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P R E F A C E  

The experimentation which has been carried on since 1957 by the 
Madison Project owes many debts to many people. I could not even 
determine whose contributions have been the largest. A t  this moment 

can think of more names to  list than I can possibly find space for. 
To those friends and colleagues who are not mentioned here, I want to 
say that you are not forgotten. 

Among those whose contributions have been very great indeed are 
Professor Donald E. Kibbey (Chairman of the Mathematics Department 
at Syracuse University), Dean Lawrence Schmeckebier, Mrs. Jane 
Downing, Mrs. Doris McLennan, Miss Marie Lutz, Miss Cynthia Parsons, 
and Mr. William Bowin, who helped tremendously in the early days of 
the Project when it operated mainly in the area of Syracuse, New York. 
The subsequent sophisticated experimental work done in Weston, 
Connecticut, was possible only because of the inspired efforts of 
Mrs. Beryl S. Cochran, greatly assisted by Gilbert Brown and Herbert 
Earrett of the Weston, Connecticut, public schools. The recording of 
this work via motion picture films and audio-tape was made possible 
by Morton Schindet, President of Western Woods Studios. The later 
expansion of the Project's efforts has depended heavily upon the 
assistance of the retiring President of Webster College, Sister M. 
Francetta Barberis, S. L.; her successor, Sister M. Jacqueline Grennan, 
S. I.; the Chairman of the Webster College Mathematics Department, 
Professor Katharine Kharas; J. Robert deary of Educational Testing 
Service; Sister Francine, S. L., of Nerinx High School; Frank H, Duval, 
of McKnight Elementary School, University City, Missouri; and Ruth 
Hertiein and Gerald Baughman of Hilltop Elementary School, ladue, 
Missouri. 

Madison Project materials have been developed initially in suburban 
schools. The adaptation of this material, or parts of it, for use with 
culturally deprived children in large cities has been made possible by 
the administrative leadership of Dr. Samuel Shepard in St. Louis and 
Or. Evelyn Cartson in Chicago, assisted by Ogie Wilkerson, Bernice 
Antoine, Emma Lewis, Gail Saliterman, and others, and by Dr. John 
Huffman in San Diego County, California. 



Mathematical and pedagogical ideas in this volume have been 
contributed by many people, including Professors Robert Exner, Erik 
Hemmingsen, and Thomas Clayton, of Syracuse University; Professors 
Andrew Gleason and Frederick Mosteller of Harvard University; 
Professor Gerald Thompson of the Carnegie Institute of Technology ; 
H. Stewart Moredock of Sacramento State College; Dr. William Reddy 
of the U.S. Army Ordnance Corps; and Donald Cohen and Knowles 
Dougherty of the Madison Project. 

All modern efforts at curriculum revision owe a profound debt to 
several dominant national and world leadewsuch as Max Beberman, 
David Page, Warwick Sawyer, Leonard Sealey, and Caleb Gattegno~and 
especially to the men who may be said to have created the present era : 
Jerrold Zacharias and Francis Friedman of the Massachusetts Institute 
of Technology; David Hawkins of the University of Colorado; Phillip 
Morrison of Cornell University; Jerome Bruner of Harvard; the late 
Richard Pautson, John Mays, Senta Raizen, and Charles Whitmer of the 
National Science Foundation; and their colleagues. Considering the 
consequences of their activities, the innovators themselves are 
incredibly few i n  number-but their work i s  being taken up by many 
others, and it is now realistic to hope that a new approach to the 
curriculum revision will soon exist in the United States. 

Preliminary trials of Explorations in Mathematics were conducted by 
Gordon Clem at  St. Thomas Choir School in  New York City, by Elizabeth 
Herbert and Lyn McLane at Weston, Connecticut, and by others in  
various schools and places. 

The myriad tasks of assembling a printable manuscript were 
supervised by Mrs. Bernice Talarnante i n  my office and by the editors 
and staff at  Addison-Wesley, 

All of the teachers and administrators who have worked with the 
Project have chosen to spend much of their lives studying the culture 
which history passes on lo our generation, selecting (as much as we are 
free to do so) that portion which we should pass on to our children, and 
finding suitable ways for doing this. It i s  not an unworthy task. Any 
value in this book is the fruit of their labor. 

Robert B. Davis 
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THE PROJECT This book is intended to help teachers provide a sup 
plernenhry program in "modern" mathematics. Briefly, 
features of this program inclode the fol!owing: 

(11 These materials supplement, but do not replace, the 
Gual school program in arithmetic and science. 

A supplementary program (2) use of Madison ~ m j e c t  materials can (and generally 
should1 be introduced into a school system gradually; 

This book is intended to provide children w ~ t h  various after a first step-by-step i r h l u ~ t i ~ n ,  use of the m* 
"creative learning experiences'' in mathematics. These 
experiences are appropriate for a wide range of ages and 
grade levels: some can be used with second graders (i.~., 
chronol~ical age a b u t  7 yearsl, while all can be used 
with first-year high school students, pmvided they have 
not previously learned this material. In  general, the ma- 
terials have been assembled with students in grades 5 
through 9 in mind. 

terials can be expanded and extended, allow~ng prqres- 
sive revision and growth within the school program. Pmj- 
ect materials are being prepared and augmented continu- 
airy, allow~ng for unl~mited "open-ended" growth in the 
school mathematics program. 
(31 These supplementary, "modern" mathematics rna- 

terials may be taught in one, two, or three tessons p?r 
a week, perhaps for a total time of one hour per week. A!- 

% material presented in this b o k  was developed as 
part of extensive exper~mental teaching conducted by the 
Syracuse University- Webstet Coltege Madisan Project,* 
under the direction of Pro fear  Robert B. Davis and Mrs. 
Beryl S. Cochran. 

Because many aspects of these discovety leswns may 
strike some readers as novel and unusual and because this 
book does not stand alone- but is  part of a large array of 
Madison Project materials present& via book, pamphlets, 
articles, tape recordfngs, and sound motion picture films- 
some explanation is required. - 

ternatively, portions of this book may be used as "units," 
occupying an occasionaf week or two during the schml 
year, For grades 7 and 8, this latter arrangement is prob 
ably preferable. 

(4) As mentioned previously, some of the materials in 
this W k  may be started as early as grade 2; some may be 
used as late 3s senior high school. Considerable variation 
is possible to meet the needs of individual classe5 and in- 
divldual schml situations. 
(5) The rnathernatlcal content combines certain funda- 

mental idms which underlie nearly all mathematics 
{such as variablet open sentence, number line, Cartesian 
coordinates, truth set, function, etc.), together with some 
impodant "new" topics that are basic to modemi uses of 
mathematics (such as matrices, logic, statistics, etch). 



(6) Etnphasls is placed on creative, informal exploration 
by the children; rote drill is avoided entirely, as not appro- 
priate to the object~ves of a "modern'* mathematics pro- 
gram. 
(7) Extensive teacher training in the use of these materi- 

31s is available from the Madison Project, Webster College, 
St. Louis, miss our^ 631 19, or from the Madison Propct, 
Syracuse University, Syracuse, New York 13210. 
(8) Films showing actual classroom lessons and other ma- 

terials useful to teachers, administrators, and parents 
are available from the Madison Project at either of the 
college addresses listed above (see also Appendix B). 

(91 This b m k  has been arranged so that it may be used 
independentfy of the companion volume, Discovery in 
Mathemattcs (Addison-Wesley, 1964). (We shall hereafter 
refer to these two books as Explorations and Discovew.l 
If both books are used in seqnence, it is probably better to 
use D~scovery first, and to follow it with the appropriate 
sections of Expiorat~ons. I t  is probably better still to use the 
two h o k s  simultan~usly, selectiug sections to suit your 
class. 

W h y  it is needed 
Having taught these materials for =me seven years prior 

to assembltng them in this baok, we naturally have many 
ideas and sv~est ions.  We shall make only one or two at 
this time. 

Obviously, something is happening to the school curri- 
culum these days. Mathematics is not alone. In nearly 
wety area we seem to be realizing that the schml program 
has been confined within arbitray, narrow l i m ~ k  that are 
not appropriate in today's world. 

Consider history and geography. Traditionally, students 
in the United States have studied "Western" culture - 
France, Germany, Italy, E~gland, and the United States it- 
self, for the most part-and have learned little or nothing 
a b u t  Asia and Africa. Yet what IS the world !n which our 
citizens live? The main crises of recent years have involved 
the Congo, South Africa, Vietnam, Korea, Cyprus, Algeria, 
Ghana, Cuba, Formog, . . ., areas about which most of us 
know little. I t  seems cleat that our study of human culture 
must be broadened to include more than merely "West- 
ern" culture. 

In the case of ~ U S I C ,  the traditional schml program u5u- 
ally gave the impression that music began with Bach and 
ended with Brahms -or possibly Sibelius. MUSK educators 

are now at work trying to broaden this far too narrow slice, 
and to include pre-Bach mustc, ethnic music, jazz, folk 
songs, and contemporaw concert music. 
One can look to nearly any area in the school program 

and observe a similar broadening taking place. This 
broadening promises to produce a curriculum more vital, 
more relevant, more honest, and more usefui than could be 
achieved within the arbitrav and narrow confines of the 
past. 

In the case of mathematics. the traditional K-8 curricu- 
lum was concerned mainly with adding, subtracting, mul- 
tiply~ng, and dividing, and with apprications to simple 
retail business transactions. The $12 program was dom- 
inated by the mathematics related to surveying, navigat- 
ing, manual computation, and similar tasks. 

Today's uses of mathematics are far broader, and a 
wider slice of mathematics needs to be presented in our 
schmls. T ~ I S  broadening of the school mathematics pro- 
gram is-as we shall see in the followrng pages - one of the 
main purposes of this h k .  

That children are creative is hardiy a new idea, nor is 
the notion that schools can properly nufiure this cre- 
ativity. Unfortunately, however, creativity has known its 
own bounds. t i  has been recognized in relation to "cre- 
ative writing,'* to the composing of music, the writ~ng 
of poetry, the production of plays. I t  is a0 acknowledged 
ingredient In painting, sculpture, and ceramics. But . . . 
creativity In mathematics? Hardly! Mathematics has been 
usually regarded as a matter of ftash cards for addition 
facts, and doing what you were told to do in a computat~on 
with logarithms. Mathematics has seemed to be a matter of 
drifi and f o ~ l o w i ~ g  directions. Mathematics has simply 
born no relationship whatsoever to the task of nurturing 
creativity. 

Yet everyone who has studied mathematics a t  any depth 
knows how wrong this picture i5. The routine aspects of 
mathematics have never been the more rewarding or valu- 
able part. Today, when electronic computers are taking 
over all of our routine tasks, the old view of mathematics 
ts even more seriously in error. Nowadays, routine mathe- 
matics is a task for machines; only creat~ve mathematics 
is a proper task for humans. 

This book makes every possible effort to see that the 
ch~id's experiences with mathematics shall be creative 
and not routine. 

Suggestions for further reading are given in Appendix A, 
under the heading "Philowphy and Pedagogy." See par- 
tlcdarly: Davis (231, (241, (251, (261, (27); Goak for 
School Mathematics (63); Mearns (41; Schwab (1); and 
Torrance (70). 



LX 
THE APPROACH 

Creative learning 
experiences 

Although most educators and scientists who have either 
viewed Madison Project films or observed Madison Project 
lessons have been markedly enthusiastic, there have been 
some few who have been puzzled and disappointed. These 
latter have often said, "There was no teaching in that 
lesson." Perhaps not-but there was a great deal of learn- 
ing, 

We believe that those who see "no teaching" in Madison 
Project lessons are disappointed at not recognizing what 
they regard as the essential structure of a lesson: the 
teacher first telling the students what will happen, then 
showing them what to do and how to do it, then giving 
them practice or drill, and, finally, summarizing the les- 
son, 

To be sure. none of these  a arts of a lessen" can be 
observed in typical Madison project lessons. Their absence 
is deliberate and important. 

Perhaps, then, in the eyes of some teachers, we do not 
present "lessons." What we do instead is to suggest to 

the children one or more mathematical tasks, and than 
work with them, unobtrusively, as they devise their own 
methods for tackling the tasks. Seven years of Madison 
Project experience have convinced us that children can 
learn a great deal in this way. Some semantic clarifica- 
tion may, however, be achieved if we do not refer to these 
as "lessons"; we have instead introduced the phrase 
creative learning experiences (or, alternatively, informal 
exploratory experiences} to describe the "tessons" -or, if 
you prefer, the "nonlessons"-that are characteristic of 
Madison Project teaching. 

Over the past few years, Madison Project films and live 
classes have been observed by a variety of professionals: 
teachers, mathematicians, motivational psychologists, 
clinical psychologists, logicians, physicists, guidance 
counselors, school principals, psychiatrists, psychoan- 
alysts, cultural anthropologists, and linguists, among 
others. From these observers have come descriptive state- 
ments that shed considerable tight upon what is, and what 
is not, a "creative learning experience" in the Madison 
Project sense. 

Concern for Basic Mathematics. The Project's creative 
learning experiences are concerned with fundamental 
mathematical concepts, such as variable, open sentence, 
signed number, the number fine, Cartesian coordinates, 
function, etc. They are not concerned with highly optional 
or artificial topics. Consequently, a sequence of creative 
learning experiences should add up to significant power 
in broad areas of mathematics. 

An Active Role for the Student As far as possible the stu- 
dent is given an active role to play. Passive roles, such as 
listening to a lecture or reading exposition, are usually 
avoided. The "active rote," however, may refer to mental 
activity, as well as to physical activity. The child who leaves 
ciass with a look of puzzled involvement is playing an ac- 
tive role, quite as much as the student who is making a 
measurement with a meter stick. Even in listening, the best 
students have always played an active role, in terms of 
critical thinking, seeking alternatives, etc. What is sought 
here. in the words of David Page, is to get every student 
thinking the way the best students have always thought. 

Concepts Learned in Context We try to have the students 
learn concepts in context. Every mathematical concept or 
technique was developed to aid in attaching some kind of 
problem. When we tear the concept out of this context and 
attempt to state it in vacua (as is too often the case), we 
render the concept unintelligible. Thus, in our informal ex- 
ploratory experiences, we begin not with definitions but ' 
with tasks. The concepts unfold naturally as one seeks in- 
sight into the nature of the tasks. 

Opportunities for Discoveiy. In every lesson we try to have 
opportunities for discovery lurking just beneath the sur- 
face. These discoveries are sometimes an essential part 
of the lesson, but often they have the effect of going be- 
yond the basic lesson. In  this latter case, it does not mat- 
ter how many, or hew few, students actually make the dis- 
covery. 



4 THE APPROACH 

The point here is to get the children in the habit of 
"looking for patterns" whenever they are working in 
science or ma thernatics; the discovery - often accidental - 
of such patterns is, after ail, the main device by which 
science moves forward. 

As an example of one such lesson, consider the film 
"First Lesson."* In this, we have children trying to put 
the same number in every Q in the open sentence 

so as to obtain a true statement. Sooner or later they find 
that 2 -+a yields a true statement: 

4 - 10 + 6 = 0  True 

Similarly, 3 4 yields a true statement: 

( [ U x [ 3 ] ) - ( 5 x [ 3 ] ) + 6 = 0  

9 - 15 + 6 = 0  True 

Moreover, if you take any number other than 2 or 3 and put 
it in each box, the resulting statement wil l  be false. We 
express all this by saying, "The open sentence 

has the truth set 

Now, the basic purpose of this lesson is to give the chil- 
dren experience with "variables" (i.e., with "putting num- 
bers into the "1 and to give them experience with "signed 
numbers" (such as 9 - 15 = '6, etc.). There is, of course, 
an intriguing and important discovery for any child who 
sees it- but for the child who does not see it, i t  is not es- 
sential to the basic purpose of the lesson. 

Appropriateness to the AM of the Child. We try to select 
informal exploratory experiences so that they are appropri- 
ate to the age of the child. Our experience thus far is not 
extensive enough to encompass all types of school situa- 
tions or all varieties of cultural background; nonetheless, 
as a broad generality, we are finding fifth-graders (chrono- 
logical age about 10 years) to be the "natural intellec- 
tuals," interested in science and abstract mathematics. 
Probably the intellectual curiosity of even younger chil- 
dren-even two- and three-year-olds - is also very great, but 
their command of abstract symbolism is limited. At about 
grade 6, we usually encounter the beginning of a decline, 
which extends over erades 7 and 8 (chronotogical ages 12 
and 13); during this time abstract mathematics seems 
often to lose some of its appeal for the child-he is more 
easily captivated by "engineering" or "activity" type 

%it 1- is sito prwnted in Chapter 3 of Dfsrofery. We put 
thim exmple  in at thn point ffmllun~mtion only. Pl- do not wofry 
if any of it *Ã‘m nrange and confusing-we &oil dewelap all of 
t h e  idem mrtfully in the pgftf  which fallow. 

subjects, such as logic, statistics, and the physics of 
forces and velocities. 

Our present generalities cannot be trusted too far, since 
we suspect that variations in school and cultural situa- 
tions produce variations in student preferences. in  Ken- 
eral, we must leave it up to you, who actually know your 
own students, to select topics appropriate to their in- 
terests. 

Informality. Good creative learning experiences usually 
seem to occur in a relatively informal atmosphere. This 
fact was first emphasized to us by a linguist* who counted 
evidences of levels of formality within the spoken lan- 
guage (or gestures) of the teacher! 

Low Anxiety level. Good "nonlessons" of the type we 
are describing seem to be characterized by a low anxi- 
ety level. Every child may be eagerly participating, but 
there is relatively little fear of failure. 

Nonauthoritarian Nature. We try to avoid an author!- 
tartan atmosphere. So important is this that we try always 
to provide autonomous decision procedures-that is, pro- 
cedures whereby a student can distinguish true state- 
ments from false statements, without recourse to the 
teacher or to books. For the very young child, the process 
of counting often serves as an autonomous decision pro- 
cedure. is  it true that 3 + 4 = 7? If the child can count 
reliably, he can count out three objects, count out four 
objects, combine them, and count the result. 

For the mature mathematician, some combination of in- 
tuition and logic ostensibly provides an autonomous de- 
cision procedure, but history records many instances 
where the separation of "true" from "false" has been 
difficult and uncertain. At every age level, we try to pro- 
vide an autonomous decision procedure if we can ws ib l y  
do so. "Postman stories" do this for the arithmetic of 
signed numbers. Substituting coordinates into the open 
sentence often does this for conjectures about graphs. in 
many cases, the ability to solve the problem by a variety 
of different methods, thereafter comparing results, pro- 
vides an autonomous decision procedure. in all such 
cases, the child can settle for himsetf the truth or falsity of 
the statement in question, 

The "Light Touch." We use a "spiral" approach. A subject 
is not pursued too heavily within a single session, but re- 
curs from time to time, and in various guises, until it be- 
comes familiar. 

Intrinsic Motivation. One psychologist who advises the 
Project gave a lecture in a college seminar room where tea 
was served. At the start of the lecture, he balanced a half- 
full cup (of the college's best china) on the edge of the 
table, just at the point where it teetered back and forth 
and threatened at any moment to fall to the floor (on the 
college's best carpet). While the cup teetered, the psy- 
chologist lectured. 

No one heeded his words; al! eyes were on the cup. Prob 
ably everyone in the room felt acutely uncomfortable, and 
-"AA" AAAAA-.- 

*Profelinr M. A. GttOson, Jr., of Horrfnrd Seminary. 



wanted to walk over and push thecup further onto the table. 
Finally, one person did. 

Why did everyone feel a need to perform this task? Not 
for any extrinsic reason - it was not our china, nor our rug, 
nor would we have to clean up. nor would we be blamed. We 
were not paid to push the cup onto the table - we were not 
wen asked to do so! Yet everyone wanted to, and wanted to 
very much. 

This is an instance of what we have called intrinsic moti- 
vation. The task itself cries out to be done. Other examples 
might be finding a key word in a crossword puzzle or finding 
a long-sought piece in a jigsaw puzzle. 

We try. wherever possible, to see that the mathematical 
tasks that we suggest to the children possess this peculiar 
compelling nature: you feel that you want to do it. We make 
very little use of extrinsic rewards- indeed, some research 
appears to indicate that extrinsic rewards can stand in 
the way of genuine creativity. 

For further reading, see Appendix A: Arons (100); Can- 
tor (13); Davis (28); Gage (115); Holt (31, (123); Kelly 
(41); Sawyer (65); Schwab (1); Skinner (66); and Tor- 
rance (70). 

Objectives for 

student growth 

No important human activity is strictly bound by its ap- 
parent objectives; on the contrary, it goes beyond these 
objectives and may end up possessing values hardly con- 
templated at the outset. We would like to think that vir- 
tually all educational activity has this definitiondefying 
character, and that Madison Project teaching is no excep- 
tton. It may. however, be useful to consider a brief list of 
"objectives" of Madison Project teaching. These objec- 
tives refer to objectives for the growth, over the years, of 
an individual student. (The Prqect believes that the 
teacher should also continue to learn and to grow and that 
the school program should continue each year to grow and 
to improve. The present list of objectives refers, however, 
merely to the growth that we should li ke to observe in each 
individual student.) The list is surely incomplete, but it 
may prove suggestive. 

(1) We want children to develop their ability to discover 
patterns in abstract situations. 

(2) We want children to develop the kind of independent 
exploratory Denavior that goes beyono anything tne teacher 
suggested, that explores paths that both teacher and text- 
book author have overlooked, that sees open-ended possi- 
billties for extension where others would see only closed 
completion of the assigned task. (And we do not want the 
children "'going on" merely in order to please us; we do 
want them exploring beyond the boundaries of the day's 
lesson because they feel there are some intrinsically reward- 
me things outside those boundaries! One might s a y  that this 

is thedifference between the dogwho escapes from a fenced- 
in yard because he wants to explore what's outside of the 
fence versus the dog who heels because he has been trained 
to heel.) 

(3) We want the children to acquire a set of mental 
symbols which they can manipulate in order to "try out" 
mathematical ideas. (This point will be discussed more 
fully when we come to study the arithmetic of signed 
numbers.) Probably all good mathematicians possess such 
a set of mental symbols, although they may be unable to 
describe them in words. 

(41 We want the children to learn the really fundamental 
mathematical ideas, such as variable, function, graph, 
matrix, isomorphism, and so on, and we want these ideas 
to be learned early enough in life so that they can serve 
as the foundation on which to build subsequent learnings. 

( 5 )  We want the children to acquire a reasonable degree 
of mastery of important techniques. 
(6) We want them to know basic mathematical facts-for 

example, the fact that 1 x -1 = '1. 

The objectives listed above are rather specific, mathe- 
matical objectives that might be described as "cogni- 
tive." There are also other important obfectives, of a more 
general nature. 
(7) We want our students to emerge from our classes with 

a genuine belief that mathematics is discoverable. 
(8) We want them to be able to make a realistic assess- 

ment of their own individual ability to discover mathe- 
matics. (For nearly all students, this ability is greater 
than they initially realize.) 



(9) We hope they will genuinely recognize the open- 
endedness of mathematics. 

(10) We hope they wilt develop an honest self-critical 
ability. This is important in mathematics, as in nearly 
everything else. It is no virtue to defend an incorrect line 
of reasoning, nor does habitual defensive action facilitate 
further learning. 

( 1  1 )  We hope our students acquire a personal commit- 
ment to the value of abstract rational analysis. 

(12) We hope the students will come to value "educated 
intuition." The shrewd guess is never to be despisedF 

(13) We hope our students will come to feel that mathe- 
matics is "fun" or "exciting" or "challenging" or "re- 
warding" or "worthwhile." 

(14) We want our students to learn something of the cul- 
ture that lies behind twentieth-century man. We want them 
to understand mathematical history because they have 
lived through it. We can bring history right into the class- 
room: the students can live through experiences such as 
trying to solve x y  = 4, only to find their path blocked, until 
finally someone makes a brilliant suggestion and they are 
able to move ahead. They have just witnessed a significant 
historical breakthrough, and they can consequently under- 
stand what this means in the history of mathematics in 
general. Because they have seen mathematics discovered, 
beheld this with their own eyes and heard it with their own 
ears. they can understand the process by which mathe- 
matics in general is discovered. 

(15) Finally, we want our students to be able to appreci- 
ate pure mathematics for its own sake. but at the same 
time to be able to see mathematics in a natural relation to 
physics, biology, and so on. 

Experience, intuition, 

ant? explicit formulations 

One of the guiding principles in the sequencing of the 
Madison Project materials is that we should avoid asking 
children to discuss things they have never done. Instead, 
we advocate a sequence wherein the child first gets ex- 
perience, then (as a result) develops intuitive ideas, and 
finally strives for explicit words and symbols to describe 
his experience. This may seem obvious, but mathematics 
teaching very frequently violates this sequence. 

For example, it is common to start with one or more def- 
initions. Although this may at first glance seem logical, 
a more careful look usually shows it to be unsatisfactory. 
A d ~ f i n j f i o n  is more nearly !he place to end up, rather than 
the place to start. When we state a definition, we are sur- 
veying an intellectual landscape and deciding which ideas 
are "in" and which are "out." Such a setting of precise 
boundaries cannot reasonably come until we have some 
rough general familiarity with the landscape. 

Our recommended sequence somewhat resembles the 
way man is exploring the moon. First we have the very 
broad and rough ideas- for example, that the moon is 
there. Then we ~ e t  a slightly finer, but still quite rough, 
version - the appearance of the moon's surface as seen 
through a telescope on earth. Then we g ~ t  still more de- 
tailed versions-the photos sent back by space vehicles 
which crashed into the moon, or passed near it. We shall 
soon be getting yet finer detail, from space vehicles that 
achieve a "soft" landing on the moon. 

Thus we get a sequence: very roueh ideas, rough ideas, 
moderately refined ideas, more minutely detailed ideas. 
etc. One consequence of this is that we often allow "er- 
rors" to pass unchallenged in the early stages of a discus- 
SiQn, because we feel !hat the time has not y ~ f  come to 
raise such an issue. Later, when the child's experience is 
more extensive, his intuition more fully developed, and his 
ability to discuss his intuitive ideas in explicit language 
is Greater, then we can discuss matters of finer detail. 

Notice that this means that we do not "try to get things 
exactly right from the very beg inn in^." We try to see that 
the teacher does not mislead the child unnecessarily, but 
we do not expect sophisticated accuracy in the child's 
answers or suggestions. The finer detail comes later. For 
example, if a child says that the open sentence 

a x n = b  

has the truth set (b'a \ , we would not necessarily rerntnd 
him of the case where 0 is substituted for a. We would if 
we fei! sure fhaf he was reach for  f b ~ s  Otherwise we would 
let this matter pass unnoticed for the moment. Another 
way to say this is: don't answer a question until artof it hc7s 
been raised. (Of course, i f  you feel the students are ready. 
you can see that the question is raised.) 

Professor Morns Kline says. "Sufficient unto the day is 
the logic thereof." One might add. "Sufficient unto the day 
is the level of sophistication thereof." And so on . . . 

Premature consideration of exceptional cases, compli- 
cations, and other forms of pathology is not beneficial to 
most students. They do not have the experience, the intui- 
tion, or the explicit language to permit them to make use 
of such considerations. This must be developed gradually, 
and in the sequence: experience, then intuition, then ab- 
stract symbolism, vocabulary, and notation. 



THE TOPICS 

What should we teach? 
In the midst of today's remarkable educational flux it is 

hardly surprising that one often hears the question, What 
shou/d we teach? Like many important questions, this prob- 
ably admits of no absolute and definitive answer. Nonethe- 
less, all of us who are involved with education are involved 
atso with the question, What should we be teaching? Those 
of us working in the Madison Project experimentation are 
no exception, and, one way or another, this question is 
never far from our thoughts. Here, briefly, are some of our 
ideas on this subject: 

In the first place, for an educational experience to be 
one which we should give to a child, we believe it shoufd 
meet most or all of the criteria mentioned in the preced- 
ing pages: it should be appropriate to the age of the 
child, if possible it should be creative rather than routine 
(never fear for the routine tasks-somehow they always 
seem to be with us, and we need save no special niche to 
protect them!), the learner should play as active a role as 
possible, the motivation should be intrinsic rather than 
extrinsic, and so on. But there is another criterion of very 
great importance: what the child knows today should prov~de 
the best possible basis for what he wi!l wish to learn tomor-, 
row. However, achieving this is never so simple as merely 
saying it. Considerable insight into how this works can be 
gained from the psychological theory developed by Lewin, 
Piaget, Tolman, and Brunei-. 

The psychology of Lewin, 
Tolman, Piaget, 
and Bruner 

"Big things" can be made up from "httie things" in a 
variety of ways, A journey of a thousand miles, say the 
Chinese, begins with but a single step. However, if we 
imagine budding a long walk from a sequence of individual 
steps, taken alternately with the left and right feet, the 
relation of the whole to these parts is, for most purposes, 
not very illuminating. Now one can imagine budding knowl- 
edge from a concatenation of small bits of inforrnation- 
left, right, left, right, as it were- but, as wrth the journey, 
the relation of part to  whole is dismal and uniltuminatirig. 
Felix Mendelsohn, a brilliant technician in matters of 
musical composition, is said to have written a symphony 
one measure at a time -a technical tour de force of great 
proportions. Such is not the usual method of composing 
music. The common, and far easier, method is to work out 
small pieces that have definite structural roies to play: 
a first theme, other themes, harmonic sequences, varia- 
tions of the themes, contrapuntal themes, and so on. These 
parts relate to the whole tn a way that the mind can grasp 
and manipulate, 

Suppose we were learning our way around a strange city. 
The "putting one foot in front of the other" kind of syn- 
thesis might be attempted by taking a map, starting in the 
lower left-hand corner, and gradually learning the map by 
contiguous expansion-that is, "strip by strip," or some- 
thing of that sort. This is the dreary, dull, and dismal ap- 
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proach, but it is nonetheless sometimes used in pro- 
grammed instruction and in curriculum planning. Ob- 
viously, a far pleasanter approach-and a far more pow- 
erful one-is to seek here, also, for elements of struc- 
tural significance. For the city of Syracuse, for example, 
one might begin by learning its "main street." which is 
named Salina Street and runs (roughiy) north and south, 
together with its principal east-west street, which is 
probably Genesee Street. These two elements produce a 
map which looks more or less like that in Fig. 1. 

Genesee St. -- 
FIGURE I 

The psychologists Jean Piaget, Kurt Lewin, E. C. Tolman, 
and Jerome Bruner have presented an extended theoreti- 
cal framework for discussing the cognitive structures that 
we all have "inside our minds," and the process by which 
these cognitive structures become modified or yield their 
place to newer, more up-to-date versions. If we take the 
preceding two-street map as our starting point, we might 
label it Cl, to emphasize that it is our "first cognitive 
structure." 

Experience will quickly require us to add more detail: we 
may soon encounter Erie Boulevard, another major east- 
west street, and we may find ourselves thinking of Syra- 
cuse as shown in fig. 2, which we might label Ci.  

Evidently, our second cognitive structure C, is a refine- 
ment of C,. In the language of Piaget, the process of "im- 
proving" the more primitive map Cl into the more sophisti- 
cated map Ca represents cognitive growth through "assimi- 
lation and accommodation" [see Appendix A, Flauell 
(1 141, p. 49, and elsewhere]. 

I 
FIGURE 2 

Sometimes we encounter situations where a modest 
change in the learner's cognitive structure will not be suf- 
ficient A more drastic change may be needed. We may 
discover, for example, that Erie Boulevard and Genesee 
Street, which we have been thinking of as roughly parallel, 
actually intersect on the east side of town. An agonizing re- 
appraisal of our cognitive structure for the street layout of 
Syracuse is now in order. The map C, must be discarded, to 

FIGURE 3 

be replaced by C,, which perhaps looks like the map in 
Fig. 3. This process of discarding C, and replacing it by 
C, represents, then, a more drastic instance of cognitive 
growth [see Appendix A, Haveil (1 14), Chapter 21. 

If we use this general point of view, we may say that the 
child comes to each lesson with some cognitive structure 
C,,, and, as a result of the lesson, we expect that cognitive 
growth by assimilation and accommodation will occur, and 
the child wiil replace Cn by en+, . Teachers do not af- 
ways think of learning in these terms, but this approach 
seems particularly appropriate as a way to think about the 
process of learning mathematics. 

Notice that every cognitive structure is wrong; you can- 
not make from memory a perfect map of the city you live 
in, nor can you give, from memory, a perfect description of 
the total contents of your own house. "Right" and "wrong" 
are not useful criteria in judging cognitive structures-all 
cognitive structures are wrong. However, some are none- 
theless preferable to others. In particular, a sequence of 
maps which grow like that in Fig. 4 is probably a less power- 

FIGURE 4 
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Erie Blvd 

Genesee St. F 
FIGURE 5 

ful sequence than one which grows by the use of signifi* 
cant structural elements, somewhat like that in Fig. 5, 
even though both sequences are tending toward the same 
sophisticated map, shown in Fig. 6. 

What does this say in the case of mathematics? If we 
devote grade 1 to addition facts up to 10, grade 2 to ad- 

Â¥'-ditio facts up to 100, and so cm, we are putting one foot 
in front of the other, left, right, left, right, . . . This ap- 
proach is weak in power. 

If, instead, we seek those basic mathematical concepts, 
techniques, and attitudes which pkay important structural 
roles in the development of the subject, we have a far 
more powerful approach. Cartesian coordinates, introduced 

, /say)  at grade 2, give us an ability to relate any arith- 
f metic or algebraic problem to a geometric one, and vice 

versa. For all the rest of our lives we shall be able to unify 
algebra and geometry mto a single coherent subject! This 
is power. 

Once we learn such basic structural concepts as variable. 
function, mapping, and so on, we have a strong structural 
framework to which a// of our subsequent mathematical 
learning can be related. This, again, is power! Here we are 
building cognitive structures that can we!! senre as foun- 
dations for improved structures in the future. 

Piagei's notion of cognitive growth by assimilation and 
accommodation, his view of learning as 3 sequence of 
cognitive structures, 

gives us a theoretical position from which we can answer, 
at least in part, the question of what should we teach. We 
should help the child build cognitive structures from which 
future cognitive structures can easily and powerfully emerge. 
It appears that a cognitive structure has more good growth 
potential if it is organized around concepts which play basic 

FIGURE 6 
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structural roles in mathematics as a whole- this provides a 
good framework for the assimilation of finer detail and pro- 
vides maximum continuity and flexibility when the more 
drastic process of accommodation forces us to replace some 
cognitive structure with another quite different. 

The mathematical concepts in this book-variable, open 
sentence, truth set, function, mapping, number line, Car- 
tesian coordinates, implication, contradiction, and so on - 
ham been chosen because we believe these concepts are of 
precisely this nature; they do play fundamental structural 
roles in the process of thinking about mathematics. 

The topics in 
brief preview 

Which "new topics" are offered in the present volume? 
Primarily these: 

Logic. There is a special branch of mathematics that is 
concerned with comb~ning statements. This subject is 
known as mathematical logic. The importance of this topic 
has grown rapidly since 1900, to the point where its inch- 
sion in precollege education seems nowadays to be ex- 
tremely desirable. Surprisingly enough, mathematical 
logic is a relatively new subject, being (in its present 
form) a product mainly of the twentieth century. It prom- 
ises to have important implications In any subject where 
we start with some statements and work out others, as we do 
in law, in philosophy, in science, and in mathematics. 

Empirical Statistics. Some phenomena are properly 
thought of as "determined" or "deterministic." For exam- 
ple, you hold a stone, release it, and i t  falls to the ground. i t  
doesn't sometimes fall - i t  always falls, 

Other phenomena are not fully determined. For example, 
you have a headache, take two aspirin, and perhaps the 
sensation of pain ceases. Then again, perhaps it does not. 

There is, however, a certain measure of regularity and 
consistency even within these "chance" phenomena. This 
regularity can often be studied, and even made use of, by 
means of statistics. This sublect, also, has grown tremen- 
dously in importance in recent years. Its inclusion in pre- 
college mathematics seems almost inevitable, probably at 

many different grade levels, and in many different forms. In 
this book there is one chapter which introduces some of 
the ideas involved in the study of "random" variation, in 
relation to the question of measurement error. 

Basic Ideas about Numbers and Variables. The study of 
statistics, logic, and similar topics is not possible unless 
one also learns about certain concepts that are basic to vir- 
tually all mathematics. The "essential" concepts inciude 
the arithmetic of signed numbers, the idea of variables, the 
idea of open sentence and truth set, the idea of functions, 
the idea of implication, and so on. (These matters are treat- 
ed both in Explorations and also in Discovery.) 

Cartesian Coordinates. The great invention of rectangular 
coordinates by Ren? Descartes, in the seventeenth century, 
made i t  possible to unify algebra and geometry intoa single 
subject. Being a seventeenth-century discovery, analytic 
geometry is clearly not "new," but it is of fundamental irn- 
portance, and many aspects of Descartes' idea are actually 
quite simple. The subject is of great significance for the 
applications of mathematics in physical science, in social 
science, and elsewhere. Some of these applications have 
been taught easily and successfully at the kindergarten 
level; many are highly suitable for grades 4-8. 

Matrices, Matrices are basic to a great deal of modern 
mathematics, and in many applications. In Project experi- 
mentation, matrices have proved to be a source of intrigue 
and a fruitful field for exploration by fifth-, sixth-, and 
seventh-grade children, as well as by students in senior high 
school. 

"Mappings" or "Transformations." This concept, which is 
presented in an elementary way in some of the following 
chapters, is one of the fundamental concepts of modern 
mathematics. If children learn it early in life. it can serve 
as part of the framework to which they can attach many 
other new ideas that will come along later. 

Derivation of the Quadratic Formula. This topic, quite 
traditional at grade 9, has proved easy and interesting 
for children in grades 5, 6, 7, and 8. We include it here 
partly to relate our "new" mathematics to the "traditional" 
school program, (Our approach to the quadratic formula is, 
we hope, more creative than the traditional approach, and 
productive of deeper insights into what is really involved.) 

AH of these topics will be explained at greater length in 
the appropriate following chapters. 



PLANNING THE LESSONS 

Using the Madison 
Project films 

Teaching the contents of this book is made easier by the 
existence of important forms of assistance for the teacher. 
Most important among these are the motion picture films 
showing actual classroom lessons. These films enable the 
teacher to see exactly how matrix algebra can be introduced 
to fifth-graders, how Cartesian coordinates can be intro- 
duced to second-graders, and so on. In many cases the 
same children can be followed, via the filmed lessons- for 
as long as five consecutive years of study of Madison Proj- 
ect materials. Consequently, teachers can see what their 
work wi!I lead to in the next few years of the students' lives. 

Notice that the original purpose of these films is to help 
teachers plan (and execute) successful lessons. The films 
are primarily intended for viewing by teachers, rather than 
by children. In a few cases, however, the films have been 
viewed by the children, with seemingly good results. Explore 
this possibility further if you wish. (A l ist of presently 
available films is given in Appendix B.) 

A varied diet of 
experiences 

When mathematics is always a matter of reading, writing, 
and reciting, it cannot help but become dull for most stu- 
dents. Greater variety in the kinds of classroom experi- 
ences that they have with mathematics can change the at- 
titudes of many children almost beyond belief, 

For present purposes, we can dtstinguish four kinds of 
classroom experiences: 
(1) Students working in small groups, using the book. 
(2) Students working in small groups, performing some 

physical experiment. 
(3) Class discussion, led by the teacher (which may in- 

volve use of the book, or work on some physical experi- 
ment, or neither). 

(4) A "presentation" by the teacher, usually in the form 
of an informal "lecture," punctuated by student questions 
or other student remarks, 

The following sections offer some suggestions for provid- 
ing for the first two sessions and for combining and se- 
quencing these four kinds of sessions. Class discussions 
and "lectures" by the teacher will be discussed when ap- 
plicable in the section "Teaching the Materials." 

Students working in small gruupa, using the book 

When the students are working in small groups, they usu- 
ally arrange their chairs in clusters for convenient smail- 
group discussion. We usually let the students choose 
their own groups, which vary in size from two or three 
students to as many as six or eight students. We frequently 
find that, as a student gets particularly interested in a prob- 
lem, he will withdraw from a group discussion and work on 
the problem by himself. 
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When these sessions are going really smoothly, the teach- 
er appears to have almost nothing to do. Actually, by this 
we mean that he may not be called upon for a single in- 
stance of exposition or explanation. His presence presum- 
ably helps keep schoolwork in sight, and prevents degen- 
eration into a purely social party situation. Moreover, the 
fact that the teacher himself obviously values mathematics 
enough to have spent a targe part of his life thinking about 
it tends to influence children profoundly. But the teacher's 
rote is one of transmitting values and setting "tone." He 
does not actually need to "explain" anything. 

(In order to emphasize this matter of values, Project 
teachers will frequently sit at their desks and work out 
some of the harder problems themselves. There seems to be 
no more effective way to show that you value a task than to 
actually do it!) 

When things are going less smoothly, the teacher has a 
more active role to play, in terms of more explicit interac- 
tions with students. These may take many forms: talking 
with individual students or working with one group or work- 
ing briefly with the entire class. The teacner may suggest 
alternative problems or topics for students to work on; 
explain the general purpose of the lesson i f  that is not 
clear; solve a problem, by way of illustration: exhibit the 
work of one student, for discussion by the entire class; 
summarize what has been done; recall eartier methods that 
may be needed and so forth. 

In lessons of this sort, we generally think of the teacher 
as playing the rote of a foreman with a group of workers.* 

Although this role for the teacher has been known to 
many tine teachers for some time. it is relatively new for 
most Madison Project teachers, and we are quite excited 
about it. When the teacher is cast in this "foreman" role, 
how can he be most effective? When should he take an in- 
terest in the work of a student? When should he avoid in- 
terfering? Should he avoid looking out of the window, on 
the grounds that this overemphasizes his special pre- 
rogatives, and perhaps disparages the importance of the 
task the students are working on? When should he sit at his 
desk, and when should he walk around the mom? When he 
joins one of the small groups, is it important for him to 
sit at a student chair or desk, in order to seem a member 
of the group, working on a common problem? 

All of the usual maxims for good teaching presumably 
apply to the "foreman" role also: respect the student as a 
human being and as an equal; be careful to avoid conde- 
scending to the student; listen - really listen! - to what the 
student says; when exposition is called for, express the 
essentials, not the minor details; and, perhaps above at}, 
avoid talking too much, doing too much, or interfering too 
much. 

*Nothing Invldioun is nuont fcy him. Rmtmmlwr that thwe are 
good tnremw and paw uno*, good wotk situation! and poor mma 
1 "fomnmn" it not nociforily unpIttCHcmt M ffuthoritorinn; "work" 
ton build growth, and even be quirt enjoyable. Not all "worinifuo- 
t i o ~ "  are deodly und exploitative. 

With ninth-grade classes, we usually arrange to have both 
Discovery and Explorations available at these sessions. 
Each student has his own personal book and writes in it. 
We believe students shew a marked improvement in inter- 
est when each is allowed to write in his own book. 

Students working in small groups, performing a 
physical experimeni 

In general, this situation is similar to that just dis- 
cussed. We would, however, like to emphasize the impof- 
tance of letting students perform physical experiments in 
the mathematics class. This involves some extra effort, in 
arranging materials and equipment, but the improvement in 
motivation is almost beyond beiief. 

Combining and wquencing claseroom experiences 

In general, working in small groups is especially valuable 
in providing experience ("building readiness") for subse- 
quent class discussions or informal lectures. For example, 
we let ninth-graders work in small groups on Chapters 32, 
33. and 34. with some brief class discussion. After several 
days of this, we work out the derivation of the quadratic 
formula on the chalkboard, with total class discussion. 
The gains in this discussion, as a result of the few days 
of previous "individualed exploration," are dramatic- 
ally apparent. 

Our sequence -explore, then discuss -might be repre- 
sented diagramatically, as in Fig. 7. 

Sometimes small-group work can stand entirely alone. If 
it can, we would suggest that the teacher refrain from add- 
ing on any unnecessary "summary," which somehow ap- 
pears condescending-as if the students can't think for 
themselves. For ninth-graders, many topics usually go per- 
fectly smoothly, with no help (or interference) from the 
teacher. (We allow students considerable freedom in 
"jumping around" in the book as they wish, and do not 
require them to work every problem. Nor need all students 
work on the same chapter at the same time, except where 
total class discussion makes this necessary.) 

Working in small groups gives opportunities for review 
or restudy by those individual students who seem to need 

FIGURE 7 
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it. Around midyear, some individua! students may take 
advantage of small-group sessions to work through the 
chapters that deal with "postman stories" and the arith- 
metic of signed numbers. 

In the following section we shall comment briefly on 
which of the four types of lessons seem to work best for 
each individual topic. There is, of course, considerable 
variation from one class to another. 

