by reading the highly relevant book The Trans-
formation of the School, by Lawrence A. Cremin (Random

House, 1961).



Appendix B

Madison Project Films Relevant to Explorations

Some of these films are readily available; others soon
will be. Running times are only approximate. For informa-
tion, write to:

The Madison Project
Webster College
St. Louis, Missouri 63119

Notice that nearly all Madison Project films show actual
classroom lessons. They are intended to be viewed by teach-
ers, not by children. They attempt to aid the teacher in plan-
ning her next fesson.

Classroom Social Organization (Small groups vs. large
groups, individualizing instruction, etc.)

Some of the fiims listed under this
heading are controversial, for several
different reasons. Please do not judge
them all on the basis of viewing only one
or two. They are by no means all alike.

Large group instruction: “Graphing a
Parabola’ (6th graders; running time
22 minutes); "“Open Sentences and the
Number Line" (2nd graders: 9 minutes);
“Guessing Functions’” (6th and 7th
graders; 16 minutes); “‘Experience with
Fractions, Lesson 2" (2nd graders; 30
minutes).

Small group and individualized instruc-
tion: “Using Geoboards with Second
Graders” (2nd graders; 26 minutes);
“Small-group Instruction in Mathe-
matics’ (6th graders; 27 minutes);
*Small-group Instruction: Signed Num-
bers, Rational Approximations, and
Motion Geometry”" (6th graders; 46
minutes);  “Small-group Instruction:
Committee Report on Signed Numbers”
(6th graders; 13 minutes); ‘‘Small-group
Instruction: Committee Report on Ra-
tional Approximations” (6th graders;
22 minutes); “‘Creative Learning Expe-
riences’’ (last section, with 8th graders).

Chapter 1 "First Lesson’' (students from grades 3-7;
running time 1 hour)

“A More Formal Approach to Variables"
(4th graders; 30 minutes)

“A Lesson with Second Graders”* (2nd
graders; about 30 minutes)

Chapter 2 “First Lesson™
“A Lesson with Second Graders''*
Chapter 3 “Second Lesson" (grades 3-7; 1 hour)
“Experience with Linear Graphing”
(grade 4; 25 minutes)
Chapter 4 “First Lesson"

“A Lesson with Second Graders”

“Introduction to Postman Stories"”
(grades 4-6; 13 minutes)

“Small-Group Instruction: Signed Num-
bers, Rational Approximations, and Mo-
tion Geometry’ (grade 6; 46 minutes)

“Small-Group Instruction: Committee
Report on Signed Numbers”' (grade 6;
13 minutes)

“Postman Stories” (grade 7; 33 minutes)

"Three Approaches to Signed Numbers'
(grade 9; 65 minutes)

“Education Report: The New Math”
(30 minutes)

"Postman Stories"

““Circles and Parabolas’ (grade 6;
41 minutes)

“Second Lesson’

"Graphing an Ellipse” (grade 7;
21 minutes)

“First Lesson”

""Second Lesson”

Chapters 11-14 (Some films now in preparation.)

Chapters 5-6

Chapter 7

Chapter 8

Chapter 10

Chapter 15 “Introduction to Truth Tables and Infer-
ence Schemes' (grade 7; 40 minutes)
Chapter 16 “Clues" (grade 6; 20 minutes)
Chapter 17 "Average and Variance'' (grade 6;
40 minutes)
Chapter 18 “Second Lesson"

"Introduction to Identities” (grades 3-7;
19 minutes)

“Accumulating a List of ldentities”
(grade 6; 21 minutes)

*The Tic Tac Toe game played in the film “A Lesson with Second
Graders” uses the unsotisfactory rule that “5 marks in a straight
line constitutes a victory’”’; as presented in Chapter 2 in the pres-
ent book, the game uses a more satisfactory rule: using a 5-by-5
board, the rule is that “4 marks in an uninterrupted straight line
constitutes a victory.”



Chapter 19

Chapter 20

Chapter 22
Chapter 23

Chapter 24

Chapter 25

Chapter 27

Tape recording D-1 (grade 5)
“Making up ldentities” (grade 5;
33 minutes)
""Making up ldentities”
“Axioms and Theorems’’ (grade 6; 1 hour)
“Second Lesson”

(Various films of ninth-graders at Nerinx
High School, Webster Groves, Missouri;
for information write 10 the Madison
Project.)