Some remarks on 
grade level 

Hopefully, we are moving toward the day when the arti- 
ficial lines of demarcation known as "grade levels" will 
disappear, and each child will really pursue a course of 
learning that is meant just for him, and which he helps to 
determine. 

That day is not here, for most of us, as yet. Consequently 
-with apologies-we indicate here some of the experiences 
the Project has had in teaching the various chapters and 
topics at different grade levels. 

At the same time, we indicate which of the four types of 
classroom lessons we usually use for each topic. 

Chapter Suitable Grade Levels Type of Lesson 

Chapter 1 
Q notation grade 5 - grade 9 Class discus- 

sion or small 
groups working 
from the book. 

Replacement set grade 5 - grade 9 Class discus- 
sion or small 
groups working 
from the book. 

Use of state- grade 5 - grade 9 Class discus- 
rnents as re- sion or small 
placements for groups working 
variables from the book, 

Chapter 2 
Cartesian product grade 5 - grade 9 Class discus- 
of two sets sion or small 

groups working 
from the book. 

Plotting points grade 5 - grade 9 Class discus- 
on Cartesian sion or small 
coordinates groups working 

from the book. 

Tic-Tac-Toe 
Game 

Chapter 3 
Open sentences 
with two vari- 
ables 

Chapter 4 
Introduction of 
signed num- 
bers, using the 
"pebbles-!n- 
bag" model 

Chapter 5 
Arithmetic of 
signed num- 
bers, using 
"postman sto- 
ries" (sums 
and differences) 

Chapter 6 
Arithmetic of 
signed num- 
bers, using 
'postman sto- 
ries" (products) 

Chapter 7 
Nonstandard 
numerals 
and nonstan- 
dard algorithms 

Chapter 8 
Graphs with 
signed num- 
bers 

grade 5 - grade 9 

grade 5 - grade 9 

grade 5-grade 9 

grade 5 - grade 9 

grade 5 -grade9 

The appropriate 
grade levels for 
this topic will vary 
from school to 
school, depending 
upon the basic 
arithmetic program 
that is used 

Class divided 
into two 
teams; you 
may want to 
present this 
without using 
the book, 

Class discus- 
sion (with 
students vot- 
unteering to 
come to chalk- 
board) or small 
groups working 
individually 
with the book. 

Probably most 
effectively 
done as class 
discussion, as 
in the film "A 
Lesson with 
Second Grad- 
ers." 

Probably most 
effectively 
done as class 
discussion. 

Class discus- 
sion or small 
groups working 
from the book. 

Class discus- 
sion or small 
groups working 
from the book. 

grade 5 - grade 9 Class discus- 
sion or small 
groups working 
from the book. 
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Chapter 9 
PN and UV 

Chapter 10 
The "secrets" 
(i.e., the cci- 
efficient rules) 
for quadratic 
equations from 
the book 

Chapters 1 1  - 15 
Logic 

Chapter 16 
The Game of 
Clues 

Chapter 17 
Measurement un- 
certainties (an 
introduction to 
some ideas of 
statistics) 

Chapter 18 
Identities 

grade 5 - grade 9 

grade 5 - grade 9 

We prefer this for 
grade 7 or later; 
you might be able 
to use it satis- 
factorily with 
somewhat younger 
children. 

grade 5 - grade 9 
(If you keep it 
simple, this game 
is fun even for 
first graders. 
Don't hesitate to 
change the rules, 
in order to make 
it really simple.) 

We like this lesson 
with sixth-graders, 
but grades 7, 8 
and 9 would be 
suitable. Indeed. 
it is an excellent 
i e ~ s ~ f i  tor ninth- 
graders. 

This would seem 
to be an essential 
part of the mathe- 
matics program by 
the time you reach 
grade 9. 

Might be rec- 
ommended for 
reading out- 
side of class; 
alternatively, 
use either 
class discus- 
sion or smafl 
groups. 

Class discus- 
sion or small 
groups working 
with books 
(cf. the films 
"First Lesson" 
and "Second 
Lesson"). 

Class discus- 
sion or small 
groups work- 
ing from the 
book, 

The best rneth- 
od is to ignore 
the book and 
present this as 
a game to be 
played in 
class, with the 
teacher ex- 
plaining the 
rules. 

This is a 
"physical ex- 
periment" type 
of lesson (cf. 
the film "Aver- 
age and Vari- 
ance"). 

Class discus- 
sion or work in 
small groups or 
as individuals. 

Is It An identity? 

Recognizing 
identities 

Chapter 19 
Describing the 
process of obtain- 
ing new identi- 
ties from old 
ones, using 
PN and UV 

Chapter 20 
Shortening 
lists of alge- 
braic statements 
by using gener- 
alization and 
irnplica tion 

Chapter 21 
Writing deriva- 
tions 

Chapter 22 
Extending our 
axiom system, to 
provide for sub- 
traction and 
division. 

grade 5 - grade 9 We use this as 
a game be- 
between two 
teams, with 
the entire 
class partici- 
pating, but you 
may find bet* 
ter methods. 
Notice that 
this does not 
appear in the 
student book 
at all! We lei 
the teacher in- 
troduce the 
game. 

grade 5 - grade 9 Class discus- 
sion or small 
groups working 
from the book. 

grade 5 -grade 9 Class discus- 
sion or small 
groups working 
from the book. 

grades-grade9 Possiblyitis 
(We usually pre- best to let the 
fer either grade students work 
5, or grade 6, or from the book,  
grade 9.1 in small groups, 

and then have a 
summing up" 
session where 
the derivations 
are made in a 
total class dis- 
cussion, 

grade 5 - grade 9 Class discus- 
sion or small 
groups working 
from the book 
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Chapter 23 
Making up 
derivations 

grade 5 - grade 9 Class discus- 
sion or m a l t  
groups working 
from the book, 

Chapter 24 
Extending sys* 
terns: "lattices" 
and exponents 

Chapter 25 
Guessing func- 
tions 

grade 5 - grade 9 Class discus- 
sion; alterna- 
tively, let stu- 
dents work in 
small groups, 
using their 
books. (You 
may want 3 

class discus- 
sion near the 
end,) 

grade 5 - grade 9 This is prob- 
ably best done 
as a class ac- 
tivity, as in the 
film entitled 
"Guessing 
Functions." 
It may well be 
that you will 
prefer not to 
use the stu- 
dent books at 
all on this 
chapter. 

Chapter 26 
The form of 
functions 
(linear, quad- 
ratic, etc.1 

Chapter 27 
Physical experi- 
ments that lead 
to functions 

Chapter 28 
The notation 
Kx) 

grade 9 Class discus- 
sion or stu- 
dents working 
from their 
books (perhaps 
in small 
groups). 

grade 5 - grade 9 Physical ex- 
periments per- 
formed in 
class, prefer- 
ably with the 
students work- 
ing in small 
groups. 

grade 6 - grade 9 Small groups 
working from 
the book. 

Chapter 29 
Transform op- 
erations and 
"equivalent 
equations" 

Chapter 30 
Transform op- 
erations on in- 
equalities 

Chapter 31 
"Variables" ver- 
sus "constants" 

Chapter 32 
General solution 
of equations 

Chapter 33 
Hints on prob- 
lem solving, a la 
Pofya 

grade 5 - grade 9 Our favorite 
(This might also method is gen- 
be appropriate eral class dis- 
for younger chil- cussion, but 
dren.) the participa- 

tion in the 
class discus- 
sion might be 
better if, be- 
fore the class 
discussion, the 
students 
worked in 
small groups, 
using their 
books. 

grade 5 - grade 9 For this one 
(This might also case, it may 
be appropriate be well to have 
for younger chil- the class dis- 
dren.) cussion first, 

and then let 
the students 
work in smail 
groups, using 
their books. 

grade 5 - grade 9 Probably in- 
troduction by 
the teacher is 
most effective, 
presumably to 
the entire 
cfass; alterna- 
tively, let 
students work 
in small 
groups, using 
their books. 

grade 5 - grade 9 Students work- 
ing in small 
groups, using 
their books or 
working indi- 
vidually, using 
their books. 

grade 9 (Pos- Class discus- 
sibty suitable also sion or small 
for some younger groups working 
children.) from the book. 
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Chapter 34 
The quad- This is a tradi- At the ninth- 
ratic formula tional topic in grade level, we 

grade 9, and in prefer first to 
our experience have the stu- 
that is a very good dents work in 
grade level for it; small groups, 
however, we have using the 
used it success- book. After 
fully with bright this, we go 
students in grades through the 
6, 7, and 8. entire deriva- 

tion in a dis- 
cussion with 
the entire 
class. 

Chapter 35 
History grade 9 (Pos- You can as- 

sible also in sign this for 
grades 5 and 6) reading out- 

side of class. 

Solving cubic grade 9 Students work- 
equations by ing in small 
Cardano's method groups, $01- 

owed by gen- 
eral class dis- 
cussion. 

Chapter 36 
Mappings 

Chapter 37 
Introduction to 
matrix rnultipli- 
cation 

Chapter 38 
Exploring 
matrices 

grade 5 - grade 9 Combine some 
small-grou p 
work with class 
discussion. 
These are fun 
and easy, once 
you see the 
point. 

grade 5 - grade 9 We prefer to 
have the 
teacher in- 
troduce this, 
working with 
the entire 
class. 

grade 5 - grade 9 Class discus- 
sion or small 
groups work- 
ing from the 
book. You may 
want to use 
some of each 
approach. 

Chapter 39 
Exploring 
matrices, 
continued 

Chapter 40 
Fun with 
matrices and 
transformations 

Chapter 41 
Matrices and 
transformations 

Chapter 42 
Matrix solu- 
tion of simul- 
taneous equations 

Chapter 43 
Word problems 

Chapter 44 
Establishing an 
isomorphism be- 
tween a special 
set of matrices 
and the set of 
rational numbers 

Chapter 45 
x* = -4 

grade 5 - grade 9 Either small 
(Perhaps Chapter groups or 
39 is easier than the entire 
Chapter 38; you class. 
may prefer to 
omit Chapter 38 
and go directly 
from Chapter 37 
to 39. 

grade 5 - grade 9 Perhaps srnail 
groups or stu- 
dents working 
as individuals, 
When students 
make up an in- 
teresting map- 
ping, they can 
solve it with 
the entire 
class. 

grade 5 + grade 9 Either small 
groups or class 
discussion. 

grade 9 Srnal t groups. 

grade 9 

grade 5 - grade 9 

grade 5 - grade 9 

Chapter 46 
Determinants grade 9 

Chapter 47 

Finding matrix grade 9 
inverses 

Small groups. 

Small groups 
or class dis- 
cusslort. 

Small groups 
or class dis- 
cussion. 

Small groups 
or class discus* 
sion. 

Small groups 
or class discus- 
sion. 



TEA CHING THE MATERIALS 

This section contains a sequence of "informal exploratory 
experiences" that, taken together, provide an introduction 
to such mathematical topics as matrices, logic, functions, 
and Cartesian coordinates. In the following pages you will 
find the Student Discussion Guide reprinted chapter by 
chapter for your convenience. It appears in the left-hand 
column of the page. Opposite each exercise of the Student 
Discussion Guide, in the right-hand column, is the answer 
to the exercise along with helpful comments and sugges- 
tions for teaching the material, when deemed necessary. 
Very often, also, you will find chapter background or in- 
troductory information preceding the Answers and Com- 
ments. 

You have, therefore, in one convenient location, the 
Student Discussion Guide, the answers far every exercise, 
helpful teaching suggestions, and mathematical back- 
ground material. 



P A R T  ONE VARIABLES,  GRAPHS,  AND S I G N E D  NUMBERS 

One can make very little progress in mathematics without the 
concept of variable When a mathematician says "variable," he 
is referring to the concept which is usually written as an 

We present here, for teachers, a somewhat more formal discussion 
of this concept than we would usually present to children. 

The list of statementsv 

(6 x 6) + 1 < 20 

(10 x 10) - 1 < 20 

contains two true statements (the first two) and three false state- 
ments (the last three). All  five of these statements may be repre- 
sented by one single mathematical "sentence" involving 3 vafiaUe, 
as follows. 

By itself, however, equation (1) does not permit us to reconstruct 
the original five statements, for one simple reason: we do not know, 
merely from (I), which numbers tor, if you prefer, numerals) are 
to be written in the r] . In order to reconstruct the first statement, 
we must write 3 in the n. 

Mathematicians describe this by saying, "Use three as a re- 
placement for the variable [Ã‘ ." We shall call this process "UV" 
(which stands for "use of a variable"), and shall write 

3 -a. 
I f  we carry out the operation 

[3J [3'j) + 1 < 20, 
or, t f  you prefer, 

3 x 3 )  + 1 < 20. 

"Notice that the symbol < meuns "is l e u  than." Consequently, the state- 
ment "3 < 5" is true, where05 the statement "10 < 7" is  fofse. 



In order to reconstruct all five of the origtnai statements from 
equation (11, we must perform 

3 ---, n, 
and then, going back to (1 1, perform 

and so on, for 5, 6, and 10. Mathematicians indicate ail five of 
these uses of UV by saying that the replacement set* for the vanable 
i'"\ IS 

3 ,  4, 5, 6, 101. 

We might name this set "ft," for "replacement," and write 

Now equations (1) and (2) together permit us to reconstruct 
our original fist of five statements. That is to say, the list 

says exactly the same thing as this list; 

Sometimes, however, we want to go beyond merely listing these 
five statements; sometimes we want to label them appropriately 
as true or false- 

3 x 3 )  t 1 < 20 True 

( 4 x 4 ) + 1 < 2 0  True 

5 x 5) + 1 <20 False 

( 6  x 6) + I < 20 False 

(10 x 10) +Â 1 < 20 False 
. . 

*In mathemotits, the word l e t  means merely a col~ettion or on aggre- 
gate. We often write sets by using braces or "wiggly bmckets," so that, for 
example, the set of New England itutci might be written 

~ a i n e ,  New Hornpihire, Vermont, 

Massachusetfs, Connecticut, RhocfÃ lflgnd}, 

Or the set of even numbere lets than ten end greuter than zero might be 
written 

2 ,  4, 6, 8 ; -  

The order of writing the elements of o set i s  considered to be irrelevant, 
so that this fast set couId also be written 
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To do this, using our powerful new shorthand, we shall use 7" to 
name the set of those elements of R which produce a true state- 
ment, and F to name the set of those elements of /? which produce 
a false statement. Evidently, in the present example, T = (3, 41 
and F = { 5, 6, 10). Using this notation, the list 

says exactly the same thing as this list: 

3 x 3) + 1 < 20 True 

4 x 4 + 1 < 2 0  True 

5 x 5) + 1 < 20 False 

6 x 6) + 1 < 20 False 

( 10 x 10) t 1 c 20 False 

The power of this new shorthand is very great. Indeed, the 
'golden period" of mathematical advance was unlocked, in part, 
by the introduction of the concept of variable. (Notice that, 
unfortunately, the word variable is treacherous, for its mathemati- 
cal meaning is quite different from its everyday meaning. Max 
Beberman of UICSM has preferred the name "pro-numeral," by 
analogy with "pronoun.") 

A mathematical sentence which involves a variable is called 
an open sentence, consequently, 

are all examples of open sentences. All mathematical sentences 
are divided into open sentences, true statements, and false state- 
men ts . 

The set T is called the truth set for the open sentence: that is, 
it is the set of those elements of R which will produce a true state- 
ment when we use UV. 

In using UV- that is to say, in making numerical replacements 
for a variable, as we did when we used 

to go from 

and so on - it is important to obey an agreement which mathemati- 
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clans all make: whatever number is written in the first [Ã‘ in the 
sentence, that same number must be written in every other Q 1n 
the sentence. This agreement makes the concept of variable useful; 
without it, variables could not play their present important role 
in mathematics. We shati refer to this agreement as the "rule for 
substituting."* 

Frequently we shall not bother to indicate the replacement set 
R. In such cases, the reader is free to use any number he knows 
about as a replacement for the variable. 

We would never present a formal discussion such as the pre- 
ceding one, to children, father, when we want children to meet 
the concept of vanabie, we shall try to arrange for them to  meet this 
concept unobtrusively, and to come upon it while they are in the 
process of doing something. 

AIS right. Then we. as teachers, must ask ourselves what "active" 
thing children can do with variables. One answer, evidently, is  that 
we can ask them to solve equations such as 

m + u + u = 9 .  
and so on. This. then, is what we shail now do. 

CHAPTER 1 

Variables 

[pace 11 

One of the major discoveries in mathematics occurred 
when someone* realized that you could use sentences 
such as 

3 + n = 5 .  

A sentence like this is called an own sentence or an 
equation. 

(1) Can you write something in the Q in the equa- 
tion above so as to produce a true statement? 

(2) Can you write something in the ["I in the equa- 
tion above so as to produce a false statement? 
- 

'The w ~ n a l  discovery of own stnt^fitwatid what ^'cah~ll call i Briablcmi 
occurred so lone are lhal iLa www orixin is not known An Encliah echolar 
named A Henry Rhid found, a d  bought what turned out to be f l  very 
ancient Egyptian ppvm dotnag ifmm Wore 1650 BG. Tkifl ppyru? is now 

the property of  the British Museum It was the work of a very ancient m b e  
named A h w ,  and i t  includes the hmic idea ofvaria&Tt>Ã However, quflpniinfl 
as ~r m y  seem, Ahnw and the peopled his lime did mi. have a rest!y snt~a- 
factory mlhd for wiling numbrw and ihnappears tn haw p r w e n t d  them 
from do in^ v&ty much with the ides or vannblm We. today, can do a great 
deal wih ihie tdw, and wtl1 tandnubtcdly connnw in dinc'ovff~ m r e  and niore 
fays- to  it^ variables 

(1) If you write 2 in the 0, you will get the statement 

(or, if you prefer, 3 + 2 = 5) which is, of course, true. 

(2) Any number other than 2 will produce a false statement For 
example, 1965 will produce 

3 + 1965 = 5 False. 

'Comport Discovery ( t o a h '  text), p a s t  25 and 26. You may alw be 
interested in the film " F k ?  L fon."  
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(3) Do you know what mathematicians mean when 
they speak of "the truth set for the open sentence 
3 + - 5"? Do you know how to write this truth 
set? 

(4) Do you know what mathematicians mean when 
they speak of the "rule for substituting"? 

(6)  Bill claims that the "rule for substituting" says 

this: if an open sentence has more than one in it, you 
must put the same number in every occurrence of the 
n. Oo you agree? 

(6) Can you give Borne examples of using the "rule 
for substituting"? 

(7) Tony says that the "rule for substituting" is 
not the same aa "making a true statement." Do you 
agree? 

(8) For the open sentence 

n+n+n-9.  
can you substitute 30 SB toobey the rule for substituting 
but make a false statement? 

(3) The truth set for the open sentence 3 + Q = 5 is the set of num- 
bers which will yield a true statement. In this case, 

(Notice that we have also just answered the question of how to 
write this.) 

For most students this is. of course, a rhetorical question; they 
presumably do not know (however, having older brothers and sis- 
ters, they may!). In any case, we prefer asking this question, 
rather than merely making a statement; we feel the question does 
a good job of getting the students' attention. 

(4) The rule for substituting might be staled as "Whatever number 
you write in the first box in an open sentence, you must write 
this same number in all the other boxes." 

(5) Bill is, of course, correct 

(6) Here are a few: 

If we start with the open sentence 

and use UV, 

3 - 0  

we get 

tf we use 

1985 -+ 

we get 

(7) Tony is correct, as questions 8through 12 clearly demonstrate. 

. (8) There are many ways to (to this; here is one: 

We have put the same number in each , and surely our re- 
sulting statement is false, so we have successfully done what the 
question asked us to do. (You may find it helpful to view the film 
"First Lesson." 1 



VARIABLES 23 

(9) For the open sentence Illa#e 21 

u+n+rJ=9, 
can you substitute so as to violate the rule for substi- 

tuting but make a true statement? 

(10) For the open sentence 

U+O+rJ=?, 
can you substitute so as to violate the rule for substi- 
tuting and make a false statement? 

( 11) For the open sentence 

n+nta-9, 
can you substituteso as to obey the rule for substituting 
and make a true statement? 

(9) Again there are many possibilities; here are a few: 

and so an. 

(10) Here, also, there are many possibilities; here are some of them: 

(1 1) There is only one way to do this: 

(12) What is the truth set for the open sentence (12) {3) 
+ ^ = p ?  

Can you find the truth set for each open sentence? 

Younger students, especially, will usually attack this problem 
by trial and error, which is a good method in this example. For 
instance, if we try 2 4 V], we find 

which is evidently false. Moreover, we see that 2 is too small 
Hence, let's try 3 Ã‘ 0 : 

which is true. 
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Since 3 Ã‘ Q yielded a true statement, the truth set must 
be {3}. 

Actually, one might ask if there aren't some other numbers that 
wit! also work. This is, a prior;, a possibility; however, in problems 
of the present type, the truth set contains exactly one element, so 
we have completed our work on this problem once we have found 
that 3 -> produces a true statement. 

Here, the trial-and-error method which we discussed in answer 
to question 14 can be used to show us that 2 is too small and also 
that 3 is too large. For a further discussion of problems like this, 
see Discovery. Chapters 20, 21, and 22. You may also wish to view 
the film entitied "Open Sentences and the Number Line." 

Children usuahy tackie this problem something like this: 

9 + 1 1 = 2 2  

20 = 22 False 

3 is too small. 

We can represent this on a number fine: 

(3 x 4) 4- 11  = 22 

12 + 11 = 22 False 

4 is too large. 

The number-line picture now looks like this: 

Too small Too large 

f///,///b; 
0 1 2 3 4 5 6 7  

Since 3 x i-J must be a whole number, we can see what denomi- 
nator we must use. Evidently, the answer must be either 34 or 
3+, or else no number works! Which is it? 
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(19) What do we mean (in mathematics) when we 
speak of a variable? How can we write a variable? 
How many ways do you know to we a variable? 

(20) Sometimes, when we want to be very pre- 
cisc, we specify the replacement act for the variable. 
John says that i f  we specify Ihe replacement set 
R = 13, d, 5 , 6 , 7 }  for the variable Q and if we write 
the open sentence 

3 + m 2 +  D)^, 
we have really written five mathematical statements 
that don't have 0 ' s  in them! Do you agree? 

Try 34 - [-I : 
3 x 3+) + 11 = 22 

11 + 1 1 = 2 2  True 

Consequently, 

The procedure here is generally similar to that of the preceding 
problem. 

(19) This, too, may be a rhetorical question. Still, one or more of the 
students may actually know that we write "variables" as X ,  y, 
a, A, r, , A, 7, h, ht etc. These symbols behave much like 
pronouns. The sentence 

He is President of the United States 

or, even better, 

-is President of the United States 

has, itself, no truth value. ft will become true or false depanifing 
upon what we put in the blank, or use as an antecedent of "he." 

in just the same way, 

is neither tine nor false; it will become true or false when we 
use some number as a replacement for the Q . The Q is  known 
as a voriabfe. 

Alternatively, we can mink gif 

with the replacement set 

as standing for the unending list of statements 

One of these statements is true; all of the others are false. 

(20) John is right The open sentence and replacement set 

mean exactly the sume fhing as the five statements: 

3 + 3 = ( 2 + 3 ) + 1  3 + 6 = ( 2 + 6 ) + 1  

3 + 4 = ( 2 + 4 ) + 1  3 + 7 = ( 2 + 7 ) + 1  

3 + 5 = ( 2 + 5 ) + 1  
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Since mathematics is deeply concerned with the discover of 
pattern, notice how clearly the pattern of these statements is 
revealed by the variable notation. 

(21) Do you know what the symbol (21 ) The symboi c means "is less than." For example, the statement 
< 

means (in mathematics)? 
3 < 5 

would be read: 

Three is less than five. 

(22) Which statements are true and which are false? (22) (a) True 

(el 1000 < I , ~ ~ O , O O O  (e) True 
[pasf 31 

(f) False 

(231 Suppose you wanted to tell somebody these 
seven statements - only these seven, and no others: 

5 + 4 - = 2 1  

5 + 5 - = 2 1  

5 + 6 < 2 1  

5 + 7 < 2 1  

5 + 8 < 2 i  

5 + 9 < 2 1  

5 + 10 < 21 

Could you do this by writing only one open sentence 
and by writing the replacement set for the variable 

(g) True 

(h) False 

(i) Fatse 

( j )  False 

(k) Fahe 

It is often helpful to interpret 

to mean 

a ties to the left of b on the number line. 

We shall see the value of this interpretation when we begin to deal 
with signed numbers, 

(23) The open sentence and replacement set 

5 + r " ] < 2 1  

R = 4,5, 6, 7, 8, 9, 101 

mean exactly the same thine as this list: 
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(24) Paul has written aome open sentences and indi- 
cated replacement sets for each variable. In each case, 
can you write the stateinenta Paul meana, without 
wing variables? 

(25) Jill wrote theae statemento. 

7 + ( 2 x 1 ) < 5 0  

7 + ( 2  x 3) < 50 

7 +  ( 2 4 < 5 0  

7 + (2 x 10) < 50 

Can you indicate these four statements by writing one 

open Mntence and by writing the replacement set for 
the variable? 

(26) Don wrote these statements: 

( 6 +  1) x (8 -  1 )  a ( 8 x 8 ) -  ( 1  x 1 )  

(a + 2) x (a - 2) = (8 x s) - (2 x 2) 

8 + 3) x (8 - 3) = (8 X 8) - (3 x 3) 

8 + 4) X (8 - 4) = (8 X 8) - (4 X 4) 

Can you represent Don's four statements by writim 
one open sentence and by indicating the replacement 
aet for the variable? 

[page 41 

(27) Nancy used the letter P to indicate a variable, 
and she wrote this for the replacement set for P: 

R = (Sill, Eva, ~ileen} 

Then she wrote: 

I like P. 

What did Nancy mean? 

(24) (a) (3  x 0 )  + t < 25 

3 x 2) + 1 < 25 

3 x 4) + 1 < 25 

3 x 6) + 1 < 25 

(b) 100 + 100 = 2 x 100 
7 + 7 = 2 x 7  
3 + 3 = 2 x 3  
24 + 24 = 2 x 24 

( ~ 1 3  + 5 = 5 + 3 
3 + 7 = 7 + 3  
3 + 9 = 9 + 3  
3 + 1 0 = 1 0 + 3  
3 + 1 1 = 1 1 + 3  

You may want to view the film entitled "Variables and Reptace- 
ment Sets." 

(25) 7 + (2 x r"]) < 50 

R = { I ,  3,4, ID} 

(27) The open sentence and the replacement set 

I like P. 
R = {I~II,  Eva, ~iteeft) 

mean exactly the same thing as this list; 

I like Jfit. 
I like Eva. 
I like Eileen. 

Note: Sometimes, in order to be sure we match up the replace- 
ment set with the variable correctly, we shall use subscripts, like 
this- 

Rp =  ill, Eva, ~illeen}. 
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(26) Tom used the letter P to indicate a variable, and 
he said that the replacement set for the variable P was 
to be: 

ft = {"st. Ltniis is a city", ~ e w  YO& is a city", 
"LOB Angeles is a city", "Miami Beach ia a 
cityH, "Minot is a city"} 

Then Tom wrote: 

P i s  a true statement. 

What did Ttan mean? 

(29) Dick wrote: 

P is a false statement. 

ft = {"~assachusetta is a city", "Connecticut is a 

city", "Missouri is a city", "Alaska ia a city") 

What did Dick mean? 

(30) Suppose I write: 

Hike P. 

What would the truth &et for this open sentence be for 
you? 

(31) Kathy uses the symbol Â¡- to mean "not." 
Kathy wrote: 

( -PI is false. 

R = { T h e  violin ia a musical iinÃˆtrummt" 'The 
trumpet is a mmusical instilment", "The 
piano is a miwical inBtruaientP, The 
trombone is a musical inatrumentm] 

What did Kathy mean? 

(32) Can you make up some examplea like these? 

(28) "St Louis is a city" is a hue statement 
'New York is a city" is a true statement 
"10s Angeles is a city" is a true statement 
"Miami Beach is a city" is a true statement 
"Minot is a city" is a true statement. 

(29) "Massachusetts is a city" is a false statement. 
"Connecticut is a city" is a false statement. 
'Missouri is a city" is a false statement 
"Alaska is a city" is a false statement 

(30) This wilt be different for each student 

(31) "The violin is not a musical instrument" is false. 
"The trumpet is not a musical instmrnem" is fake. 
"The piano is not a musical instrument" is false. 
"The trombone is not a musical instrument" is false. 

Notice that, because the English language does not work the 
same way that mathematical symbols do, the "not" symbol appears 
to the left of the P in mathematics, as 

whereas the word not is usually inserted somewhere in the middle 
of the string of English words: 

The violin is not a musical instrument. 

Indeed, precisely where we insert the word not is, unfortunately, a 
matter of great importance. Notice that the statements 

Not all men live in St. Louis 

and 

A)! men live not in St. Louis 

have different meanings; indeed, the first by itself can have either 
of two different meanings: 

It is not true that all the men in the world live in%. bunis. 
It is not true that only men live in St. Louis. 

(32) There are many possibilities. 



433' Is replacement set the same as truth set? (33) No. The replacement set tells us which elements we have 
agreed to substitute for the variable. Not all of these substi- 
tutions will necessarily yield true statements. The truth set 

\ 
tells us which of these replacements agreed upon actually 
yield true statements. 

I t  might be interesting here to introduce the word subsf! A set 
A is called a subset of a set i3 if every element of A i s  also an ele- 
ment of 8 This is written 

For example, if W = \2, 4, 6) and U = 1 ,  2 ,  3, 4,  5,  6 ,  then 

Using this word, we  can say: 

The truth s ~ f  is a subset of the r ~ p / r i c ~ r ' ~ ' n t  spf. 

Notice that, for any set S whatsoever, it must always be true that 

There is one further quirk of mathematical l a n e u a ~ ~  Since the 
cmpfv s ~ f ,  0, has no elements in it,  then there are on elements of 
d that fail to be elements of 7, for any set 5.  Hence, every element 
of fl IS an element of S ,  and the  ernply s ~ f  i s  rceardprf cis ri s u ^ f f  
o f  PVPry <P^ 
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CHAPTER 2 

The Cartesian Product 
of Two Sets 

When we apeak of on ordered pair of names (or n w  
meralu, or whatever), we mean a pair where order is 
important. Thus, the o d d  pair 

(Nancy, violin; 

is not the same as the ordered pair 

(violin, Nancy). 

U) Suppose we write the open sentence 

P studies 0, 

and we agree to indicate replacements for the variables 
P wd Q by writing; 

The ordered pair (P, Q) may be either 
(Nancy, violin) or (Sill, clarinet). 

What would we mean? 

This chapter introduces two ideas: the Cartesian product of two 
sets and the idea of rectangular (or Cartesian) coordinates. 

The formal definition of the Cartesian product of sets A and 8,  
which we write 

A x 8, 

is "A x B is the set of all ordered pairs (x,  y ) .  where x is an element 
of A ,  and y is an element of B." Mathematicians sometimes use 
the symbol e to  mean "is an element of." Using this symbol, we 
could write 

A x 8 is the set of all ordered pairs ( x ,  y), 
where x e A, and y B. 

(2) Joe says we would mean 

violin studies Nancy 
and 

Bill studies clarinet. 

Did Joe use the order correctly? 

(I)  and (2) Joe is wrong. According to the agreement stated in tfie 
problem, the fint element of each ordered pair is to be used as 
a replacement for the variable P, and the second element of each 
ordered pair is to be used as a replacement for the variable Q. 
We can write out the two uses of UV as follows: 

H a n ~ y  + P Bill - + P  
violin ->Â Q clarinet + Q 
Result: Nancy studies violin. Result: Bill studies clarinet. 
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If A is the set 

A = {AI, Bill, ~ e n r ~ }  

and if fi is the set 

B = { ~ a n c ~ .  Eileen, ~ v a } ,  

then the Cartesian product A x B is the set 

{ ( ~ l ,  Nancy), [Al, Eileent. (At, Eva), 

(Bill, Nancy.1, (Bill, Eileen), (Bill. Eva), 

(Henry, Nancy), (Henry, Eileen), (Henry. ~ v a ) } .  

(3) If 

A = 1 ~ 2 . 3 )  

and 
B = { 5 , 6 } ,  

can you write the Cartesian product 

(4) Using the same seta as in question 3, can you 
write the Cartesian product 

B x  A ?  

Red Descartes was a French mathemakicim and 
philosopher who was bwn in 1596 and who died in 
1650. He made very effective use of the idea of naming 
points in the plane by using ordered pairs. The adjec- 

, tive "Cartesian" i s  derived from Descartes' last name. 
As we shall see, discoveries made by Descartes in the 
iwventeenth century continue to influence our lives 

today. [pa~e 61 

(5) Do you know how Descartes was able to use 

rdered pairs of numbera as names for points in the 
tune? 

Notice that the number 1 is not an element of A x 8, even 
though (1, 5 )  and (1,6) are elements of A x 8 .  indeed, no number 
IS an element of A x 8; the elements of A x B are orderedpairs 
of numbers. (Perhaps in an analogous way, a mother is not a fam- 
ily, although she may be part of a family.) 

(5) Descartes' method was to "cross" two number lines: 

^ 4 Averticalnumbefline 

"Cross" the two number Sines so that the point 
labeled "0" on the vertical line becomes coinci- 
dent with the point labeled "0" on the horizontal 
line. 
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By crossing the number lines Decartes obtained a grid (much 
as one uses streets and avenues in Manhattan): 

This point is "3 blocks over 
to the right." counting from 
the origin, and is "2 
blocks up." counting from 
the origin. Consequently, 
it is labeled (3.2). 

This point is called 
the "origin" and is 
labeled (0,O). 

You may want to view one or more of these films: "First Les- 
son," "Postman Stories." "A Lesson with Second Graders," 
"Graphs and Truth Sets." 

(6) What was life in the United States like during (6) Dsscartes was born in 1596 and died in 1650 To compare this 
m r t e s '  lifetime? with fife in the United States (which, of course, was not Hie 

"United States" in those days), one might consider, lirst of all, 
the dates displayed on the number line on page 33. 

We suggest that you cut out the number line on page 33, paste 
the sections together, and display it for your studentsp use during 
the discussion of question 6. 

For useful references on life in the colonies during Descartes' 
lifetime, see Appendix A: Barch (1481, Wright (162). 

By contrast, We in France and Germany, where Descartes lived, 
showed presumably more adequate provision for intellectual en- 
deavors, as witness the university founding dates, displayed on 
the number line on page 35. (Again, we suggest you cut out toe 
number line, join the sections, and display it for your students.) 

For references, consult Appendix A: Clark (150). 

Further insight into the age when Descartes lived may be gleaned 
from the answers to questions 7 through 10. 

It may seem that Descartes lived a long time ago, but this is 
hardly the case. One can make convincing arguments that "our 
modern point of view" was born in Tudor England (among other 
places), and hence dates from around 1485. Certainly the music 
of Gabrielli and the eider Scarlotti still speaks meaningfully to 
us today - not to mention the plays of William Shakespeare. 

That Descartes himself had much of a "modern" point of view 
may be illuminated by the foltowine note which he wrote in his 
book La Gwmetrie: 

I hope that posterity will judge me kindly, not only as to the 
things which I have explained, but also as to those which 1 have 
intentionally omitted so as to leave to others the pleasure of 
discovery. 

For further information on the life and times of Descartes, see 
Appendix A: Bell (1491, Newman (158). 
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Queen Elizabeth I 
The famous 

"Elizabethan" period in England -1 
1 Birth of William Shakespeare 

First town in (what is now) U.S.A. founded 
by Europeans: St. Augustine, Florida, 
founded by Spanish 

Birth of Descartes J , 
First English setltement in U.S.A.: 
Jamestown. Virginia 

w--------------------------------------------------m 

First permanent French Boston Public Latin School founded No schools in the 
colony in America: Quebec Plymouth Colony 
/ Founding of New Haven. Conn. before 1671 r 

Founding of New Amsterdam Founding of Roxbury Latin Schoot 
(New York City) by Dutch (still in operation) 

r ( The Hopkins Grammar School 
of New Haven, Conn. founded; 

1608 1624 1635 1638 1645 still in operation today 1671 

j I I 
I I I 1 I I 

1 1610 1620 1630 1636 1640 16471650 1660 1670 
I 
I 

J 1 \ 
I 

) Death of Descartes 
I Landing of the Pilgrims at A Massachusetts law of 1647 required every 
I Plymouth, Massachusetts town of 50 or more families to create and 
I 
I 

support a "Latin grammar school" 
Haward College founded (Cambridge, 

I 
I 

Mass.); actually built in 1637; grew Collegiate School of New York founded 
I fnto the "Haward University" of today by Dutch- possibly oldest school in U.S.A. 

I 
I No schools in Rhode Island or 
I 
1 New Hampshire until after 1700 
1 
1 r Birth of George Washington 
I 
I 
b 
R 1680 1690 1700 1720 

I 
1732 

I 
b 
fl 
1 William and Mary College 
1 founded at Widiamsburg, Va. 
! 
1 

Birth of J. S. Bach 
I 
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University of Naples, Italy 
/ I 

I 
I 

^ > 
Oxford University, England, University of Padua, 

I 
I last half of 12th century ttaty 

b 
N 
! 
l 
L*"-------------------------------------------------- 
t 
i 

University of Cologne, Germany Columbus' discovery of America 

@ University of Vienna, Austria 
1 

University of Copenhagen, Denmark 

1 University of Florence, Italy University of Ttibingen,Germany 
I 
l University of Nantes, 
I University of 
1 Avignon, France University of Barcelona, 

! 1349 1365 
1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 

Ã ' I 1 J 

I 1 1441 1 
'13h I 1\10 133i Id39 lb5Q 1270 1490 1 J l O  ' li4' 13' l3l5 University of Bordeaux, France 147, University of Grenoble, 
1 France University of Bourges, France 
1 University of Prague, 
F Czechoslovakia 
I 

University of Upsala, Sweden 

I University of Cracow, Poland University of Besaneon, France 
I 
1 University of Heidelberg, Germany University of Valencia, Spain 

L---------------------------------------------------- 
I 

I 
I 
I 

Cambridge University, England, University of Toulouse, 

I 
early years of 13th century \ France 

I 
1 

1 1 1 1 1 0  2 126U 1280 
I < 

I <D 

1 I a 

Pilgrims land to found No schools in Rhode Island or 
colony of Plymouth New Hampshire until after 1700 

I 

I 
I I I 

1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 
8 I 
HI 

w t  1 I 
1510 1530 1550 1570 1590 1596 1610 1630 

I 
1 
b 
I 

J 
Birth of Descartes Death of Descartes 

!- 

l 
I 
I Birth of J.S. Bach 
I 
1 
f 

# 1110 1130 1150 1170 1190 1210 1230 1250 1270 1290 
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Gutenberg Bible, apparently 
the work of Johann Fust and 
Peter Schoffer (actually only 42 
lines long-not really a "book") 

) ^ 
Death of Descartes Earliest practical steam 

/Ã 
James Watt improved the 

engine (Thomas Saveryl Newcornen steam engine 

f : 
Claimed "printing" of Johann 

1 Gutenberg, Mainz, Germany 
I (not nowadays accepted as 
1 authentic) 
I First dated j European 
I printed book (Mainz Psalter) 
1 
p-Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘ 
f 
1 
m 
1 
1 
b Thomas Newcomen improved 

Birth of Descartes the Savery steam engine 

!L96 1705 < 

t 
First "successful" bicycle 
(Kirkpatrick Macmillan, Scotland) 

I 
t 
f 
I 

I 
$ 1  

1600 1620 1640 1660 1680 1700 
1 

1720 1740 1760 1780 1800 

m I I I 
1770 1790 

> I I I I 
I 1610 1630 1650 1670 1690 

I I I 
1710 1730 1750 
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(7) Owing Deacflrtea' lifetime did they have radios? (7) Obviously, they did mot have radios, TV, telephones, airplanes, 
television? telephone? airplanes? automobiles? bi- or automobiles. (Compare also the answer to question 6 above.) 
cycles? How did people travel in Dewrtes' time? The dates of a few important inventions and innovations are 

Did they have railroads? steam engines? Did they shown on the number line on page 37, which we suggest you 

have printed books in those days? Were they able to 
cut out and display. 

  ail across the Atlantic Ocean? 
Obviously, this is the merest beginning of what can be done with 

number lines and graphs in attempts to illuminate the temporal 
ordering of history. You may find other number-line pictures more 
revealing than those presented here. Make some of your own if you 
like. 

Furthermore, a graph, on rectangular (Cartesian) coordinates, 
that piots time in years on the vertical axis and the estimated num- 
ber of different titles of printed books in existence (in Europe) at 
that time on the horizontal axis might be very revealing: 

Number of different 
titles of books t 

Your students 
might complete 
this graph as a 
research project. 

(8) What kind of mu~ic did they have in Descartes- (8) Descartes, dying in 1650, never heard the music of Johann 
time? Sebastian Bach, who was born in 1685, although Bach is the 

earliest major Western composer whose works are well known 
at the present time. Interest in pre-Bach music nowadays runs 
high, and the time may not be far oft when composers of Des- 
cartes' time wilt be more familiar than they are today. 

An effective teaching unit might combine the major mathemat- 
ical discovery of Descartes (the "crossed number lines," or Carte- 
sian coordinates) with an attempt to get a glimpse of Western 
civilization in 1596 - 1650. The unit might include listening to 
some of the music of that period and discussing transportation in 
that period, life in the American colonies at that time, perhaps 
some literature of that period, etc. 

The following are some recordings of music from the time of 
Descartes: 

1. Erwin Bodky, playing harpsichord and clavichord, on the 
record entitled Music of the Baroque Era for Harpsichord and 
Ciavichord, Unicorn Records, UN 1002. This recording includes 
music of Samuel Scheidt (1587 - 16541, one of the major pre- 
Bach composers, whose music has immediate appeal for the twen- 
tieth-century listener, and Matthias Weckmann ( 1619 + 1674). 
2. Recorder and Harnsichord Recital No. 3, London label 

LL1026, which features Carl Dolrnetch and Josepn Saxby playing 
the music of William l a w s  (1602 - 1645) and also the famous 
folk tune, "Greensleeves," which was already "old" in Descartes' 
time. 
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3. Surety one of the major pre-Bach composers was Claudio 
Monteverdi. His "Madrigals, Book 1" (1587) can be heard on 
the Allegro LP recording ALG 3020, performed by the Roger 
Wagner Madrigal Singers. 

4. A most significant area of music from this period is repre- 
sented by Gregorian chants. An excellent recording is Period LP 
number SPL 569, Gregorian Chants, Vol. 1, performed by the Trap 
pist Monks' Choir of Cistercian Abbey. 

By way of contrast, you may want to listen to some music that 
was too "modern" for Descartes to have heard. For example, some 
Each organ music performed on a Baroque organ (much is avail- 
able); the Mozart "Sonatas for Violin and Harpsichord"; some 
harpsichord music of Dornenico Scarlatti (1685 - 17571, for ex- 
ample, Fernando Vatenti on Westminster LP XWN 18918; Vwaidt 
oboe and bassoon concertos; the harpsichord music of Pachelbet, 
Bohm, Rathgeber, and Fischer (available on the Bodky LP men- 
tioned above); the symphonies and string quartets of Haydn (born 
in 1732): the symphonies of Beethoven; and the fifth symphony of 
Sergei Prokofiev. (Perhaps also, some contemporary "electronic" 
music.) 

In connection with Descartes' use of coordinates, you may want 
to look at a text on analytic geometry and the study of conic sec- 
tions, and to consult Appendix A: Bell (149) and Leaser (1551. 

(9) Are there any schools or colleges in the United (9) In 1838 the Dutch in the New Amsterdam colony founded what 
States today that were in existence during Descartes' is  now known as the Collegiate School of New York, possibly 
lifetime? Are there any in England? in France? in Italy? the oldest private school in the United States. R O X ~ U ~  Latin 

School, founded by John Eliot in 1645, still operates today, 
as does the Hapkins Grammar School [New Haven, Connecticut), 
which was founded in 1660. Boston Public Latin School was 
founded in 1635. Harvard College was founded in 1636 - 37, 
and William and Mary Coitege was founded in 1693. The first 
universities in the "Hew World" were founded by the Spanish 
in the "New Spain" colonial empire. Many European univer- 
sities had existed for centuries by the lime Descartes was born. 
(Compare answers to questions 7 and 8.) 

For further reading, see Appendix A: Hofstadter (1531, Haskins 
(152). 

(10) Did they have plays in Descartes' day? What (10) H you wish. you can use this question as a research assign- 
books, novels, or plays, if any, might Descartes have ment for some of your students. 
read or seen? 