(Some films by David Page may be avail-
able from Educational Services, Incor-
porated, Watertown, Massachusetts
02172)

“Guessing Functions”" (grade 7; 22
minutes)

A Week of Mathematical Exploration —
Parts 2 through 5" (grades 4-5; Tues-
day, 33 minutes; Wednesday, 35
minutes; Thursday, 29 minutes; Friday,
36 minutes)

“The Study of Functions—Linear, Qua-
dratic, and Exponential” (grades 4-6)
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Chapters 33-34

Chapters 37-39

Chapters 44-45

“Derivation of the Quadratic Formula—
First Beginnings” (grades 5-6; 20
minutes)

“Derivation of the Quadratic Formula—
Final Summary” (grade 7; 20 minutes)

“Quadratic Equations” (grade 9; 49
minutes)

“Matrices’ (grades 5-6; 35 minutes)

“Solving Equations with Matrices”
(grade 6; 36 minutes)

“Complex Numbers via Matrices”
(grade 7; 33 minutes)

“Introduction to the Complex Plane'’
(grade 9; 54 minutes)

“Complex Numbers via Matrices”

"*Solving Equations with Matrices"

Other films of interest:

“Graphing a Parabola” (grade 6;
22 minutes)

“Graphs and Truth Sets"” {grade 2;
30 minutes)

"Weights and Springs’’ (grade 6;
30 minutes)



Appendix C

Some Special Symbols and Concepts

Used in Explorations

This brief review of concepts and notations is intended
to help you recall or locate ideas in Explorations. A “brief"
use of language necessarily opens the door 1o considerable
ambiguity, and may suggest the unhappy device of telling
the students instead of allowing them to learn. If you use
this appendix at all, please be careful to try to avoid these
errors.

A more suitable way to learn these ideas has been pre-
sented —we hope —in the main body of this book.

Variables. Any of the symbols [, A, NV, [, n A 8B, %,
¥, «, B may be used to indicate the places in a formula
where we may insert numbers or algebraic expressions.
When used in this way, any of these symbols would be said
to indicate a variable.

Examples: 3 + D =5

Inserting 7 into the [] yields the false state-
ment3 + 7 = 5.

Inserting 2 into the [[Jyields the true state-
ment3 + 2 = 5.

Inserting A + B into the [ |yields A+ B=A+B.

The use of variables is governed by several important con-
ventions, particularly the rule for substituting, the idea of
replacement set, and the notation UV, which are explained
below.

Open sentence. A sentence that involves a variable is calied
an open sentence.

Examples: 3 + D =5

{I} = 2 x [Tk Note that in this example there
is anly one variable —namely, [_]— although this
variable occurs three times.)

T+ A=A +[l(This example involves two
variables—[] and A\ —each of which occurs
twice.)

x2 —aXx + B =7 (involves four variables —
X, a, B, and 7; in ordinary use, in this form,
«, B, and ¥ would be "parameters” or “‘con-
stants,” and x would be an “‘unknown.’)

Replacement set. For each variable —for example, [ ]—
we must agree upon a definite replacement set, that is,
upon a set of mathematical objects (or names of mathe-
matical objects) that may be written into the "formula” (or
“'sentence’’) at the points indicated by that variable.

Example: In [ ] x O = O we might agree that we would
write names of positive integers in the place in-
dicated by []. With this agreement, the replace-
ment set for the variable [} would be

Ry =1{1,"2,"3,"4,.. |,
and the replacements
'3 x0=0,'25x0=0,"1066 x 0 =0
would be “'legal,” whereas the replacements
+x0=0,"1x0=0
would not be.

Rule for substituting (one variable). |f the same letter (or
the same ‘‘shape,” such as [ ]) occurs several times in the
same open sentence, you may legally use any element of
the replacement set as a replacement for the first occur-
rence but you must then use this same number as a replace-
ment for all other occurrences of [D]in that open sentence.

Example: IfR.= {O, 1,2,3,4,.. } and the open sentence

is (1% ) - (5x[1) +6=0, you may use 9 —
or any other element of R,—as a replacement
for the first occurrence of [],

EI=[)-6xL)-6=0

provided that you use this same number as a
replacement for all other occurrences of ||,

(Blx[g))-(sx[8)) +6=0.

418



Rule fer substituting (several variables). }f several vari-
ables occur in the same open sentence, the rufe for sub-
stituting applies to each one independently. In particular,
it is legal to put the same number in different shapes, al-
though it would not be legal to put different numbers into
the same shape.

Examples: Legal substitutions

1+ [0 +/N\+/N\- 10
/A

It

+ +é+ 3\ = 100
[20] + 20 ++= 100

L5:|+ 2 +A+A 100

Notice that the ‘'legality” of a replacement for a variable
does not depend upon whether the resulting statement is
true or false.

N'I
5] |

Examples: Hlegal substitutions

+ D+ A\ A0\ 100
(1]« 2] +/2\/5\- 100

Open names as replacements for variables. If 3 is an ele-
ment of R, then using 3 as a replacement forD is legal.

Example: D + 0 = D
3 — D

3+0=

We call this a "numerical replacement’ for the variable[].
It is also legal to take an open name (which jtsell involves
variables) and use this as a replacement for a variable.

Example:D+O=D
A+B——>D

(A+B)+0=A+8

Of cours,e, A + B must then be used to name an element of
R, (but this is not usuaily something you will need to worry
about). For example, if Ry = {1, 2,3,4,.. } then we could
agree to take R, = {1, 2,3,4,.. } and Ry = {1, 2,3, .. }
since this set is closed under addition, and —no matter
which element of R, and R, we choose—the expression
A+ B will turn out to be the name for some element of R_.

UV. The notation UV (use of variables) is employed when-
ever we want to show how we have carried out a replace-
ment for some variable. This is particularly the case in
writing derivations. Our usual method for writing UV is
Uv:3 — [
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Example;

A piece of a derivation: Reason:

(E)D+O=D ALZ

(i (A+B)+0=A+8 W A+8—[],
' ' in line (i)

Truth set. In most open sentences it is possible to carry
out a replacement for the variable (or variables) so as to
get a true statement as a result, or else to use a different
replacement that will yield a false statement as a result.
Those elements of the replacement set which yield frue
statements are said to form, collectively, the truth set for
the open sentence.

Example: 1f3<[J<6,R,=1{1,2,3,4,5,6,7,...} then
the truth set T is given by T = {4, 5}. Similarly,
one defines the false set F, so that, inthe example
above, F = {1,2,3,6,7.8,9,...}.

Set. Roughly, any collection of things is a set. Thus, one
can speak of "the set of positive integers,” or ‘the set of
2-by-2 matrices,” and so forth. Now, actually, matters are
more complicated than this, as the work of Bertrand Russell,
Kurt Godel, and others has shown. Considerable nicety and
precision is required in defining sets if we want to be able
to deal with them in a precise and abstract way. This prob-
ably need not concern us here, but we should not be under
the illusion that the "'sets" we are talking about are actually
the same things as the “'super-refined" sets that are dis-
cussed by Russell and other modern logicians. [Anyone
interested in expending the large amount of time and effort
that is required to study modern logic may wish to consult
Appendix A, Curry (89)].

That precise reasoning with sets involves pitfalls and haz-
ards should be suggested by the following, which is attrib-
utable to Bertrand Russell: Some sets are elements (or
“members’’) of other sets—i.e,, some '‘collections” are
in fact "“collections of collections.” Thus, if John and | both
bring our stamp collections over to Billy's house, then we
have, assembled in one spot, a collection of three collec-
tions (or a "‘set of three sets,” a *‘set whose elements are
themselves sets,”” and so on). in some sets, on the other
hand, the elements are not themselves sets — for example,
in the set {2, 3} the “‘elements” or "members” are the
numbers 2 and 3.

Can a set ever be an element of itself? The answer is that,
in our present unsophisticated use of language, a set surely
may be an element of itself. For example, the set of "all the
sets in the world" is itself a set, and so it must be a member
of the set of all the sets in the world—i.e., it is a member
of itself.

All right, et us now divide all the sets in the world into
two categories. We shall put them in Category A if they are
a member of themselves, and into Category B if they are
not. Now, Category B is, itself, a collection —that is to say,
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it is {in our rough language) a set. Is Category B a member
of itself, or not? Well, if it is a member of itself, then it should
have been put into Category A, and not into Category B.
Hence, if Category B is a member of itself, it should not be.

On the other hand, if Category B is not a member of itself,
then it should have been assigned to Category B, and hence
would be a member of itself. That is, if Category B is not
a member of itself, then it should be.

Into which category, then, ought you to put Category B?

I mention this kind of difficulty only to temper the fads
of the times. If we seize upon ‘‘sets” as the essential ingre-
dient of “new mathematics,” we are opening Pandora's
box. Instead, | suggest we use the word only in a common-
place “colloquial’’ sense, to mean "‘a collection,” and | sug-
gest we use it onfy when it /s natural to be speaking of a col-
lection of things —as, for example, when we wish to speak
of the collection of numbers that will make

(Ox) - (5x)+6=0

become a true statement when we write one of the numbers
in the [, using UV.

A common notation for sefs is {2, 3}, {1, 2,3,4,.. }
and so forth.