(11) Jimmy wanted to give number names to points (1 1) ON you have chosen 0 and I ,  yw are committed. No further 
on a line. First, he named one point "0"; "arbitrary" choices are possible if we want segments to "add 

I up" in the natural way. For example, 
0 

then he named a point "1 .I' 

I I tells us, since 1 + 1 = 2. that the segment 01 "added" to itseK 
0 1 must "equal" the segment 02: 

Can you give number names for some other points on 
Jimmy'a line? 0 I 1.....I 

1 I I % 
r 

0 1 0 1 t  
2 mt go here! 



(12) Ellen used a vertical line. 

She named one Then she named 
point "0." another point "I  ," 

7) 
Can you give number names for some other points on 
Ellen's line? 

Descartes used a pair of crossed number lines in 
order to name the points in the plane. 

t 
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Similarly, 

0 1 
1-....1 

0 1 2 1  
3 m A  go here! 

One can continue this pattern indefinitely. 

(121 This is similar to question 1 1. 
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Since he was going to use ordered pairs of numbers, 
he had to decide upon an order. He decided to use the 
first number of the ordered pair to refer to the hori- 
zontal number line and the second number of the 
ordered pair to refer to the vertical number line. 

L----- (First number) 

(13) If we draw a p i d ,  like this, 

can you find the point Descartes named (0 ,  o)? 

(14) Can you find the point Descartes named (2,3)? 

(13) The point (0,0), which is often called the origin, is located where 
the vertical and horizontal axes (or number lines) crass: 

This point is named (0.0) .  

(14) 4 This point is named (2.3). 

"2 blocks over to 
the right." 

Notice that one counts "city blocks," rather than "intersections." 
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(15) Can you find the point Descartes named (4.1 )? 

(16) What names (using ordered pairs of numbers) 
would Descartes give to these points? 
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named 

You may want to view the film "A Lesson with Second Graders." 

(17) Descartes could use his "crossed number lines" (1 7) A x B = 

to make pictures representing Cartesian products. 
Can you use these "Cartesian coordinates" to make a 
picture representing 
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(1%) Suppose A = { l ,2 ,3} .  Suppose B = {2,3}. 
Can you make a graph (or pichire) showing the 
Cartesian product A x Bf How many points will there 
be in the picture representing A x R? 

(19) Suppose that the set M has r elements and the 
set IV has n elements. How many points will there be 
in the picture representing the Cartesian product 

M x N? 

(20) Suppose that A = { N ~ ,  ~ane} and B = 

  on, Roy, ~ouis ] .  Can you write the Cartesian 

d u d  
A x B? 

[page 91 
(21) Suppose that A = {red, green, yellow) and 

B = {hat, scarf}. Can you write the Cartesian product 
A x 3 7  

(22) suppose that A = J 2 , 3 , i \  and fl  = {1 .2 } .  
Make one graph to show A x B and another graph to 
show B x A. 

We can play a game wing Descartes' method of 
naming points in die plane by means of entered pairs. 
This game is just like tic-tac-toe, only different. 
In this game, called 'Tour-in-a-row," if you get four 

of your marks in an uninterrupted straight line, you 
win. All of your marks, unlike in tic-tac-toe, wilt be 
on the intersection of two lines. (The board allows 
room for five marks in a line.) 

One team's marks are x's, and the other team's 
marks are 0's. The teams take tame naming points 
they want marked, using Descartes' system of ordered 
pain of numbers. The teacher marks the points that 
each team names. (It you make an illegal move, you 
lose that turn, and do point is marked.) 

The "playing board" looks like this: 

There are 6 points in this 
picture of A x 5. 

(19) There will he r x s points. 

(20) A x 8 = {(N~W, Don), (Nancy, Roy), (Nancy, Louis), (Jane, 
Don), (Jane, Ray), (Jane, Louis)} 

(green, hat), (green, scarf), 

Graph of 8 x A 
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(23) Here is a sample game. See if you can keep (23) Here is the game, Step by Step: 
*.of it. 

x team: (3 .2 )  

m team: 2 , 2 )  

xteam; (3,s) 

o team: (3.1 ) 
K team: (4,s) 

0 team: (0, 0 )  

x t e a u m :  (1,3) 

0 team: ( 2 , 1 )  

What does the board look like now? 

X team: (3. 2) 

X team: (3,3) 

X team: (4, 5) 

Since (4, 5) was illegal, 
no point was marked. 

X team: (1,3) 

0 team: (2,2) 

0 team: (3. 1) 

0 team: (0,01 

0 team; {2, 11 

(24) Can you finish the game that we have just (241 The x team will win if they don? make any mistakes. 
started? Which team do you think was ahead at the 
end of  question 23? 
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In this chapter we want to consider open sentences such as 

D + A = 8  

and so on. We shall, in most cases, be dealing with two variabies, 
and A. In such cases, the "rule for substituting" says that: 

Thus. for the open sentence 

, 
1 

(U+D)*A=(D+A)+D. 
both of the following substitutions are legal, according to the rule 
for substituting: 

Whatever number we put in one Q must be put in all the other 

m's; whatever number we put in one A must be put in all the 

other A's: the number in the A may be the same as the number 
in the n or it may be different -we get our choice! 

With the two variables and A. there are two common methods 
of indicating the replacement sets: 

(i) We may use subscripts, as here. so that 

means exactly the same as this list; 

( i i )  We may use ordered pairs of numbers. In this case, we agree 
that the first number in the ordered pair is the replacement for the 
variable f"! and that the second number in the ordered pair is the 
replacement for ,the variable A. Thus, 
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CHAPTER 3 

Open Sentences With 

More Than One Variable 

(1) Sometimes we want to write an open sentence 
that has more than one variable in it. Do you know how 
we can do it? Can you give some examples? 

(2) Nancy gave these examples: 

0 ^ = 8  

n+3=/\ 

D + U = A  
n+n+A=9 

Can you figure out what Nancy meant? How would the 
"rule for substituting" work for Nancy'sopen sentences? 

(3) Bill soya that Nancy forgot to indicate any 
replacement sets for her variables. What do you think? 

means exactly the same as this list: 

Notice that the second method allows greater flexibility. Indeed, 
one could not have written the second example by the first method. 

(1) See (tie preceding remarks. 

(2) See the preceding remarks. 

(3) Bill is, of course, correct. When we don't bother to indicate any 
replacement sets, we usually mean "usa any numbers that you 
know." (Sometimes we mean "use the counting numbers 1 ,  
2, 3, .. ."I 

There is an important matter here which deserves attention. 
Some authors nowadays use the phrase "counting numbers" to 
mean the set {o, 1, 2, other writers use these same 

want to focus attention on the major number systems used in e4e- 
mentary school, and we wish to keep this number as smal! as pos- 
sible. A modern elementary school mathematics program cannot 
be built with less than three distinct number systems, which we 
have come to refer to as 

the system of counting numbers {o, 1, 2, 3, . . .}, 
the system of reference-point numbers {. . . , 2 ,  "1, 0, *l,  

-2, . . .}, 
the system of measurement or "sharing" numbers 4 ,'+, .j., 1, 

1.9, 0.01, . . .}. 



(4) In Nancy's class, it t u r d  out that some 
atuaenm knew abut -negative numbem'' and other 

studenh did not. In order k fair, the chsa agred 
to work on Nancy's open senknms, without using any 
negative numbem- Then, in odw to make the work 
w i e r ,  the cia= alaa agreed not to w e  any fractions. 
In  order to rememhr this agreement, the c l a ~  wrote: 

4 = {0,1,2,3 ,... 1 
RA = {o, 1 , 2 , 3 , .  . .] 

What do you think the c l w  meant? 

c3 If 
4 = {0,1,2,3,4 ,... ] 
R A =  {0,1,2,3,4 ,... 1, 

can you find the truth set for each of Nancy's own 
aentencea? 

We will be studying all three of these systems as we work our way 
through this book. Please don't worry if they are unfamiliar right 
now. 

The point here is that, if we want to simplify the over-all elemen- 
by schod program as much as possible, these three systems seem 
to be the really basic ones. The "counting numbers" answer t k  
cammonplace question "how many?" The reference-point numbers 
wcur in any situation where we mark an a~bitrary reference point 
(like the "zero" on a thermometer) and can move away from this 
reTerence point in either of two directions (as "toward higher tem- 
peratures" or "toward colder temperatures*'). The geometric pic- 
ture for th~s  IS: 

The "sharing" or 'Lmeasurement'' numbers occur when we share 
things or measure things (as, ' '4 of the candy" or "the table is two 
and a half feet htgh"). 

If we agree to focus on the% three number systems as the major 
ones for mdern  elementary schw( mathernattcs, then we are 
forced to inctude zero among the set of "counting numbers," since 
zero is often the answer to the question "how many?'' (For example, 
in "How many 5 i s t m  do you have?" or "How many children do you 
have?" and so on.) 
In the examples in this chapter, we shall be using the system of 

counting numbers. Later on in this book we shall consider problems 
just like these, and approach them using one of the other two num- 
ber systems. This step-by-step approach IS simpler, both for reader 
and author, in a textbook situation. in an actual cla~sroorn situa- 
tion, where we enjoy the greater power of two-way commurticatior!, 
we wouM move into other number systems when the learner began 
to indtcate a readiness to do so-which might come very early in 
the year's work. 

(4) The class was ushg the first method described above, 

Table for tbe Truth Sel 
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An alternative way to write the truth set would be: 

T = {(o. (1, 71, (2, 6), (3, 5), (4, 4), (5, 31, (6, 2), 

(7, I ) ,  (8#0)). 

Notice that T is a set of ordered pairs of n~mbers. It i5 not a set of 
numbers. For example, 0 is not an element of T ,  even though (0,8)  
and (8, 0) are both elements of T.  Sfmilarly, far IS a word in the 
English language, but f is not a word in the English fanguage. 

As a matter of fact, T is a subset of the Cartesian product 

We can write this, using the symbol C (which means "is a subset 
of")* as follows: 

1 c Rn x RA. 

(b) + 3 = A. The truth set in this casa is am infinite set, 
so we shall have to use the "three-d&" M i o n  to meam 
"and it goes BII like this forever and never comes to an end." 

Table for Tmth Sel 

Att ernat iueb , 

I 2 
2 4 
3 6 

Table for Tmh Set 

Table for Truth Set 



(6) Bruce said he could write the truth set For the 
open anteno? 

~ + A = R  
by means of a table, like thii: 

Table for Truth Set 

(8) Can you UEI? a table b~ rep-nt the truth ats 
for Nancy's other own mntenw (see question 2j? 

(9) Cart you make up some own senkms of  your 
own? 

(10) Jerry says he tan use D e ~ ~ '  idea of " c m d  

nurnkr linesn tn represent the truth net for the own 
sentenca 

+ A = 8, 

by means of a graph. He labeled the horhntal nmber 
line with a show that he 4 it t~ locate the 

replacement for He labeled the vertical number 
line with a A tr~ show that he u& it ta 1mt.e the 
replacements he used for A. 

(7) Elien is  correct Sm !he answer to question 5. 

Notice that questions 5, 6, 7, and 8 present a fairly typical 
"Madison Project" sequence, as folbws: 

(il Genera! question 
( i i )  Question to help with (i) 
(iiil Further question to help with (I) 
(iv) Repeat of question (i) 

What wodd this graph look Ilke if RD = {o, +, 1, I+, 2, 2+, . . . I 
and RA= {o, +, l a  l+,  2, 2+, , . . I ?  (You may wish to view t h e f ~ l m  
"Graphs and Truth Sets.'') 



Jerry says the points marked correspond to this table: 

Can you complek the graph, if 

4 = {0,1,2,3 ,4, s....} 

R A =  {0,1,2,3,4,5 ,... } ?  

Can you make a graph b show the truth aet for each 
of the following equations? (UW 4 = {o, I ,  2,3, . . .) , 
RA = { ~ , 1 , 2 , 3 , .  ..}.) 

You may want to view the film "Second Lessoni' and to compare 
Chapter 11 of Discove~~. 



See Chapter 15 of Discovery. 
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(18) Recall that ĵ , = {Q, 1 ,  2, 3. ...} and & = {o, 1, 2, 3, ...}. 
The graph to represent the truth set of Q x A = 36 is then as 
follows; 

u 

Evidently, then, r contains nine elements, each of which is an 
ordered pair of numbers. T = { ( I ,  361, (2, 18)' (3, 12), 
(4 ,  91, (6, 6), (9,4), (12, 3), (18.2), (36, 1 )}. 
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Your students may already know about signed numbers. I f  they 
do, this chapter will provide a good opportunity to see that their 
understanding is really adequate for future work. If they don't -and 
we are operating under the assumption that they do not-then 
this chapter is intended to be the first introduction of the idea of 
negative numbers. 

There are several remarks about this chapter that may clarify 
its contents: 

(i) The official "first real introduction" of signed numbers is pre- 
sented by means of the "pebbles-in-the-hag" model. This model 
permits one to add and subtract unsigned numbers, and toexpress 
the answer as a signed number, as in 

It does not provide for the addition or subtraction of signed num- 
bers; for example, i t  does not provide for 

*3 + +2 
+3 - -5. 

In order to handfe pfobiems in adding and subtracting signed 
numbers, we shall use a model involving "postman stories,"' in  
Chapter 5. 

(ii) In the present chapter, we shalt distinguish counting situa- 
tions (where 5 - 3 = 2 and where 3 - 5 is  impossible) from refer- 
ence point situations (where 5 - 3 = "2 and 3 - 5 ='2). 

This distinction should become easy with a little experience. (In 
our own work, we have never had trouble with this distinction, but 
teachers are sometimes apprehensive when they first encounter it.) 

(iii) We shall use a "modem" notation, pioneered by Max Beber- 
man and the UICSM Project, and write "2, "3 instead of +2, -3. 

We shall read +2 as "positive two," and stal l  avoid reading it 
as "plus two." Similarly, '2 will be read as "negative two" and not 
as "minus two"  This language may seem strangeat first; however. 
within our experience i t  clarifies matters considerably. This wil l  be 
explained at some length later in this chapter. 

( iv)  Prior to the "pebbles-in-the-bag" model, we shall consider 
-vety briefly indeed-a "hotel" model. We do not do anything 
serious with this model; indeed, you could omit it if you prefer. 
Its inclusion is merely a matter of building readiness for what 
$01 lows. 

For further reading, you may want to refer to Appendix A: 
Levi (901, Gibb (371, and Moise (95). 
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The numbers I, 2,3.4,. . . arise whenever we count 

thhga. Really, these are the only numbem that arise 
from counting, at least the way most people do it 
If we m e  our imaginations, we might think to add 

zero, which arises in counting how many brothers 
you have (if you don't have any brothers). 

Tlug givea UB 

0,1,2,3,4,5, ... 
(1) Can you mark 0,1,2,3,4,. . . on a number tine? 

When we want to divide things up (like cakes and 
pies and candy bars) or when we want to measure 
things, we need more numbers, such as 

, , A, &, 6, 2+, 2.7,andsoforth. 

(2) Can you show the numbers 

T, ,̂ I+ ,  25, di, 3.7 

on a number line? Where would 3& be? 

(3) Do you think there are any new kinds of num- 
here that are different from 

counting numbers: 1 , 2 , 3 ,  A, . . . 
and different from 

zero: 0 

and different from 

fractions: 7, +, :, +, I&, & and so forth? 

Do you know any other kinds of numbers? 

Mathematicians talk about something that they call 
a oiw-<lirnensiond linear vector space. You meet this 
one-dimensional linear vector space when you mark a 
reference point on a line. 

Uefemnce point-tte usually 
nu* thrt un. 

(1) I 1 I i I 
1 6 i 

0 1 2  3 4 5 . .  . 

Actually, even merely marking these points on a number line 
may serve to raise the question, "What happens when you go 
toward the left?" (You may be interested in viewing the films 
"A Lesson with Second Graders," and "Education Report: The Hew 
Math.") 

(2) This will presumably give m trouble. Here are a few of the 
points in question. 

(3) We hope the students may suggest "negative" numfaers or 
''below zero" numbers. Sophisticated students may also know 
irrational numbers and complex numbers (which they may 
know in matrix form). 

You can move away from this reference point in one 
direction or in the opposite direction. 



56 CHAPTER 4 [STUDENT PAGE 13 

(4) Can you think of anywhere that you have aeen 
numbers used this way? 

(6) Do you know how they determine zero on a 
centigrade thermometer? 

A certain hotel is built on the aide of a steep hill. 
the  result is that the entrance and the lobby are 
really in the middle of the building. The architect, 
who w a ~  also an amateur mathematician in his spare 
time, decided to label the lobby floor zero. The next 
floor above the lobby floor he called positive one. 
On the elevator indicator he wrote twte 4 31 

* I .  

The floor just below the lobby level he called negative 
one. On the elevator indicator he wrote 

-1. 

Here are some possibilities: The scale mi a thennometer. The 
scale on ammeters, especially old-fashioned automobile m- 
meters (which often recorded "dischargew and "charge" along 
a portion of a "number line," from -2Q to +20. Altitude, above 
and below sea level. The number line. The axes in Cartesian 
coordinates (which is really the same as the number line). 

Zero on a cantigrade thetmometer is determined as the quilt- 
briwm point of ice and water, at a controlled barometric pressure 
(or attitude). 

We want to suggest that you use the symbols "'3, -5, etc., rather 
than the traditional +3, -5, and that you read them as "positive 
three" and "negative five" instead of the traditional "plus three" 
and "minus five," The traditional notation gave three different 
meanings to - (read "minus") and two different meanings to + 
(read "plus"). Our work with children has convinced us that this 
causes confusion*. Consequently, for the different meanings we 
use different symbols, as follows: 

Written R t  Meaning 

+2 "positive two" for positive numbers 

2 + 3 or +2 + "5 "plus" for the operation of 
addition 

-3 "negative three" for negative numbers 

5 - 2 or "3 - +5 "minus" for the (binary) 
operation of sub- 
traction 

*( -4 "opposite" or for the (unary) 
"additive inverse" operation of taking 

the additive inverse 
(cf. page 771 

The "modern" notation for positive, negative, and additive 
inverse was pioneered by Max Beberman and the UICSM Project; 
it is coming to be found in an increasing number of "modem" 
books. 
- - 

*Far oxample, using traditional natation, a uvnrti-flnuJ* c l o u  we* a d d  
to moke up an orithmttic of dgmd number* end to defend it in fro* flf fti 
consistency with prwiwi nwtheinnticol d. They dofind (+2) X (-3) to 
be 3, en the grounds that "2 times 3 i s  6, then you ham to subtrnd 3. us iho 
oniwcr is 3." This might bÃ called a rational nnponte >0 cm imatimi nmtn- 
tion; it confuHt operations with port of  the name of  a number. Such wn- 
fusion has never arisen when we o i k  children to dÃ§id what + I  X - 3  shoutd 
be; the optration here i s  clearly rnultiplicatten, while the - sign in clearly 
part of the name af t t x  number "negotiv three." 

To give a second example, "bright" enqinmrinq ttudTir* in call- usmd 
ta be confuted by tha assertion that the absolute valuÃ of x wat d d i d  01: 



(6) Suppose the elevator starts at 

-3 

and goes to the lobby. Did it go up or down? How many 
floors up or down did it go? 

(7) Suppose the elevator starts at 

+8 

and goes to the lobby. Did it go up or down? How many 
floors up or down did it go? 

(8) Suppose the elevator sta& at 

3 

and go- to 

*6. 

How far did it go? Which way, up or down? 

(9) Danny has a bag that has lots of  pebbles in it. 

On the table there is a pile with lots more pebbles. 

t ~ a i t e  141 
We need to mark a reference point, ao Jerry says "Go!" 
Now Danny takes 3 pebbles from the pile on the table, 
and puts them in the hag. 

Are there more pebbles in the bag than there were 
when Jerry said "Go," or are there less? How many 
more or how many less? Do you know how we write 
this? 
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(6) ft went up; in fact, it went up three floors. 

(7) It went down; in fact, it went down 8 floors. 

(8) It went up 9 floors. 

Questions such as 6, 7, and 8 are part of the standard Madison 
Project practice of trying to shape concepts in a preconscious (or 
preverbal) form, well before we try to elevate the concept to the 
conscious, explicit, verbal level. If you expect concepts to "come 
from nowhere," you will be disappointed. Nor can you build con- 
cepts at the verbal level. There must be previous preverbal or pre- 
conscious experience that has "built readinessr'-i.e., already 
begun to create the concept at a preconscious level. As one 
example, E. E. Moise of Harvard University has pointed out that 
a child's experience of seeing rows of "identical" items on dis- 
pjay in stores helps build readiness for the geometrical concept of 
congruence. As a further example, the work in Discovery on 
'balance pictures" is intended to help form, at a preconscious 
level, the concepts of equivalent equations and transform opera- 
tions. 

(9) There are more pebbles in the bag; in fact, them are t h m  more, 
which we write as +3. 

You can watch this "pebbles-in-the-bag" procedure in complete 
detail, as a first introduction of signed numbers, in the film enti- 
tiled "A Lesson with Second Graders." 

This lesson always goes more smoothly if you ask "more or 
less" before you ask "how many more" or "how many less." 

The question "Do you know how to write this?" is partly rhe- 
torical: there is no (official) way that the child could know. Still, 
we get his attention better by asking questions. (What's more, it 
may even turn out that he does know!) The answer, of course, is 
that we write this as +3, which we read as "positive three." 

It is important here to distinguish what we put into the bag (or 
take out) versus the signed number which represents the condition 
of the bag (i.e., more or less pebbles than when Jerry said "Go! " ) .  
What we put in we count; it is  indicated by an unsigned counting 
number. What we take out we count; it, too, is represented by an 
unsigned counting number. However, when we ash for a report on 
the present condition of the bag- i.e., "Are there more or less 
stones than when Jerry said 'Go!'? How many more?"-we are 
asking for a signed number. 
In the present case, our procedure is always as follows: 

When Canny puts three pebbles into the bag, this is counting, 
and the teacher writes on the board 
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(10) Now Danny takes 5 pebbles out of the bag. We 
can write 

3 - 5. 

Are there more pebbles in the bag than there were 
when Jerry said "Go," or are there less? How many 
more or how many less? Do you know how to write this 

3 - 5 = -? 

When the teacher asks, "Are there more or less than when Jerry 
said 'Go!'?" this is not counting, and the teacher writes 

3 = +3. 

After writing this. which was intended to introduce the notation 
"'3," the teacher erases part of it, to end up with 

3. 

(1 0) There are now two pebbles less in the bag than there were when 
Jew said "Go!" We write 

which we read as 

"three minus five equals negative two." 

In question 10, Danny removes five pebbies. T h s ,  too, is 
counting, and calls for unsigned numbers: 

3 - 5. 

When we get a report on the condition of the bag ("Two pebbles 
less than when Jerry said 'Go! ' " 1, this is not a matter of counting, 
and calls for a signed number; 

Thus, the pebbles-in-the-bag model permits us to add and sub- 
tract unsigned numbers, and to express the answer as a signed 
number. 

In many years of trials, we have consistently found the "pebbles- 
in-the-bag" model to  be simple and effective. It is, however, 
important to teach it so as to avoid various possible pitfalls. 
Consequently, the Madison Project has developed a large battery 
of teacher aids that focus on the introduction of signed numbers, 
via the "pebbtes-in-the-bag" mode!. 

Most important of these is the film entitled "A Lesson with 
Second Graders." We strongly suggest that you view this film with 
a group of colleagues, and that thereafter you practice teaching 
the "pebbles-in-the-bag" model while your colleagues observe 
and make suggestions. With some cooperative effort 01 this sort, 
ycu can quickly learn the most effective methods for using this 
presentation with children in grades 2 through 9, or so. 

Another important teacher aid is the Madison Project In-Service 
Course #1 For Teachers. 

We can summarize a few important aspects of the "pebbles-in- 
the-bag" model briefly: 

( i) Notice that we do TO? ask about the total number of pebbles 
in the bag. To do so would, of course, get us back into a counting 
situation where 5 - 3 = 2 and where 3 - 5 is impossible. 

, (ii) Instead, we have a child mark a reference point by saying 
"Go!," and our questions are always about more or less pebbles 
in the bag than there were when the child said "Go!" 

This gets us out of "counting" situations and into a reference 
paint situation, where 
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(iii) Notice that we must begin with a large unknown number 
of pebbles already in the bag, and a pile of pebbles not in the 
bag, in order to enable us to "go either up or down" in the amount 
in the bag. 

(iv) We find it easier to begin by putting a few pebbles into the 
bag, and thereafter to take a few out. It is less convenient to begin 
by taking some out. 

(v) Remember that you are dealing with problems such as 

3 - 5 = - 2  
7 - 3 = +4 

where the numbers on the left are unsigned numbers and the num- 
bers on the right are signed numbers. The reason for this is that. in 

3 - 5 = -2, 

we counted 3 pebbles into the bag (a counting situation, involving 
unsigned "counting" numbers), then we counted 5 pebbles out of 
the bag (a counting situation, again), and then we asked about the 
condition of the bag, in relation to the reference level (a "reference 
point" situation, involving signed numbers). 

(vi) We strongly recommend a careful use of the words positive, 
negative, plus, and minus, and the symbols for them. Small syrn- 
bob, written high, indicate "positive" and "negative," and are 
part of the name of the number itself. They do not refer to the 
operations of addition and subtraction. Conversely, large symbols, 
centered in the line, indicate operations, and are read "plus" or 
'minus". For example, we would read 

"positive three plus negative five," 

and we would read 

Can you make up a "pebbles-in-the-bag" story for +7 - -2 
each problem? Can you write the correct signed number as 
to describe what happened in each case? "positive seven minus negative two." 

(1 1) Ellen (or somebody) said "Go!" We put 7 pebbles into the bag. 
We removed 2 pebbles from the bag. There are now 5 more 
pebbles in the bag than there were when Ellen said "Go." 

We write 

which we read as 

''seven minus two equals positive five." 

(12) Joan (or somebody) sail! "Go!" We put 5 pebbles into the bag. 
We took 4 pebbles out of the hag. At this point, we have one 
pebble more in the bag than we had when Joan sail) "Go!" 

We write 

which we read as 

"five minus four equals positive one." 
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(13) 3 - 4 = - -  (13 )  Kathy (or somebody) said "Go!" We put 3 pebbles into the bag. 
We took 4 pebbles out of the bag. There were fewer pebbles in 
the bag man when Kathy said "Go!" How many fewer? One 
fewer. 

Consequently, we write 

which we read as 

"three minus four equals negative one!' 

(Hopefully, by now you and your students are beginning to get 
some feeling as to how counting situations and reference point 
situations differ from one another, and how each of them works 
out.) 

(14) Bernice (or somebody) said "Go!" We put 2 pebbles into the 
bag. We took 10 pebbles out of the bag. We had fewer pebbles 
in the bag than there were when Bernice said "Go!" How many 
less? Eight less. 

So we write 

2 - 10 = 8 

which we read as 

"twa minus ten equals negative eight" 

(151 Janet said "Go!" We put 6 pebbles into the bag. We took 6 
pebbles out of the bag. Now, at this point, do we have more 
pebbles in the bag than there were when Janet said "Go!" 
or do we have less, or what? We haw the same number. 

We write 

which we road as 

"six minus six equals zero!' 

You can observe essentially this sequence in the film entitled 
"A Lesson with Second Graders." 

(16)  Jill said "So!" We (Hit 3 pebbles into the bag. We took Zpebbles 
out of the bag. Now, are there more pebbles in the bag than there 
were when Jill said "Go!" or are there less, or what? There are 
more. How many more? One more. 

Consequently, we write 

3 - 2 = *1, 

which we read as 

"three minus two equals positive one!' 

Notice that this differs from the pure counting situation where 
we would say 

3 - 2 = 1 .  



(21) Can you mark these numbers on a number line? 

0 ,  - 1 ,  '2, '27, 1, 24, -21 

(221 Can you mark some more numbers on a number 
line? 
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In the present situation, does 

3 - 2 = ' 1  

mean that there is now exactly one pebble in the bag? No! By no 
means! Indeed, we do not know how many pebbles there are in the 
bag. 

What does 

3 - 2 = +l 

mean? it means there IS now one more pebbfe in the bag than there 
was when Jilt said "Go!" I t  is this distinction which causes 

3 - 2 = 1  and 3 - 2 = ' 1  

to describe two quite different situations. 

(17) Eloise said "Go!" We put in 9. We toah out 10. There is now 
one pebble less in the bag than there was when Eloise said 
"Go!'" 

Consequently, we write 

9 - 10 = -1. 

which we read as 
"nine minus ten equals negative one." 

{ 18) Marion said "Go!" We put 2 pebbles into the bag. We put 3 peb- 
bles into the bag. Then we took 1 pebble out of the bag. Mow 
(since amgether we put in 5 and took out 1) there are 4 more 
pebbles in the bag than there were when Marion said "Go!" 

Consequently, we write 

2 + 3 - 1 = ' 4 ,  

which we read as 

"two plus three minus one equals positive four." 

(19) Jerrold said "Go!" We put 5 pebbles into the bag. Then we took 
4 pebbles out of the bag. Then we took 1 pebble out of the bag. 
Now, at this point, are there more or less pebbtes in the bag 
than there were when Jerrotd said "Go!"? There are the same 
number. 

Consequently, we write: 

5 - 4 - 1 = 0 ,  

which we read as: 

"five minus four minus we equals zero." 

(20) Try this one yourself. 

(22) This should pose no prabfems. 
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! 

(23) Using W a r t e a '  idea of crossed number lines, 
can you mark these points on a graph? 

ft: (+2, -3) 

(24) Can you play our game of "four-in+&-pow" on this 
board ? 

[paw 151 
What i s  the b i w t  number you can put in the Q? 
What is the smallest? What is the biggest number you 

can put in the A? What is the smallest ? 

(24) This version of tic-tac-toe uses signed numbers. With the axes 
as drawn (and remember, we count from the heavy lines or 
"axes," counting "city blocks" rather than "intersections"), 
the comers of the board are: 

Consequently, numbers greater than positive two will result 
in illegal moves (and hence a wasted turn). 

To answer what is the "smallest" legal number for this ver- 
sion of tic-tac-toe, we need to w e e  first on what we mean by 
"smallest."' Which shall we cad "smaller," & or -5? Which shall 
we call "smaller," -; or '1,000,000? Both answers make sense, 
but far the "linear ordering" used by mathematicians, we agree 
that 

shall be proclaimed to mean 

A lies to the left of B on the number line. 

(25) Can you mark these numbers on a number line? 

-3, -2, -3, 2, '41 

(a) Is *3 more or less than *4? 

<b) Is *3 to the right or left of +4? 

(c) Is '3 more or }ess than *3 ? 

(d) Is 3 to the right or left of +3? 

(el Is -2 more or less than -2; ? 

(0 is "2 to the right or left of -2+? 

With this interpretation, -3 < '2 and '2 < 1 and 1 < 0. 
We can now say that -2 is the smallest legal number torthis ver- 
sion of tic-tac-toe. Any number smaller than -2 (for example, 
-3) would result in an illegal move and a wasted turn. 

(25) 
-21 

1 
E A A A  I I 1  > A A  

-.r , T 

- 4  3 -2  1 0  - 1  -2 - 3  - 4 . .  

(a) "3 is less than '4. 

, (b) '3 is to the left of '4. 

(c) '3 is less than '3. 

(dl  -3 is  to the left of "3. 
(el -2 is more than -2+. 

(f) -2 is  to the right of -2:. 
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(26) Do you know what 

< 

means on the number line? 

(27) Which statements are true and which are false? 

(a) +5 < '7 

(b) 0 < *I  

(0 0 < + 
W a < * &  

('2) < *+ 

(f) '& < ++ 

(gf -1 < 0 

(h) -2 < -1 

(i) 1 < +1 

(j) 2 < - 2  

(28) Erik aaya that dotes for B.C. and A.D. almost 
work like the numoer line, but not quite! What do you 
think ? 

(26) As mentioned in answer to question 24, 

A e B  

means 

A lies to Rie left of 8 an Hie number line. 

(E) True (That is, negative one is less than zero.) 

W True (That is, negativa two is lass than negative DM.) 

(i) True (That is, negative one is less than positive one.) 
(j) False 
<k) Fafse 

(I) True (That is, negative five is less Man zero.) 

(m) True 

(n) False 

(28) Erik is  correct. The "date line" unfortunately goes from 1 B.C. 
to 1 AD., omitting the year zero which should fall in between. 
However, by the time you are a century or more away from 1 B.C., 
this relative error is not of much importance. Would you think 
much differently of Beethoven it he had been born in 1769 A.D. 
instead of 1770 LO.? Similarly, an 83-year-old man is "practi- 
cally 82" and "practically 64." However, a two-year-old child 
is neither "practically one" nor "practically three," and a one- 
year-old child is not "practically a newborn babe." A trip of 
101 miles is "practically 100 miles," but a walk of 100 yards 
is not "practically the same thing as a walk of 5580feet" The 
addition of one to a large number doesn't matter very much, but 
the addition of one to a small number matters a great deal. 



64 CHAPTER 4 [STUDENT PACE 16 

Erik has considered only mathematicians. You can, similarly, 
make charts using only poets, only playwrights, only scientists, 
only explorers, or only composers, etc. In nearly every case, the 
chart wit! be most suggestive. 

tf you consider only Western civilization, you will tend to get 
clusters around -600 to -300, and then from'l500 to the present. 
Some of this, of course, i s  an artifact of our method of recording 
and studying the past; nonetheless, it poses intriguing questions 
that cry out for explanation. 

Using these number-line charts, your students can discover, 
for themselves, the Renaissance! Much is said in favorof unifying 
our studies; here is  an excellent opportunity to illuminate history 
by a sirnpte use of mathematics! You may want to consult Appen- 
dix A, Eves (1 51), Kramer (154). and Lloyd (1 56). Your students- 
might also enjoy reading Eileen Power's Medieval People (Double- 
day-Anchor). 

(30) Don SayB Erik only considered mathematicians, (30) Compare answer to question 29. 
and he left out a great many mathematicians, even at 
that. Can you add some of the following mathemati- 

Obviously, if you don't enjoy the idea of combining a little rnathe- 
matics and a little history, you can omit these "historical" ques- 

c i a ,  to Erik's chart ? ttons. 

J. W. Alexander 
P. Alexandmff 
Emil Artin 
Stefan Bergman 
Priedrich Wilhelm Bessel 
R. H. Sing 
George David Birkkoff 
George Boole 
George Cantor 
Constantin Carattitodory 
Arthur Cayley 
W. K. Clifford 
J. W. R. Dedekind 
Albert Einstein 
Gotttieb Frege 
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Evariste Gaiois 
Kurt Godel 
Herman Grassmann 
John Graunt 
Edmond Halley 
Sir William Rowan Hamilton 
Felix Hausdorff 
J. B. van Hemholtz 
David Hilbert 
Bela van Kirekjarto 

RIix Klein 
Andrei Kolmogorov 
Henri Leon Lebesgue 
Solomon Lefschetz 
Deane Montgomery 
R. L. Moore 
John von Neumann 
Amalie Emmy Noether 
G. Peano 
Julea Poincarb 
George Polya 
L. S. Pantriagin 
Srinivasa Rarnanujan 
Grorg Friedrich Riernann 
J. B. Rosser 
Bertrand Arthur Russell 
Waclaw Sierpinski 
T. A. Skolern 
M. H. Stone 
Alfred Tarski 
Oswald Veblen 
Knrl Theodor Weierstrass 
Andre Weil 
Hermann Weyl 
Alfred North Whitehead 
Norbert Wiener 
FL L. Wilder 
E. F. F. Zermelo 

(31) Eiien says Erik's chart is not big enough to get 
all the names in. Can you make a chart that Is big 
enough? (Use the same scale from 1800 B.C. through 
2000 A.D.) 

(3 1) through (32) Compare answer to question 29. 

(32) Bill said it would be easier just to mark a dot to 
show when each mathematician was born. Bill began 
hit, chart with dote for Ahmes, Thales, Pythagoras. 
Pttlya, Dedekind, Graunt, Peano, and Veblen. A t  thia 
atage, Bill's chart looked like this: 

Can you mark on Bill's chart all the other mathemati- 
mans mentioned in this chapter? 
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[page 181 
(33) Harold said these charts seem to say something 

about history. He made a new chart, marking the dates 
of birth of the following musicians. What did Harold's 
chart look like? 

Johann Sebastian Bach 
Karl Philipp Emanual Bach ' 

Mia Bartok 
Ludwig von Beethoven 
Leonard Bernstein 
Johanna Brahms 
Elliott Cook Carter 
Pranwis Writ Chopin 
Aaron Copeland 
Claude Debusey 
Giwanni Gahfielli 
George Gershwin 
George Friedrick Handel 
Roy Harris 
Franz Joseph Haydn 
Wolfgang Amadeus Mozart 
Sergei Sergeevich Prokofiev 
Sergei Wassilievitch Rachmaninoff 
Alessandro Scarlatti 
Dotttenim Scarlatti 
Franz Peter Schubert 
Robert Schumann 
Dmitri Dmitrievich Shostakovich 
Igor Stravinaky 
Petr Ilich Tchaikovsky 
Antonio Vivaldi 
Richard Wagner 
William Walton 
Kurt Weil1 

(94) EHen made a chart showing birth dates dpaint- 
em, sculptors, and architects. What did Ellen's chart 
look like? 

(35) Nancy made a chart showing birth dates of play- 
wrights, writers, and poets. What did Nancy's chart 
look like? 

(36) Andy made a chart showing birth dates of ex- 
plorers. What did Andy's chart look like? 

(37) Dick made a chart ahowing birth dates of scien- 

tists. What did Dick's chart took like? 

(38) Do these charts suggest anything? How do you 
explain it? 

(39) Do you know the date when cities first began to 
appear? What sort of chart can you make from the 
beginning dates of various cities? 

[STUDENT PACE 16 

(33) Compare answer to question 29. 

(34) through (37) K you wish, you can use this as a research assign- 
meirt for your students. You might also ash students to make a 
chart of some inventions or discoveries. References McClellam) 
(50) and Woodward (1 61 1 will also be useful for such an assign- 
men! 

(38) Compare answer to question 29. 

(39) We leave this up to you and your students. 
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(40) Do you know what people mean when they speak 
of the Renaissance? 

b a t e  191 
(41) What do you think these charts wi l l  look like 

for the following part of the number line? 

2OoO 2100 2200 2300 2400 . . .  
A.D. A.D. A.D. A.D. A.D. 

(42) You may be interested in studying the changes 
in the population of Europe. A chart can help here, too. 

(43) Here is a table for the population of London. You 
may want to make a chart of this. 

Population of London 

Date 

1801 
1811 
1821 
1831 
1841 
1851 
1861 
1871 

1881 
1891 
1901 
1911 
1921 

1931 
1951 

(44) Do you have any theories on why the graphs look 
like this? You might try to find the dates of the following 
events to check against your theories. 

Population 

1,088,000 
1,259,000 

1,604,000 
1,778,000 

2,073,000 
2,491,000 

2,291,000 
3,336,000 
3,881.000 
4,266,000 
4,563,000 
4,541,000 
4,498,000 

4,408,000 
3,353,000 

Founding of  Oxford University 
Founding of Cambridge University 
Pounding of University of Paris 
Discovery of the source of the Nile 
French Revolution 
California gold ruah 
Discovery of America 
First European settlement in South America 
First trip around the world 

' 

Marco Polo's birth 
First universal compulsory education 

in the United States 
Founding of Hopkms Grammar School 
First railroad across United States 

(40) I hope the number-line pictures of the preceding few questions 
mahe this all too clear. 

(411 Your guess is as good as anyone else's. Assuming a continua- 
tion of recent trends, you can fill in a rather spectacular- 
looking picture. 

(42) Another possible research assignment. 

(43) We can make the "Population of London" graph as follows: 

PopitIattfli~ d London 

One difficulty in this chapter is the task of coping with numbers 
of the size we need for the study of history. (In somecases you may 
want to use logarithmic graph paper.) For a particularly fine 
example of an attempt to cope with very large numbers, consult 
Appendix A, Ardrey (1471, pages 208-213. 

(44) This is a very open-ended, library research question. Perhaps 
one or more of your students (or. better, a committee at them) 
may wish to prepare a special repan on his. Several helpful 
references are listed in the Student Discussion Guide. For an 
interesting discussion of what is (at the time of this writing) the 
earliest known record of prime numbers, refer to: Jean de Hein- 
zelin, "Ishango," Scientific American (June, 1962, pp. 105- 
116). As to the theories your students may suggest, we make no 
predictions. 

For a general view of theory construction, it may be worth men- 
tioning the important work done by J. Richard Suchman, of the 
University of Illinois, in connection with his Inquiry Training pro- 
gram. Professor Suchman emphasizes that-ostensibly, at  least- 
science does not recognize any "official" theories. Any theory is 
admissable to the extent that it exptains the known facts and is 
capable of meeting the demands made upon it. 
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Crusades 
First European contacts with China 
Stradivarius' birth 
United States Revolutionary War 
United States Civil War 
World War I 
World War I t  
Date of discovery of prime numbers, etc. 

(Belgian Congo) 
Date of Australopithecus Afrianua 
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In the preceding chapter we used the "pebbles-in-the-bag" 
model to introduce signed numbers. That was, presumably, the 
first time the students encountered the idea of signed numbers, 

It is important to remember that the pebbles-in-the-bag model 
serves (very well) to introduce signed numbets. I t  does not intro- 
duce the arithmetic of signed numbers. Using the pebbles-in-the- 
bag idea, we can think meaningfully about ' 2 ,  3, and so on, but 
we cannot add, multiply, or subtract these new numbers. 

What we can do with the pebbles-in-the-bag model is to add and 
subtract unsigned ("counting") numbers, and to express the an- 
swer as a signed number. 

Using the pebbles-in-the-bag model, we can do these- 

5 - 3 = + 2  
7 - 11 = -4 
3 + 2 - 1 + 7 - l o = ^  
5 - 8 + 4 - 6 = - 5  

We cannot do these: 

'5  - *3 = '2 
+5 - -3 = *8 
2 x *3 = '6 
+2 x "3 = -6 
-7 + -2 = -9 

Mow, in this chapter, we introduce "postman stories." By the 
time that we have finished with postman stories, we shall be able 
to handle the entire arithmetic of signed numbers. 

One or two remarks about this chapter may be helpful: 

The postman and the housewife behave as in the fantasy novels 
of Franz Kafka. We have never found this troublesome with chil- 
dren; after all, children enjoy "Superman" and similar fantasies. 
As long as the teacher is not disturbed by fantasy, the children will 
not be. Indeed, properly (and tightly) handled, fantasy strengthens 
one's hold on reality, rather than weakening it. for we a l l  learn 
best by contrasts and comparisons. 

What do the postman stories do? They provide a suitable set of 
mental symbols which can be "manipulated" mentally so as always 
to suggest the correct answer to problems in the arithmetic of 
signed numbers. Such mental symbols, described especially in 
the work of Tolman, Piaget, Aldous Huxtey, and Kurt Lewin, deserve 
more attention than they usually receive [see Appendix A: Flavel 
(1141, Tolman (691, Davis (28), Lewin (129). Huxley (431, and 
Hoyle (1241.1 Let me give three examples: 

(i) is  it easier to take off your shoes before taking off your socks, 
or is it easier to take off your socks before taking off your shoes? 
You do not need to experiment in the physical world in order to find 
out. Why not? Because you have a set of mental symbols which you 
can "experiment with" inside your head, as it were. 
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(ii) My poodle, when tied to a tree, runs around the tree until 
he has no free rope left. Then he doesn't know how to unwind hirn- 
self, so he howls until someone comes to help (admittedly not an 
ineffective strategy). You and 1, being human beings, have in our 
minds mental symbols for "dog," "rope," and "tree," with which 
we can perform a "thought experiment." These mental symbols 
have a complete cognitive-level set of "rules of dynamics" that 
makes such "thought experiments" possible. If winding counter- 
clockwise has shortened the rope, then "unwinding" in the oppo- 
site direction win lengthen the free rope. 

You and I don't even need to try this out; we know i t  will work. 
The poodle, evidently, has no such set of mental symbols available 
to him, so he stands, tied to a very short rope. and howis. 

(iii) How much is 53 + 27? We don't need any algorithm at all 
to answer; we can use symbols, such as these: 

50, 30, 
plus a smail minus a small 

piece piece 

Each small piece is the same size, namely, 3. Therefore, put 
together, we clearly have 

More precisely, here is what we want postman stories to do for 
us: 

Whenever we have a mathematical problem, such as 

we want the postman stories to provide a corresponding 
story that will show us what the answer should be. 

When we start with a postman story, it is not necessary 
that there be a corresponding mathematical problem, 
since we mean to use postman stories to explain mathe- 
matics, and not conversely, 

We shall begin by starting with postman stories and then finding 
corresponding mathematical expressions. (Purists among the audi- 
ence may object that some of the mathematical expressions are 
not of normal occurrence, because they confuse symbols for binary 
and unary operations; but this is unimportant, since when we come 
to use the stories in actual practice, we shall always be starting 
with the mathematics and seeking an appropriate story, and never 
conversely.) 

Here is the way we shall work: 

When we say "bffis," we mean what the gas company, the elec- 
tric company, and the furniture company send to us. (We do not 
mean those lovely pieces of paper printed by the folks in Wastting- 
ton and called "ten dollar bills,'') 

When we say "checks," we man those lovely things our employer 
gives us, and our broker sends us, and so on. (We do not mean those 
things you get in restaurants that make you poorer instead of 
richer.) 
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Thus, when we receive a check, we get richer; when wegive back 
a check, we get poorer; when we receive a bill, we get poorer; when 
we give back a bill, we get richer. 

A t  this point you may want to read carefutfy the explanation in 
the Student Discussion Guide. Notice that the "fantasy" behavior 
has been devised so that the postman stories work out exactly as 
described above, with regard to "receiving" or "giving back" bilk 
and checks. The stories may sound foolish, but they are precisely 
and reliably consistent in their logic. They embody neither contra- 
dictions nor "double-counting." 

For the postman story we write 

postman brings a check for $5.00 + '5 
postman takes away a check for $5.00 - Â¥ 

postman brings a bit! for $5.00 + ' 5  

postman takes away a toll for $5.00 - -5 

Notice that bills are represented by negative numbers, checks 
are represented by positive numbers, bringing is represented by 
a "ptus" sign, taking away is represented by a "minus" sign, 

At this point, you may want to view the Madison Project film en- 
titled "Postman Stories." Before you do, it wdl be well to dis- 
cuss what you can see in this fifm. 

In making nearly all Madison Project films, we try to show a new 
teaming experience of the children- they are confronted with a 
task they have never met before, and the viewer can watch how 
the children work their way through this new problem, usually 
with relatively little help from the teacher. To make such films 
successful, the children must have adequate previous background 
(or "readiness") so that it is reasonable to expect that they will 
succeed in attacking this new problem, but they must not have so 
much "readiness" that the "new" problem isn't really new. 

Now, achieving this is not easy. If, on Thursday, the teacher 
felt that the students would be ready for the new task on Friday- 
and if we could rent TV facilities for videotaping on a few hours 
notice - the problem of arranging such films would not be too dif- 
ficult. However, it takes several weeks to arrange TV videotaping 
facilities. 

Consequently, a Madison Project f ilrning session is planned 
like a "moon shot" from Cape Kennedy: you don't aim at the 
moon; rather, you try to arrange for your space capsule and the 
moon to arrive at the same future point at the same future time. 

We must estimate, well in advance, when the students will be 
ready for the new topic, and hope that the day they're ready for 
the new topic turns out to be the day the TV cameras are there. 
Obviously, we sometimes miss. 

The film "Postman Stories" is an interesting case. We used a 
class of so-called "culturally deprived" children, provided by 
Mr. Ogie Wilkerson and Mr. Cozy Marks, of the S t  Louis Public 
Schools. We planned to show how these children learned to match 
up "postman stories" with corresponding mathematical situa- 
tions, 

Once the cameras started rolling, it became evident that the 
class had too much readiness for this task- there was too little 
"new" learning taking place. Consequently, the teacher had to 
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CHAPTER 5 

Postman Stories 
[page 2 1 I 

Jerry wrote a story about a very peculiar postman, 
who behaved like this: 

(a) He read all of the mail. 

(b) He did not necessarily deliver the mail to the 
right people. He gave it to anyone he wanted to give 
it to. (But he remembered who should have received 
it!) 

(c) Later on he would come back and pick up mail 
he had rnisdetivered, apologize, and give it to the 
right person. 

Jerry's story also inc1udes a housewife, who also be- 

haves peculiarly: 

(a) She tries to keep up-to-date in her estimate of 
how much available money she has. 

(b) She never reads the addresses on the mail she 
receives (she figures it doesn't do any good anyhow, 
because the postman delivers them to whomever he 
wants), and she never reads the name on bills and 
checks (but she reads the amount and keeps her 
records up-to-date?). 

I jump immediately to a "harder" task, where really new learning 
could occur. He turned to the task of graphing I 

( I J - D + ( A X A ) = ~ ~ ,  I i 
i 

which was entireiy new for the class, and which makes use of 
"postman stories." 

The result was one of our most successful films. At the begin- : 
ning, the children give wrong answers to nearly every problem in 
the arithmetic of signed numbers (saying, for example, that 
'-1 x -1 = 0," and that '"1 x -1 = "2"). Next, the children 
use "postman stories" to decide - by themselves! - what the cor- 
rect answers should be. Toward the end of the lesson, they have 
gained enough insight into how the arithmetic of signed numbers 
works so that they give correct answers without recourse to "post- 
man stories"! 

Now, this is just what we want "postman stdies" to do! We 
want them to provide the children with an "autonomous decision 
procedure" whereby the child can decide for himssif what answer 
he should give in a problem involving the arithmetic of signed 
numbers. 

This film proves- better than anything we could have planned- 
that postman stories are capable of providing a foundation for 
the arithmetic of signed numbers -for "culturally deprived" 
children as well as for "culturally privileged" children. 

And, notice, nobody told the children any "rules" for working 
with signed numbers.* 

-- 
*Cf. Max Bebermon, An Emwing Prmgrnm of Secondary Ichoot Maffm- 

mafia, p. 25 (Harvard University Puss, Cambridge, Matt., 1958): 

TÃ§achÃ of tho conventional couru in binning atgebro rwegnize tba 
fact that tludtnti am very quick in datawring a rule for adding d i d  
numbem [i.e., " s i g n d  numben"]. In fort, the uwol  ruft  stated in tÃˆKt 

books is a ~~rily wmplifatod deicripttwi d an (ilgadsfn . . . Anystu- 
dent copbie of teaming algebra in the first pfoce win haw invented ihtt 
algorism. Any student who is able to Interpret the textbook dwtripfim 
i s  a h  able to carry out the algorism far adding without using ?he tsxf 
de~ription. [l have added the itolitt-K.B.D. 1 Hence, our mrliÃ§ oppor- . tunify for animportant disc- in thÃ UICSM program in cannet- 
tian with ?he role for adding directed n u m e .  At1 tfudemfs s u r d  in 

?his first attempt. [ltolici agoin added-R.B.D.] 

Yelling itudfits, "mlm" for the orilhmetic of signed nurnhert is an oxer- 
ci>Ã in uttar futility. Adufts of our quaintome who w w  tinh ruin 
in wheel nearly always repf lop  them-and use t h - i n t i M T C t t t y  at this 
point In (tieif adult life. When we thew t h e  wrnt aduilt the "pastman 
itory" model, t h y  become obta ia  gat mrrect answen without rtourtt  to 
(incofin-tly) mamarizad rules. 
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Jerry's story involves bills, like 

3, -1 ,  -5, -100, -10, 

and checks, like 

'2, -7, -5, +loo, '9. 

(1) Do you know what Jerry means by a check? 
Who might send you a check? 

(2) Do you know what Jerry means by a bill? Do 
you like to get bills? Who might send you a bill? 

Jerry's postman sometimes b r i w  checks 

+ *3, 

and he sometimes comes and takes away a check (that 
was really for someone else) 

- *lo. 

The postman sometimes brines bills 

+ 7, 

and he sometimes takea away a bill (that was really 
for somebody else). 

(3) Does it make you happy or sad when the post- 
man brings a bill? 

(4) Does it make you happy or swd when the post- 
man takes away a bill? 

[page 221 
(6)  Does it make you happy or gad when the post- 

man brings a check? 

(6) Does it make you happy or sad when the post- 
man takes away a check? 

(7) Jerry said, "On Monday morning, the postman 
brought the housewife a check for $3 and a check for 
$5." 

As a result of the postman's visit on Monday morning, 
did the housewife think she was richer or poorer? How 
much richer or how much poorer? 

(8) Can you write a single signed number showing 
how much richer or poorer the housewife thought she 

was? 

+ '3 + '5 = 

(9) Geoffrey's father says that mathematicians 
sometimes leave off the first "+" sign and write merely 

3 + 5. 

Can you write a single signed number that names the 
same amount as +3 t *5? 

3 + '5 = 

(1  1 This question is intended to emphasize that when we receive a 
check, we become richer. 

(21 This question is intended to clarify our present use of the word 
bill: when we receive a bill, we become poorer. 

(3) Sad 

(6) Sad 

(7) The housewife thought she was richer, by $8. Consequently, 
she changed her estimate of her available funds upward SB; 
if, say, she had thought she had $120 available to her, she 
now changed this to $128. 

S^6 
$128 

(8) We could wile + '3 + '5 = -8. 

(9) "3 + "5 = '8. This is the form which occurs normally in 
mathematics. 
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(10) The housewife thought she had $1 20 uncom- 
mitted and available before the postman came Monday 
morning. How did she change her records as a result 
of the postman's visit Monday morning? 

(11) Gloria says the housewife's records should look 
like this: 

Do you agree? 

Can you make up a postman story for each problem? 
What answer do you get? 

( 1 1) No. Compare answer tc question 10. 

(12) On, say, Tuesday morning, the Postman came and brought 

i 
a check '2 4- *7 

for $2 
I 

and he also brought "2 + *7 
4 

a check $2 + '7 
i 

for $7. *2 + '7 

As a result of his visit on Tuesday morning, the housewife be- 
lieves herself to be richer fay $9. She will revise her estimated 
available funds upward by $9. We could write 

'2 + '7 = '9. 

( 13) On, say, Thursday morning, the Postman brought 

i 
a check '2 + -1 ^ 
for $2 2 4- -1 

i 
and he also brought 2 + "1 

1 
a bill "2 + -1 

4 
for $1. '2 4- 1 

As a result of the postman's visit on Thursday morning,ttie house- 
wife believes herself to be richer by $1. She will revise her 
estimate of available funds upward by $1. We can write 
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( 14) The postman brought 

* 
a bill 5 + -2 

i 
for $5 5 4- -2 

1 
and he also brought -5 + -2 

1 
a bill 5 + -2 

4 
lor $2. 5 + -2 

As a rssuit o/t Hie postman's visit on Friday morning, (tie house- 
wife believed herself poorer by $7. She decreased her estimate 
of available funds by $7. We could write 

(15) On, say, Saturday morning, the postman brought a cheek for 
$3 and he also brought a bill for $4. 

As a result of the postman's visit on Saturday morning, the 
housewife believes herself l o  be poorer by $1. She revises 
her estimate of available funds downward by $1. We can write 

The reason for the emphasis on the day when the postman visits 
will become clear in answer to question 16 below. 

(16) On, say, Monday morning, the postman came, and brought a 
check for $9 and took away a check for $2. The postman re- 
marked, "I sure hope you weren't planning on spending that 
check for two riollars. it's really for Mrs. Wilson. M you'll give 
it back to me, t'll run over and deliver it to her right now." 

As a result of the postman's visit on this Monday morning, 
Mrs. Housewife believes herself to be richer by $7. She revises 
her estimate of available funds upward by $7, say, 

tiw 
$1 57 

We could write 

'9 - +2 = '7. 

Why have we put so much stress on the time factor of the post- 
man's visits? This problem shows the reason. Students wilt some- 
times confuse the problem 

'2 + (+9 - '2) = *9 

with the present problem 

+9 - "2 = "7. 

The student may ask, "Why isn't Mrs. Housewife richer by nine 
dollars? She just got a check for two dollars, then gave it back. 
Why should that have any effect?" 

The answer, of course, is that Mrs. Housewife received the check 
for $2 sometime last week, and has already included it in her 
estimate of available funds. Consequently, when she has to return 
the check for $2, she must reduce her estimate by the correspond- 
ing $2. 
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The use of the time factor lets us distinguish easily between 

and 

Writing +9 - '2 = +7 describes what happened as a result of the 
postman's visit on this Monday morning, 

By contrast, +2 + ("9 - +2 ) = +9 describes a combination of part 
of last week's transactions 

together with the result of the postman's visit this morning: 

With a tittle practice, plus carefuf attention to details, I believe 
you wi!! find this works both easily and reliably. The use of time 
facilitates distinctions such as those above. 

(17) On, say, Tuesday imimine, the postman came and took away a 
check for $5 and he also took away a check for $2. 

(The postman said, "I hope you haven't been making plans for 
spending those checks. They really belong to Mrs. Cohen, If 
you'll give them hack to me, I'll run over and give tham to Mrs. 
Cohen as soon as I'm through with work.") 

Unfortunately, Mrs. Housewife had, as usual, counted these 
checks into her estimate of available funds. Consequentty, as a 
result of the postman's visit this morning, she had to decrease 
her estimate of available funds by 57. Whereas she had thought 
she had $ 3  57, she changed this now to $1 50. 

We could write 

This. also, is a notation that will not occur often in our rnathe- 
matical work; strictly speaking, it also confuses binary and unary 
operations. However, even though, in this sense, we need not ex- 
plain such "foolish" notations, we are in fact able to do so if 
we choose. 

Similarly, the notation shown in answer to question 18 is a no- 
tation that we shall not ordinarily encounter in our mathemati- 
cal work; nonetheless, we can explain it if we wish. 

(181 The postman came Wednesday morning. He took away a bill for 
$5. Now, the housewife had already provided for this bill in her 
estimate of available funds. Consequently, when the postman 
came this morning and told her this bill was not really for her, 
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she breathed a sigh of relief and i m r d  her estimate of avail- 
able funds by $5. 

We could write 

Actually, when we come to the notation for opposites or addittve 
inverses (see Discovery, Chapter 40, or Explorations, Chapters 11 
and 15) we shall write this as 

and represent the unary operation 01 "finding the additive in- 
verse" by a "rainbow" picture: 

To find the "opposite" or "additive inverse" of a number, you "go 
to the opposite end of the rainbow." You need not worry about this 
matter at  this point; we shall return to it  later, in Chapter 11. 

(19) On Thursday morning, the postman came and 

1 
took away - -1 - -5 

1 
a bill - -1 - -5 

i 
and he also took away - 1 - '5 

I 
a bill - - t  - -5 

j. 
for $5. - 1  - -5 

The housewife had, of course, already provided for both of these 
bills in her estimate of available funds. When she found out 
that those bills were not really for her, she revised her estimate 
of available funds upward $6. 



For the original problem - -1 - -5 we- cnuld write 

(Roughly transIaM, this says that taking away a bill for $1 and 
a bill for $5 makes you richer by 56.P 

(201 The postman arrived Friday morning. Me hwught 

a check 

for $10 
L 

and he tank away '1 0 - -100 

a bill 

for $lea, 

The check which he brought was, al caurse, a nBw miter; but 
the housewife had 0 1 ~ d y  ~ I # o w ~  for the $ID0 bill in her es- 
timate of available funds. When she found that this bil l  wasn't 
really for her anyhow, she breathea a ]arm sigh of relief and, 
comb in in^ the morning's two transactians, revised her estimate 
of available funds upward by $1 10. 

We could write 

- -- 
+Miss Katie Reynolds, a t e d e r  of the fifth a d  s ixh  gmdes in the At- 

tucks -1 in St. Louis {which i s  pati d Dr. Samuel Shepods wtl-k- 
''8anwker Dis?rict"), has d e w b p d  tha most & d i v e  method h r  t ~ c h i n g  
PosWun Stowes thot mmy of u9 an the weti htw seen. Her rnothod 
WU&S SCI srnaethly fhot she is able to t m h  this topic easily o d  su~ss fu l l y  
to on entire claw of cuttwmf~~ depriued chi$dmm whase s c k !  pehrmamte 
might ordinnrily be quite marginal. Miss Reynolds' device is to use index 
cords to represent <becks, and to use a piece of poper (with on i~ppvpriute 
nototiom written on it) ta mpmsent m bill, so u s  to goln the dvantoge of 
clear visual imogev i n  &tien to Postman Smries. gut her partitulmrly in- 
genious idea i5  to i n t d u c e  u ''6111 Bog." Whenever the hmusewife receives 
a bill fora soy, $7, in order to be s u e  that she will have the m n e y  mailable 
ta pay it, she the* the fallwing: she tokes seven iridw cur& reprwsenting 
$1 each-or some other combinption of index cards mpresentirtg checks that 
?oÂ¶a $7-wraps the bil l  amumd them, puts a rubherband nmund this, and 
puts thiw into her "Bill Bug.'' The great advontuge of Miss Reynolds' method 
appeom when the postmm comes h fake bock o bdl, far when he t e k  the 
housewife thot tha* $7 bill was not for her, she teaches into her Bill 399, 
takes out this f i l i le porkage with the elastic around it, udoes  the package, 
gives the bill bmtk t8 the pstmun, and is mow quite vimbly richer by $7. 
Each child con see for himself ',whem #he $7 mmes fmm." 
, Some thildmn %+ern ta require direct visvui experience as a foundation 
fur building uMmt concepw, The "BLll Emg" method whkh Miss R e p l d s  
developed, in coopemtion with the principal of her xb l ,  takes much of 
the abstract temv out of problem like 

-2 - -7 = nq 

by giving the child a voq dwr vi-I eaperienw, The 9 in fh, repre- 
sentd by index wdn tha postman h a  iusf honded h r .  f i e  ''exha seven 
dullam" i s  the#*, just f w d  from mptgvity in the ""Bill Bog"; pufiimg thorn 
together, the chi ld SM f h t  the hewewife i s  "richer by nine dollon." 
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(2 11 Postman took away a check for $100. Housewife is "poomr" 
by $400: 

(22) Postman brought a check for $10, took away a check for $100. 
As a result ol his visit this morning, the howsewife is ''poorer" 
by $9O.-We coultl write 

(23) Took away bill for $7. Since the hausewife had made pmuision 
for this hill in computing her estimate d available funds, when 
she four~d aut the hill was nol for her she revised her estimate 
upward by $7: 

(241 Pastman hrougH a check h r  $5 and tmk  away a bill for $2. 
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%rnmre Jerome Bwner, T l n  Proto* of Educafh, pp. 13- 14: 
'The third hmma of t h i s  bomb inwhen the me- of inhitien-th in- [ . .  1 mllmud technique of amvang at plauniblm but Mnfaiive h u h ? i o n s  

withoui geimg thmush the analytic s tep  by A i c h  swh fomuIatiam w d d  
be fuud to be valid mncIusIons. lntuifiwe thinking, the *mining of hu~l tm,  
i s  a much-negiected end essential feeturn 6f pduct ive  thinking not mniy in 
f m l  academic disciplines but also in w r y d m y  life. ?he shrewd guess, t h  
fmile hypothesis, the tawmgeou* Imp t o g  tentmive conclusion-these am 
the most valunble coin 01 the thinker a# work, whatever his line of w d .  
Can s c h d  rhddwn be led to m s f e r  ?hi5 gift?" 

Experienced teachers will not doubt that "the product of twa 
negative numbers" is  one of the most "mysterious" items i~ the 
traditional curriculum. The tradkiional cu~riculum approached the 
arithmetic of signed numbers by stating rules which students were 
asked to memorize. 

Those memorized rules d ~ d  noth~ng to dispel the mystery of lt 
a[l, and with the passing of time most people forgot the precise 
form of the rules, replacing them w ~ t h  incorrectly recalled substi- 
tutes that led to wrong answers. 

The ''rt~les" approach did not work. (Ask adults of your acquaint- 
ance to perform some problems in the arithmetic of signed num- 
bers if you want to see what we mean.) Modern curricula have 
tended to replace these fallible "rulesB7 with something quite dif- 
ferent: namely, mental imagey that suggests the correct answer. 

There is a growing literature dealing with such imagery, and 
much more will probably appear ~n the near future. See Appendix 
A: Davis (281, (1701; Tolman (69); Beberman (103); Sanders (64); 
Flavefl (1 141; and Brown 105). 

Now, teachers may, at  first feel uncomfortable with such hag- 
ety. They may ask if "truth" in mathematics should not be made 
to depend upon formal mathematicat logic, and not upon "mental 
irnagev." 

Actually, mathematics "truth'' appears in two forms: 
(il "Heuristic truth," where we kl1eve a statement to be true 

for nonlogical reasons. 
(1i1 "Logical truth," where we wpport a statement by a careful 

logical proof. 
To neglect either of these aspects is unwise. "Heuristic truth'* 

guides our intuition; it enables us to guess which things may be 
worth trying to prove, and it reassures us that the whole affair 
"makes sense." 

"Logical truth" is often too compl~cated to guide our tntuitlon; 
"logic" functions almost like a giant computer, that tells us which 
statements must be labeled T and which must be fahied F, but 
it does not tell us why, except in the most formalistic and remote 
sense.* 

It seems very likely that heuristic thought more often than not 
depends upon ' ' rn~dels'~ or appropriate mental imagery. 

Actually, we might distinguish four kmds of reasons for believing 
a mathematical statement to be "true'': 

(i l A meaningful model suggests the truth of the statement. 
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(iil The statement is a simple agreement-as when we agree 
that the first-named coordinate shall refer to the horizontal axis 
and the second-named to the wertica! axis [the rule for substituting 
is also jn this "agreement" category). 

(iff1 A consistent pattern seems to suggest the truth of the state- 
ment. 

liv) A logical proof of the statement exists.* 
By the time a student has completed grade 9, we would how 

that he could give both intuitive and logical reasons for the state- 
ment 

  he logical prwf depends primarily upon the distributive law 

However, considerable experience with children has convinced 
us that, below grade 9, the ''model" approach-specifically, post- 
man stories-wks out far more satisfactorily than any of the other 
approaches. Even for ninth-graders, the postman stories-once 
they have k e n  mastered-are often the most effecthe "explan& 
t!on" of the behavfor of signed n u m k ~ .  

In this chapter we shall take our postman model, which we have 
already used for addition and 5ubimctior1, and extend it to deal with 
mult~plication. Our stories for rnultiplicatian will n ~ e s a r i l y  be 
different from our stories for adding and subtracting, because the 
role of units (or "dimensions") is different. 

In adding, you (ordinarily) want similar units for each term. That 
is, if 

then 

I 

th~s should also be ''dollars." 

However, in multiplying, if h t h  units were "dollars," 

the "answer" would be in "doI!ars quaredB7 (as in the case, for 
example, of "inches" and "square inches"). This would be non- 
sense. Consequentfy, we cannot interpret b t h  factors as dollars. 

We shalt, instead, interpret products ln such a way tbat the sw- 
OM factor will be fnterpreted as money- i.e., as a bill or a check. 



I 
! 

We can use the fvst factor to tell us how many times the postman 1 
brings the item or takes it away. i 

Specifically, these following examples show the four possibil- 
ities with multiplication. 

i 
The postman br~ngs +2 x +3 

A 
~ W O  +2  x +3 

4 
checks +2 x &3 

i 
for $3 each. +2 x +3 

As a result of this vis~t, you are "richer" by $6. Hence we wrde 

(ii) +Z x -5 

The postman brings 

two 
i 

bjlls *2 x -5 
4 

for $5 each. b2 x -5 

As a result of this vis~t, the housewife revises her estimate of un- 
committed available funds 

downward &2 x -5 = 

We can write 

(read: positive two times negative five equals negative ten). 

The postman comes on Tuesday morning, and 

J 
takes away -3 x '4 

J 
three -3 x +4 

checks 
& 

for $4 each. -3 x +4 
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He says: "! hope you weren't planning to spend those three 
checks I brought last week. They're not for you -they're for Miss 
Parsons. If you'll give them back to me, I' l l run over and give them 
to Miss Parsons as soon as 1 get through work this afternoon." 

As a result of the Postman's disappointing visit this morning, 
Mrs. Housewife must revise downward her estimate of uncom- 
mitted available funds: 

-3 x "4 = -12. 

(iv) When you receive bills, that's sad. When you give back bills, 
that's good! For the case 

2 x -6 

our story goes like this: 
The postman came on a warm and sunny Aprii morning-Thurs- 

day morning, as a matter of unimpeachable fact -and 

I 
took back 2 x -6 

I 
two -2 x -6 

1 
bills -2 x -6 

i 
for $6 each. -2 x '6 

The postman remarks, "I hope you haven't worried about those 
bills; they're really for the lady upstairs. Give them back to me, and 
I run right upstairs with them this very minute." 

As a result of the postman's visit, the housewife revises upward 
her estimate of available funds: 

Considerable experience has convinced us that postman stories 
will work successfully for you, in your class, if you wil l  take the 
trouble to work them out carefully and consistently. 

i 
CHAPTER 8 

i Postman Stories for Products 

[pace 231 
For products, like 

-2 -3, 
Jerry makes up stones like this: 

The postman 

Brings or takes away? brings 
1 
2 x '3 

How many? two 
i 

*2 x +3 

Bills or checks? checks 
1 

2 x *3 

For how much? for $3 each. 
4. 

'2 x '3 
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Can you make up a postman story for each problem? 
What answer do you get? 

(1 +? x +3 = +6 (Compare !he illustrative example (J) in ttie intro- 
ihiction to this chapter.) 

\, 
(2) The postman brings + 2 x + 5 =  

i 
two +2 x '5 = 

i 
checks '2 x "5 = 

i 
for $5 each. +2 x "5 = 

As a result of this visit, Mrs. Housewife revises upward 

her estimate of available uncommitted money. +2 x 5 = "10 
t 

(3) The postman comes on Monday morning, 

bringing 

two 
i 

bills 2 x -3 
i 

for $3 each. +2 x -3 

As a result of the postman's Monday-mine visit, Mrs. House- 
wife must revise downward her estimate of available spending 
money: 

+2 x 3 = 6 .  

(4) Postman brings two bills for $5; Mrs. Housewife is thus "poorer" 
by $10: 

(5) Postman brings 5 checks for $7 each: 

(6) On Thursday morning, the postman pays a visit 

KB takes away 

two 
ll 

checks 2 x +I 
I 

for $1 each. -2 x +1 
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As a result of the postman's Thursday-morning visit, the house- 
wife must decrease tier estimate of available Funds (since she 
had, of course, previously included these two checks in her es- 
timate of her available spending money). By how much? Evidently 
she must decrease the amount by $2: 

2 x +! = -2. 

Notice that one might also make use of the identity 

in solving this problem. 

(7) Postman takes away two checks for $5 each: 

(8) Postman takes away two bills for $5 each. Since the housewife 
had already allowed for these bills in computing her estimate 
of available uncommitted funds, she may now breathe a sigh of 
relief and incteose her estimate of uncommitted funds by $10: 

(9) Similar to question 8 above: 

(10) Postman brings two bills for $6 each. As a result of this visit by 
the postman, the housewife must decrease her estimate of her 
available "free" spending money: 

(11) Similar to question 8 above: 

(12) Note thai this is a problem in cddrtion. 

The postman brought 
J. 

a check 5 + *3 
i 

for $5 '5 + '3 
4. 

and he also brought '5 + '3 
1 

a check 5 + -3 
I 

for $3. '5 + +3 

As a result of ihis visit by the postman, the housewife will in- 
c r e a t e  her estimate of available funds by $8: 
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(13) This notation will not usually occur in our mathematics! work. 
It is nice to know, however, that we could explain it with a post- 
man story if we wanted to. 

i 
The postman took away - -5 

i 
a bill - 5 

i 
far $5. - 5 

The housewife accordingly increased her estimate of her uncom- 
mitted available funds by $5: 

in most mathematical situations we shall prefer to use the "op- 
positing" symbol @ to denote this unary operation, and to reserve 
the "subtraction" symbol - to denote a binary operation. Thus, 
instead of 

we would usually write 

(14) Similar to question 8 above: 

(1 5) Similar to question 8: 

For questions 16. 17. and 18. the stories should cause no diffi- 
culty. 



chapter 7 1 Payes 24-25 of Student  Discussion Gunfe 

This chapter reports an actual occurrence. While presenting sub- 
traction, a third-grade teacher was discussing this problem: 

64 
~ 2 8  

Shesaid,"i can'ttskeeightfrom four,so I taketenfromthesixty. . ." 
At this point a third-grade boy, named Kye, interrupted and said, 

'Oh, yes you can! Four minus eight equals negative four . . ." 

"and sixty minus twenty equals forty, . ." 

"forty plus negative four equals thirty-six.. ." 

'so the answer is thirty-six." 
This is as good an example of the difference between "tradi- 

tional" programs and "modern" programs as we have encountered. 
The "traditional" teacher would presumably have said, "No, Kye, 
that's not the way you do it. Now you watch carefully while I do it 
the right way!" 

The teacher in Kye's class, who was trying hard to catch the elu- 
sive spirit of "modern" mathematics, actually listened to what Kye 
suggested, and actually thought about it. 

Hundreds of hours of tape-recorded classroom lessons have con- 
vinced us that children very often make up ingenious methods for 
solving problems, only to beoverruled and "corrected" by a teacher 
who doesn't realiy understand the child's suggestion. (The author 
pleads guilty to this himself, and claims- in hts defense -that chit- 
dren, although ingenious, are not clearly articulate; it is sometimes 
hard to figure out what a child means, particularly when the child's 
suggestion is quite unexpected!) 

In any event, Kye's teacher did listen to his suggestion, she tried 
to understand and appreciate it, and she encouraged Kye (and the 
rest of the class) to explore Kye's method more fully. It turns out to 
be an excellent algorithm for subtraction- invented by a third- 
grade boy! 

Suppose Kye's teacher had rejected Kye's suggestion. Kye would 
have been left with the feeling that "this stupid mathematics never 
does make sense; it never works out the way you'd think it would!" 
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(1) Miss  Parsons was working thissubtraction prob- 
lem with her class: 

64 
- 28 - 

She said, "1 can't take eight from four, so I'll regroup 
the sixty as.,  . " At this point a boy named Kye inter- 
rupted and said, "Oh. yes! Four minus eight is negative 
four 

64 
- 28 - 

A 

. . . and twenty from abtty is  forty 

. . . so that you get forty plus negative four, which is 

thirty-six.'' 

64 
- 28 

-4 

A0 -. 

36 

indeed, Kye would have been faced with the dilemma of perse- 
vering in his own vision of mathematical consistency at the price of 
severing diplomatic relations with the teacher or else hypocritically 
abandoning what he believed to be the true "pattern." Either way 
Kye would be the loser. 

"Modern" mathematics teaching provides Kye with a third 
choice: to persevere in "figuring things out for himself" and to win 
approval - rather than rejection -for his creative efforts at making 
up his own methods for solving problems. 

The mid-twentieth-century work on encouraging "divergent 
thinking" should never have been necessary. We ought never to 
have placed such ridiculously great emphasis on "convergent 
thinking!" Do we realty want everyone to think in the same rigid 
mold? 

Children can make up their own algorithms for arithmetic- if we 
adults give them a chance! 
If you wish to do further reading, see Davis (31) or In-Service 

Course #1 (available from The Madison Project). You might also 
wish to view the Madison Project films "Kye's Arithmetic" and 
"Education Report: The New ~ a t h . ' j  

(1 1 H you explore this further (as we shall do in (tie next few pages) 
you wilt find that Kye's method is ingenious, valuable, and 
correct 

What would you say to Kye? 
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(2) Can you use Kye's method on this problem? 

(3) Some other students extended Kye's method. 
They decided to write "negative sips" over the digits 
to which they apply, so that 

- 
53 

means 

50 - 3 

or 

50 + -3. 

If 34 means "thirty plus four," can you say what each 
of these numerals means? 

(a) 72 

- 
(b) 73 

- 
(0 13 

td) 21 

(e) 45 

(0 55 

b e e  251 
(4) Cynthia wrote: 

(b) 70 - 3, or (if you prefer) 70 + -3 

Note that this use of "negative digits" offers an unexcelled 
opportunity to study place-value numerals. 

(4) Cynthia's "answer" is perfectly acceptable. Fts meaning is clear 
(compare question 3 above), and one can stop with "44" as the 
"answer!' Alternatively, one can convert to our standard 
numerals: 
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(5)  Can you work out these problems by two (or (51 (a) Method 1 
more) different methods? - 

(a) 23 (bj 59 3 + 3 = 0 :  

+ 13 i-g 

Method 2 (converting to standard numerals) 

(b) Method 1 

Method 2 (converting to standard numerals) 

Now proceed as usual.. . 
i6i Some other students made up a method for sub- (6) This method is quite satisfactory, and one more example of the 

trading If we use their method, the problem ingenuity of children when we apprecinte their ingenuity 

64 instead of crushing it. 
- 28 

means "how far (on the number line! i s  it from 28 to This method was made up by some sixth-grade children in a { 
64?" suburb of Seattle, Washington. I 

i 

1 



We'll sw: 

28 plus 2 gcLi you to 30 64 
- 28 

2 
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I f  you have not already done so, this would be a good time to view 
the film "Postman Stories." You may also be interested in the film 
"Circles and Parabolas." 

CHAPTER 8 

Graphs With Signed Numbers ANSWERS AND COMMENTS 

[pace 261 

(1) Can you show the truth set for (1) it is probably wisest to restrict ourselves to inters. If we do, 
WB sfiarl find exactly 12 pairs erf numbers that win produce a 

; D x D )  + (Ax A) = 2 5 #  true statement; consequently, the graph will show exactly 12 
by means of a table and a graph? (Use both positive points. 

and neeative numbers.) 

(2) Can you show the truth set for 

x A = 36, 

by means of a table and a graph? 

Table far Truth Set Graph for Truth Set 

Actually, as the film "Postman Stories" shows very well. this is a 
case where the algebra aids the geometry, and the geometry aids 
the algebra. Once you have located a few points, both geometric 
and algebraic calculations work together to help you locate addi- 
tional points. 

For the continuous case, where we include rational numbers. 
compare Discovery (Teachers' Text), page 199. 

(2) We might, again, use only integers. If we make this choice, (he 
table and graph look like the following. 
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Table for Graph for Truth Set 
Truth Set 

There are many elements of the truth set that involve fractions; 
indeed, if we allow fractional solutions, we get what appears to be 
a continuous, smooth curve, instead of merely isolated points. 
(This curve is known as a hyperbola, and was used by the architect 
Gyo Obata in designing the planetarium in St, Louis, Missouri. A 
photograph of this planetarium appears in the Student Discussion 
Guide. Of course, the perspective of the photo distorts somewhat 
the actual curve.) 

The fottowing shows what the curve might look like if we allow 
the use of fractions. 
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(3) Can you show the truth set for 

+ A  = 10, 

by means ofa table and a graph? (Use pasitive numbers, 
negative numbers, and fractions,) 

As illustrated at the right,* a pieceof the graph of  the 
truth set of problem 2, 

x A = a*, 

was used by architect Gyo Obata in designwg the plane- 
tarium in St. Louis, Missouri. A continuous, smooth 
curve (a hyperbola) was obtained by allowing fractional 
solutions. 

Or, we might look more closely at  the following which shows a small 
piece of this curve, with a portion of the table. 

Table for Truth Set 
(if we agree to use fractions) 

(3) If we use only positive whole 
the following. 

like 

Table for Truth Set 
(using only positive 

whole numbers) 

Graph for Trutti Set 
(using only positive 

whole numbers) 



I In this diagram the per- 
The picture i s  rotated so spective i s  changed so 
that the L and A axes ap. that the T and 'L axeh 
pear in their usual positions appear perpendicular 

Because of perspective and changes of 
scale, the U and A axe* that fit the profile 
curve dn not 6eem to be perpendicular, 

If, instead, we agree to use integers (i.e., the replacement set 
for each variable shall be { ..., '5, '4;3,-2, "1,0,7,'2,*3 ,... 1 ,  
then the table and graph look like the following. 

Table for Trutti 
Set (if we Graph for Truth Set 

agree to use (if we agree to use 
integers) integers) 

Finally, if we use also fractions (positive and negative), the 
graph looks Pihe the following. 

Graph lorTruth Set 
(if we agree to use 
integers and fractions) 



(4) Can you show the truth set for 

ti x A = -24, 

by means of a table and a graph? 

271 (41 If WB use only integer*, the table and graph look like the 
following. 

Graph tor Truth Set (using only integers) 

Table 
for Truth 

Set (using 
only 

integers) 

H we agree to allow the use of fractions (positive and nega- 
tive), the graph becomes another example of a hyperbola 

Graph of Truth Set (if we agree 
to allow the use of fractions) 
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Can you make a graph for each truth set? 
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( 15) Using integers only; 
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(16) Using only fractions (wsitive and negative) with defiomiiMtors 
equal to two: 

Using only integers and fractions 
with denominators of 2: 

Using all ttactictis, 
positive and negative; 

Compare Discovery, Chapters 1 1, 15, 17, 18, and 35. 

( 18) Using integers only: Using fractims: 



GRAPHS WITH SIGNED NUMBERS 101 

(1 9) Using integers only: Using fractions; 

Compare Discovery, Chapters 11, 15, 17, 18, and 35. 

(20) Using integers only: Using fractions; 

(21) Widge says she uses the symbol "0" like this: 

( - 3 )  = -3 

( - 3 )  = *3 

("10)  = -10 

( " )  1 = -J I 

(-1.1) = -1.1 

What would this be? 

( - 5 )  = 

(21 1 ' (5 )  = -5. This is read either as "the opposite of positive five 
is negative five" or as "the additive inverse of positive five is 
negative five." 

You may wish to view the fjlm "Second Lesson.'' 



102 CHAPTER 8 

(22) Can you find these "opposites"? 

(d) (0) = 

[pace 281 
(23) U x  says that Widge is  finding additive inverses 

and that ahe finds ' ( ' 1 )  by asking, "What can 1 add 
to positive one to end up with zwo? What do you think? 

(24) Can you find the truth set for each open 
sentence? 

w *5 + 0 = 0 

(b) *7 + Q = 0 

(c) -3 + Q = 0 

<dl o + n = o  

Can you give the truth set of each of these open sen- 
fences another name? 

(25) Cynthia made a rainbow picture: 

She says that you find the additive inverse of a number 
by "going to the opposite end of the rainbow." 

What do you think? 

(26) Can you find the additive inverse of each 
number? 

(22) (a) "(+I )  = 1. Read either as "tee opposite of positive one is 
negative one" or as "the atfditive inverse of positive one is nega- 
tive one." 

(b) O - 4  = '4 

(0 Â¡(A = -A 

Cd) O ( o )  = 0 

(23) Lex is right We are actually using the identity 

For an explanation of what we mean by identities, see Chapter 18 
of Explorations or Chapter 5 01 Discovery. 

(24) (a) {-5}. -5 is the additive inverse of '5. 

(b) {-7}. -7 is the additive inverse of "7. 

(c) {+3\. *3 is the additive inverse of -3. 

(dl {o). 0 is the additive inverse of 0. 

(25) Cynthia is right 
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This chapter is intended to be somewhat more of a "reading" 
chapter, although some valuable class discussion might occur after 
the students have tried to read the chapter and to understand it by 
themselves. 

Mathematically, the chapter is  intended to introduce these 
ideas: 

(i) the distinction between "names" and "things"; 
(ii) the meaning of the symbol =, or of the idea @ "is equal to,'' 

or "equality"; 
(iii) the logical operation known as PN; 
(iv) the mathematical operation known as UV. 

Let us review these matters very briefly right now. First, it is 
sometimes desirable to distinguish some thing from some name 
for that thing.  h his distinction has been made most forcefully and 
most lucidly by Vaughan and Beberman in the LKSCM materials, 
see Appendix A: Beberman (871.1 

Consider the example of milk. If I have the thing milk on my 
paper, that is a mess, probably attributable to my two-year-old 
daughter. But if 1 have on my paper a symbol or a name to refer to 
milk, that is an entirely different matter. Indeed, a symbol for milk 
has been used four times in this paragraph, 

Here is a second example. The statement 

Mary has four letters 

might, without further clarification, mean either that the girl Mary 
has received four letters in her mail box this morning, or it may 
mean that the name Mary has the four letters M, a, r, and y. 

Suppose we wish to name the number seven. We could write 

7 or V I i  or seven. 

We could also write 

Any of these would be names for the number seven. 
This may not seem very exciting or very important. But wait until 

we come to use this idea in our efforts to work out the meaning for 
the sign =, and for the logical operation that we shall call PN. 

Second, what shall we mean by the symbol = ? You will hear 
people, when they are speaking carelessly, say that "some number" 
is equal to "some other number." But-as we ask in the Student 
Discussibn Guide-how can some number be equal to some other 
number? This does not make sense. Nor is it the approach of mod- 
ern logicians. They have preferred to interpret the statement 
1 + 1 = 2 to mean 
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Variables in Mathematics 

THE MEANING OF "EQUAL" 

"1 + 1" names some number, and "2" names some 
number, and - in fact-they both name the same number. 

Thus, equality is primarily a statement about names and not 
about things. We shall carry this same interpretation along, whether 
the "things" be numbers, statements, matrices, geometrical en- 
tities, or what have you. 

In particular, we shall name matrices by writing arrays of num- 
bers such as 

We shall say that two such names will name the same matrix if and 
only if they "look" as if they do. That is 

names the same matrix as 

but the name 

does not name this same matrix. We shall look into this matter 
when we begin our study of matrices. 

Third, we have a logical operation which we shall refer to as the 
principle of names and shall abbreviate as PN. The meaning of PN 
is stated at moderate length in the Student Discussion Guide. We 
shall try to understand what it is a11 about when we come to this 
part of the student chapter. 

Finally, the use of variables (or UV) is not something new. It is 
our old friend from Chapter 1, reviewed here in order to compare it 
with PN, which is somewhat like it. 

How can "two different numbers" ever be equal? This 
question poses the kind of problem we often encounter 
when we think carefully about the words we use. 
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In mathematics it i s  sometimes important to use 
words rather carefully. Mathematicians and logicians 
want to avoid contradictions in what they say. Con- 
sequently, they have thought a good deal about the 
problem of "two different numbere" being "equal," 
and have decided to resolve the difficulty this way: 

(a) Mathematicians distinguish "symbols" or 
"names" from "things" or "ideaa." You have an idea of 
two: but you cannot write the idea on the chalkboard. 
(They don't sell that kind of chalk!) 

What you write on the board is a symbol or a name, 
such as 

2 

or 

II 

two. 

(b) Mathematicians agree that "equality,"whicich 
they write by using the symbol "=," is a statement 
about names, and not a statement about t h i n ~  or 
ideas. 

Thus, "two different niimbers" never will be "equal." 
When we write 

what we shall mean by this i s  that 

1 + 1 

is a name and that 

2 

is a name, and, in fact, these names both name the 
same "thing" or "idea." Both 

and 

2 

are names for the number two. 

(1) In Paul's class, there is a girl named Sandy 
Davia. Paul claims that we would be using the symbcl 
*I=" correctly, as it is used by modem mathematicians, 
if we wrote 

Sandy = Miss Davis. 

Do you agree? 

[paac 303 
(2) Jill says we could also write 

Hawaii = theonly state consisting 
entirely of islands. 

(1) Paul is correct When we write 

Sandy = Miss Davis, 

we are saying that "Sandy" is  s name and "Miss Davis" is a 
name and that both name the some person. 

(2) This usage of the = sign would be comet, in the tight of modern 
logic and mathematics, 

Do you agree? 
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(3) In  the triangle ABC, The notation 

L CAB 

refers to th is  angle: 

can you identify which angle is meant by the notation 
L CAB? Which angle do we mean when we write 

,! CBA ? 

whereas the notation 

/ CBA 

refers to this angle; 

(4) George says that the triangle ABC has some 
kind of symmetry. In fact, he took a protractor and 
measured L CAR and also L CBA. He concluded that 
they were equal, and so he wrote 

/CAB = LCBA. 

What do you think? 

George is correct insofar as if we put a protractor on these two 
angles, we shall get the same reading in both cases. However, 
when George writes 

L CAB = 1 CBA, 

he goes too far! According to modern usage, the statement 

would say: 

"L CAB" names something, and "z CRA" names 
something, and, in fact, they name the same thing. 

However, "z CAB" does not name the same awle that "1 CBA" 
names, as wr pictures in question 3 clearly show. 

Please notice that this is a new usage of "equals." When I was 
- in school -and possibly when you were-one learned that "the 

base angles of an isosceles triangle are equal." This is using the 
idea of equality precisely as George did when he wrote 

L CAB = f CBA. 

Both George and my past education are wrong, if one judges in 
terms of today's use of the symbol =, or the idea of equality. For an 
excellent discussion of this matter, see Appendix A, Moise (94). 
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45) Can you make up some statements where you 
use the symbol "=" the same way that modern mathe- 
maticians do? Can you explain the meaning of your 
statements? 

THE "PRINCIPLE OF NAMES" 

Mathematicians have a rule, which we shall call 
the "principle of names," and wilt abbreviate "PN." 