The terminal three dots. When a list ““traiis off"’ and ends
in three dots, we are thereby trying to indicate that the list
“truly'' goes on and on forever, and never stops.

Example: The ‘‘counting numbers” are 1, 2, 3, ... (or,
depending upon which book you are reading,
perhaps theyare 0, 1, 2, 3, .. .).

Subset. The set A is called a subset of set B if every ele-
ment of A is also an element of 8. Thus, if A = {2, 3,7
and 8= {1,2,3,4,5,6,7, 8], then A is a subset of B,
and we write A C B.

Element versus subset The individual “'things’’ that make
up a set we call its “‘elements."” This can—hopefully —be
made clearer by some examples.

Examples: A = {1, 2,3, 4}
Then 1 is an element of A, 2 is an element of
A, 3 is an element of A, 4 is an element of A.

P = {{1'_2}'{2',3}} i

This requires caution! The number 1 is not an
element of P. The number 2 is not an element
of P. The number 3 is not an element of P. In
fact, the set P has two elements: The set {1, 2}
is an element of P. The set {2, 3} is an element
of P.

In case it helps any, consider these somewhat analogous
examples:

Examples: The Mid-city library may be a member of the
National Inter-library Loan Association, and

Webster's dictionary may be in the collection
of the Mid-city Library. However, Webster's dic-
tionary is not a member of the National Inter-
library Loan Association.

The United States holds membership in the
United Nations, and you may be a member of
the United States. This does not imply that you
hold membership in the United Nations.

Notice that elements and subsets are quite different.
For the set W = {2, 4, 6} we have:

Elements: The number 2 is an element of W. The number
4 is an element of W. The number 6 is an ele-
ment of W.

Subsets: The set {2, 4, 6} is a subset of W. The set {2. 4}
is a subset of W. The set {2, 6} is a subset of W.
The set {4, 6} is a subset of W. The set {2} isa
subset of W (but {2};62). The set {4} is asub-
set of W. The set {6} is a subset of W. The set ¢
is a subset of W (where "¢ ' denotes the “empty
set'’).

The symbol & is used to mean ‘“‘is an element of"; thus

2 € W. The symbol C is used to mean “is a subset of”;
thus {2. 4} C {2. 4, 6}, {6} C W, and so on.

The empty set. The symbol & denotes a set which isempty.
If you think carefully about the truth table for the state-
ment P = Q, you will see that every statement which be-
gins. “'if x is an element of the empty set ¢, then ..."” must
be frue, no matter how the statement ends. For this reason,
the empty set is always a subset of any set J, no matter
what set J is.

Notice that there is a difference between ¢ and {O}

The Cartesian product of two sets, A x B. See Chapter 2.

Function and functional notation. A function may be writ-
ten as f(x):

[/}
~NOow

(1)
(2)
#(3)

Or it may be written as @ “mapping’":

f:1 —— 3
.2 —— 5
f:3 —— 7

Notice that the arrow symbol used to indicate a mapping
is longer than the arrow symbol used in connection with
Uv.



Truth value. A ''statement” may be either true or false.
The assessment “true,” when appropriate, is called the
“truth value'' of the statement; similarly, the assessment

"false,” if appropriate, is called the ‘‘truth value” of the

statement.

Examples: Statement Truth Value
St. Louis is a city. T
Missouri is a large city in
eastern Massachusetts. F

We usually write truth values merely as T or as F.

When we make up an abstract system where these are
the only truth values allowed, we say we have made up a
“two-valued" logic. When (as children often choose to do,
and adult mathematicians sometimes do aiso) we make up
a system where more than two truth values are allowed (for
example, “true,” “‘false,”” and “sort of''), we say we have
made up a ""many-valued logic.”

PN. Standing for the "principle of names,”" PN means
that if, in any statement, you “erase’” a name for some-
thing and put in another name for that same thing, you will
not change the truth value of the statement. If it was false
before, it still is. If it was true before, it still is.
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Example: Suppose
Eileen = Miss Godfrey.
Then, in the statement
Eileen is ten feet tall,
we could erase “Eileen,” and put in '"Miss God-
frey,” and get
Miss Godfrey is ten feet tall.

Presumably, both statements are false.

Opposite or additive inverse, We have occasionally used
the word opposite, as is common in recent books. However,
do not et yourself be confused by the everyday meaning of
the word, which is quite different from its mathematical
meaning. In its mathematical meaning, opposite (or perhaps
better, additive inverse) of a number A means: the number
you must add to A in order lo get zero.

Example: '3 + . _ =0

7
=3 is the additive inverse of ‘3.