The rule PN says roughly this: 

If you take any true statement, take some occur- 
rence of some name in this statement, erase it, 
and replace it by another name for the same thing, 
then the new statement you get wilt also be true. 
The same thing holds for false statements. If 

you start with a false statement and replace some 
occurrence of some name by another name for 
the same thing, then the new statement will 
also be false. 

To understand PN, let's look at some examples. 

(6) Let's use Sandy Davis's name again. If we start 
with the statement 

Sandy was born in St. Louis, Missouri, 

(which is true} and if we erase the name "Sandy" 

I w a s  born in St. Louis, Missouri, 

and replace it by "Miss Davis" (which is  another name 
for the same person), we get the statement 

Miss Davis was born in St. Louis, Missouri. 

Now, according to PN, the statement 
h ~ e  313 

Miss  Davis was born in St. Louis. Missouri, 

should also be true. Is it? 

(7) Suppose that we start with the statement 

Accra is a city very near the equator. 

and suppose that we say 

Accra is the capital of Ghana. 

Can we write 

The capital of Ghana is a city 
very near the equator? 

(8)  Can we start with the statement 

2 + 4 = 6  

and use the fact that 

4 

names the same number that 

3 + 1 

does, to write 

2 + ( 3 + l )  

(5) Herearea few: 

2 x 2 = 4  

This says that "2 x 2" names some number, and "4" names 
some number, and -in fact-they both name the same number. 

Deutsch = German 

This says that "Deutsch" is a name of a language, and "German" 
is the name of a language, and-in fact-tfiey berth name the 
same language. 

VII = seven 

This says that "VII" names a number, and "seven" names a num- 
ber, and - in fact -they both name the same number. 

(6) Yes. This is a correct use of PN. 

(7) Yes. This is a correct use of PH. 

(8)  Yes. This also is a correct use of PN. 
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(9) Can we start with the statement 

5 + 5 + 5 = 1 5  

and use the fact that 

5 
names the same number that 

3 + 2 
does. to write 

5 + 5  + (3 + 2) = 15' 

Is this a correct use of PN? 

A METHOD FOR SHOWING WHERE (AND 
HOW) WE HAVE USED PN 

Sometimes mathematics looks complicated when 
you aee it written down, and it is useful to have ways 

of "writing notes to ourselves" so that we can keep 
track of what is going on. This occasionally happens 
when we are using PN. In order to keep track of where 
we use PN, we can use either of two methods. For one 
method we mark a "gaping hole" for the name we 
"erase," and into the "gaping hole" we place the new 

name for the same thing. For the other method we 
agree to underline with a heavy black line the name 

which we "erase" and also the new name for the same 
thing. 

Example 1 

The "gaping-hole" method of writing: 

(1) Sandy was born in St. Louis. 

W e  erase the 
name "Sandy." 

(ii) Ã‘Ã‘ was born in St. Louis. 

Into the 
"gaping hole," 
we insert 
the name 
'Miss Davi 8." 

(lit) Miss Davis was born in St. ~ouis.' 

The "underlining" method of writing: 
[paw 321 

( i )  wm born in St. huis. 

(ii) Sandy = Misa Davis. 
(iii) Miss  Davis was born PN from Iine (i), 

in St. Louis. using line ( i t ) .  

Notice that, in the line above, we have given an 
"explanation" of what we did, by writing 

PN from line ( i ) ,  using line (ii). 

(9) Yes, it is. Please notice that, in using PN, we may delete one 
occurrence of the name "5" 

5 + 5 + x =  15 
to get 

5 + 5 + < Ã ˆ  15. 
T 

gaping hole 

inta this gaping hole, we put another name for the wtrie thing 
(namely, "3 + 2") to gel 

5 + 5 + ( 3 + 2 ) =  15. 

We did not have to do the same thing for off the other occur- 
rences of 5 in this statement. In this respect, PN is quite dttferent 
from uv. 

Note; !n questions 6 through 9 we started with true statements. 
We then used PN. Since PN does not change the truth vaiue of a 
statement, we ended up with true statements. 

If, instead, we start with a false statement, we shall end up with 
a false statement. Here is an example: 

New York State is south of the Mason-Dixon tine. 

Now, "New York State" isalso called "the Empire State." Hence, 
we could use PN, erase the name "New York State": 

1 is south of the Mason-Dixon line 
T 

gaping hole 

And then put in another name for the same thing: 

The Empire State is south of the Mason-Dixon line. 

This last statement is false, and so is the statement we started with. 

Example 2 

The "gaping hole" method of writing: 
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( i t )  Now, "3 x 1" names the same thing that 
"3" names. 

(hi) Hence, we can "erase" the name "3 x I": 

(iv) Into the "gaping hole" we can put "3," to get 

3 x 6 )  4 3 = 21. 

The "underlining" method of writing: 

i ( 3  x 6 )  + ( 3  x 1 = 21 

Sii) 3 x 1 = 3 

( i i i j  ( 3  x 6 )  + 3 = 21 PN from line ( i ) ,  
using line(ii1. 

(10) Try to rewrite your work on questions 8 and 9, 
using the "underlining" notation and "explaining" 
the final step, as in the preceding examples. 

THE "USE OF VARIABLES " 

There i s  another rule in mathematica which looks 
somewhat like PN but is really quite different. We 
want to be careful not to get the two mixed up. 

This other rule is the rule for using variables, which 
we shall abbreviate "UV." 

We have actually learned about UV in Chapter I, 
but we did not name it. Let's look at a few examples. 

(11) If you start with the open sentence 

n + I J = 2 x Q  

and if you make a numerical replacement for the 
variable like this 

m3-4 B 
what statement do you get? 
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( 12) If you start with the open sentence 

n+i<5 

and if you make a numerical replacement for the 
variable like this 

UV: 8 -> 0, 
what statement do you get? 

(13) If you start witn the open sentence 

and if you use the fact that the "open name" 

Q + Q  
will always name the same thing that 

2 x 0  
names, can you therefore write 

2 x L ] ) + D = 3 x U ?  

Have you used UV or PN? Did you use it correctly? 

(10) Here is question 8, written using the "underlining" notation: 

(i) 2 + 4 = 6  
(ii) 4 = 3 + 1 
[iiil 2 + J 3  + t l  = I3 PN from line (i), using line (ii). 

Here is question 9, written using Hie "underlining" notation; 

Remember, in using UV, you must make the same replacement 
for every occurrence of the variable. That is, if you put 3 into the 
first Q, you must put 3 into every n. (Contrast this with ques- 
tion 9.) 

(12) 8 + 1 < 5. Notice that one cannot tell anything about Hie 
truth or falsity of an open sentence. In this case, using 8 as the 
numerical replacement results in a false statement If the nu- 
merical replacement had been 2, UV:2 + [_], the resulting 
statement, 2 + 1 < 5, would be true. 

(13) This is a correct use of PN. 
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(14) If you start with the open sentence 

(a+n)+n=3~0 
and if you make a numerical replacement for the 
variable by "putting 4 in every [_I," what statement do 
you get? Did you use UV or PN? 

(15) Al started with the open sentence 

and "put 5 into all the n s  on the left side of the = 

sign." He got. as a result, the open sentence 

( 5 + 5 ) + 5 = 3 x [ Ã ‘ l  

Was A1 using UV or PN? Did he use it correctly? 

(16) If you start with the open sentence 

2xn)+n=3xn 
and use the fact that the open name 

a 
will always name the same thing that 

~ x n  
names, can you therefore write 

(Erase this . . .I 

T 
(and put this in i t s  place.) 

Did you use W or PN? Did you uae it correctly? 

(17) Try to write out your work for question 16, 
using the "underlining" notation. 

[page 341 
(18) How i s  UV different from PN? 

(15) Al was apparently trying to use UV, but he did not use It cot- 
rectly. He put 5 into the first three n's, but he didn't put 5 into 
the last m. (Compare questions 9 and 11 above.) 

( 16) This i s  a correct use of PM. 

(18) This is a little bit like asking "What's the difference between 
a United States mail box and a 1964 Chevrolet?" There are 
lots of differences. One that should be noted carefully is that UV 
requires us to look at what we do to the first 0, and to treat 
every other Q exactly the same way; PN makes no such require- 
ment (compare question 9). 

Also, UV is possible only if we have an open fenfence that 
contains at least one variable (whether we write the variable 
as Q or Aor x or A does not matter). On the other hand, PN does 
not necessarily involve variables. 

A correct use of PN will never chance the truth value of a 
statement A correct use of UV will often change truth values. 
For example, 

is open, whereas, if we use UV, 

uv: 11 4 Q 
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we get the statement 

3 +  11 = 5 ,  

which is folse. 

(19) What number ia named most often below? (19) The number seven is named six times, if we agree that 

3 .  which names the same number that 

'2 "7 

X- I / /  does, also names the same number that 

7 

does. 
1,000,000.000,003 

Six 
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If your students have previously studied Discovery, which deals 
with this topic, you may prefer to omit this chapter (or you may p r e  
fer to use it for review). 

At the start of this lesson, thechildren presumably have only one 
method for finding the truth set for the open sentence 

this is the method of "trial and error" (or, as the physicist Jen-old 
Zacharias more suitably describes it, "the method of exploiting 
errors"). 

By using this method, they wilt find that: 

"1 does not work"; 

-4 + 6 = 0  False 
' '2  works"; 

-6 + 6 = 0 True 

"3 works": 

( m x [ H ) - ( 5 x f ^ l ) + 6 = 0  

9 A 5  + 6 = 0 
-6 
-6 + 6 = 0 True 

"4 does not work": 

( ~ x ~ ) - ( 5 x ~ ) + 6 = 0  

16 -- 20 + 6 = 0  
-4 
-4 + 6 = 0  False 

One could go on, to find that 5,6, 7, and 8 do not work, and so 
on. Notice, however, that this method by itself could never fully d e  
terntifie the truth set: we know that 2 and 3 belong to the truth set. 
but we do not know that these are the on& elements of the truth set. 
There are infinitely many numbers, and we can never try them all. 
Hence, there may always be other elements of the truth set that 

-we have not yet tried. 
In the present instance we resolve this difficulty by telling the 

students that there are only two elements in the truth set. (If you 
would prefer to leave this open-ended, and to avoid the "authori- 
tarian" note of "telling," you can do so.) Hence, once a child has 
found two numbers that work (i.e.. that result in true statements), 
he knows he has found the entire truth set for that muation. 
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Now-and this we would not tell the children! - if a child isalert 
and seeking to discover patterns, there are two important ones 
here, just waiting to be discovered: 

T = p, 31 

Can you find them? 

b a s e  351 

Can you find the truth set for these open sentences? 

0) n - 6 = 2  

{ I 
<2; ( 2 4 3 ) - 6 - 1  

1 1  
(31 Can you find the truth set for this open sen- 

tence? 

Can you find the truth set for each open sentence? 

(7) (0 x a) - (6 y. a) + 5 = 0 

i . 1  
(8) (0 x 0) - (16 x 0) + 55 = 0 

^ * I  
W ( L 1 ~ ~ ) - ( 9 x ~ l )  + 1 4 = 0  

1 . 1  
(101 Nora says she knows two secrets about this 

kind of equation. Do you know what she means? 
(10) This is a situation that sorely tries an author's mettle: many peo- 

ple claim that a teacher never feels comfortable lettine children 
learn by discovery unless the teacher himself has experienced 
what rt means to make mathematical discoveries. Perhaps these 
people are right; on the chance that they may be, we have de- 
cided not to put this answer in this book. 

(11) ( $ 3 , ~ )  

Can you find the truth set for each open sentence? 

( ID  ( n ~ D ) - ( l 5 X D ) + 2 6 = 0  



{16) ( D M )  ( 1 5 x m ) + 3 6 = 0  

1171 x m) - ( 1 0 2  x [I) + 200 = 0 

[page 3ft] 

(18) Do you know Nora's secrets? If you do, DON'T 
TELL! (It's a SECRET!) 

( 1 2 )  { l l ,  31 

(13) 4 , 5 }  

Note that 2 and 10 do not work: if you don't believe it, substi- 
tute into the equation; the resulting statements will be false. 

(14) {2,10) 

Here, 4 and 5 do not work 

(15) 2 0 .  1)  

(16) 1 2 , 3 }  

(17 )  100, 21 

( 18) Compare question 10. 

Remember: -2 x -3 = -6. 

(24) Ah! This is different We must first subtract 2 from each side of 
the equation, to get 

for which (as we already know) Hie truth set is 

(25) Change to 

a x  n) - (13 x 0) + 2 2 = 0 ,  

for which the truth set is 





Part Two Logic 

We now begin our study of logic. We shall proceed on the 
assumption that the study of logic is entirely new to you 
and to your students. The procedure we shall use is more 
or tess typical of how modern scientists construct abstract 
"cognitive structures," or "models," that enable them to 
think about complicated aspects of reality,* 

We shall begin by observing how actual people use the 
words and, or, if, then, not, and so on. We shad oversimplify 
this usage drastically. First, we shall focus on the apparent 
truth values that people seem to attach to the various state- 
ments. If we let each student make this first "model" by 
himself, and in his own way-which is what we do in our 
own Madison Project classes-then we shall get quite a 
variety of possible models. 

Some models will allow only two truth values, true and 
false (which we shall often abbreviate as T and F). Some 
models will allow more truth values, including, perhaps, 
some like these: "maybe," "not proven," "possible," and 
so forth. After we have made and looked at these various 
(somewhat primitive) models, we can work together as a 
class to build a common model - hoping ultimately to par- 
allel reasonably closely the actual model used most com- 
moniy by modern mathematical logicians. This model is a 
two-valued logic which we shall study in the following pages. 

Now, once the bare outline of this model begins to take 
shape, we can turn to a new kind of question: we can ask 
questions about the further development of the model itself, 
without regard to reality. (As Professor Marshall Stone has 
remarked, "Mathematics frees us from the constraints of 
reality,") 

After we have developed the model further, we can turn 
around and attempt to reapply it to observation of actual 
behavior of actual people- particularly people who are 
talking about mathematics. 

Why is the study of logic worthwhile? The models that 
we shall deal with are, indeed, oversimplified versions of 
the human use of language, so "logic" will not completely 
and fully describe human language. I t  will, however, help 
to illuminate a few matters that sometimes need illumina- 
tion. Moreover, it wilt help to focus our attention on some 
of the "little" words we use-the "if's," "or's," and "not's" 
-that sometimes slip by unheeded, like Voikswagens on a 
highway much-traveled by large trucks. Even the idea of 
truth value of a statement may help to remind us of one as- 
pect of language that we often forget. 

- 
*Cmparn the following omwing and pemptiva bit of dial&, 
h u ploy by Saul Bellow. Marmllo h o woman vifintioning in 
Miami, Ithimar is a leading atamit ttiwitist. 

Mofttlla: . . . You wouldn't know about such things. You take the 
big rim. Ovnil. International. Cmmic. Nature. 

Ithimor; W r e .  1 don't know nature. I only know certain math+ 
mafical ttrvefvrti. . . . (Soul Bellow, The Wen, Equire, January, 
19b5, p. 73). 

I t  might be well to look at a few examples. One some- 
times hears this usage: 

Keep driving like that, and you'N kilt somebody, 

Probably, by the time we are through building our abstract 
model we will interpret the statement above to mean about 
the same thing as 

If you keep driving like that. then you'll kill somebody. 

indeed, our truth-value analysis will probably show these 
two statements to be exactly the same. 

Yet, we can go beyond a truth-value analysis, and can 
consider other aspects of these sentences. We can, for 
example, count the number of words in each. In this case, 
the two statements do not look the same-one contains 
more words than the other. More importantly, we can try 
to judge the tone of each sentence. Opinions will inevitably 
vary, but in my own opinion the first statement probably 
sounds somewhat more forceful, to most hearers, than the 
second. The moment we use the word if, we invite our lis- 
teners to sit back and disassociate themselves from our 
wordsÃ‘UAh he said if., ." 

As another example, consider the public-service notice 
that was used over radiostations prior to the 1964 elections: 

Vote, and the choice is yours. 
Don't vote, and the choice is theirs. 
if you fail to register, you have no choice. 

Again, a truth-value analysis might regard the statement 

Vote, and the choice is yours 

and the statement 

I f  you vote, the choice is yours 

as identical. However, in my own opinion, the tone of the 
first is much stronger than the tone of the second. One 
might say that the nuances of meaning are different. This 
example, then, suggests that the usual uses of logic do not 
fully reflect the entire meaning of our statements. 

The actual use of human language is complex, indeed. 
Even a vastly simplified description, which is what we here 
seek to construct, can be of some value- much as a hastily 
drawn map can sometimes be. The "logic" we are develop- 
ing is really, then, a rough description of one aspect of how 
people use language. 

Why is this worth studying? My own answer is based on 
observing secretaries, delivery men, and all kinds of people, 
in a wide variety of situations. Observation makes it clear 
that people use language carelessly, and especially where 
words like or or not are concerned. If you conduct your own 
observations, I think you can find plenty of examples. 



Here are a few instances where the usual use of such 
words is careless, or where such carelessness has led to 
trouble: 

0) A letter said: "If you have a contract with Mr. W..- - , 
we would like to examine a copy." This letter was construed 
to mean that the recipient should have a contract with 
Mr. W-. Perhaps it did mean this, but it didn't say so. 

(iii Professor Layman Allan, of the Yale Law School, 
has pointed out that logical ambiguities abound in sup- 
posedly careful legal documents. It is not hard to find 
some in documents released by state governments, in con- 
tracts of various sorts, and so on. 

(iii) A world-famous mathematician went to take a driving 
examination. He had memorized statements from a booklet, 
including the statement 

It is illegai to park within 
15 feet of a fife hydrant 

As part of the test, he was given some "true-false" ques- 
tions, including this one: 

it is illegal to park within True 
9 feet of a fire hydrant, False 

The mathematician checked "true," on the grounds that 
if the first statement was true, the second surely was. The 
examiner, however, claimed that the correct choice was 
"false," since "it should be fifteen feet, not nine feet." 

(iv) If you whisper a statement such as 

The moon is high, or John is not ready 

to a student, ask him to whisper it to another student, and 

ask the second student to repeat the statement aloud, you 
will find errors often creep in. A particularly common error 
is to change the "or" to an "and," and to end up with the 
statement 

The moon is high, and John is not ready. 

This; however, involves a major alteration in  the logical 
meaning of the statement. 

(v) in the "game of clues," which we shall encounter 
in Chapter 16, the following situation sometimes arises. 
The children are told the "clue," 

AH of the numbers are odd. 

They subsequently learn that this clue was false. Conse- 
quently, they change it to read 

Al l  of the numbers are even, 

This, however, is not a correct "negation" or "denial" of 
the original clue. What they should write is 

At least one of the numbers is even, 

I t  seems reasonable to hope that a brief study of logic 
may help to improve the use of these much-neglected (but 
important) "little" words, such as if, not, and, or, and so on.* 

*Scum riultt of Pnrfttw BnJnet's Center for Cognltiv S t u r f f t  
at Harvard give rooton for optimism. Merefv cnmidarimg attarno- 
fives con impnve one'a riponse to a mituotian-the molt limiting 
"mental Ãˆet apparently often resuftf from newer having twiudwad 
alternativits in the tint place. SeÃ Appendix A: Weil (143). 
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LOGIC (BY OBSERVING 
HOW PEOPLE USE WORDS) 

Notice carefully the approach to logic which is used in this chap- 
ter. We begin by looking at people-specifically, the people around 
us-and observing how they use the words and, or, not, if.. . then, 
etc. We are not concerned with how they claim they use these 
words, but rather with how they actually do use these words. In 
this sense, one might say that this chapter is concerned with sac;- 
dogy or with cultural anthropology: we are occupied with the task 
of "observing the natives." 

If we observe the natives honestly and carefully, we shalt find 
that: 

(i) They use the words and, or, etc., in a variety of different ways; 
they are not always consistent. (Indeed, it might not be too ex- 
treme to say that they are downright "sloppy" and inexact.] 

(ii) In most cases, we take our meanings more from the context 
than from the explicit statement. 

(iii) Any attempt to develop a simple description of the use of 
language must, in fact, be an oversimplification of the actual corn- 
plicated reality. 

In the next few chapters, our program for the development of 
logic will go through three stages. First, we shall study how people 
actually use the words and, or, m e ,  feise, if. . .then, etc. We shall 
represent this usage by an oversimplified model, using a two-valued 
logic. Second, we shall give greater precision to our use of these 
words, by making some agreements on how we shad use these 
words henceforth in this course. Finally, we shall take a "mathe- 
mattcian's eye view" of what is going on. We snail make every- 
thing abstract, remove virtually ail vestiges of context, and ash how 
we can study and extend the abstract mathematical system w'rth 
which we seem to be dealing. 

In what respects is our description in this chapter oversimpli- 
fied? Perhaps primarily in these two regards: 

Linguistic Simplification. The placement of not within an English 
statement is a subtle and tricky matter. Consider, for example, the 
statement 

. . . where the skies are not cloudy all day 

- Does this mean that, all day long, there is never a cloud in the 
skies? Does it mean that the skies aren't cloudy ail day: there is a 
brief period around 2 o'clock in the afternoon when a bit of blue 
sky and sun. breaks through? Does it mean that, generally speaking. 
the skies are less cloudy than they are back East? What, in fact, 
does it mean? 
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how people use words) 
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(1) Earle wrote 

1 

Table for 
Truth Set 

What do you think 7 

Within our representation of statements, we shall take a simple 
statement 

P 
and denote its negation by 

- P, 
which we can read as "not P." We clearly oversimplify English a 
great deal when we treat negation in such a simple fashion. 

Truth-Vaiue Simplification. Mos t  statements in ordinary conver- 
sation are really not "absolutely true," nor are they "absolutely 
false." They usually contain "some truth," but also admit some 
room for disagreement. Consider, for example, the statement "red 
is a pretty color," or the statement "the United States is a rela- 
tively young nation," By the same token, the negation of most 
statements is not "absolutely true," nor "absolutely false," There 
are, in ordinary conversation, many shades of "truth"' and "falsity." 
Yet, in order to get a simple model, we shall regard all of our state- 
ments as either true or false. This is known as imposing upon our 
statements a "two-valued logic": the only allowable values will be 
"true" and "false." Clearly this is an oversimplification of the 
actual reality. 

For further reading, see Appendix A: Allendoerfer (761, Davis 
(271, Exner (40). Kemeny (821, Ohmer (971, Mendelson (931, and 
Eves (86). 

Notice that we use subscripts to indicate which replacement set 
is to correspond to which variable, 

(1 1 K we consider only Earle's replacement sets and DO not ask cur- 
selves which statements are true and which are false, we see 
that the statements 

mean exactly the same thing as 



r 
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So far we have used only the ideas of variables and replore- 
mmt sera. However, we are interested in the truth set. 

Of the 12 preceding statements the following are true: 

7 + 1 = 8  
5 + 3 = 8  
3 + 5 = 8 

The remaining 9 statements are false. Consequently, the truth 
sei is given by the following table: 

Earla's table for the tnrtti set i s  wrong. It contains two listings 
which should not be there. The replacement 

The replacement 

is incorrect, even though 1 + 7 = 8, because 1 is not an 
element of the replacement set of Q. 

(2) Joan wrote (2) In the first ptace, thinking only of Joan's repfarement sets and 

P i a x ,  not asking ourselves, just yet, which statements are "true" and 
which are "false," we see that the statements 

Rp = {Wew Orleans is a city", "New Hamp- 
shire is a city", "New Jersey is aatate"}; P is x; 

Kp = { " ~ e w  Orleans is a city", "New Hampshire is a city", 
& = j true, fahe] . "Hew Jersey is a state"}; 

K;, = {true, false 1 
Can you make a table to show the truth set for Joan's 
open sentence? mean exactly the same thing as: 

"New Orleans is a city" is true. 
"New Orleans is a city" is false. 
"New Hampshire is a city" is  true. 
"Mew Hampshire is  a city" is false. 
"New Jersey is a state" i s  true. 
'Mew Jersey is a state" is false. 

Thvsfar, we have used only the ideas of variable anfl replace- 
ment ~ 9 %  But we are asked to think about the truth &-f.e_ 
we are asked which of these uses of UV led to true statements. 
Evidently, of ttie six statements above, the first, fourth, and fifth 
are true: 

'NÃ§ Orleans is a city* is true. 
"New Hampshire is a city" is false. 
"New Jersey is a state" is true. 
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(3) Larry made this table for the truth set of Joan's 
open sentence. 

New Orleans is a city. true 

New Hampshire is a city. 

New Hampshire is a city. 1 true 

New Jersey i s  a state. I false 

Do you agree? 
[pane 381 

(4) John said he was going to keep track of his 
friends' statements He was not going to see how many 
words they used, he was not going to worry whether 
their words were elegant, and he was not going to care 
about what they said. The only thing he was going to 
study was whether their statements were true or false. 
John made this table: 

On the other hand, we have three false statements: 

"New Orleans is a city" is false. 
"Hew Hampshire is a city" is  true. 
"New Jersey is a state" is false. 

Consequently, the truth set is given by the following table: 

"New Orleans is a city" 

"New Jersey is a state" True 

We could also write this truth set as 

T = { ( ' ' ~ e w  Orleans is a city", true), ("New Hampshire is a city", 
false), ("New Jersey is a state", true)}. 

Notice that T is a set of ordered pairs, and that, in fact, T is a sub- 
set of the Cartesian product 

which we could write as 

This example is a tricky one. I f  our students are to like mathe- 
matics, the "light touch" is important Do not dwell on this prob- 
lem. In fact, if you prefer, leave it out altogether! 

Indeed, you may prefer to make up an easier exampleof your own 
to put in its place. But, whatever you do, piease don't try to "drive 
this example home." You can only alienate children by such an 
approach. 

(3) Law's table is wrong- A correct table is shown above, in the 
answer to question 2. 

(4) Four. The statement in the may be either true or false, and ttft 
statement in the may be either true or false. Hence, there are 
these four possibilities: 

He said, "I'm going to study what my friends mean 
when they use the word 'and.' I don't know what state- 
ment they may put in the , but it will be either true 
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or false. I don't know what statement they may put in 
the A, but it will be either true or false " 

How many possibilities must John allow for in his 
table? 

(5) Eileen said that people might put a true state- (5) Eileen has One of the four possibilities. 
ment in the [-I and a true statement in the A, so she 
wrote: 

What do you think? 

(6) Jill said that people (night put a true statement (6) Jill is correct. 
in the a and a false statement in the A ,  so she added 
another line to John's table: 

T I F l  
What do you think? 

(71 Can you add any mare possibilities to John's (7) Compare the answer to question 4. 
table? 

(8) John asked one of this friends to make up a sen- (8) With J  ̂and RA as given in the question, 
tern, 

and A, 0 A 
with represents these statements: 

& = {"I  am ten years old", "I am fifteen years 
oldw, "I am seven feet tall "1 ! am ten years old and my name is  George. 

I am ten years old and my name is Atbet  
RL = {"my name is George", "my name is I am fifteen years old and my name is George. 

Albert "1  , l am fifteen years old and my name is Albert 
How many sentences could his friend have written? am seven feet tall and my name is George. 
Can you write them all? I am seven feet tall and my name is Albert 

There are six statements, as there should be, since we are deal- 
ing with the Cartesian product Ry x &, where there are three 
elements in & and two elements in (tA. 

(91 Henry, who is twelve years old. wrote: (9)  fw him the statement was false. 
I am ten years old and my name is Albert. 

Was Henry's statement true or false? 
[page 391 

(10) Nancy says that if you put a true statement in (10) Nancy is evidently using the word and in its most common . - 
the Q and a true statement in the A, then the state- sense. She is  certainty correct, according to the way most 
ment people most often use the word and. 

1 and A r- 
will be true; so she wrote: 

What do you think ? 
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(11) Can you complete John's table? (1 1) There are many possible ways to complete John's table, be- 
cause there are many different uses of the word and. Probably 
the most common would be: 

If, for example, someone promised us "$5 and a year's sub- 
scription to the SL Louis PO&-Dispotch1l we would feet he had 
kept his promise only if we received both the $5 and the sub- 
scription to the Pw^Dispareh. 

Other uses of the word and via, however, exist An ingenious 
teacher suggested the following: 

"You keep driving like that and you'll kill somebody." 

Now, when would we consider this statement true? H we do 
keep driving tike that, and we do hill somebody, we'd prob- 
ably ruefully admit the prediction was correct, so we have 

where we have used "and," to emphasize that this is a second 
meaning for and, quite different from the earlier usage. 

Suppose we do keep driving tike that, and we don't kill any- 
body. Then we might argue that our critic was wrong; hence WB 
might write: 

Suppose we slop driving "like that," and we kill somebody 
anyhow. My guess is that most people would then argue that the 
advice had been wrong: 

Finally, suppose we stop driving "tike that" and we do not 
kill anybody. We might then feel that the advice had come "just 
in time," and might represent the abstract analysis of this case 
as: 

There are. in fact still other uses of the word and that you 
can locate if you seek them diligefrtfy. Can you identify an 
"and,"? 



(12) Can you make a table of the way your friends (12) There are two uses of or that are about equally common. When 
use the word "or"? someone says 

"I'd love to get an A in math or English," 

I think he means he wouid lave an A in math, he would love an 
A in English, and he would love an A in both subjects. The truth 
table for this use of or-which we shall call "or,"-goes tike 
this: 

There is a second use of or, which we shall call "or,!' 
When a restaurant menu says 

one vegetable or salad, 

think it means that you may have are vegetable or you may 
have salad but you don't get hot)). The truth table for "or," would 
then be: 

Can you find any other uses ef ttie word or? 

(13) Sandy made this table to show how her friends (13) Sandy's table is correct; this use of or is often called the in- 
use "or": elusive or. ft is this use of or which is always used in mathe- 

matics, 

T 

F 

What do you think? 

(14) Ann disagreed with Sandy. Ann says herfriends (14) Ann's table is also correct: this use of or is often called the 
use "or" this way: exclusive or. Apparently this use o1 or is  implicit among law- 

yers, or else they would have no need for the symbol and/or - which is common in legat usage. 

T 

F F 

What do you think? 



s-n wvr N.K w\ LOCK: (BY OBSERVING HOW PEOPLE USE WORDS) 125 

(151 Alex says sometimes his friends use "or" the 
way Sandy says and sometimes the way Ann says. 
What do you think ? 

(16) Alex gave this example. " I'll either go canoeing 
all day Saturday or I'l l  go to the baseball game." Which 
way is "or" used in this sentence, Ann's way or Sandy's 
way? 

<l7)  Kevin gave this example: " I sure hope I get an 
A in English or math." Which way is "or" used in this 
sentence? 

(18) A waitress said, "You may have potato or spa- 
ghetti," Which kind of "or" did she mean7 

(191 Do you know what mathematicians mean by the 
"inclusive or"? 

[pan*? 403 
(20) Do you know what mathematicians mean by the 

'exclusive or" ? 

(21) Kathy made a table for her symbol " -," which 
means "not ": 

Do you agree? 

(22) Can you make a table for "- Q ?  

(23) john uses u and A for the variables in his 
tables. Sandy uses P and 0 for the variables in her 
table. In order not to get mixed up, John and Sandy 
have made a table labeled with both P and Q and 
and A : 

" Incti~^ive or" " Kucluaive or" 

(1 5) Alex is, of course, correct 

(1  6) This is presumably Hie exclusive or he., Ann's version), since 
Alex presumably means he wit! not do both. 

(17) This is presumably the inclusive or (i.e., Sandy's version). 

(18) Presumably (lie exclusive or (i.e., you don't get both potato 
and spaghetti). 

(19) and (20) Compare the preceding questions. 

(2 1) Kathy is correct 

(23) "Inclusive "Exclusive 
, . , or" , or" , 

Can you fill in the rest of their table? 



(241 What do your friends mean by 'if.  . . then. . ."? 
Can you show this by a truth table? 

(Mathematicians wnte "If P, then 0" this way: 

(24) There is considerable variation among uses of i f .  . . then. Can- 
sequentfy you should expect a number of different analyses 
from your students. Here are some common ones: 

i f Q , i h e n A .  

if P , then Q . P 
P I Q 1 If P, then, & 

A 
Q 

We might, for example, be thinking of the statement "If I 
wash my car, then it will rain." tn the fourth case, FF, we 
might feet that we had never properly put the matter to a test 
Notice, however, that if we accept a table such as this, we have 
abandoned our two-valued logic, and are now allowing three 
symbols: T ,  F, and ?, 

The following table is a version of our first table, modified to 
reject the "?" in order to retain a two-valued logic. 

Evidently, we might instead have chosen to modify table 1 as 
toIlows: 

You might say that when we never did wash our car, and so never 
diet test out the proposition, table 2 gives it "the benefit of the 
doubt," whereas table 3 rejects it as "not proved." 

Mathematicians always use if , .then according to the fotiowtng 
table: 

This meaning appears also in legal contexts; if my insurance 
policy says 

' I f  I die, the insurance company wiif pay my estate $30,000," 
then if 1 do die and they do pay, they have not violated the contract; 
if I don't die and they do pay, they have not violated our contract 



(25) Sandy's father mys that mathematicians write 

P - Q  
to mean 

P has the same truth value as Q. 

Sandy made a truth table for 
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Can you figure out how she did it? 

(although company stockholders may feel that the management 
has been overgenerous}; if i do die and they don't pay, they have 
violated the contract (my trustees go to court!), and if t don't die 
and they don't pay, they have not violated the contract. 

Notice that, in this chapter, we don't want the students trying 
to get the "right" answer. We want them to seek an honest analysis 
of how their friends use these various words. Consequently, they 
may come up with answers quite different from those suggested 
here. 
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CHAPTER 12 

Logic (by making agreements) 

[paw 4 1 I 

(1) Bill says it is very confusing to find people using 
the aarne word for different meaninp. He says we 
should agree, in this flags, that whenever we say 
"and" we will use it according to this table: 

LOGIC (BY MAKING AGREEMENTS) 

In the preceding chapter we outlined our approach to logic, 
which might be described as a three-step approach: 

Step 1: Cultural anthropology 
Step 2: Legislation 
Step 3: Mathematical exploration 

Chapter 11 was concerned with step 1, the cultural anthropology 
or linguistics approach; we tried to see how people actually do 
seem to use the words and, or, etc; and what they seem to mean. 
At this stage the goal is honest, shrewd observation. We want to 
observe actual usage of these words bv actual people, We do not 
want -heaven forbid! -to color our observations with our expec- 
tations of how people "ought to use these words and what they 
ought to mean." As a result, there is no "right" answer in Chap- 
ter 11 that can be predicted in advance. The goat is for each child 
to be true to  his own experience. We have started, already in Chap- 
ter 11, to make a very simple model for this linguistic behavior, 
in terms of two-valued logic and truth tables. 

Now, in the present chapter, we begin step 2: legislation by 
making agreements. We shati take the diverse and chaotic usages 
of Chapter 11 and impose order and clarity by legislative edict. 
We shall agree that, henceforth in this course, we shall use the 
various words in strict accordance with a single meaning, as re- 
vealed in a single column of the truth table. By this method we 
shall achieve the incredible resuit-as Professor Patrick Suppes 
points out -of using an imprecise language to create a more pre- 
cise language! 

(1 1 This is a good idea. ft initiates step 2 of our three-step approach 
to logic, 

What do you think? 
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(2) Paul's father says that mathematicians always 
uae "or" to mean the "inclusive or." Let's complete 
the following truth table for "or." And let's a m  that, 
in this class, we will always use "or" according to our 
table. 

(3) Let's make up a truth table for "if.. then . . ." 
Let's agree that, in this class, we will always use 
"if,. . then . . ." accordiw to the table we make up. 

(4) Let's make up truth teblea for "-," and for 
"- ," and let's agree that, from now on in this clans, 
we will use "-" and "@" according to our tables. 
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(2) It  is  important in this shaoftr to made sure that our agrmnents 
are consistent w'rtti those commnnty made by mathematicians 
and logicians. Here is  the truth table: 

(3) Here is the table which mathematicians use: 

This table may seem "peculiar" - perhaps even wrong- to you 
and to your students. This is presumably due to the fact that i f . .  . 
then is used in many different ways in ordinary usage, and in yet 
one more way by mathematicians. Notice e~~eCia! !y  that none of 
the usuai notions of "cause" and "effect" are included in the 
mat hematical usage. 

This is deliberate; as long as causality is involved, there can 
never be certainty as to whether a statement is true or false. (For 
example, does some hind of virus cause cancer? Does motion 
through the ether cause a shortening of measuring rods, as people 
believed before Einstein? Would driving 30 miles per hour cause 
you to drop dead, as many people predicted when trains and auto- 
mobiles were first introduced?) We need a more abstract theory, 
one that is not too close to reality. We do not know reality, but we 
can make up abstract systems ourselves, and we can be reasonably 
sure about them. 

The symbols for "If P, then Q" are either 

(4) Here is Ae truth table, as used by mathematicians and logicians: 
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CHAPTER 13 

Some Complicated Formulas 
in Logic 

[paw 421 

(1) Larry says he can fill in the column for 

- (Pand 0).  
Can you? 

(2) Joan says there is really nothing new in this; 
you just use things you already know, such as "- " 
and "and." What do you think? 

(3) Can you fill in a column for 

- ( P o r Q ) ?  

Because this chapter is possibly somewhat more difficult than 
any thusfar, we recommend that, when in doubt, you omit it. 

If you do include this chapter, please try to go through it "lightly." 
This is 3 real test of the "light touch." A heavy-handed, "system- 
atic," pedantic treatment of this chapter wift almost certainly not 
work with younger children. A light, "intuitive" approach, however, 
win work. 

Mathematically, there are two points to this chapter; 
(i) We can use our existing knowledge to till in many additional 

columns in our truth table-columns with headings such as: 

(ii) When we doso, somecolumns will be thesame. We shall not 
say very much about this, leaving rt instead for student discovery. 

Before teaching this lesson, you may want to view the Madison 
Project film entitled "Extending Truth Tables." 

(1) Actually, this is now fully determined by what has gone before. 
Here i s  the resulk 

P and Q - (P and 01 

F F F T 

(2) Joan is correct 



(4) Can you fill in a column for 

- ( -  P)? 

(5) Can you fill in a column for 

(P => O)? 

(6) Can you fill in a column for 

- (P <^> Q)? 

(7) Can you fill in a column for 

( -  PI and ( -  Q ) ?  
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At this point some students may already have made the impor- 
tant discovery that the columns for P and for - ( - PI are exactly 
the same. If any students do discover this. you may want to en- 
courage them to try writing their discovery. They can do this as 
follows: 

P <  ̂[- (- PI ] .  

(Remember that "#I1 means "has the same truth value as.") 

(7 )  We shall do this in several stages. First, 

is  true only if we put a true statement into the Q and a true 
statement into the A. When will we do this? Evidently, if - P 
is  true and if  -- 0 is  true 

Now, in all other cases, 'Q and A," will be false: 

(-PI and (- Q) P 

T 
T 

Q 

T 
F 

- P 

f 
F 

- 0 

F 
T 
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(8) Can you fill in a column for (8) This, too, we shall do in stages. First, 

(- PI or ( - Qi ? 

Can you fill in columns with the following headings? D N A  
becomes falsa if we put a false statement into and a false 
statement into A. When will this happen? If - P is  fafse, and if 
- Q is false: 

In all other cases, "( - PI or ( -  0)" will be true: 

(9) Again, we work in stages: "( - PI or Q" will be falsa if both 
1 - PI and 0 are both false: 

Otherwise, "( - P )  or 0" will be true; 

Here, also, a student may discover that the column for 

. isexactly thesameasthecolumn for 

If anyone can write this, we usually name it after thestudent who 
first writes it correctly; for example, 

Toby's formula: [{ -PI or Q] <=> [ P  -> Q] 
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(12) P and (-  Q) 
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(10) Here, also, we shall work in stages. In the first place, "P or 
( - 0)" is fake if P is false and if ( - 0) is false: 

In all other cases, "p or ( -  0)" will be true: 

(1 1) H you "promise and dm? deliver" P is  false: 

In all other cases, it is true: 

Suppose Jackie discovers the following formula and writes it 
correctly; then we have 

Jackie's Formula: [Q => P ]  <Â¥ [P or ( -  Q)]. 

(12) Again, we worh by stages. "P and ( - 0)" is true if P is true amt 
( - 0) is  true: 
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Otherwise, "P and ( -  Q)" is false: 

(13) We ~ e d  only f i l l  in columns far ( - P) and lor Q, and then see 
where they do have the same truth values [( - P )  <^> Q wilt be 
t ] and where they itenat [( - $1 # 0 will be faisej: 

(141 This tsan myone.  Just use the column for ( P )  <  ̂0: 

(15) Another easy one; just use the column for - [( - P) <^> Q) 

Notice that we are accumulating more and more opportunities 
for discoveries. Here are a few: 

Jill's formula: { - f ( -  PI # Q]} 
\P # Q] 

John's formula: \ -  ( - I:(- P)  ̂ -> Q\}] # [ ( -  P)  4=> Q] 

Bernice's formula: 1 - [ ( - P)  or Q] } <=?> [ P  and ( - Q)] 
Evelyn's formula: [ ( - P I  o r Q 1  # [^ [Pand ( - Q i ] l  
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(1  6) This, too, is fairly easy. We use the columns for ( -  P) <^> Q 
and for P => Q, and use the fact that 'Q or will be fat= 
only if we put a false statement into the nand  a false statement 
into the A: 

However, ( -  PI <-̂ > 0 and P 3 0 are never simulta- 
neously false! Consequently, "[(- PI # Q] or [R =^> QJ" 
is never false, it must always tie true: 

(17) Again, we work by stages. First, we shall need the columns fur 
P 3 Q and for Q 3 P. Then, we shall recall that 'n or 
A" is fake only if we put a false statement into the Q and a 
false statement into the A: 

Again, we see that P + Q and Q ==> P are M V b r  sirnub 
neously false; hence "[P + Q 1 or [Q Ã‘ P]"  must never 
be false! 11, also, is always me: 

(18) We merely use the preceding column, ami here we have an ex- 
pression which is always false: 
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(19) P @ ( - Q )  

(21) P and ( -  P) 

We have the possibility of another discovery: 

Miriam's formula: [(- P)  U Q] U [ P  <=>-(-Q)] 

Actually, of course, Q plays no role in this problem, and we 
could use a shorter tnrtti table: 

Using thÃ shorter table: 
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(34) Michael says he has made an interesting 

discovery. Have you? 

(251 Mark aays that the column for 

- ( P  and Q) 

is exactly the same as the column for 

( -P)or ( -  Q l .  

What do you think? 

W) Eileen listened to what Mark said, and wrote 

[- ( P ~ ~ ~ Q I J  @ [ ( - /* )or( -Q) l .  
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Using the shorter table: 

(24) We are referring, of course, to the realization that some columns 
in  the truth table are identicaf with others. 

(25) Mark is correct 

Incidentally, if your chitdren already know the distributive law, 

(which is sometimes also called "the law for distributing multipti- 
cation over addition"), they may notice that 

- ( P  and Ql # (- PI or i- Q) 

is a kind of law for distributing - over and. The rule is: prefix a - 
to each statement, and change and to or, 

(26) Eileen is correct 

As we have seen, there are many more formulas of this type. 

The class named this "Eileen's formula." Can you 

make up any other formulas the way Mark and Eileen 
made up this one? 
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In order to understand the point of this chapter, it is worthwhile 
looking at how arithmetic develops as a branch of mathematics. 
The origins of arithmetic lie, presumably, in genera! "life experi- 
ences" with counting sheep or children or wives or enemies or 
whatever. After a time, however, abstractions are created -such 
as the number 1, the number 2, the number 3, and so on -which 
are able to stand by themselves as abstract concepts. We do not 
need to refer back to the experience from which these concepts 
were drawn. When we say, abstractly, that 

we do not need to ask "five what?" It does not matter whether we 
are adding avocados or artichokes or kumquats or none of these. 
In this sense we have eliminated the "meaning" from arithmetic. 

When (as in Discovery) we develop an axiomatic approach to 
arithmetic and algebra, we go even further in "eliminating mean- 
ing." The phrase "eliminating meaning" is used (unfortunately) 
quite differently in mathematics and in education. In education, 
meaning is  used to refer to intuition and heuristic. Naturally, we do 
not wish to eliminate these. In mathematics the word meaning is 
used to refer to something else-namely formal dependence upon 
the past experiences from which abstract concepts have been 
drawn. We do not wish to be confined to such dependence. Would 
numbers be equalty useful if we had one set of numbers for arti- 
chokes, another set of numbers for use in dealing with avocados, 
and yet a third set of numbers to be used in counting apples, and 
so on? Quite evidently not; such "meaningful" numbers would 
have too much meaning; they would be too highly specific; they 
would lack generality. The abstract number 2 gains part of its 
value from its very broad generality; it can refer to two of anything 
whatsoever-, without restriction. 

We now wish to take our truth tables, which were born of our 
study of how our friends used the English language, and get for 
these ideas an "abstract" existence that will free them from the 
need to refer to specific English verbal behavior. We can do this 
by using three ideas: sets, Cartesian products, and mappings. 

We shalt do this as follows. First, we shall forget about the 
"meanings" of "true" and "false," and shall consider, instead, 
a set V which contains two abstract elements, T and F: 

Now, we can construct the Cartesian product (see Chapter 2 )  of 
V with itself: 
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Logic (by thinking like 
a mathematician) 

[page 441 

( 1 )  Randy made up a truth table for "and," like 

this: 
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Did he use "and" the way we have agreed to? 

(2) Lex's father says that the relationships in 
Randy's table can be shown by using what mathernati- 
ciam call a mapping: 

Actually, we shall find it more convenient to display the set V x V 
as a vertical column: 

v x v  

T T 
T F 
F T 
F F 

Finally, we shall consider mappings of V x V into V such as, for 
example, this one: 

Let's now see how this wilt work out. 

ANSWERS AND COMMENTS 

( 1) Yes, he #id. 

(2) YBS, Lex's father is correct 
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He says that TT means that P is true andQ is true, and 
that mathematicians call T the image of TT. Do you 

agree' 

(3) Debbie says that, if V = {T, F} , then 

TT, TF, FT, FF} 

is just the Cartesian product 

V x V. 

She says Randy has a mapping of V x V into V. 

V x V Ã ‘ ^  

What do you think? 

(4) How many different ways can you map 

V x V Ã ‘ > V  

(3) Debbie is right 

(4) There are 1 B possible mappings. 

The children may not be able to figure this out at first; in ques- 
tions 5 through 1 1 we shall develop a systematic method (using 
trees) to count the possible mappings of V x V into V. 

(5 )  When they want to count something, mathe- (51 Geoff has made a good beginning. Your students may be able 
maticiana sometimes make a special kind of a drawing to finish Scoffs "tree" immediately; if not, we shall work it out, 
which is  known as a tree or a tree diamam. Geoffrey step by step, in questions 6 through 8. 
tried to count the mappings of V x V into V by drawing 
a tree diagram. 

Geoff says you can map the 

either into T or into F. Tb show these two choices, he 
started his tree diagram like this: 

b a s e  451 
Image ot TT 

Start 4 
F 

Can you finish GeofTs tree? 

(6) After you've mapped m. Allen says you can (6) Allan is continuing correctly. 
map TF either into T or into F: 

Do you know what Allen means? Can you finish 
this tree? 
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(7) Nancy says that after you've mapped TT and 
TF, you can map FT either into T or into F: 

(7) Nancy is cofltinuing the tree correctly. 

F 

What do you think? 
[pace 461 

(8) Amy finished the tree like this: (8) Amy's tree i s  correct (and Hie tree is now finished). 
For the mapping of ond, we trace (tie followTng path. 

(1) 2 Map a T T  T F into i< T. 

(3) Map F T into F. F 
(4) Map F F into F. 

T 
I 
I ' F  

Can you trace a path through Amy's tree that will 
correspond to the mapping of "and"? 

This column records the 
possible images of TT. 

This column records the possible images of TF. after 
a decision has been made for the image of TT. 

This cotumn records the possible images of FT, after 
decisions have been made for the images of TT and TF. 

This column records the possible images of FF. after 
decisions hare been made for the images of TT, TF, 
and FT. 
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Notice that one can thinkof thisas if we had a rat running through 
a psychologist's laboratory maze. In the present example, at the 
"first decision point" the rat chose the left branch of the maze. 
At the next decision point, the rat chose the right branch; at the 
third decision point, he again chose the right branch; finally, at 
the fourth and last decision point, the rat again chose the right 
branch. This particular route through the maze corresponds to the 
mapping 

whtch, in turn, corresponds to the English linguistic behavior that 
we have represented (using variables P and OS as " P  and 0." 

(9) Bill represented the mapping of "or" (meaning (9) Bill's diagram is wrong. The correct Diagram for "P or Q" looks 
the "inclusive or") with an arrow diagram: like this: 

Do you agree? 

We could also represent "P or 0" as a "trip through the maze" 

This column records the 
possibk imagesnt TT. - 

has been madt for the image Ã  ̂TT. 
This column records the possible 

. 1 7  

This column records the oossible i m w s  d FT,ader ifecismns hare 'f'[ ' 
been made tor the image! et TT and TF. 
This colum records the possible imfles of FF, alter dtcisons have 
been made for t h f i  ima@s of TT, TF, acd FT. 
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(10) Can you make a diagram of a mapping of 

Y x V + V  

to correspond to each of the following mappings? 

(a) or 

(b) If P, then Q. 

(cj P @ Q 

(dl - P 

(e) - 0 

(0 ( - P) or ( -  Q) 

fg) ( -  /*)and(/Â¥ 
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(10) (a) See answer to question 9. 

h I-- 
If P, then 0. 

We can introduce some commonty used symbols, as follows; 

Symbol Meaning 
P v 0  P or 0 ("inclusive or") 
P A Q P and Q 
P = > Q  H P, then 0. - P Not P 
P <"> Q P has the same truth value as Q. 

Consequentty, the diagram above might be labeled P =Â± Q. 



(11) HOW many possible mappings of (1 I! and (121 We shati answer tfiese two questions silmiltaneousfy, 
v x v Ã ‘ *  and by (wo different methods. 

First, using diagrams to show mappings o f Y  x V 4 V, Mere 
are there? Can you show each of them by an arrow are two possible diagrams where ail four elements of V x V 
diagram? map into the same element of V: 

(12) Can you find names for each mapping of 

V - f . V - + V ?  

F T 

F F 

We migM call these "4 - 0" diagrams. There are also "3 - 1" 
diagrams, and "2 - 2" diagrams. How many of each? Evidently. 
there are eight possible "3 - 1" diagrams; once we choose the 
"I" mapping, the other three are determined; for each of the 
four elements of v x v. there are two possible images in V: 

Filially, how many "2 - 2" mappings are there? For TT, we 
have two choices in selecting an image (i.e., either T or F); for 
each of these choices, we have two choices for TF. Now. if T T  
and TF have been mapped into the same image, there are no 
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further "free" choices: both FT and FF must map into the other 
image in order to yield a "2 - 2" mapping. Of this type, we then 
have two mappings: 

If, however, TT and TF have been mapped into different images, 
then we have a "free" choice for FT, but FF is thereafter deter- 
mined: 

Now, can we find "names" for each of these mappings, using 
a vocabulary of the following symbols: P, Q, - , V, A, _>, #, 
and parentheses? The answer is that we can. We present below 
the 16 possible pictures, each with an appropriate name. Mony 
other names ore possible for each  diagram. 
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There is a second abstract approach; instead of  sing dia- 
grams to show mappings of V x v into V, we can use a "tree" 
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Start 

picture, to show I D  flue diagram all 18 possible mappings. Here 
is such a diagram, labeled with appropriate names: 

There is much more that can be done with this kind of question 
and with this kind of concept For example, we can seek other 
names for each of these mappings. The mapping 

can be named ( - PI A ( - Q); however, this same mapping can 
evidently be named - (P v Q). 

Our students usually discover this for themselves; this dis- 
covery leads us to write 

[( - P )  A ( - Q)] ̂  r - ( p  QU 
Some of our students, familiar with the distributive law of arith- 
metic (see Discovery, Chapters 29 and 321, 

nx(A+V)=(DxA)+(mxV). 
have called the statement 

( P  V Q) ( - P )  A (-Q) 
"a kind of distributive law," or a "law for the distribution of - over 
v." This is a rather insightful description. 



There is another aspect which our 
succeeded in naming every one of thi 
To do this, we have used a "vocabi 
v, A ,  3, <^>, together with paren 
were not unique. This raises several f 
Could we use a smaller vocabulary, 
16 mappings? What is the minimal 
How large is  this minimal vocabulav 
cabulaq, will the names then be un 

There is still another direction for 
used a two-valued logic-that is to 
V contains two elements. How would 
three or more elements' 

As observed on the pages of a bo 
can look remote and formidable. W 
teacher who will explore these idea' 
much that is  intriguing, fun, and ac 
luck in your exploring! 

students often enjoy. We have 
e 16 rnappingsof V x V Ã‘ V. 
flary" consisting of P, 0, - , 
theses. The resulting names 
urther questions immediately: 
and still be able to name all 
vocabulary that will suffice? 
y' If we use the minimal vo- 
que? 
further exploration. We have 
say. our "truth-value space" 
all of this work if Vcontained 

~ k ,  this kind of mathematics 
fithin our own experience, a 
5 with his students can find 
tually quite accessible. Good 
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CHAPTER 15 

Inference Schemes 

[page 471 
In several preceding chapters, we have looked at 

logic from the point of view of the logical mimectivea 
that commonly occur within sentences: connectives 
such as "and," "or,""not," "if.. . , then.. . ," and so on. 

We now wiah to Iook at the logical relations that 
often exist between sentences. Here are some examples: 

(1) If Mr. Wilson is the guilty person, then he cer- 
tainly had to be in New York City on July 10, 1967. 
However, Mr. Wilson was not in New York City on 
July 10, 1967. Therefore, Mr. Wilson cannot be the 
guilty person. 

Jerry has tried to take these statements about Mr. 
Witaon, and represent them as an inference scheme: 

Jerry lets Pstandfor "Mr. Witsonis the guilty person." 

He lets Q stand for "Mr. Wilson was in New York 
City on July 10, 1967." 

Can you now represent the statements about Mr. 
Wilson, using Jerry's P and Q? 

Inference schemes play an important role in the application of 
mathematical logic to high school mathematics-for example, in 
the use of logical language in discussing algebra and geometry. 

(1) The statements cwld be represented like his: 

Mr. Wdsom is the guilty person. P 

He was in New York City on July 10, 1967. Q 

I? Mr. Wilson is the guilty person, then he was 
in Mew York City on iuly 10. 1967. P = Ã ˆ  

He was not in Hew York City  on July 10, 1967. - Q 

Therefore, he cannot be Hie guilty person - P 

Putting all of this together, as in the argument in question 1, 
we get; 

A pattern such as this is called an inference scheme. In using 
these patterns, we have two tasks: 

(i) to translate from words to letters, as we have just done; 
(j i )  to determine whether the inference scheme is valid, or not. 

Jesting for VaMiv, There are various ways for testing whether 
an inference scheme is valid or not. We shall now test the scheme 

by the method of using a truth table: 

T T F T 
F F T T T 
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Since we are told that the p ^ > Q + - -  
statement P => Q is true, we -Q 
know that. whatever truth values :. - P 
P and Q may have, we cannot be 
in the second row of the truth 
table: 

T T T 

Since we are told that the P a 0  
statement - Q ts true. we know 4 -Q + - 
that we cannot be in the first or . - p 
third rows of the truth table: 

We are now ready to see if - P p=->Q 
is a "legitimate" and necessary -Q - 
conclusion. We do this by scan- 4 - P  +-- 
ning down the column headed 
-P, to  see if there are any F's 
remaining: 

Since only T's remain in this column, the inference is valid 
I t  is worth pausing a moment to see what, if anything, we have 

accomplished. Our work here has been purely formal-that is to 
say, it has depended only upon the form of the argument. Obviously, 
by purely formal means we cannot arrive at the "truth1'-that is, 
in the present-example, we cannot establish whether or not Mr. 
Wilson really was in New York City on July 10. 1967. This is not a 
format matter, it is a statement about reality. It cannot be settled 
by truth tables or other formal means, but must be established by 
the testimony of witnesses. The truthfulness of witnesses is not a 
matter of logic. 

What we have done is to show that the form of the argument in 
this example is legitimate. Consequently, we can conclude that if 
the witnesses are tellsng the truth in their various separate state- 
ments, then it is legitimate to conclude that the combined impact 
of their separate statements establishes Mr. Wilson's innocence. 

There are many aspects to "reasoning" and "judging," and for- 
mal logical inference is only a small part of what is involved- but 



(2) Marie says the statement, "If Mr. Wilson is 
the guilty person, then he was in New York City on 
July 10, 1967," can be represented as 

p =3. 0. 

What do you think? 

(3) Nancy wys the statement, "Mr. Wilson was 

not i n  New York City on July 10, 1967," can be 
represented as 

- Q. 
What do you think? 

(4) A1 says the whole discussion about Mr. Wilaon 
can be represented this way: 

P = > Q ,  - Q  
- P 

Do you see how Al's notation works? 

(5) Consider these statements: 

If Jerry believes that smoking causes cancer, 
then he would be foolish to smoke. Jerry does 
believe that smoking causes cancer. Therefore, 
Jerry would be foolish to smoke. 

Can you write out the inference scheme that seems 
to be uaed here? 
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even a smalt part can be important. We should not over-vaiue formal 
logic, nor under-value the other parts of the process of "judging" 
or "reasoning" -other parts, that is, such as intuitive assessment 
of credibility, plausible inference, probabilities, and so on. 

I suspect that many youngsters reject mathematics because 
their elders made exaggerated claims for it, which inevitably re- 
sulted in disillusionment. We surely want to avoid making exag- 
gerated claims for format logic. It is a small piece of the machinery 
for seeking "truth," but it is an important one. 

(2) Marie is correct 

(3) Nancy is correct 

(4) Either of these notations is in common use: 

( 5 )  We might do it like this: 

Jerry believes that smelling causes P 
cancer. 
Jerry would be foolish to smoke. Q 
If Jerry believes that smoking causes 
cancer, then Jerry would be foolish P => Q 
to smoke. 

This is one of the most important of all inference schemes. It 
was known by the ancient Greeks; today it isone of the foundations 
for modern logic. It goes, incidentally, under the name of modus 
ponens. We can check the validity of modus ponens by using a 
truth table, as follows: 
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[naze 481 
(6) Consider these statements: 

If Mr. Harper was in Sari Diego at 10 A.M., 
Tuesday, then he must be innocent. If he was 
driving from Los Angeles to San Diego at 10 A.M., 
Tuesday, then he must be innocent. Now, we know 
definitely that he was either in San Diego at 
10 A.M., Tuesday, or else he was driving from 
Los Angeles to San Diego at that time. Therefore, 
Mr. Harper must be innocent. 

Can you write out the inference scheme that seems to 

be used hem? 

Since we are told that the P = 3 Q + -  
statement P => Q is true, we 
know we cannot be in the second 
row of the truth table: 

Since we are told that P is P - > Q  
true, we know we cannot be in 4c +-- 
the third or fourth rows of the .-. Q 
truth table: 

Now, we check whether Q IS P = Ã ˆ  
a valid conclusion by scanning - P 
down the column headed Q to --4 :. Q + 
see if any F's remain. 

Since only T's remain in this column, the conclusion is valid. 
(That is, the statement Q must be true, if the other statements real!y 
are true. 

(6) We can translate into letters as follows; 

Mr. Harper was in San Diego at 10 AM. 
Tuesday. P 

Mr. Harper is innocent Q 

If Mr. Harper was if) San Diego at 10 A.M., 
Tuesday, then he must be innocent. P 3 Q 

Mr. Harper was driving from Los Angeles 
to San D i e p  at 10 A.M., Tuesday. R 

If Mr. Harper was driving from Los Angeles 
to San Giep at 10 A.M., Tuesday, then he 
is innocent. R - = Ã ˆ >  

Either Mr. Harper was in San Diego at 10 
A.M., Tuesday, or else he was itriving 
from Los Angeles to San Diego at 10 A.M., 
Tuesday, P v R  
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We can now represent the argumnt by the following inference 
scheme: 

P = ^ Q  
R * Q  
F U R  

Now, we can check the validity of this inference scheme by using 
truth tables as follows: 

Since we are told that the P = > Q + -  
statement P => Q must be true, R = Ã ˆ  
we know that we cannot be in 
rows 2 or 6 of the truth table: 

Since we are told that the p = > Q  
statement R => Q must be true, R = * > Q -  
we know we cannot be in rows P v R  
2 or 4 of the truth table: :. Q 
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Since we are told that the 
statement P v R must be true, 

P = > Q  
R a Q  

we know we cannot be in rows P v R -  
7 or 8 of the truth table: :. 0 

Finally, to test the legitimacy p + Q  
of drawing the conclusion Q from R = 3 Q  
this data. we have merely to scan P v R - 
down the column headed Q and + :. Q- 
see if any F's remain: 

P Q  

Since only T's remain, the inference is valid. 

(7) Can you make up any inference schemes of (7) Here are some inference schmies commonly suggested, some 
your own that seam to be valid? of which are valid and some of which are not: 

P - + Q  P -+ (-Q) P V Q  
Q - 3- - 0 - . P (not valid) .. -P (valid) :. P (valid) 

T T T  

Q V O V R  
Q = Ã ˆ  - P P V (Q A R) 
L A - 
:. R (valid) :. A {valid) :. P (valid) 

R P = A Q  

T 

R = ^ > Q  

T 

P v R  

T 
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(8) Toby made up this inference scheme: 

Do you think it is valid? Can you give some examples, 
using words? 

(9) Can you find a way to test the truth of inference 
schemes by using truth tables? 

What good would such a method be? 

(10) Sarah made up this inference scheme: 

Do you think it is valid? Can you give some examples, 
using words? Can you test it by using a truth table? 

(11) How many valid inference schemes can you list? 

(12) Who might be interested in studying inference 
schemes? Do you think mathematicians would? Do 
you think logicians would? Do you think lawyers 
would? Who else might be? What good would it do to 
study inference schemes? 

(8) Yes, it is valid. Here is one example, with words: 

K I go to Boston, I'll buy a recorder. 
If I buy a recorder, I'll learn to play it 
Therefore, if I go to Boston, I'll learn 
to play the recorder. 

Note that, in our "vertical"notation, Toby's inference scheme 
would be written: 

P - = > Q  
L & u  
- F -=> ft 

(9) We have discussed this extensively in the preceding questions. 

One reason why our test of validity (by using truth tables) is val- 
ued by some people is that it is a step -a  rather small step- in the 
direction of "objectivity," which has been a common goal in aca- 
demic life in the twentieth century. By "objectivity" people seem 
to mean that anyone is compelled toagree, or that any welt-educated 
person would necessarily arrive at the same conclusion. This is at 
best an elusive ideal, and at worst a dubious one - but truth tables 
do provide a too! that "we can all use the same way.'' 

(10) Sarah's inference scheme is not valid. You can prove this by 
using a truth table. 

(1 1) Obviously, there are a great many. 

(1 2) Lawyers, mathematicians, and logicians probably all have some- 
thing to gain from the study Of inference schemes. So do psy- 
chologists, teachers, linguistics experts, and anyone else inter- 
ested in understanding How humans reason. 

One might say that inference schemes play a role (atthougti a 
small one) in the task of building an explicit description of how 
people reason. However, the goal of being explicit is not without 
its own hazards. 

You are encouraged to read the beautiful essay by Aldous Huxley 
entitled The Education of an Amphibian, and also his essay Edu- 
cation on the Nonverbal Level [see Huxley (431, (4411. 
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CHAPTER 16 

The Game of Clues 

The rules for the game of clues are as follows: 

One team (or one person) has a secret. Let's call 
this team TWS, for "team with secret." The other 
team seeks to discover this secret. Let's cat1 this team 
DISC, for "discovery." 

1. TWS writes some numbers on a piece of paper 
which then is sealed in an envelope, or otherwise put 
where it cannot be read. (For example, someone can 

fold the paper and sit on it.) 

2. DISC seeks to force TWS to disclose the "secret" 

The Game of Clues is actually a modified version of the game 
Hidden Numbers which was introduced by Professor David Page 
of the University of Illinois.* This game is always fun for the stu- 
dents, but makes some demands upon the teacher. 

The version of the game described in the Student Discussion 
Guide is the final, sophisticated version. Before the students read 
this chapter, you may want to prepare them by playing oneor more 
simpler versions. Matters wil l  be made simpler by having the 
teacher take the role of the TWS team and by having the entire 
class take the role of the DISC team. We shall assume that you do 
this. The simplest version is to make all clues true, and omit rules 
6 through 14. 

A slightly more complicated version is to use ail rules, except 8, 
9, and 11. That is to say, do not require DISC team to make a care- 
ful, explicit list of which clues they are using when they claim a con- 
tradiction. After using this version, you can introduce the require- 
ment that the DISC team make careful, explicit lists of precisely 
which clues are involved in a contradiction; you are then piaying 
the first, sophisticated version as it is described in the Student 
Discussion Guide. 

Why do we play this game? There are many reasons, but perhaps 
the most important are these: We want to give the children expe- 
rience with such mathematical ideas as W c a t i o n ,  contradiction, 
and uniqueness. This game gives us a lesson format within which 
we can do a very broad range of mathematics- including "review" 
of arithmetic-which is new, exciting, and fun. 

numbers, and to let everyone read the paper. - .- 
*A> the time of this writing, Profess~ Page is ~ d i n s  at the imporfont 

3. Only positive inteeera are allowed. Repetitions Institution known ni Educational Senricei, [ncwporoted, or "SSI" far 

are allowed; for example, the secret numbers might be: You M Y  WO"* ' 0  4 fhf1 Qwartrrly Report* published by ESI, which can bfl 
obtained by writing to: Educational Services Incoqmmted, 55 Chepl Street, 

1,3,5,7,7,7,7. Newton, Mamachuseth 021 58. 



4. In guessing the secret numbers, DISC does not 
have to guess the order in  which they are written; 
for example, 

7,3,5,7,1.7,7 

would count as the same list as  the one given in the 
rule preceding. 

5. TWS writes clues on the board, labeling the 
clues a, 6, c, . . , , and so on (it is desirable to omit "F" 
and 'T as labels, since we have a different use 

for them). 

6. The clues may be true or they may be false. 

7. Anytime that DISC believes there is a coo- 
tradiction in a certain set of clws, DISC lists the 
clues in question and tries to show that there i s  a 
contradiction in these clues. 

8 DISC is right about the contradiction if the clues 
they list do contain a contradiction, and if no proper 
subset of the clues on the list contains a contradiction. 

9. DISC is wrong about the contradiction if the 
clues they list do not contain a contradiction or if a 
proper subset of the clues does contain a contradiction, 

10. At the start of the game. DISC has 5 points 

11. Anytime DISC is wrong about a contradiction, 
it loses one point. 

12. Anytime DISC is right about a contradiction, 
TWS must mark T (for true) or F (for false) beside each 
clue that i s  involved in the contradiction. TWS must be 
correct in marking T's and F's (even though TWS is 
allowed to make some of the clues themselves false). 

[i~aae SO1 
13. The game ends in one of  two ways: If DISC loses 

all 5 points, then TWS tears up the secret paper and 
never allows it to be read (DISC has "lost"). If, on the 
other hand, DISC i s  able to force disclosure of the 
paper, then everyone on the DISC team i s  allowed to 
read it, and DISC has "won." 

14. The procedure by which DISC may be able to 
force disclosure of the secret is this: whenever it be- 
lieves it is in a position to do so. DISC can list the 
numbers that it believes must be written on the paper, 
and can k t  TWS that no other collection of numbtrs 
would satisfy all the known truth values of the clues. 
(That i s  no other collection of numbers would make 
true statements of all the clues labeled T and false 
statements of all the statements labeled F.1 If TWS 
c a n  find any other collection of numbers that will be 
consistent with the Tn and F's, then DISC loses the 
bet. and DISC'S points are reduced to zero. (Which, of 
course, means the secret paper is torn up and the 
numbers never disclosed.) 

THE GAME OF CLUES IS7 



If TWS cannot find any other collection of numbers 
that will be consistent with the indicated T s  and F's, 
then DISC wins the bet, and TWS is forced to disclose 
the secret 

In order to make the game interesting, TWS must 
provide a growing collection of  interesting clues, 

Here is a sample game: 

DISC begins, of course, with 5 points. 

TWS begins by listing these clues 

a. 5 numbers on paper. 

b. All odd numbers. 

c. Their sum is 26. 

d. The largest number is 7. 

e The smallest number is 8. 

DISC says there is a contradiction in clues a, b, and 
c, because an odd number of odd numbers cannot add 
up to an even total. 

Since DtSC is right about 

a , b . c \  a 

i t is necessary for TWS to label a, 6, and c as either T 
or F- TWS does this as  follows- 

F a,  5 numbers on paper. 

T b. All odd numbers. 

F c. Their sum is 26, 

d The largest number is 7. 

c. The smallest number is 8. 

TWS changes the clues to look like this: 

o. 7 numbers on paper. 

T b All odd numbers. 

c. Their sum is 12. htaee S l l  
d. The largest number is 7. 

e The smallest number is 8. 

DISC says that 

a ,  b . c /  

still contains a contradiction: an odd number of odd 
numbers cannot add up to an even sum. 

Since DISC is right about this contradiction, TWS 
must label a. 6, and cas Tor F. They do this as follows: - 

T a. 7 numbers on paper. 

T b. Ali odd numbers. 

F c. Their sum is 12. 

ri. The largest number is 7. 

e. The smallest number is 8. 
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DISC says that 
Id, @\ 

contains a contradiction, because the largest number 
cannot be smaller than the smallest number. 

Since DISC is right about this, TWS must mark 
Ts and Fs on 

They do this as follows: 

T a. 7 numbers on paper. 

T b. At1 d d  numbers. 

F c. Their sum is 12. 

T d. The largest number is 7. 

F e. The smallest number is  8. 

TWS changes the clues to read l ike this: 

T a. 7 numbers on paper, 

T b. All odd numbers. 

c. Their s u m  is 13. 

T d. The largest number is 7. - 
F e. The smallest number is 8. 

Although they are not yet forced to do so, TWS labels 
due c as T, in order to make the game move along 
faster. The clues now look like this: 

T a. 7 numbers on paper. 

T b. AD odd numbers. 

T c. Their sum is 13. 

T d. The largest number is 7. 

F d. The smallest number i 8  8. 

(1) Can you finish this game? { 1) At this point DISC has 5 points and these clues are an the board: 

T a. 7 numbers on paper. 
T b. All odd numbers. 

T c. Their sum is 13. 
T d. The largest number is 7. 
F e. The smallest number is  8. 

What do we know from this? Since we have only odd numbers, 
the largest of which is  7 ,  we know that there i s  at least one7 on 
the paper and that the other numerals, if any, are 1 ,3 ,  and 5. 

Now, since there are 7 numerals on the paper, they cannot be 
too large, or the sum will exceed 13. Let's see, is 7, 1, 1, 1, 1, 
1, 1 possible?Yes,since7 + 1 + 1 + 1 + 1 - 1 + 1 = 13. 

But . . . if we increase any number Oil the tist the sum will be 
too large! Hence, 7, 1, 1,1, 1, 1, 1 is the possible answer. 
That is to say, the answer is now uniquely determined, as mattie- 
maticians would describe it (Remember, order does not count! 



(2} Why don't you write your own secret numbers, 
and make up your own clues? 

We consider that 1, 1, 1,7, 1, 1, 1, is "not really different" from 
7, 3 ,  1, 1 ,  1, 1, 1, and so on.) 

The StSC team now bets that this must be what is written on 
the paper. Since DISC is  correct, TWS must disclose the hidden 
paper for all to see, 

(2) You and your students will want to make up your own clues, 
Here, however, are a few types of clues that we have Â¥foun 
useful: 

The sum is 25. 
The product is 13. 
The numbers are all odd. 
The numbers are all even. 
The numbers are not all odd, 
The numbers are ail different 
The smallest number is  3. 
The largest number is 21. 
The numbers are at1 prime. 
The numbers are all multipies of 7. 
The numbersare of the form a , a  , a  , a  , p  , v,where 

+ p , f t  ^ y , a  ̂  Y .  
Two of the numbers, added together, make 12-provided 
you pick the right two numbers on the paper. 

, . . but it is better to invent your own kinds of clues. 



Part Three rn Measurement Uncertainties 

chapter 17 / Pa/fes 52-55 of Student Discussion Guide 

Traditionaliy, it has been all. too easy for elementary school 
children to get the idea that every question has exactly one right 
answer. Further, they often believe that this right answer is "per- 
fect" and "exact" and so forth. This belief was probably en- 
couraged, at least in part, by the kinds of questions the children 
encountered.* 

Now, in normal adult life, in matters of business, in matters of 
art or history, and quite equally in matters of science and mattie- 
matics, things are not this simple. Many questions have no answers 
at at[, some have many "right" answers, and some have many an- 
swers which are "almost right1'-where we can never find an an- 
swer that is  exactly right. 

How far is it from the earth to the sun? Obviously, we don't 
really know, and every attempt to measure this distance will prob- 
ably produce an "answer" different from all other attempts. 

Again, what decimal name-by which we mean, at course, a 
"terminating" decimal name that you can actually write- is a 
name for the square root of 2? I t  can easily be shown that there 
is none. However, there are some decimal names which are reason- 
ably good approximations. I f  we square 2, we get 4, so 2 is too - 
large. if we square 1, we get 1, so 1 is too small. if we square 
1.5, we get 2.25, so 1.5 is too large. I f  we square 1.4, we get 
1.96, so 1.4 is too srnafi. As we continue in this fashion, we find 
that 1.42 is too large (1.42* = 2.01641, that 1.41 is too small 
(1.41' = 1,9881),. and so on . . . However, we shall never find a 
terminating decimal whose square is exactly 2-that is. we can 
never find a terminating decimal name for the square root of 2. 
We can, however, find some very good approximations. What is the 
"right" name? Among terminating decimals, there is none. That's 
just the way it is. 

We need not go to such sophisticated questions as the distance 
from the earth to the sun. If we try to measure the length of the 
classroom, we shall find that small errors in measurement are 
inevitably part of our answers. We cannot find exactly how long 
the classroom is. No one can. On fact, i t can even be argued that, 
when one considers distances as small as miflionths of an inch. or 
smaller, the length of the classroom keeps changing, due to tem- 
perature changes, settling of the building, abrasive action on the 
watts, plaster and paint flaking, and so on.) 

Even if we agree that we shall measure from exactly this spot 
here on the front wall to this spot here on the rear wall, we can- 

- 
"Smme n ~ w  mathematics material, being dewlotfd in Great Britain by 

the Nuffield Foundotian Project, under the direction BfGwtfrey H.Mot+hewt 
ok St. Dunston's College, london, mokes excellent use of quut iom which 
have na answers, queltianf which haw exactly on* aniwar, and ID on. 

The work cited in Appendix A, Schwab (1 1, it the fineit discussion an this 
that 1 have m r  e n  -and one which you should not miss mading. 
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not expect that we can repeat the measurement many times and 
get exactly the same answer. in general we cannot do so. (Phito- 
sophically it is sometimes important to notice that this ques- 
tion can be formulated differently. To every measuring instru- 
ment we can assign a "discrimination thresholdw- that is, we 
can try to guess to the nearest yard, or to measure to the near- 
est foot, or (using a finer measuring tool) we can try to measure 
to the nearest sixteenth of an inch, and so on. If this "discrim- 
ination threshold" is large enough, then we can get absolute 
agreement- but, of course, this is not agreement as to the actual 
length of the room.) 

In the present chapter, we have 10 students, working indepen- 
dently and in secret, guess the length of the room. We take the 
10 numbers obtained in this way. compute an average, and also 
perform a computation to see how closely the 10 students agree. 
Obviously, we expect considerable variation in the 10 answers. 
We next have 10 students, working independently and secretly, 
measure the length of the room, using 6-inch rulers. These are, 
of course, awkwardly small rulers for so large a distance; we must 
move them end-to-end many times before we are done. and each 
move entaiis the possibility of some error. Moreover, most 6- 
inch rulers are far from precision instruments, and may well in- 
volve errors in themselves. With the 10 numbers we get this way, 
we again compute the average, and try to calculate the amount of 
agreement or disagreement. {Obviously, we expect to find more 
agreement-or iess disagreement - than when 10 students 
guessed; however, we still expect considerable disagreement.) 

We next repeat this procedure, using good-quality yardsticks or 
meter sticks. We expect, in this case, to find somewhat greater 
agreement. Finally, we go through the same procedure using good- 
quality tape measures. This time we expect even less disagree- 
ment-but we would still expect some disagreement. 

By this time. we hope the children are coming to realize that 
every measured "answer" is "wrong" --indeed, there is no way 
to find the "right" answer- but that in some cases the error ss 
probably much smaller than in other cases. 

A number of possible refinements can be made. For one thing, 
you may get better results using a larger distance than the length 
of the cfassroom-for example, use instead the length of the 
school corridor. This, in effect, gives the children greater re- 
finement in their measuring instruments, since there is a ten- 
dency for them to use $ inch, or & inch, as the smallest distance 
they will bother to report. If we cannot get into finer discrtmina- . 
tion in visually reading meter sticks and rulers, then we can in 
effect make inch an "effectively smaller" amount by measuring 
longer over-all distances. 

As another refinement in attempting to determine the amount of 
disagreement, you may want to use either the variance or the 
standard deviation. They are computed as follows: 

Suppose the 10 numbers we got from the 10 children were 

Then we find the average A as 
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For each of the original 10 numbers, we find its deviation from 
the average: 

Original number 
a 
b 
c 
d 
e 
f 
g 
h 
k 
m 

Deviation from average 

a - A  
b - A  
c - A  
d - A  
e - A  
f - A  
g - A  
h - A  
k - A  
m - A  

Note that these deviations in some cases will be positive and in 
other cases will be negative. tin fact, if you add up the "devia- 
tions" column, the "positives" and "negatives" should just can- 
cel out. and the total for the column should be zero.) 

We now take the 10 "deviations" and square each one: 

We now add the column of squares, calling the total T. We now 
divide this number T by 10 (i.e., by the number of measurements 
we started with). The result, 4 x 7, is called the variance, The 
positive square root of the variance, 

is known as the standard deviation. 
Before teaching this lesson, you may want to view the Madison 

Project film entitled "Average and Variance." If you wish to 
study further the ideas of variance and standard deviation, con- 
sult Mosteller (83). 

CHAPTER 17  

Measurement Uncertainties ANSWERS AND COMMENTS 
[page 32) 

(1) Can you measure how Song your classroom is? (1) This question is intended mainly to open (tie discussion. The 
"simple" answer to this question may need to be scrutinized 
more carefully-as we shall do in the remainder of this chapter. 
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(2) Can you measure exactly how long the claw- 
room is? 

(3) If you are in doubt about your measurement, 
how doubtful are you? Could you be in error by one 
yard? by one foot? by one inch? by one-tenth of  an inch? 
by one-hundredth of an inch? by one-millionth of an 
inch? Would your measurement be exact? 

CLASS EXPERIMENT 1 

(4) Have 10 people, working independently and 
in secret, guess the length of the classroom and write 
their guesses on  a piece of paper. Give these 10 pieces 
of paper to a trustworthy person. We'll work with these 
numbers in the next few questions. 

(6) How much doubt do you feel about these 10 
guesses? Could they be in error by as much as 10 feet? 
by as much as one yard? by as much as one foot? by as 
muchas one inch? 

(6) Let's write all 10 guesses on the chalkboard, 
converting to the same unit in each case (probably 
the foot, and its decimal parts, is the best unit to use). 

(71 Can you find the average of these 10 numbers? 
What is  it? 

(8) How much doubt do you feel about this average? 
Could it be in error by aa much as 10 feet? by as much 
as one yard? by as much as one foot? by as much as 
one inch? 

(9) We want to sw how well these 10 people agreed 
with one another- (This is why we wanted to work 
independently, and to write their guesses in secret!) 
Mathematicians have thought of  many different ways 
of comparing how well different measurements (or 
guess4 agree. 

One method i s  to compute the range of the guesses. 

For instance, suppose that the guesses were 31 ft, 
30 ft, 33 ft, 27 ft, 32 ft, 32 ft, 29 ft, 30 ft, 34 ft. and 28 ft. 
Then the range (in the sense of statistics) of the 10 
guesses would be 7 ft. 

Can you see how tn find the range of any number of 
guesses? 

This answer is the range (which we might call R): 

[STI'DEVT PACE 52 

By rewording question 1, we may be able to get some children 
to wonder a bit. 

Presumably the children wilt feel their error would be less 
than one yard, and probably less than one-half yard, so that 
their measurement to the nearest yard would be "exact"-but 
only to the nearest yard. Not absolutely exact. They may also 
feel that their measurement to the nearest foot would be exact 
When one looks for a measurement to the nearest inch, there 
may be more grounds for hesitation. And, for the smaller frac- 
tions of an inch, there i s  little doubt but that errors of this order 
will inevitably appear. 

Evidently, one is  unlikely to find the absolutely exact "rim 
answer! Since no one is likely to be able to find this, one can 
ask- on the philosophical level- whether any absolutely exact 
answer even exists! Surely, it is not known, in any evert. Nu- 
body knows the "right answers"! 

If you are in doubt about how Class Experiment 1 might be 
handled, we suggest you view the fi lm entitled "Average and 
Variance." 

This is a matter for class discussion. 

Again, compare the film "Average and Vafiance1." The usa of 
decimal fractions of a foot is usualiy convenient 

As usual, yw find the average of the 10 numbers by adding 
them all up, and then dividing by 10. 

Again, 8 matter for class discussion. 

To find the range, hok over the 10 @Iesses. See which one is 
largest (we'll cat! it l). See which one is smallest (we'll calf it 
4. Subtract the smallest from the largest: 

What n m h r  this will be, for your class, we cannot, of course, 
predict in advance. Evidently, the smaller R is,Hie greater agree- 
ment (roughly speaking) you have; the larger R is, the more dip 
agreement you have-at least, to the extent that R is a "ma- 
sonataie" measure of what you mean by "agreement" 

Do you think that range is a good measure of error? 
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[pace 531 

(10) A second method ia to plot our points on a graph, 
like this: 

(10) This wilt depend upon the 10 numbers that your class has to 
work with. 

- 
Number of test 

Suppose, for example, the gueasea were: 30 fir. 33 ft, 
36 ft, 30 ft 25 ft, 32 ft, 30 ft, 28 ft 35 ft, 40 ft 

For these 10 guesws, our graph might be made to 

look like this: 

3 

2 

1 

25 30 35 40 feet 

This gives a kind of visual picture that suggests 
how well the different guesses agreed. 

Why don't you make a graph using the 10 guesses 
from your class? How wet1 did the people agree? 

(11) Another method is the method of average ab- 
solute deviation from the average. (The name makes 
this method sound much harder than it really is. 
After a while this name will make sense to you, if you 
think about it.) We can illustrate this method, using 
sample data. If the guesses were 30, 33, 35, 28, 25, 32, 
30.28.35. and 40, then we can find the avewe like this: 

31.6 
10J316 31.6 is the averwe. 

(1 1) This, too, will depend upon your class. 

Notice that it is not the deviation from average which we use, 
but rather the absolute vaiue of the deviation from average. This 
point is not stressed in the student book-you may wish to em- 
phasize it more yourself. 
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Now, 30 (the first guess) deviates from this average 
by this amount: 

m 1.6 ia the deviation of the first guess from the 
average. 

[page 541 

The next gueas, 33, deviates from the average by 
this much: 

33 - 31.6 = 1.4. 

Similarly, here are the dwiations from the average 
for the other guesses: 

Consequently, the deviations (or deviations from the 
average) are: 

What shall we do with theae 10 numbers? The 
answer is that we will average them! 

So, the average of the deviations from the average 
is 3.4, using our sample data. Can you compute the 
average absolute deviation from the average using 
the 10 guesses made in your class? For your 10 guessefl, 

was the average absolute deviation from the average 
greater or less than that of our sample data? Which 
10 guesses are more in agreement, yours or the 10 
guesses in the sample data? 

[STUDENT PAGE 54 { i 
Notice that at this point we exercise some cunning in deciding i 

the order of subtraction. Our procedure is to choose the order of 1 
subtraction so that the answer will be positive. This amounts to 1 
"taking the absolute value" of the deviation-hewe the name 
"absolute deviation." 

(12) Why do you suppose we cdl this the average (12) Here we call attention to Hie point mentioned in our answer 
absolute deviation from the average? Do you know to question 11 above. 
what we mean by absolute value? 



CLASS EXPERIMENT 2 

(13) Have 10 people measure the length of the room 
with 6-inch rulers. As before, the 10 people must 
work independently and in secret, and each must 
write hi answer before seeing what any of the others 
have done. Give theae 10 pieces of paper to a trust- 
worthy person, who will keep them. We want to be 
able to work with these 10 numbers, and to refer back 
to them whenever we need to. 

(14) How well do these 10 people agree? Could one of 

them be in error by as much as 10 feet? by as much 
as one yard? by one foot? by one inch? by one-tenth of 
one inch? by one-hundredth of one inch? 

(15) Compute the average of these 10 numbers. Do 
you think the average could be in error by as much as 
one foot? by how much? 

[pace 551 
(16) Compute the ranee of these 10 numbers. Did 

the "6-inch-ruler" measurements agree more, or 
less, than the guesses from Experiment I? 

(171 Use the method of mpha. Do the "%-inch- 
ruler" measurements seem to show more agreement, 
or lets, than the guesses did? 

(18) Use the method of average absolute deviation 
from the average. Do the 6-inch-ruler measurements 
dhow more agreement, or less, than the guesses did? 

CLASS EXPERIMENT 3 

(19) Have 10 people measure the lengthof the room, 
using yardsticks or meter sticks of good quality. 
How well do the 10 people agree? 

CLASS EXPERIMENT 4 

(20) Have 10 teams of people measure the length of 
the room, using high-quality tape measures. How well 
do the 10 teams agree? 

(21) How would you find the exact length of the 
room? 
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(13) Compare, if you wish, tile film "Average and Variance." 

(14) A matter lor class discussion. 

(15) Again, add the 10 numbers and divide by 10, in the usual 
fashion. 

(16) This wig depend upon your class. The usual expectation- but 
be prepared for surprises! - would be that the range is smaller 
for the ruler measurements and forger for the gu-. 

(17) Sea answer to question 16. 

( 18) See answer to question 1 6. 

(19) This is shown in !he film "Average and Variance." 

(20) This, also, is shown in the film "Average and Variance." 

(21) Evidently, you canirat!* 

*Writart in gorrnal have been gaining a deeper u n d t i t a n d i ~  of th* 
nature of uiante. An u rwutt, one finds quit* a few perceptive refemme* 
to science. Cemlder, for exornple, the following: 

. . . Finally Dunde* turned around end 
fd them. 

"Fectt am facts," he mid hanhfy. 
Bmger hook his head. "Not in uienco," 

he W a d .  "A fact i) a phenomenon abtÃ§tv 
or recorded by an imperfect iintrume~t." 

Th's surprisingly wphitticated and accurate bit of dialague =curt in o 
detective dory, The Sound of Murder, by Rex Stout (Pymmid Books, paper 
faocltt. 



There i s  much more you can do with this topic. You cai 
to other measurement situations, to numerical determil 
the number n- , and so forth. The methods of testing t 
ststency," or "degree of agreement," in a collection 
bers can be applied to numbers obtained in many ways. ' 
sistent is an individual's response in some specific phy! 
situation^ You can compare consistency for the same indi 
different days, or compare consistency from one indr 
another. How long, for example, can you stand on one 
long can you balance a 12-inch ruler on end in the palt 
hand? 

You can probably think of many situations where consi 
data might be of interest. How many cards can you draw 
time, from a shuffled deck, before you draw an ace? H 
automobiles pass by the school in ten minutes? How m i  
tion is there- is it always the same number of cars in 
minute period? 

I apply it 
nation of 
he "con- 
of num- 

How COW 

iiological 
wdual on 
tfidual to 
leg? How 
n of your 

stency of 
, one at a 
ow many 
ich varia- 
any ten- 



Part Four Identities, Functions, and Derivations 

chapter 1.8 / Pa{̂ e 56 of Student Discussion Guide 

By an identity we mean an open sentence that becomes true 
whenever a "legal" numerical substitution for each variable 
is made. For example, 

are all examples of identities. If you are unfamiliar with the sub- 
ject of identities, merely be patient. We shall explore this subject 
in some detail in the next few pages. 

The subject of identities is treated extensively in Discovery; its 
inclusion here can serve as a review, or else it can serve to make 
Explorations independent of any prior use of Discovery. Neither you 
nor your students are expected to be familiar with the topic of iden- 
tities: we shall begin at  the beginning and go on from there. 

CHAPTER 18 

Identities 

[i~aee 561 

Which are true? Which are fdse? Which are open? Questions 1 through 6 are intended partly to review the notions 
of true, false, and open. 

(1) False 

(2) False 

This question can play a diagnostic role; even students who 
have not yet learned any algorithms for adding fractions should 
recognize that this statement is false, provided they have some 
reasonable intuitive tdea of what + means, what 4 means, and 
what + means. They might, for example, realize that + is a "good- 
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sized share," but that + is a "rather small share"; hence. 7 
pius + should surely turn out to be more than +. 

Alternatively, they can think in terms of the number line on 
which would be marked here 

and + would be marked here 

so that. if we add these two lengths together 

we should get something closer to 4 

and certainly not +. 
(3) Tnie 

This question, also, can play a diagnostic role. 

(4) Open 

(5) Open 

(6) False 

Can you find the truth set for each open sentence? * 

(7)  *s + r] = *9 (7) { + I ]  

(8) *8 + = *7 (8)  { - I }  

19) '8 + [Ã‘ = 0 (9) {-a} 



(13) Can you make up an open sentence that will 
become true for every legal substitution? 

(14) Jerry says this open sentence will become true 
for every substitution: 

~ x o = o .  

Do you agree? 

(15) Do you know what we mean by an identity? 

IDENTITIES 171 

(12) +13,  -131 

At this point, the main topic of this lesson begins. 

(13) There are many possibilities. {It is important to remember 
that we must obey the rule for sutistituf~ng, and put the same 
number in every 0, etc.) Here are a few that students often 
make up at the outset: 

You may wish to view the film "Second Lesson." 

(14) Jerry is correct 

(1 5) Notice that in questions 13 and 14 we began thinking O ~ U I  

the concept of identity. Now, we introduce for the first time 
the word identity. This question may be rhetorical, and may 
very likely have to be answered by the teacher. Nonetheless, 
we believe we get better attention from the class by asking this 
as a question, instead of merely giving it as a statement. Here 
are several possible "suitable" answers, which can be adjusted 
to Hie sophistication level of your class: 

"An identity is an open sentence that becomes true for every 
numerical replacement of the variables." 
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"An identity is an open sentence that becomes true for every 
\eeai substitution." 

"An identity is an open sentence where 'even number works'; 
the truth set is the set of all numbers." 

As a matter of fact, the various descriptions of what we shall 
mean by an "identity" are not completely equivalent. Consider, 
for example, the open sentence 

Recalling that division by zero is never a legal operation, we see 
that for this open sentence every legal numerical replacement pro- 
duces a true statement, but it is not correct to say that "every 
numerical replacement" does so. Other differences occur when we 
'put A + B into the Q"-i.e., when we use what is sometimes 
called an "open name" as a replacement for a variable. These 
differences are not, however, serious difficulties so long as the 
basic concept of "identity" is understood; the students recog- 
nize the fact that our descriptions are merety attempts-more or 
less imperfect - to put into words the idea of what we mean by an 
"identity"; the various exceptional cases are treated honestly, 
if the need to do so arises. 

(16) Sarah says that mathematicians use the symbol (16) Sarah is correct. The symbol Vx means "1m x" or "you may 
"V," to mean "for all x," and that they would write make any legat replacement for the variable x, and the followine 
Jerry's idea this way; open sentence will become true . . . ," or something ol this sort. 

Vr x + 0 = 0 .  
For example, 

Ã̂  x . O = O  

might be faad as "for all x, x times zero equals wo," or it might 
be read as "you may make any legal replacement for the vari- 
able X ,  and the open sentence x - 0 = 0 will become true." 

It is probably best to allow some small variation in our usage of 
the symbol Vv. 

Incidentally, the symbol V v  is taken from the subject of mathe- 
matical logic, and is becoming increasingly important in "modern" 
approaches to mathematics. See Appendix A, Suppes (98). This 
symbol is referred to, by logicians, as a "quantifier." Present 
Madison Project materials make extensive use of quantifiers at 
the ninth-grade level. For the present, we merely introduce the 
symbol in a relatively casual way, in order that it may be familiar 
when it is needed in subsequent work. We would leave it out en- 
tirety with very young children. 

(17) Can YOU make up any more identities? (17) There are, of course, a tremendous number of possibilities. 

IMPORTANT: For our future work we will need a long The Madison Project film entitled "Second Lesson" shows a 
list of identities, ~h~ kt way to get such a list will be gmp of children, from grades 3 through 7, learning about identi- 
for vou to maintain a "cumulative" list of identities as ties for the first time. YOU may want lo view it when you are teach- 
youmake them up. Keep this list in a safe place where ing identities to your own students. 
we can refer to it whenever we m a y  need to. Be sure the students preserve their lists of identities carefully. 

You may prefer to have individual students accumulate their own 
lists, or you may prefer to have a single "official" fist for the 
entire class. 
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If someone shows you an open sentence and asks you if it is an 
identity, you may have-at this stage in our work- no very satis- 
factory method for deciding. For.example, IS 

an identity? One method which students often use is to look at it 
to see if it "looks7'- I suspect they mean "feels"- like it ought to 
be an identity. Thjs method, in the hands of our students, is very 
unreliable. For the example above, they usually argue that it is  not 
an identity "because it has two boxes on one side, and three boxes 
on the other." This argument is irrelevant and, in fact, quite wrong 
in this instance. 

A far better method is to go back to the definition: if every "Ie- 
gal" numerical replacement of the variable produces a true state- 
ment, then the open sentence is an identity (as the cnildren say, 
"every number works"). If you can find a single legal replacement 
that yields a false statement, then you have the matter settled def- 
initely and finally. In such a case, the open sentence is not an 
identity, because you have shown that it is not true that "every 
number works." You just found one that didn't! 

Ah . . . but what if every substitution that you try yields a true 
statement? What then? You do not know that "every number works," 
for you have only tried a few numbers. There are infinitely many 
different numbers, and you can never complete the job of trying 
them all. In this case, your result is only tentative; as far as you 
know, the open sentence seems to be an identity. You cannot, how- 
ever, be sure. Perhaps the very next number you try will yield a false 
statement. How can you be sure that it won't? You can't. 

There are probably two other methods that children use, in trying 
to decide whether an open sentence is an identity. One is to see if 
there seems to be any reason why it should be; for example. 

If you "don't add any more," you still have the same number you 
started out with. The other method is to see if you can retrace the 
steps that the other person followed in making up the identity. For 
example, in 

it seems clear that the man who made this up started with 

and, for that weird right-hand side, he broke the 12 up into bitsand 
pieces and sort of scattered them around. But, if you put them 

173 
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back together, the bits and pieces do add up to 12. Hence, you 
might guess that this 1s an identity. 

We shall not try to describe all this at the verbal ievei. i t  would 
get too complicated. However, we do want to start buifding some 
subverbal comprehension of identities in our students. For this pur- 
pose. the following game seems to do nicely. 

There are two teams, Team A and Team 3.  Team A makes up an I open sentence and shows it to Team B (probably by writing it on 
the chalkboard). Now, Team B must try to decide whether or not ; that open sentence is an identity. The teacher adjudicates, and 
announces whether Team B is right or wrong (of course, the stu- I dents can argue, if they have any real evidence and can prove that , 
the teacher made a mistake). If Team B guessed correctly, they get ; 
10 points. If Team B guessed incorrectly, then Team A gets 10 
points. 

Now the roles are reversed, and Team B makes up an open sen- 
tence for Team A to classify either as an identity or as not an iden- 
tity. The game continues until one team has, say, 200 points (or 
you may use some other agreed-upon method for determining 
when the game is over). 

This game provides valuable experience that will be useful in 
Chapter 19 and in other following chapters. [if you object to the 
competitive nature of team games, you can modify the ruies. Elim- 
inate the teams, and simply have students pose problems for the 
rest of the class to discuss. For an interesting view of such matters, 
consult Appendix A. Henry (421.1 

In the work thusfar on identities, we have made up open sen- 
tences which we believed to be identities, and we have looked at 
open sentences made up by someone else and tried to decide 
whether or not they were identities. 

Al l  of this work was done in a preliminary, "intuitive," nonver- 
balized fashion. Having done some such work, we can now try to 
describe it. As we make our description more fully explicit, and 
more minutely detailed, we develop the idea of a derivation, the 
idea of axioms versus theorems, and the explicit set of ruies- 
whkch we call a "logic"-for making up derivations. 

This follows our familiar pattern of 

(i) action. 
( 1 1 )  intuitive "description" of the action, 
(iii) explicit description of the action 

We use this sequence again and again; in this we are probably 
influenced by the work of Professor Jerome Bruner, of Harvard Uni- 
versity, who describes "inductive" or "experiential" learning as 
consisting of the sequence of 

(I) performing an action, 
( t i )  building mental imagery to represent cognitively a part of 

what the action did in reality. 
(iii) building explicit notation to name either the action or its 

cognitive image. 

Now, the explicit description of how we make up "big" identi- 
ties out of "little" ones-or new identities out of old ones- will, at 
this stage of our work, depend primarily upon two processes: our 
old friends UV and PN. 



CHAPTER I9 

- - Making Up Some "Big" 
Identities by Putting 
Together " Little" Ones 

In making up identities, you probably had a method 
-whether conscious or unconscious. For example, you 

(nay have started an identity something like this 

[(D + 3) A1 x (A - 
and then thought to yourself. "Ah! If I now multiply 
by zero. the result will be zero." Consequently, you write 

IKl""J+3bAlxtA++)) x o = o -  

In a simpler case, you may have begun 

n-n 
and then thought, "Aha! If I now add zero, the sum will 
by unaffected by the addition of zero," and so you wrote 

As a third lineof reasoning, you may have begun with 

and said to yourself, "Why, all you have to do i s  to put 
exactly the same thing on the other side of the equals 
sign, and surely that will give you an identity!" Con- 
sequently, you wrote: 

In this chapter we want to investigate ihese methods 
for making "fancy" identities out of other, simpler 
ones, 

Probably the best way to carry on our investigation 
i s  to look at a few examples. 

Example 1 

Sometimes you use W (use of variable^). 

You might start with a simple identity, like 

and then you use UV to get a more complicated identity. 
Suppose, for example, we do this: 

MAKFNd I 1' BIG IDENTITIES FROM LITTLE ONES 175 
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The result will be 

which we would ordinarily write aa 

( A  + B )  + (^  + +) = (i + f )  + ( A  + B ) .  

We have made up this "more complicated" identity 
by using UV. 

If you prefer Q'a and A's, instead of A's and B'6, 
to indicate your variables, you can use UV again, 
like thia: 

W: r \ - A  

Example 2 

Sometimes you use PN (principle of names). 
We might, for instance, start with the identity we 

just got. We could make it still more complicated if 
we want to. For example, 

(i) u+A=A+D 
and we just got the identity 

W e  could use PN - the method of "erasing" one name 
and putting in its place another name for the same 
thing- to get: 

ciii) {m +A) + (+ + 3 = (7 + +) 

+ ( A + 0  PN from line <ii), 
using line (il. 

Q.E.D.* 

(Remember, the heavy underlining shows which 
name was "erased" and replaced by another name 
for the same thing.) 

[pace 591 
(1) Try to make up some mom identities to add to 

your cumulative list. (Remember to keep your list 
carefully; we shall need it later.) 

I (2) Start with the identity 

I 
and use UV like this: 

(1 )  This will depend upon your class. 

U V : A + B + + - Y 7  
in line (i). 



What result do you get? Now replace the A's and S's 

by Q's and &B. What is your final result? 

UV: Q Ã‘ A 

A - a* 
in line (id. 

(31 Start with the identity (3) There are several possibilities. Here is one: 

Now use PN, and use these identities: 

D ^ A + V i  = tD-Ai^LI-Vl-  
Can you get a mote complicated identity as a result? 
What result did you get? Can you write out each step 
carefully? 

PN, from line (i), using line (ii). 

Here we have repeated line (iii), 
in order to make sure that the un- 
derlining for our first use ~f PN 
(using fine iil will not get eon- 
fused with the underlining for our 
second use of PN (where we shall 
be obtaining line vi by using line 
v). 

PN, from line (iv), using line (v). 
"UP 

'In this identity we hove irdicated the correct placement of parentbcus. 
mot is to soy, we hnye not mode a decision be- (Q + A) ++) us. Q 
t a + +). Them is a very good re- why we have net done so: extensive 
trinfs with children hove convinced US tho? this question of "wrftt plate- 
ment of parentheset in addition problems" (an profitobiy go through thme 
stng~t .  Fimt, we "iust odd" and igiiara wrenthefes ultagether. Â¥n is-(it 
first-o nature1 prttedure for children. A t  the second stage. ormad with ex- 
periences where parentheif; ploy o decisive role (as in the WÃ of the "dit- 
tributive law"), we rake the question of "where the parentheses raolly 
aught to go''' Finally, in the thin) itoga, we "distovel^ (w r e t i n u e )  the 
associative Jaw for addition* ond thereoftor can deal with the matter core- 
fully whenever it seems apptopriote la da so. Perhops we should really r=- 
ognize a fourth itogt: once we know that we con deal with AlA carefully, 
we utlaw oureftlves to became corelfr~ in situations where rnftticulaus ttsts 

seemi unnecesvsq. But all of this is getting ahead of our story. We are now 
only nt Stage 1, where we ore ignoring the question for the time being. 
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SHORTENING LISTS: 
"AXIOMS" AND "THEOREMS" 

There are three mathematical ideas in this chapter. 

(i) Sometimes introducing another variable permits you to re- 
place a long list of identities by a single identity, without losing any 
information. For example, if we have the list 

we can replace this entire list by one single identity, namely 

Notice that, in doing this, we introduced another variable (which, 
since the symbol had not already been used in this open sentence, 
we chose to write as AS. Notice also that, in order to recover any 
identity on the original list, we need only UV. For example. 

gives us back the third identity on the original list. 

(ii) In Chapter 19 we actually began writing out derivations (see 
Chapter 19, problem 3). We can now use such derivations as an- 
other means for shortening certain lists. 

(ill) Finally, suppose that we made up the longest fist that we 
could, consisting of identities and true statements in arithmetic 
and algebra. Suppose we then "shortened" this list by the two 
methods just mentioned. We wouid finally end up with a list which 
could not be shortened any further without actually losing some 
information. 

The statements or identities on this final list are what mathe 
maticians call axioms. The statements which were eliminated from 
the list during our process of "shortening" i t  are called theorems. 

As usual, this will become clearer as we actually get into our 
work. Compare, again, Professor Bruner's sequence for "experi- 
entiat learning": action, then imagery, then notation. What we 
need now is some action, so we shall turn immediately to our 
probterns for this chapter. 



" ~ x i ~ m s ' '  and Theorems" 

(1) Jeanne has Ibis list of identities. 

What do you suppose the three dots a t  the bottom mean? 
Can you make up any more identities that "look like" 
those on Jeanne's list-that is to say, that have this 
same pattern? 

(21 Albert says he can write one single identity 
to represent Jeanne's entire list. Do you think he can? 
How? 

(3)  Suppose you had Albert's single identity. Could 
you get the identity 

uxA)+s=(A-C)+5 
from Albert's by using UV? How? 

( 4 )  Anne has this list of identities: 

A + ( f i x ~ ) = ( C x B )  + A  

Could you shorten Anne's list, without really losing 
anything9 

(1) The three dffts indicate that the list can always be extended 
further. Obviousiy, you can make up lots more identities like 
this. One fifth-grade class recently pointed out that we really 
have here a list that can be continued indefinitely in either 

direction: 

Notice that we have introduced a new variable. (We chose to 
write it as 7, but we might have written it with any "variable" 
symbol except Q or A. We could not use Q or A ,  smce each of 
these is involved in the open sentence already. We might, however, 
have wr~tien it as n , 1 1  , 0 , or what- 
ever. We do not use circles, because they can easily be confused 
wrth zeros.) 

and use UV 

uv: 5 - V 
to get 

(4) You could delete the identity A + (6 x C) = (C x 8)  + A, 
so that Anne's "shortened" list would become: 
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Thus, the two identities above might be taken as axioms, and 
the identity I 
would be a theorem. Now, we need to prove that, Wen we de- 
leted 

A + ( 8  x C) = ( C  x B) + A, 

I 
we didn't revl ly  lose anything. We prove this by showing how 
to reconstnict 

1 

A + ( B X C ) = ( C X B ) + A  1 
i from the other two identities, using only W and PM. For con- , 

veniem~ of notation, let's number the axioms: 

Here we go: 

in line (i). 

{iii) a x A = A x Axiom 2. 

( i v ) ~ x C = c x B  U V : 8 + r ]  

C - A  
in line Mi). 

(5 )  Marjory says. she could shorten Anne's l ist  to (5) Marjory is right (See Hie answer to question 4.1 
this: 

D + A = A + D  
 

Maqory says that once you know these two, you can 

always make up 

by using UV and PN. What do you think? 

[page 6 1 I 
(6) Take your list of identities and shorten it as (61 This will depend upoti your class. I f  your long list used only ad- 

much as possible, without really losing anything. dition and multiplication and if H avoids fractions and negative 
What doea your final list look like? numbers, your final "shortened" list may well look like this 

(where we give the standard name for each statement, as well): 



(7) Do you know what mathematicians mean by 
the word axiom? 

<8) Do you know what mathematicians mean by 
the word theorem? 
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Reflexive Property of 
Equality W E )  

Addition Law for Zero 
MU) 

r ] x 0 = 0  Multiplication Law for 
Zero (MU) 

^ + A = A + E I  Commutative Law 
for Addition {CLAI 

^xA=Ax^ Commutative Law for 
Multiplication (CLM) 

Definition of the Numerals* 
2, 3,4, ... (Oef. Num.) 

There are other identities that might also appear on your 
"shortest list," including these: 

= ( l J + A ) + V  Associative Law for 
Addition (ALA) 

Associative Law tor 
Multiplication (ALM) 

The "shortest list" of identities that you end up with will, of 
course, depend upon Hie "long" list of identities that you started 
with, and these long lists will be different for different classes, 

(7 )  An oxiom is one of the "basicvv or "buildiig-Mock" statements 
(or identities) from which all the rest of our mathematical sys- 
tern can be derived. 

(8) A theorem is  a true statement, or an identity, which i s  not an 
axiom. (We try te keep our list of axioms as short as possible.) 

-. - 

I n  tama Madimn Project mattfials these statements ore rafenwl to col- 
lectively as "Changing Names" (CN). This dÃˆHgnotio won given them fay 
0 class of fifth-graden. 



CHAPTER 21 

How Shall We Write 
Derivations? 

[page 621 
Debbie claimed that she could use 

h i o m  1: n=Q 
Axiom 2: = A + 

Axiom3: n x A = A x  
together with UV and PN and end up with 

A + ( B  x C) = (C x B )  + A .  

George challenged Debbie to prove it, and so Debbie 
wrote this: 

Statement Reason 

( D ~ = U  Axiom 1. 

chapter 2 1 / Pages 62-63 of Student Discussion Guide 

How SHALL WE WRITE 
DERIVATIONS? 

This chapter follows easily from Chapter 20. There is, however. 
one decision to make. There are two possible ways to derive 

One method starts from 

(and is given on page 62 of the Student Discussion Guide), where- 
as the other starts from 

D + A = A + O .  
[and is givefi on page 180 of the teachers' text), 

We believe that The derivation starting from Q = Q is easier to 
get started, but it is clearly longer. The derivation starting from 

+ A = A + is shorter, but may be tricky to get started on. 
Since students often say they "don't know where to begin," the 

longer derivation beginning with Q = Q may, in fact, actually be 
easier. 

Use whichever you and your students prefer (or, if you prefer, use 
both and compare them). 
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(ii) A + ( B  x C )  = A + ( B  x C) 
7 

uv: A+(Bxc)+~'}' 

in line (i). 

(iii) [Ã‘ x Z\ = A x Axiom 3. 

PN from line (ii), 
using line (iv). 

(vii) A + ( C  x B) = (C x H) + A 

UV: A - r'] 

(viii) A + { B  x C) = A  + ( C  x 3) 

Repeat of line (v), in 
order to avoid confusing 
the underlining for PN. 

(1) Who won the argument, George or Debbie? 

(2) Andy says he can make an even shorter deriva- 
tion that will be just as good as Debbie's. Can you? 
Do you think Andy can? 

(3) Study Debbie's derivation very carefully, and 
then try to make your own derivation that uses the 
axioms 

a = 0 

and ends up with the theorem 

Try to give reasons, the same way that Debbie did. 

(1) Debbie won. Her proof is correct (and very nicely written!). 

(21 Answers will vary. 

(3) Here we go: 

(in) + A = A + Axiom 2. 

Civ) A + S = B + A  UV: A -+ 

a - A  
in line (iii). 
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(v) (A  + a)  x c PN, from line (ii), using 
line (ivi. 

= ( B + A )  x C  

(vi) ( A  + a)  x c Repeat of fine (v), so that 
the underlining for our 

= ( 8 - k ~ )  x C  first use of PN wit1 not gel 
mixed up with our under- 
lining for our second use 
of PM, which follows. 

(vii) x A = A x Axiom 3- 

= C X ( B + A )  c 4 A  
in line (vii). 

(I#) ( A  + 8) x c PM, from line (vi) 
using line (viii). 

C X  ( K + A )  

Notice that a shorter proof is possible. i t  may. however, be trick- 
ier to know how to start it. Can you see how to do it? (Hint: Try 
starting with F] + A = A + D then use UV as 

I am sorely tempted to write it out here, myself, because I think 
these are fun - but I fear that a teacher who has not had the expe- 
rience of discovering original derivations herself will not honestly 
believe that her students can discover derivations themselves. 

Probably I should not even have given the hint. Oh well, here 
is a new problem you can wort on by yourself-! won't interfere: 
Start with the axioms 

and make up an original derivation for the theorem 
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In making up a mathematical system, one always has the prob- 
lem of where to start. When one assumes a computational or 
"counting" point of view, addition is a "basic" process- it is 
new when one encounters it, and cannot be explained in terms of 
anything that has preceded it. However, multiplication, from this 
point of view, is not "neww-multiplication can be expjained in 
terms of addition (that is, in terms of repeated addition, 2 x 7 = 
7 + 7, and so on). 

If. instead, one begins with sets, then the union and intersec- 
tion of sets are basic ideas, and addition and multiplication are 
no longer basic; addition and multiplication can be explained in 
terms of set operations. 

In the present volume, we take neither of the preceding points of 
view, but lean chieffy toward a third point of view- the one which 
has been current in recent decades among those mathematicians 
who study "modern algebra." This is an axiomatic approach. Using 
it, we take addition and muRiplicat10n to be our basic notions, and 
do not try to explain them in terms of anything prior. The opera- 
tions of subtraction and division, from an axiomatic point of view, 
are then explained in terms of addition and multiplication. 

We have all known this approach for some time; we use it when- 
ever we use addition to "check" subtraction, or use multipli- 
cation to "check" division. If such "checking" is possible, then 
it must be possible for addition to tell us whether or not a subtrac- 
tion has been performed correctly. But if addition can do this much 
for subtraction, then there must be nothing logically new about sub- 
traction -and, indeed, there is not. 

There are severat ways to reduce subtraction to addition. We 
shall do it by means of additive inverses. If we start with a number, 
say, +3, we can add a number so that the result will be zero: 

+3 + = 0. 
Obviously, the number to add is '3. We shai! call "3 the additive 
inverse of *3. 

To make matters clearer, let's consider a few more examples. 
What number would be the additive inverse of *7? It would be the 
number we could add to *7, in order to get a sum of zero; 

+7 + - = 0. 
Evidently this number is '7; consequently, we say that 7 is the 
additive inverse of '7, 

What would happen if we sought the additive inverse of a nega- 
tive number? As an example, what number would be the additive 
inverse of '2? By the definition of additive inverse, it would be 
the number that we could add to -2 to get a sum of zero: 

- 2 + -  - = 0 .  
Evidently, it would be +2; we could say that the additive inverse 
of "2 is '2. 

For practice, let's find the additive inverse of "+. That would be 
"the number we must add to-+ to get a sum of zero": 
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Again, it is  clear what the number must be; in this case it is++. 
We can express this by saying that the additive inverse of -+ is4+. 

As a last example, and a particulariy interesting one, let's try to 
find the additive inverse of zero. That is, we are seeking a number 
that we can add to zero, to get a final sum of zero: 

Evidently, the desired number is 0: 

We can express this by saying that the additive inverse of zero is 
zero, or zero is its own additive inverse. 

A word of caution! A few years ago, in an attempt to appeal to the 
intuition, some mathematicians introduced the word opgmsite as 
a synonym for additive inverse. Thus, using this word, we could 
say "the opposite of *3 is '3." This introduces a hazard we have 
mentioned elsewhere: the word opposite now has a mathematical 
meaning, and it also has an everyday meaning. These meanings 
are not the same! In mathematics, the word must be used only 
in its mathematical meaning; otherwise confusion will result. If 
we even let ourselves think i ts everyday meaning, this can confuse 
us. Consider the statement "the additive inverse of zero is zero." 
Translated into "opposite" language, this becomes "the opposite 
of zero is zero." Mathematically, what does this say? It says that 
if you start with zero and add zero, the resulting sum will be zero. 

The everyday meaning of the word opposite, in this case, appears 
to result in a ridiculous statement. One should never confuse 
everyday meanings with mathematical meanings. They are dif- 
ferent. 

Now that we know what we mean by additive inverse (or, in its 
mathematical sense, opposite}, we can introduce subtraction with 
no further effort. We shall now hereby officially agree that, when- 
ever we say 

what we realty mean is 

where the notation "*6" denotes the additive inverse of 5. That 
is to say, whenever we are asked to subtract 8, what we shall do, 
instead, will be to add the addrtive inverse of 3. This will dispose 
of all of the questions involving subtraction; once we have seen 
how this works out, we shall use a closely analogous procedure to 
dispose of division (in terms of what we shall call mu/t;plicative 
inverses). 

Our present procedure of explaining subtraction in terms of ad- 
dition, and explaining division in terms of multiplication, has 
at least three important advantages. 

(i) It gives us a precise language and precise criteria for set- 
tling all "doubtful" cases that may arise. For example, the dif- 
ficulties involved in discussing "division by zero" can be handled 
precisely in this fashion, and do not require appeals to vague 
arguments. 



SUBTRACTION AND DIVISION 187 

CHAPTER 2 2  

I ~ubtraction and Division 

b e e  641 

(1) Nancy says that we kmw lots of important 
identities involving addition and multiplication, but 
we do not have any for subtraction or division. What 
do you think? 

(2) Tony says you can handle subtraction by turning 
it into addition. Do you know what Tinny means? 

(3) Do you know what mathematicians mean by 
the additive inverse or the opposite of a number? 

(4) Can you find other names for these numbers? 

tii) Once we have handled subtraction, we can use almost 
exactly this same procedure to discuss division. Thus '3 - *2 
involves virtually the same ideas as -j- + 1, although in traditional 
treatments this latter problem is usually much harder to under- 
stand. 

(iii) What we are doing can easily be extended to other future 
mathematical systems, however abstract or pathological these 
future systems may be. The "traditional" approaches usually 
cannot be extended to modern abstract systems. 

All of these matters will become clearer as we work through the 
questions in this chapter. 

Obviously this. depends upon exactly what you have done in 
your class, hut we would expect Nancy's statement to be cor- 
rect in most cases. 

This refers to what we discussed in the introduction to this 
chapter. Your students, however, wifl probably not know at , 

this point The question is not intended to be answered at this 
stage. Rather, this question is intended to focus student at- 
tention on the problem on which we now want to work. 

The additive inverse of, say, '1585 is the number we must 
add to 4985 in order to get a sum of zero: 

Opposh, in its mnthematkd Ã§Ã§nÃ means exactly the 
same thing as additive inverse. 

Note: the symbol used in this question (a small raised circle, 
to the upper left of a number) means "the opposite of" or "the 
additive inverse of." Thus, T D  would be read as the opposite 
of positive one, or as the additive inverse of positive one. 

This would be read as: "the (~iposite of nwat iw  three is  posi- 
tive three." or as "the additive inverse of negative three is 
positive three," 
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(5 )  Jean says Cynthia used to have a "rainbow 
picture" to show what we mean by opposites. Do you 
know what Jean is talking about? 

(6) Debbie aaye the official definition of the opposite 
of A is  "the number that I can add to A so that the sum 
will be wit)." What do you think? 

<7j Which of these are identities? 

a + a ~ = o  

See the discussion at the beginning of this chapter. Notice that 
part e is one place where the"everyday"meaning of the word oppo- 
site could confuse you badly. 

incidentally, you would have obtained this same result if 
you had said 

?+Z + '31 = TO + T3)  

= -2 + -3 

= -5 

Would these two different procedures always yield the same 
result? How could you write this, using variables? 

(5) The "rainbow picture" (so iiaoiad by same children in Westan, 
Connecticut) looks like this: 

-5 -4 -3 -2 - 1  0 -1 -2 '3 -4 -5 

The rule for using die "rainbow picture" is: "to find the aodi- 
live inverse of a number, just go to the other end of the rain- 
bow." 

(6) Debbie is correct 

(7) (a) This is an identity. 

You may want to view the film "Second Lesson." in which this 
occurs and is discussed. 

(bl  Not an identity. 

(0 Not an identity. 

This is included, however, because sometimes the children like 
to "fix it up" so that it will be an identity. This occurs, for ex- 
ample, in the film "Second Lesson." 



(8) Dm aaya you can change subtraction into addi- 
tion by using the identity 

What do you think? 

(9) TO; have seen how "additive inverses" aad "sub- 
traction" work. Do you know how "multiplicative 
inversesm work? 
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(dl This is an identity. 

(e) This is an identity. 

(f) This is not an identity. You can easily show that it is nob 
For example, make numerical replacements for the vari- 
ables; 

(Recalf that 2 x '3 = *6, as we have seen in our work with "post- 
man stories."l 

{g) This is an identity. 

(h) This is not an identity. 

(i) This is an identity. 

(8) Dan is correct 

(9) Now we begin to see some of the payoff from this "inverse" 
approach. Once we have attended to subtraction in class, the 
children can go on and work out most of the treatment of divi- 
sion by themselves! 

First, however, we bad hest take a careful look at how we 
handled subtractions. To find the additive inverse of, say, "3, 
we wrote 

" 3 +  _ = a  

That is to say, we considered the open sentwfe 

and we looked for the (uniifue) element in Hie truth set for this 
open sentence. 

Now, if we want to use an analogous approach tor division 
and multiplication, we must translate 

into mu~tipficofive terms. In the first place, zero played a Ã§p* 

cia1 role in oddiffon - as some of our children have said, "zero 
is (tie unchanger": 

3 + 0 = 3 
4 + 0 = 4  
5 + 0 = 5 
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Is there an analogous "unchanger" in muftipfictrfion? In 
fact, there is. Consider 

Evidently, for muhipfication, the uuncttanger" is  one. We can 
begin our translation: 

+ 3 + Q = O  
-1. 

= 1 

Presumably, we want to translate the + into x: 

Hence, if we seek the multiplicative inverse of +3, we should 
consider the open sentence +3 x Q = 1. The truth set, evidently, 
is {?I. Consequently, we say that the rnuftipficotive inverse of 
'3 is's 

Another word, meaning the same ming as "multiplicative 
inverse," is reciprocal, 

We can now define division. Let us use Hie symbol T3} 
to denote the reciprocal of '3, and ' A  to &note the recipro- 
cat of A. etc. Then we shall define A + i3 to mean A x rfi. 

Notice the parallel: A - fl means A + 9; A - B means 
A x rs. 

But wait! There is one small cmptication! If we try to find 
t), the reciprocal of zero, we must consider the open sen- 
tence 0 x = 1. It is always true that "zero times any- 
thing equals zero," that is to say, we have the identify x 0- 0. 

Because of the commutative law for multiplication, 0 x Q 
= 0 x 0, and hence, if we must always have (as we must) 
0 x 0 = 0, then we must also have 0 x = 0, and, 
since {in our usual arithmetic) 0 # 1, we cannot have 0 x = 1 - 

Therefore, the truth set for the open sentence 0 x = 1 
is the empty set. It has no elements in it, and when we search 
amund in it, seeking 1), there is nothing available. In fact, 
there is no Multiplicative inverse of zero. 

This means that we can never divide by zero. Let US try 
to, and see what happens. (f we want to find 4 + 0, we know 
that means, really, 4 x 'Q. But <V does not exist- consequently, 
the division 4 + 0 cannot be performed. This difficulty will 
always arise whenever we fry to divide by zero. In fact, division 
fay zero is always impossible. 

This discussion is far more precise than the usual discussions 
of "division by zero." It shows us far more clearly wherein the 
limitation ties-and, incidentally, it shows us how we would have 
to change our mathematical system if we wished to create a new 
mathematical system within which division by zero would be pos- 
sible! 

Everything that we have said here will extend, very nicely, to . - 
other, more abstract, algebraic systems which we shall encounter 
in the future (for example, it will extend to the algebra of "ma- 
trices," as we shall see later in this book). 
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(10) Debbie says that the "multiplicative inverse" 
of Q is "the number that I can multiply f"] by to get 0." 
What do you think? 

(11) Roger thinks Debbie is wrong. He says that the 
"multiplicative inverse" of0 is "the number you mul- 
tiply fl by to get 1 ." Do you agree? 

(12) Can you find the truth set for each of these open 
sentences? 

(8 )  *2 x = 0 

&) + 2 x n = 1  

(cl *; x = I 

(d) '{ x = 0 

<el -2; x = 1 

(0 o x n = 1  

(13) Roger says that mathematicians call the "mul- 
tiplicative inverse" of a numhr a the "reciprmal" 
of and that they write '0. 

What is 'P What is '{+ + $)? 

(14) Which of these are identities? 

(15)  Can you change division into multiplication by 
using a "reciprocal"? 

(16) Can you write a complete list of the axioms that 
we seem to be using thus far? Do you suppose this list is 
final? Will we ever want to change it? 

(10) Oebbie is wrong. This question is meant to point the students' 
attention to "multiplicative inverses." 

( 11 Roger is correct See the discussion in the answer to question 9. 

(121 (a) {0 }  

<h) {++I 
(0 { ' i t  
(dl {o} 
te) 

(f) There is no number in the truth set of this open sentence 
since whatever number is inserted in the box will result in 
the sentence 

0 = 1  

(which is false). See the discussion in the answer to 
question 9. 

(13) Roger is correct See the discussion in the answer to ques- 
tion 9. 

7 = +  since 7 x 4 - = I .  
r ( 7  1 + +) = r ( s )  

= 4 

(14) (a) Identity. 
(b) Not an identity. 
(c) Identity. 
(dl Not an identity. 

You can easily show that it is not For example, make numeri- 
cal replacements for the variables: 

('6) x (  ̂+ *+) = ( *6)  x (̂ ) = = a 1 

(which is  false) 
(el Identity. 
(fl Not an identity. 
(g) Identity. 

(1 5) Yes, see the discussion in the answer to question 9. 

(16) An appropriate list cf axioms is given at the beginning of Chapter 
23, in the Student Discussion Guide. This list (presumably) is 
not final, but is the result of our study and understanding of 
algebra thus far. We might reasonably anticipate that as we 
study further, we shall want to modify this list of axioms. 
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I Practice in Making Up 

i Your Own Derivations 
i [page 661 
t 

I In this chapter, we want to get some practice in 
making up our own derivations. 
To start with, well  need a list of axioms. Let's agree 

to use this list. at least for the time being: 

I D=D 
Reflexive Property of Equality ( W E )  

D + A = A + D  
Commutative L a w  for Addition (CIA) 

I 
 

Commutative Law for Multiplication 
(CLM) 

I Associative Law for Addition (ALA) 

D x ( A x V ) = ( U - A ) x V  

I Associative Law for Multiplication 
(ALM) 

I n+o=n . 
; Addition Law for Zero (ALZt 

m x o = o  
Multiplication Law for Zero (MLZ) 

Law for 1 (LI) 

I 

\ 1 + 1 = 2  
! 2 4 1 = 3  

3 + I = 4 Definition of the Numerals 2. , s 3, 4, . . . (Def. Num.) 

I 
4 

chapter 23  age* 66-69 of Student Discussion Guide 
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1 = 1 

*2 = 2 
'3 = 3 Definition of the Numetab + I ,  *2, . . . 

[page 671 
Every number has an additive inverse. If we use 

the notation 79) to mean "the additive inverse of T," 
then Wl is  defined as the number we must add to *2 
in order to get zero. 
In general, 

a+n=o 
Law of Opposites (L. Opp.) 

D - A = D + A  
Definition of Subtraction (Def. Subtr.) 

Every number except zero has a "reciprocal," or 
"multiplicative inverse." If we write 

'2 

to mean the "redprocal of 2," then 

l-2 ;, J. 

2 x  2 = 1 ,  

and, in general, 

Dxru=i. o + n *  
Law for Reciprocals (L. Recip.) 

n - A  = m x A ,  o+A 
Definition of Division (Def. Div.)  

The list above gives w a reasonable set of axioms for 
our "algebra." For our "logic," we shall have two rules: 
PN and UV. 

Now let's see if we can make up derivations. 
Can you write a derivation for each theorem, using 

Marjory's method of writing7 

In the derivations given below, we use the "underlining" nota- 
tion to indicate uses of PM. Some people find this helpful, espe- 
ciatiy when they are writing out a proof on a chalkboard, where 
one can watch the order in which things are written. If you do not 
find this helpful, I suggest you merely ignore the underlining. 

(1) Here is ow possible derivation; 
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(m) A x ( B  + C) = A x C + B TO, from line (it), u using - line (iv) 

O.E.D. 

(11) A x ( 6  + C )  UV: A --+ 

= ( A  x B )  + ( A  x C)  
D 

A 
C-v 

in line (i) 

i i  Ã A = A t D c u  

(iw) ( A  x a) + ( A  x c) uV: A x B --+ 

= ( A  x C )  + ( A  x 8 )  A x C -  
D 

in tine (iii) 
A 

tv) A x (I3 + C) PN, from line (ii), 
using line (iv) 

= ( A X  C) + ( A X E )  

tvi) A X { B + C )  Repeat of fine (v), 
in order to avoid 

= ( A  x C) +. ( A  x S )  - confusing the under- 
lining 

^A 
in line (vii) 

('In) A x  ( B + c )  PN, from line (vi), 

(x) A x ( B  + c)  Repeat of line ( i x ) ,  in 
order ta avoid 

= ( C  x A )  + ( A  x B ]  confusing Hie tinder- - lining for two dif- 
ferent applications 
of PN 
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(4) Lex made up a derivation for the theorem 

A + { B x C ) = ( C x i t ) + A .  
E13aap 681 

Cynthia complained that she couldn't understand Lex's 
derivation, so Bob tried to describe it. 

Lex's derivation Bob's description 

Actually, Lex really began with RPE: 

D-D  
Lex knew this was an axiom. Then 
Lex used UV 

to get 

A + (B x C )  = A + ( B  x C). 

Now, Lex used PN. He erased the name 

B x C, 
to get 

A + (B x C )  = A +. (??-?:*g.%). 

7 
(Gaping hole) 

Then, into this gaping hole, he put 
another name for the same thing. 

How did Lex know that C x It named 
the same thing that ,B x Cdid? He uaed 
CLM u- A-A-n 
and used UV 

to get 
B x C = C x B ,  

which says that C x B names the same 
thing that B x C does. 

A + ( B x C ) = ( C x K ) + A  

(xi) A X K = R X A  UV: A ---, 

B - A  
in line (vii) 

( x i i )  A x ( a  + C )  PN from line (XI, 
using line (xi) 

= ( C  x A )  + ( 8  x A )  - 
(4) This is really not a "question" to be answered, but rattier a sec- 

tion to be read by each student, and ttten discussed (as much as 
necessary) by the class. 

Here, Lex again used PN. He began 
with the identity 

A + (B x C )  = A + ( C  x B ) .  
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[page 691 
He e d  the entire right-hand aide, 

(Gaping hole) 

and into the gaping hole he put another 
name for the same thing, 

C x B )  + A, 

to get 

A - t p x ~ )  = ( c x B ) + A .  

How did Lex know that 

(C x 3) + A 

named the same thing that 

named? The answer is that he started 
with CLA 

D + A = A + D  
and used UV 

UV: (c x 3) -r r] 

which says that 

(C  x fi) + A 

names the same thing that 

A + (C x B )  
names. 

Do you understand Bob's description of what Lex 
did? 

Can you write out a derivation for each theorem, 
using Debbie'a method? 

In the derivation below, we introduce the symbol A to indicate 
one variable, in order to avoid the confusion that might result if 
we had too many different uses of the symbol f""]. 

(5) There are many possible approaches. Two excellent original 
ones, by a fifth-grade class, can be studied from the tape record- 
ing #D-1, available from the Madison Project 

(i) = RPE 
(ii) ~ x A = ~ x A  k k V : 2 x A - r ]  

in line ti) 
(iii) x A = A x CLM 

(id ~ X A = A X ~  UV; 2 - r"] 
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(v) A X ~ = ~ X A  PN, from line (ii), 
using tine (iv) 

hi) A x 2 = 2 x A  Repeat of line (v) 

(viii) A x (1  + I )  = 2 x A PN, from liite (vi), 
using line (vii) 

(mi) A x (1  + 1) = 2 x A Repeat of line (viii) 

(xii) ( A  x 1) + ( A  x 1)  = 2 x A PM, from tine (xi), 
using line (XI 

(xiii) x 1 = L I  

(Xiv) A x 1 = A UV: A --+ 
in line (xiii) 

0 
(xv) ( A  x 1) + ( A  x 1) = 2 x A Repeat of line (xii) - 

PN, from tine (xu), 
using line (xiv) 

(xvii)  A + ( A  x 1) = 2 x A Repeat of tine (xvil - 
(xviii) A + A = 2 x A PN, from line (xvii), 

using line (xiv) 

(fi) ~ + u = z x ~  uv: - ̂A 

in line (xviii) 

Q.E.D. 

#-A 
in line (iii) 
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(7)  Theorem: 3 + 2 = 5 

(8) Theorem: ( A  + B }  + (C i D) 

W A + + C )  = ( B  + A )  + c PN, from tine (ii), - using line (tv) 

(vi l  A + ( 0  + C) = ( 8  + A )  + C Repeat of line (v) 

(viiil A + ( 8  + c) = c + (a + A )  PN, from line (vi), 
using line (vii) 

RPE 

(ii) 3 + 2 = 3 + g  U k 3 + 2 + [ Ã ‘  
in line (i) 

(iii) 2 = t + 1 Dei. Nurn. 

(vi) 3 + ( 1  + 1)  = ( 3  + 1 )  + I UV: 3 - D 
'+A 
I -V 

in line (v) 

(vii) 3 + 2 = 3 + ( 1  + I )  Repeat of line (iv) 

(viii) 3 + 2 = (3  + 1) + 1 PN, from fine (vii), 
using line (vi) 

Ox) 3 + 1 = 4 Def. Hum. 

(x) 3 + 2 = ( 3 + 1 ) + 1  Repeat of line (viii) - 
(xi) 3 + 2 = 4 + 1  PN, from line (K), 

using line fix) 

hi!) 4 + t = 5 Bet. Mum. 

(xi$ 3 + 2 = 4 + 1 Repeat of line (xi) 

PN, from fine (xiii), 
using line (xii) 

RPE 

= ( A  + B )  + (C + D) + ( c ~ D ) + ~  
in line (i) 
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c + D - ~  
in tine (iiil 

PN, from line (ii), 
using line (iv) 

+ n  uv: 8 -m 
C - A  
D - V  

in line (iii) 

Repeat of line (vl 

PH, from line (vii), 
using line (vi) 

Repeat of line (viii) 

We shall finish this using a shorter notation: 

(xii) (A + a) + (C + D) PN, from line (ixl, 
using line (xi) 

= A + [ (c  + 8 )  + 01 
(xiii) ( A  + a) + (C + 0 )  

*This use of ALA i s  very common: oil* often hm four t e r n  (h f :  A, 8, 
C, 0 )  to fit into the thna frames V. Stm il is A which w~ wish to 
isdate by irtflif (saa the r ight-bd aide the identity we we trying to 
obtnin), we me UV as we do hem. 

Un this step, we wish to isolate D. Thn fact g i v Ã  us our bolt hint as to 
how to uie UV in A U .  
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(9) Theorem: ( A  + B )  x ( A  + it) (9) For this problem, we shall use the shorter method of writing: 

+ [ A  x (a + a)]} + (a x 8 )  

A + B )  x ( A  + 8 )  = { ( A  X A )  

*ThÃ expoiwnt 2 means that th* m ôm hat been uwd twice in tha step 
takon. 
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We put this chapter in at this point in order to provide some 
background in exponents, which win be helpful in following chap- 
ters. While we are a t  it, however, we may as well hill two birds 
with one chapter, so we are including another matter of consid- 
erable importance: once people recognize the creative way in 
which men build mathematical systems, they soon realize also 
that, like medieval cathedrals and New York City, mathematical 
systems are often unfinished and still in a state of being eiabor- 
ated and extended. One comes now and then to the "frontier" 
or "growing edge" of the system, and needs to build further in 
order to move ahead. 
Now, when this happens, there is a delightful interplay of cre- 

ative freedom and originality on the one hand, and the restrictive 
logic of the previously existing structure on the other hand. You 
can see this interplay at work in art, music, architecture, and 
literature, as welt. 

In general, when you are writing the third act of a play, you 
have an important role for creative originality and freedom-a 
very large role, indeed! Yet you are bound, in a subtle way, by 
the logic of the first two acts. You should, in general, have the 
same characters i n  the third act as in the first two. The unex- 
plained appearance or disappearance of characters between acts 
two and three would ordinarily be considered a weakness (unless. 
as in Kafka, the logic of the preceding acts has already accus- 
tomed the audience to such mysterious appearances and disap- 
pearances). Moreover, each individual character should behave 
in a way that is  consistent with the personality you have estab- 
lished for him in the previous acts. The important thematic ele- 
ments of the first two acts should, ordinarily, be carried on into 
the third act. You can find for yourself many other respects in 
which the third act is expected to "grow naturally" out of the first 
two. 

So much for ptays. Let us turn now to mathematics, and see how 
these encounters at the "frontiers" lead us to extend our mathe- 
matical system in a way that is consistent with the already exist- 
ing part of the structure. 

The two mathematical structures we have chosen to study are 
both interesting in their own right. One, the system of exponents, 
was gradually elaborated over a period of centuries. Descartes 
(1 596-1650) made use of exponents on the level of elaboration of 

3 5 = 3 x 3 x 3 x 3 ~ 3 = 2 4 3 .  

and also with variables, such as 

x1 = x * x - x  

or what we should write as 

(although, of course, Descartes did not himself use the symbol 
to denote a variable). Earlier versions of exponents can be 

20 1 
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CHAPTER 24 

' Lattices" and Exponents 

Frequently, we build up a mathematical system for 
some reason or other, and are proud of it because it is 
our own creation and because it mema to "work." 

Then, on some black day or other, we discover that 
our system does not "work" any longer. We reach a 
point that our system cannot cope with. (This is some- 
what like the feeling people had, before Columbus, 
that if they came to the edge of  the world they would 
fall off. We have come to the "edm" of  our beautiful 
mathematical system, and we seem to be in danger of 
having nowhere else to go.) 

Can we build on to our system? Can we extend it 
further? 

Let's look at this, in two important cases, 

I.  THE SYSTEM OF "LATTICES" 

Professor David Page, of the University of Illinois, 
has introduced an interesting mathematical system, 
which we might represent in the following way. 

found, in various forms, for example in the writing of Nicole 
Oresme (1312-1382). See Appendix A: Newman (1581, Eves 
(151). 

An extension of the system of exponents, to include zero, nega- 
tive, and fractional exponents, very much in the spirit of the 
present chapter of Explorations, was given by the great English 
mathematician John Wallis (1616-1703). Thus. it would be a 
modest oversimplification, but perhaps reasonably accurate 
nonetheless, to say that the "simple" part of the structure of 
exponents - using positive integers- was the work of the first half 
of the seventeenth century (indeed, partly the work of our old 
friend Descartes), white the systematic extension of this system 
"beyond the frontiers" - i.e., into zero, negative, and fractional 
exponents-was the work of the later half of the seventeenth cen- 
tury (in the writing of the Englishman John Wallis), 

The other mathematical system which we shall consider is far 
more recent. I t  is the creation of Professor David Page of the 
University of Illinois, and is one of the original mathematical 
explorations which Professor Page worked out in the classroom. 
as a joint effort between himself and his class of elementary school 
children. It dates from the 1950's and 1960's. 

We shall now develop these two systems. In each case, we shall 
develop the "basic" or "simple" system first; then we shall run 
into the "frontier." where the structure is not complete; and 
then we shall extend the structure, so as to be consistent with 
what had previously been built. 
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To begin with, we write numbers in an array or "lab First, we build UP the "simpte" or "basic" part of the structure. 
tice" like this; At  this stage, Professor Page deliberately and wisely operates on 

T (andsoon) an intuitive level only. He refuses to explain "how" he is doing 
31 32 these problems! To offer any explanation at this stage would make 

21 22 23 24 25 26 27 28 29 30 it nearly impossible for the children to use any creative origi- 
11 12 13 14 15 16 17 18 19 20 nality in extending the system later on. Each child is incited to 

I 2 3 4 5 6 7 8 9 1 0  guess how he thinks these problems should be handled. tnci- 
dentally, it is probably a good idea to write the array 

Now. this 
numbers: 

e us a new way to write names for 
41 42 43 . . .  
31 32 33 34 35 36 37 38 39 40 
21 22 23 24 25 26 27 28 29 30 
11 12 13 14 15 16 17 18 19 20 
1 2 3 4 5 6 7 8 9 1 0  

on the chalkboard a t  the front of the room, and keep it there 
during this entire discussion. But-at this stage-do not show 
how you are using this array! 

( 1 )  What number do you suppow is meant when we (1 1 3 -+ names the same number that 4 does: 
write 

3 + ?  3 4 = 4 .  

f2i What number do you suppose is meant when we (2) 7 T names the same number that 17 names. Recalling the mean- 
write ing of the symbol =, we can write 

7 T ?  

Can you find simpler names for each of these num- 

here? 

(3) 9 Notice that in these problems we are not 
telling the students how to interpret the ar- 

(4) 8 rows-we are merely telling them the results 
of using the arrows. In particular, we are not 

(5) 35 telling them to interpret the arrows as "mo- 
tions" on the array of numbers! (Actually, it 

(6) 14 is virtually certain that the students are inter- 
preting the arrows in this way, but we are not 

(7) 17 allowing anyone to say so explicitly, because 
fpatce 711 we shall soon want to ask the children just 

(8) 12 what the arrows really do mean.) 



In questions 1 through 24, we have been developing, on an in- 
tuitive level, the "simple" or "basic" part of Professor Page's 
mathematical structure, which he refers to as a "lattice." 

Now, with questions 25 through 30, we begin to arrive at the 
"frontiers" or "incompteted growing edges" of this structure. 
We have come to the edge of the world and are in danger of falling 
off. 

In problems 25 through 30. we suggest you <to not point out 
this danger to the students. They may see it, or they may not. 
Don't worry. The discomforts of frontier life wilt become apparent 
to everyone as soon as we reach problems 31 through 34, and that 
will be quite soon enough. 

Of course, if a student does discover the frontier at this point, 
take full advantage of his contribution. 

Note: Before working on question 25, it may be advisable to ask 
the class what an identity is. If your students have not noticed that 
they have now reached the edge of the world, they will (presumably) 
say that this is an identity. But if they have noticed the limitations 
of the mathematical structure we have been using, they may be 
much less certain. 

Let us look at the difficulty. Since we have never, thus far, dis- 
cussed with the children how they are handling these problems, 
there is every reason to hope that different children have been 
handling them in different ways. 

Here are some ways they may have been using: 

(i) Since we have the geometric array of numbers in full view 
on the front board, and since the symbolism of arrows 

(and so on) makes a deliberate appeal to one's intuitive notions 
of motion, we hops that most students are imagining actual 
moves around the array of numbers. For example, for 17 f such 
students would be thinking of "moving" from 17. straight upward 
"one step," and consequently landing at 27. 
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(ill Some students may have done this. Having started out 
thinking in terms of geometrical motions, they may have gone on 
to notice that an "upward" arrow, f , seems to have the effect of 
"adding ten"; a "downward" arrow, A ,  seems (usually!) to have 
the effect of "subtracting ten"; an arrow pointing to the right, +, 
seems (usually!) to have the effect of "adding one"; an arrow 
pointing to the !eft seems to have the effect of "subtracting one"; 
an arrow like 7 seems to be equivalent to two other arrows, namely 
-P T ;  andsoon. 

I f  a student has recognized this seemingly equivalent reintetpre- 
tation of the arrow symbols, he may be making use of it. Indeed- 
partly unconsciously, perhaps - he may have discarded the "geo- 
metric movements" idea, and be handling these problems entirely 
arithmetical!y. 

(iii) Still other student approaches are possible, but we leave 
you to discover them from your own children. The two above are 
perhaps the most basic. 

Now, let's see what happens to these two kinds of student meth- 
ods, when they encounter problems 25 through 35. 

(i) Those students using the geometric motions approach may 
(if they don't notice the imminence of failing off the edge of the 
earth) reason that 

El-+ 
means start somewhere on the lattice, move one step to the right, 
then move one step to the left. You get back where you started, so 

is an identity. 
You can try this out for yourself, using actual motions on the 

array, starting at 13, or 22, or 5, etc. Here is  one. Start at 14: 

Move one step to the right: 

Then (since you have just arrived at 15). turn around and move one 
step to the left: 
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Behold! You do get back to 14, Consequently, the statement 
14++==  14 is true. 

But-here is the crucial question! Wit1 this always work? 
Suppose you start at 20. When you attempt to move one step to 

the right: 

you have nowhere to go! There is no number at 20 +. But, if 20- 
' 

is meaningless, then it may be risky to build onto the meaningless 
symbol 20 -+ in order to get 20 -> +-. Hence, i t  would appear that 
20 -4 +- is  meaningiess, and so the statement 20 -Ã <- = 20 can 
hardly be classified as either true or false! 

This appears to be chaos. We have reached the edge of the world. 
and fallen off. Or. less metaphorically, we have gone as far as our 
mathematical system will let us go. 

The question, now, is can we extend our mathematical system? 

Before we attempt to do this, let us look first at how this prob- 
lem appears to those students who have discarded geometrical 
motions, and are handjing these problems arithmetically. 

(ii) For the student who interprets -* as "add one," andwho inter- 
prets <-Â as "subtract one," there seems to be no difficulty. The 
expression -Ã .+ means merely "start with some number, then 
add one, then subtract one." 

This can never lead to difficulty, and will always get you back 
where you started. Consequentiy, with this interpretation, 0 + + 
= 0 does appear to be an identity. 

Does this mean that, for these students, the "frontier" poses no 
problems? Unfortunately, no-not, at least, if they think carefully 
about the matter. For they arrived at their interpretation of -Ã as 
"add one" because they believed that -Ã atways meant the same 
thing as "add one." 

But now they have just seen that this is  not so! The name "20 
plus 1" clearly refers to 21, but "20-+" does not name any number 
whatsoever, in the original geometrical sense. Hence, when these 
students replaced geometric motions with arithmetic operations, 
they may not have been justified in doing so! 

Since the matter of extending mathematical structures is of very 
great importance in the study of mathematics, it is worth devoting 
some thought to this right now. 

Many tines a structure is built, and must sooner or later be 
extended. 

Here are some examples: 

(i) The number system 1, 2. 3, 4, . . . must sooner or later be 
extended to include zero; i.e., it must be extended to the larger 
system 0, 1, 2, 3, 4, 5, . . . 

(ii) While there is choice as to which extension we shall make 
next, the system 0. 1, 2. 3. 4, 5, . . . must sooner or later be ex- 
tended still further. We might, for example, extend to the larger 
system . . . -3, -2, 1, 0, '1, '2, '3, . , . 
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(iii) The system , . . '3, "2, -1, 0, '1, +2,"3, . . . must be extended 
sooner or later (if this was not already done earlier} to include 
fractions. (In this way, we arrive at the system of rational numbers: 
this includes all integers, positive and negative; zero; and all frac- 
tions, "mixed" numbers, terminating decimals, and repeating 
dec tmals, whether positive or negative.) 

(iv) Two further extensions of this number system must be made 
sooner or later to get the system of real numbers and the system of 
complex numbers, but we shai! not discuss these at this point. 

(v) The system of integer exponents 

3 = = 3 x 3 = 9  
3 ' = 3 x 3 ~ 3 = 2 7  
3 " = 3 x 3 x 3 x 3 = 8 1  

must be extended to include zero exponents, 3' = ?; negative ex- 
ponents, 3 * = ?; and fractional exponents, 3'̂ = ?. (Even further 
extensions, to real and complex exponents, must be made at a later 
stage in one's studies.) 

(VI) The system of factorials for positive integers 

must be extended to allow for zero factorial, O! = ?; for the fac- 
torials of negative integers, I! = ?, -2! = ?; and for the factorials 
of rational numbers, +! = ?, 7-$! = ? . . . 

This latter problem was finally-and beautifully-solved in the 
eighteenth century by Leonard Euler, one of the greatest mathe- 
maticans who has ever lived. 

(vii) Many other examples could be given, such as Abelian sum- 
mation, Cesaro summation, analytic continuation, and so on, but 
they are far beyond the scope of this book. Suffice it to say that 
extending mathematical structures is one of the very important 
problems that recurs throughout the study of mathematics. 

In the present book, of course, we mean to look at this problem 
in two very simple cases only; Page's "lattices" and the system of 
exponents. 

Having argued that extending systems is important, let's see how 
it works. 

Speaking somewhat roughly and intuitively, we have a system 
that we have already built. For one reason of another, we bump into 
the edge of our system somewhere, and realize that it does, after 
all, have its undeveloped frontiers. What we usually do, then, is to 
take a very careful look at the way our already existing structure 
behaves. We then select among these attributes of the "original" 
system, and ask ourselves, which of them are so important that we 
want to preserve them, that we want them to be attributes of our ex- 
tended system as we!!? 
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On the other hand, which are expendable, and can be allowed to 
fail by the wayside? 

Once we have decided which attributes to preserve, we use our 
imagination to try to extend our structure in every way we can de- 
vise (at least until our time and patience run out). 

Then we look at each extension in turn, and ask ourselves, if we 
extend the system this way, will the essential attributes still apply? 
i f  not, we discard that method of extending our system, tf they wit! 
still apply, then we accept that method of extending our system - 
and, behold, we now have a "larger" system! 

Let's try it, on Pages's lattice. When we get to 20 -+, we bump 
into the undeveloped frontier of our system. We must find ways to 
extend the system. Here are some actual'suggestions, mostly made 
by children (one or two, I must admit, were suggested by teachers): 

(il (Often suggested by children in grades 4 through 6.1 Wrap the 
paper into a cylinder, so that after 20, you come around again to 
11. With this extension, we will have 20 -Ã̂  = 11. 

(ii) (Often suggested by children in grades 4 through 8.1 Wrap 
the paper around into a kind of "barber-pole" cylinder, so that after 
20 you come around and start the next higher line. 

With this extension, we wilt have 20 4 = 21. 

(iii) (Often suggested by adults; sometimes by children.) Imag- 
ine that the array 

is on a rubber stamp, and just keep stamping the rubber stamp 
down, to give a kind of wallpaper design: 

With this extension, we will have 20 -* = 11. 

(iv) Since -Ã sometimes means "plus one," pretend that it 
always does. In other words, throw away the geometry and fall back 
entirely on arithmetic. With this extension, we will have 20 -* = 2 1. 

(v) (Suggested by a teacher from New Hampshire, where it 
snows!) When you get to the edge and can't go any further, just sit 
there and spin your wheels. With this extension, we get 20 += 20. 

(vi) (Suggested by a teacher from Manhattan, which is realty a 
rather small island with rather a lot built up on it.) When you get to 
the edge and can't move to the right, move up instead. With this 
extension, we get 20 -Ã = 30. 

Probably you and your students can think of yet other ways to 
extend our original system. 

Now we have to choose among them! How shall we do it? Well, 
let's see how well they work. How satisfactorily do these various 
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extensions preserve the really important attributes of our original 
system? (This raises the question, which are the "really important" 
attributes of the original system, anyhow?) 

System d). Geometric motions on the cylinder will work generally 
the same as on the plane, at least where problems like +-and 
7 1. + are concerned. Therefore, -+ +- = will be an identity 

for this extension, and so will Q 2 j, <- = 0. 
However, the cylinder does not take care of another kind of dif- 

ficulty, namely, 3 J, . Consequently, Q & /* +- = will not be an 
identity for this extension. (Can you extend it Ã§t tl further, so that 
this, too, will work?) 

We may, then, lose a kind of "commutative law," because 7 1 + 

may not work the same way as 4 P +. 
Nonetheless, the cylinder extension is not hopeless. Use it if you 

wish. (It is perhaps not the most convenient, but who says you have 
to seek convenience? After ail, it's yow system that you are 
building!) 

System (iil. For this "barber-pole" system, nearly everything can 
be made to work out all right H you interpret things coirectty. 

System (Hi). The "wallpaper" or "rubber-stamp" extension is 
really about the same as the "cylinder" system. Can you extend it 
so as to cope with 3 i, and so forth? 

System dv). The "arithmetic" system (really about the same as 
the "barber-pole" extension, as a matter of fact] is  a powerful and 
convenient one. It can also be represented as a more complicated 
kind of "waifpaper" design: 

51 52 53 
. . , 41 42 43 

31 32 33 
21 22 23 24 .. , 

. 9 10 11 12 13 14 15 16 17 18 19 2021 ... 

. .  -1 0 1 2 3 4 5 6 7 8 9 10 1 1  ... 
. -10 -9 -8 -7 '6 '5 -4 -3 -2 -1 0 1 ... 

. -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 . . .  

(Can you find our "original array" hiding somewhere in this new 
"extended array"?) 

In this system, + = is an identity, 3 I = 3 - 10 = "7 is 
a true statement, and both Q P + *- = Q and Q 4. P +- = Q are 
identities. 

The symbols 7 i <- turn out to mean the same thing as i P + 
(so we have our "commutative law for arrows"), and MI on. This 
system works very well, because it is really arithmetic, and arith- 
metic works we!!. (Notice that we have to include both positive and 
negative numbers; without them arithmetic does not work well) 

System W.  In the "spin-your-wheels" system, 20 + = 20. Con- 
sequently, 20 -+ + means (20 +} +, which means a +-, (using a 
version of PN), which means 19. Hence, 20 -+ + = 19 (trace out 
the motions geometrically to see what this means). Thus, -* *- 

= n is not an identity. In fact, quite a few other things don't work 
out too nicely either. 
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Which of these open sentences are identities? 

Can you find simpler names for each of these num- 
bers? 

(31) 15 t 

(32) 9 + 4 

Adopt this extension only if you have a taste for asceticism. 
self-denial, and the long-hard-road approach. (But the choice is 1 
yours!) 1 

System hi). This system has the same genera! kind of complica- 
tions that system (v) does. 

Now that we know where we stand, let's return to the questions 
in the Student Discussion Guide. 

(251 (We can now discuss this more fully, at least amongourselves. 
The class discussion with the students should be allowed to 
grow naturally!) 

If you don't notice the (titcuHies at the edges, then you will 
say that this is an identity. tf you de notice the difficulties at the 
edges, then you realize that the question is meaningless until 
you make a suitable extension of your mathematical system! 
Whether the open sentence T] -> + = Q twns out to be an 
identity will depend upon which extension you select. Quite a 
few different ones are passible. 

(26) This question is similar to question 25. The motion P] P rnoy 
cause you to "faif off the edge." Of course, in any "reasonable" 
extension. 

n . i + = D  
will not turn out to be an identity. 

(27) This question is simiiar to question 25, If, for example, you 
choose the "arithmetic" extension, then the open sentence 

will be an identity. (Motice also the "closed triangle" pattern 
of 7 1 .I + 

(23) Not an identity. 

(29) Similar to question 25. 

(30) Similar to question 25. 

Some students (and some classes) may not have detected the 
pitfalls hidden in questions 25 through 30, For these students we 
now make the issue sharper and clearer. Questions 32 through 34 
are intended to cause every student to notice the "falling off the 
e d g e  phenomenon. 

(3 1 ) 25 (No difficulty here!) 

(32) Here we encounter the frontier. The symbol 9 -Ã -* means, of 
course, (9 +I -, which we can analyze by using a form of PH. 
The symbol + names the same thing as + does. But 
~rr f~r tunat~ly,  if we have not extended our originof system, 

the Symbol 10 -> doesn't mean anything at all! 
If your class has not already extended the original system, 

this might be a good time to do so. By now the need should be 
apparent! 



11. THE SYSTEM OF EXI'ONRSTS 

We fwquentlv encounter pmblc-ms like the following. 

That is to say (recalling what = means!), the symbol 12 / + 

names the same thing that 1 - names-but, unfortunately, 1 6 

doesn't name anything at all. It i s  a meaningless symbol-un- 
less we have extended our original system. 

(If we use the "arithmetic" extension, of course 1 +will mean 
zero: 1 - = 0.1 

This says that the symbol 22 + *- names the same thing that 
21 + names. Unfortunately, if we have not extended our system, 
the symbol 21 - is meaningless-it does not name anything. 
Hence, neither does 22 + -. 

(If you choose, say, the "rubber-stamp" extension. 21 Ã = 30, 
and so 22 - - -- - 30. If. instead, you chose the "barber-pole" 
extension, or the "arithmetical" extension, then 22 - - - 20.) 

(35) This depends upon your class. 

(36) This depends upon your class. (My own choice is the "arih- 
metic" or "barber-pole" extension.} 

We now build the "simple" or "basic" part of the system of 
exponents. 
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We can often make these problems simpler, and 
easier to think about, if we introduce the system that 
mathematicians call exwnents. Here is how it works 

Can you find simpler names for each of these num- 
hers? 

(371 4' 

(38) 7a 

139) 1% 

1401 2" 
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Obviously, we don't want to tackle this problem by brute force. 
What we need here is an idea! Let's group according to ALM, 
much as we did in question 46. Thus (-1)"" wit! mean 1965 fac- 
tors of negative one. If we group the first four together, we will 
have 

(-l)wM = (-11' (-1)1941, 

since there will be 1961 factors left. Now, we saw in question 
45 that CD4 = '1; hence, (-1)"" = + 1 x (-1)'"' = (1)'"'. 
If we group four factors of -1, again, we have 

since 1961 -4 = 1957. Hence. ("1)"" = '1 x (-1)""' =(-1)'"'. 
We can "remove" four more factors of "I, by this same process of 
grouping according to ALM, to get 

Where will this process end? Obviously, when we can't remove 
any further groups of four factors of 1. Now, 

and so on. If we remove all possible groups of four, we are left with 
a "remainder" of 1: 

That is, we shall ultimately get down to 

Thus the final answer is 
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Once we see how this works, we can save a tittle time in the fu- 
ture. We might merely have done this: 

From this we see at once that, after we have removed 491 groups 
of 4, we shall be left with a "remainder" of one single factor of-1. 
Since each group of 4 meant merely multiplication by +I, the re' 
sult is, finally, 'I. [We could, instead, have removed groups of two 
factors, since -1 x "1 = '1.) 

(49) Removing groups of 4, 

266 R2 
4) 1066 , 

$0, after we remove 266 groups of 4, we shall be left with a 
"remainder" of 2 factors of -1: 

(Note that we might, instead, have removed groups of 2 factors 
of -1.) 



Which statements are true and which are false? 

(53) 2 < lo3 

Can you find the truth set for each open sentence? 
4 Let's agree to use only positive integers.) 

(58) 2* = n' 

(53) False. Since 2" = 1024 and lo3 = 1000, the statement 
2'' c 10' is really the same as (using PN) 1024 < 1000, 
which is false. 

(54) False, 2'' < 10' is really the same as 1024 < 100. 

(55) True. 2" < 104 is realty the same statement as 1024 < 10,000. 

(56) True. 5" < 4' is realty the same statement as 625 < 1024. 

(57) False. 3' c 4' is really the same statement as 81 < 64. 

Consequently, the open sentence Zb = Q3 has the truth set {4}.  
Notice that we could also write 2 = (2T. 

Hence, the open sentence 3' = 9" has the truth set 2 } ,  
Notice that we could also write 3" = (3Y. 

Hence, the open sentence 5'' = 25" has the truth set 151. We 
could also write 5" = (5'15. Does this suggest anything? 

Thus, the truth set is 7 .  It shouldn't be surprising that 3 fac- 
tors (of 2) plus 4 factors, turn out to be 7 factors. 

(62) {a} 

Hence, the open sentence 2' x 53 = Q' has the truth set 1 101. 
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(66) 2' x 3' = Q' 

Hence the apen sentence 2' x 3' = Q' has the truth set {6}. 

(68) We misfit attack this problem as follows: 

Our problem can be written as 

512 < tp < 1024 

Tha only power of 10 which falls between 512 and 1024 is, 
evidently, 1000. 

That is, 

512 < 1000 < 1024 
or 

512 < 10' <; 1024. 

Consequent! , the open sentence 512 < 10Â < 1024 has the 
truth set {3}. 

(69) We might attack ttlis problem this way; 

Clearly, then, 25 < 49 c 50. In other words, the open sentence 
25 < 7Â¡ 50 has the truth set W. 

So the open sentence 

2" < 5Â c 2' 
can be written as 

64 < 5Â < 128. 

Now let's see which powers of 5 might tie candiifates: 

Consequently, the open sentence 64 < 5Â < 128 has the truth 
set 3 .  



If we use only positive integers as replacementa for 
the variables, whichof these are identities? 

(74) n' x = D 
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Which powers of 2 might be candidates? Lees took at a few: 

So, evidently, the open sentence 10 < 2" < 100 has the truth 
set {4,5, 6}.  

Let's look at some powers of 3: 

Evidently, the open sentence 10 < 3Â < 100 has the truth set 
3 , 4 ] .  

(73) 100 < 5" < 1000 

Let's took at some powers of 5: 

The open sentence 100 < 5' < 1000 has the truth set {3,4[. 

We have now developed some familiarity with the simple, 
"basic" part of our mathematical system, namely, positive integer 
exponents. We now begin to move toward the unfinished "frontier" 
of our system. 

(74; Not an identity. For example, try 

uv: 2 -. r] 
( 2 x 2 ) x ~ 2 x 2 x 2 ) = 2 x 2 x 2 x 2 x 2 x 2  

which is false. 

(75) An identity. 

(76) An identity. 

(77) Not an idefltiiy. 



(78) Nat an identhy, For example, try 

(79) Mot an identity, 

(81) Not an identity, 

(821 An identity. 

(831 Berm we encounter the frantiec pm + # =  is au identity, 
for positive integers, provided u > b. 

Let's try ~t out with some numbers. 

We get 2' + 2' = 2'. Is this statement true? Can we see "why" 
it is true? 

That worked out smoothly enough. But, of course, we satisfied the 
condition a > b. 

Suppose, instead, we had a = b. What then? Let's try it. 

We get z5 + 2' = 2'. Now-what on earth can we mean by the sym- 
bol 2 O ?  Well, 

Consequently, ~f we want to retain the identity p + P = p b f o r  
the case where a = b, we must agree to use Za as a name for the 
numhr 1, 2' = 1. 

To summarize, for positive Integers a, b, and Q, the open sen- 
t e n c e ~ ~ + ~ ~ = @ - ~  lsan tcient~iy, prov?cieda>b lfa=b,wesud- 
denly hit the ftant~er of our system; we get the 5ymbol 2', or, in 
general, p, which bas no mean~ng. 

We can extend our system by giving a meaning to the symbol p, 
where p is a pm~tive integer. 

If we want the open sentence f l +  pb = pa to cont~nue to be 
an tdent~ty, even for our extended syslem, then there IS only one 
rneantng that we can give to p. We must g~ve it the meaning 



(84) Do you see any need ta extend our syshm of 
exponents? 

(851 Thus far, we have been using the set d p ~ t j v e  

integem as the replacement set for our variables. What 
other set might we use, ~nstead nf merely p i t i \ , @  
integers? 

(Rernem ber that here, p t5 some positive integer.) We have now ex- 
tended our system of exponents to allow expono~ents 0, 1, 2, 3, 
. . ., that is, pos~tive integers for exponents, and also zero as an 
exponent. 

Can we extend our system st111 further? Well, as a matter of fact, 
we more or less need to do so. For, the open sentence pa + pb 
= p - b  i s  an   den ti ty provided a 2 b. But suppose a < b; what h a p  
pens then? We get, for example, this sort of situation: 

uv: 2 -- p 
3 -+ a 
5 -> b 

from which we get 2' + 2' = 2-' slnce 3 - 5 = 2. 
Now, what on earth can we possibly mean by the symbol 2">? Well, 

Hence, if we want the open sentence p* + pb = pa- to be an iden- 
tity, even for a < b, then we must give 2 the meaning 

In generaf, we can extend our system to allow for negative inte- 
gers as exponents. When we make this extension, if we want the 
open sentence pa pb = pa-b  to continue to be an ident~ty, even 
for a < b, then there IS only one meaning we can gtve to the symbol 
R-=. We must gkve it the meaning 

(Similarly, pq must be given the meaning 

the symbol p-& must be given the meaning 

and so on. Remember, p is some pos~tive integer.) 
We have now extended our system so that any integer - pasitive, 

negatkve, or zero -can be used as an exponent. 

(84) This has just been discu~sed abbve. 

(85) We might include zero, negative integers, and fractions as ex- 
ponents, (Actually, one could even fp further, and would do so 
in advanced malhematics.~ 
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(99) p A z4 = 

(100) M w  says that if there really is such a thing as 

9+, then 
I 1  

97 x 97 = 9. 

TB Maty tight? Da you think there really is such a 
I 

thing as 9:? 

We have not said much aWut this; we leave it to you and your 
class. It may not even require discussion. 

That is, the open sentence 10' + lo' = has the truth set 
{lo-=}. 

(100) Yes, May is ri@ 

Here IS a new frontier! What on earth can we mean by the symbol 

$7 
Can we extend our mathematical system to cope with problems 

like this? Well, pa x pb = p a + & .  
Let's uw UV this way: 



C m  your ex&ndd syukm cope with them problem? 
Can you h d  simpler nsmeu for m y  of Lhw n u m b ?  

T ~ U S  we get 9; x $ = 91, or 94 x 9; =, 9. ~ e n c e ,  we SIIOUICI 

extend our system by using the symbol 9 5  to refer to mme el* 
ment of the truth set of the open sentence x = 9. Now, 
th!s truth set is {+3* -3). 

Which meani~g shaU we give to our "rn$aningIe~s*~ symbol 9$? 
Shall we say 9r = '3, or shall we say 9 7  = -3? Eilher might be 
poss~ble, but mathematicians have chosen to give 9 3  the meaning 

In other words, 9; =fit if we remember that the symbol < 
always refers to the nonnegative square rmt (if there is one). 

We have now extended our system to allow positive integers, 
zero, negative integers, and fractions (either positive or nega- 
tive) to wme as exponents. That is,  we can now use any rationa) 
number a5 an expnent in our new extended system! 

2" = 1024 

2' x 2' x 2' x 2' x 2' = 1024 

and so 

1024; = 2 ' =  4. 

Using the symbol 

3- 
to denote what is called the 'Vim mar' of a number, we can write 

We could have hckjed this problem in many different ways. Here 
is a nice aoproach, In the old system, (prls = p a  has been an 
identity. I f  we want it to continue to be an identity in the new 
extended system, we must have: 



I t  wvc use rnt~onul n u m k m  as mplacements for the 
variabl~q t~ and h,  which oft he fnllowing are ~dentities' 

i 1121 Can you descrihe how you extended the o r i ~ -  
inn1 ~ v s t e m  OF expnenLq7 Why did you do it the way 
that you did" 

l%r l  I I ~ ~ I ~ F  :f, 

Then rs = 10 x +  = 2, and,,~nfact,we have (2");=2', s ~ ( 2 ' 0 ) ; = ~ .  
Using PN* we get (1024) $= 4. 

( 1061 Not an i~emtity. 

(1071 An idemtity. 

(1081 Art idemtity. 

(1091 fin identity. 

1 10) Mol an identily. 

1 1 1) An identity. 

(1 12) This discussion will depend upon your class. 



Before teaching this lesson, you may want to view the Madison 
Project f~ im  entitled "Guessing Functions." This film shows a class 
of culturally deprived urban children in grades 6 and 7. (At  least, 
their teachers assure me that these children are culturally deprived. 
You could never tell it by looking at them or by working with them 
on mathematical problems.) 

What do mathematicians mean by a function? Well, let's first 
observe what we might call a rule, and what we might call a formula. 

Here is a rule: Whatever number you tell me, I'll double it, then 
add six, and tell you the answer. Here is a formula, which i s  a way 
to use variables in writing a rule: Let [""j represent the number you 
tell me and let A represent the number I answer back. Then the 
preceding rule can be written down as the formula 

Here is a different rule. Whatever number you tell me, I'll add 
three to it, double the result, and then tell you the answer. The 
formula for this second rule is 

Are these two rules (or formulas) different, or not? Well, they cer- 
tainly can be distinguished from one another; one looks like this: 

And the other looks like this: 

So we have to admit that they are different. 
However, if we make up a table using the rule (ox 2) + 6 =A, 

we get: 

^This topic wos suggested by Profesur W. Warwick Sawyer of Weifeyan 
Univenily, Middletown, Connecticut. Professor Sawyer tins been one of the 
internatiencfI leaden in  mwthernatki curriculum reform for many years, 
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If we make up a table using the rule (0 + 3) x 2 =A, we get: 

so we get the same table from either rule.* 
Mathematicians express this by invoking a higher abstraction. 

known as a function.^ We say that both formulas represent the same 
function. What, then, is a function? Well, it is more abstract. I t  re- 
fers to the "commonality" or "sameness" shared by both of our 
formulas. (In a similar sense, the number two refers to the com- 
monality shared by two fingers, two pebbles, two trees, two houses, 
two boys, two legs, two letters of the alphabet, two avocados, etc.) 

We can make up a set or collection or ckss of formulas, by agree- 
ing to put a formula into the set if it produces the same table that 
(Q x 2) + 6 =/\does; otherwise we agree to leave it out of the set. 

We have thus made u a set of all formulas which produce the 
same tabk that (m x 27 + 6 = A dws. Mathematicians call this 
set an equivalence class of formulas. Here is part of what it looks 
like! 

Consequently, we could think of a function as an equivalence 
class of formulas that produce the same table. We would then say 
that any formula in the set "represents" the function. 

fPlecnr notic* (ha dongor hem. At u oftu happit*, nmihumrijdani 
have thotwi to UM an evrydny won), but not with its e v w f h i y  meonirg. 
% hove givan It a speciai iwr "Bimthwnolmil" meaning. When uxed in 
mefhfrnarict, mch word* mint not bÃ given their ordinary r n m i q .  This 
common practice of using ordinary worcts with ipfial moaoingi will give 
us great difficulty if we are not on the alert. "Sat" in inafhemutici daÃ 
not meom what it doc* in everyday lift (as In "the gelatin wilt W or 
"nwitcl wt," nr "*Ã̂  t h  down o v r  there"). Here ore some marc wortb 
with special nuanings in mathfflKirSrs: function, diml, ring, group, 
element, rational, i rmt ia~l ,  real, complex, inmginory, opposite, exponent, 
power, prime, upon, tlotwf, inlegrote, differentiate, limit, bound, infinity 
. . . and loti mere. In malhematics, for example, the oppt~i te  of the appa*itm 
rÃ‘ not be the original element. One inn become very confused if one falls 
to separate the moth~maticat rneonings a( thew words train their evaryduy 
ineonings. 



There are other ways to explain what we mean by a function. One 
valuable way (that takes some getting used to, at first, but is often 
helpful intuitively) is to say that 

a function is a mapping 

which means, roughly, what we shall try to suggest by this picture: 

If we pursue this notion, we shall be led to study what we mean 
by mappings. This is an extremely important branch of mathe- 
matics, but is too large to be dealt wrth briefly. (We shall study 
mappings further in Chapter 36.) 

One approach has been popular in recent years, and goes as fol- 
lows. Since somehow the sameness of the "different" formulas is 
revealed pnmar~ly by the table 

If  we say zero, we get the answer six; if we say one, we get the an- 
swer eight; and so on. Theorder lets usdistinguish the number that 
we say (which always appears as the first number of each pair) from 
the number that we get as an answer (which always appears as the 
second number of the pair). 

Now, for a rule to work smoothly, we want the function to be 
single valued; that is. whenever we say a number, we want to get 
a definite answer-not two or three answers. Not all functions are 
single-valued, although recent authors of precotlege textbooks 
have tended to use "function" to mean the same thing as "single- 
valued function." It is worth emphasizing that not every problem 
has a single answer. 

Perhaps because matters seem simplest when each question 
has a single answer, we have apparently overemphasized this case 

1 
2 
3 

8 
10 
12 

we shall focus on this table. Now, what is a table? It is a set of or- 
dered pairs of numbers, such as 
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with young children. As a result, our students often acqmie the 
quite erroneous idea that every question must have exactly one 
answer. Clearly. this is false. If we say 

F.0 R. was President in the year , 

we can answer 1933, 1934. 1935, or-in facl-any year until 
1945, inclusive. Thus, the truth set for the open sentence 

F.D.R. was President in the year . 

is the set 

Again, if we use only integers, the open sentence 

3 < r " } + , 1 < 8  

has the truth set 

so this "question" has five different "answers." 
If we ask, "What number, when multiplied by zero, will yield 37?" 

the answer is "no number will!" The open sentence 

has the empty set for its truth set. There is no "answer" to this 
question, except to say that there is no answer -which is, after all, 
a kind of "answer." 

(Obviously, the language becomes considerably clearer and 
simpler when, instead of speaking of "answers," we speak of truth 
sets, and how many elements there are in the truth sets.) 

The tmportant point, here, is that in the present chapter we shall 
be working with single-valued functions. But we must not let the 
simplicity of this situation mislead us in the future. Not every im- 
portant question has one single simple answer. Some have many 
answers, some have none; and sometimes the "answer"is extremely 
complicated, and may consist of many parts. 

If the set of ordered pairs looked like the set 

then we would not get one definite answer to each number that we 
started with. If we sari. for exampie, zero we might get the answer 
five or we might get the answer three. If we said one, we might get 
the answer six or we rn;ght get the answer four. What must a table 
look like, i n  order to avoid this kind of ambiguity? 

Evidently, i f  1 appears once as a "starting" number, 

f t  can be paired up with any "answering number" (say, 121, 



but thereafter 1 can never appear in the Q column paired up w ~ i h  
any number other than 12 in the A column. For example, we must 
not have: 

If we did, when we said 1 we might get either the answer 12 or the 
answer 8 -the function would not be "single-valued." 

Using letters to denote variables, we can say the same thing this 
way; In the table 

if a = b, then we must have r = s. 
Most recent authors, consequently, have defined a function as 

a set of ordered pairs, where two different pairs never have the same 
first element. 

I t  might be best to ieave it for you to decide how you want to dis- 
cuss the concept of function with your students. The main idea is 
that, although 

and 

are different formulas, they produce the same table: 

Hence, we say they both represent the same funcilon. 
The function, then, refers to how we have paired up numbers in 

our table, and not to the rule by which we did it. Different rules, as 
we have seen, can result in pairing up numbers in the same way. 

The study of functions is one of the most important topics in all  
of mathematics. Moreover, it's easy and fun. One can use the idea 
of this chapter quits effectively with elementary school children 
or, for that matter, with high school and college students. 

In these preliminary remarks we have tried to say what a function 
is - and that is a somewhat cumbersome matter. But in the rest of 
this chapter, and in our work with children, we shall merely be 
"making up rules" and "guessing rules," and this will be easy and 
enjoyable. 



228 CHAPTER 25 

CHAPTER 25 

Guessing Functions 

( I )  Ranny made up a rule and Alee tried to guess 
what it was. 

When Alec told Ranny "zero," Ranny answered "three." 
When Alee said "one," Ranny answered "five." 
When Alee said "two," Ranny said "seven." 

Do you know what rule Ranny made up? 

(1) Telling somebody "zero" is usually revealing. Since Ranny an- 
swered "three," we can reasonably hope that Ranny's rule is 
something like the following: 

In the next chapter we shall try to be somewhat more systematic 
in our approach to "guessing functions," The present chapter is 
concerned-from the student's point of view- with a kindof "back- 
ground experience" or readiness building. Hence we would no; telt 
the students, at this stage, how to go about "guessing." But it may 
be well for the teacher to know some systematic methods, even 
though we won't tell them to the children just yet! 

in the present case, let us look for a moment at the possible 
forms of the answer. We might have just a "constant," that ignores 
the number Alec says: that is, Ranny always answers the same 
number, regardless of what number Alec tells him. In that case, 
since Ranny has already answered "three," the table would look 
like this: 

And the "formula" would be: 

However, a quxk glance at the actual table 

shows us that this is not the hind of rule that Ranny is using. 
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Well. perhaps the next simples? rule would be one where Ranny 
took Alec's number, multiplied by some definite "fixed" number, 
added some definite "fixed" number, and told us the answer. The 
formula for a rule of this kind would look like this: 

or perhaps 

or perhaps 

or whatever. In general, the "form" of the formula would be 

Some definite Some definite 
"fixed" number "tixed' number 
that Ranny chose that Ranny chose 
in advance in advance 

Now, how can we tell if Ranny's rule is of this form? Actually, 
there is a systematic way to tei!' We arrange the 0 numbers in 
proper sequential order (1, 2, 3, 4, 5, . . ., etc.) and then we look 
to see if the differences between successive A numbers are the 
same. Perhaps it is easier to  show what this means than to try to 
say what it means: 

DlA Differences 

Now, if this pattern continues, for example. if Ranny's rule works 
like the following. 

then Ranny is using a rule of the form 

( x _ _ ) + - = A .  
t T 

Some definite Some definite 
number number 

On the other hand, if this pattern (of the differences all being 
equal to 2) does not continue, then Ranny is not using a rule of this 
type. 
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Mathematicians have a word to describe rules of this type - they 
are called Unear. Thus, each of the following rules is linear: 

( Q x  2 1 t  4 = A ,  

( Q x  5 ) t  3=A 
( n x  - 1 ) i  8 = A  

We can w letters to represent "definite fixed numbers chosen 
before the guessing begins," and write such rufes this way: 

( D ^ ) + b = A  
Notice what their tables look like: 

1 
2 
3 
4 

-9 
'8 
-7 
-6 

1 
2 
3 
4 

Table corresponding 
t ~ ( Q x  I )+- IO=A 
(aft differences between 
successive A numbers 
equal 1) 

1 
2 
3 
4 

8 
13 
18 
23 

All of the preceding rules are linear. Let us look now at some rules 
which are not linear: 

6 
8 

10 
12 

Table corresponding 
t o ( Q x 5 ) + 3 = A  
(a1 l differences between 
successive A numbers 
equal 5) 

2 
3 
4 

Table corresponding 
t o ( Q x 2 ) + 4 = ~  
(all differences between 
successive A numbers 
equal 2) 

6 
5 
4 

Table corresponding 
t o ( ~ x ' l ] + S = A  
(all differences between 
successive A numbers 
equal 1) 



How do we know this rule is nonlinear? We need only look at the 
differences between successive A numbers; 

Differences 

4 

3 

2 
3 12 

Since these differences are not all the same, the "rule" (or "for- 
mula" or "function") is not linear. Therefore, it cannot be written 
in the form 

with some definite numbers for a and b. I t  would be a waste of 
time, in this case, to  try to work with the form 

As a second example of a nonlinear rule, if we make a table for 
the rule (Q x Q) + 1 = ̂ \, we get: 

Differences 

1 

3 

5 

We see that the differences between successive A numbers are 
not ail the same. Hence, this rule is not linear. It would be impos- 
sible to write it in the form 

We could ask this same question in what looks like a different form, 
"Fill in the missing numbers so that the open sentence 

Missing "definite. 
fixed" numbers 

will become an identity." The answer is that thistask is impossible. 
You cannot do it. (By contrast, i f  instead you had been asked to 
fill in the missing numbers so that the open sentence 
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would become an identity, you could do it; namely, as follows: 

Evidently, then, our work on "guessing functions" could be re 
lated to our work on identities and derivations. However, we strongly 
recommend that you do not do this. It would be too "academic" foi 
most children. There are, however, many lovely relations lurking 
just beneath the surface that some students may be lucky enougl- 
to discover. Let the discovery be its own reward-well, you rnighi 
want to look honestly impressed i f  you feel honestly impressed b) 
any such student discoveries.) 

Let's return now to Ranny's rule in question 1. The table was 

Differences 

2 

2 
2 

If the differences continue to be 2 as we extend the table -then w< 
shall know that Ranny's rule is linear, and we can write it in thf 
form 

Indeed, by looking a t  the pairs 

we see at once that b must be 3: 

It is also easy to see that a must be 2 and that the rule must be 

(Have you figured out, yet, how we knew that a must be 2?) 
Let's recapitulate: For the students, at thts stage, we would let 

them merely "mess around"* with numbers until they somehow 
found the correct rule. We believe this is good experience forthem, 
and should precede any later "systematic" discussions. For the 
teacher, however, a more systematic approach is  possible, and may 
be convenient. It consists of guessing separately the form of the 
answer (for example, is it (Q x a)  + b =A, (a x 0) + c =A, 

*The we& "mess around" in this connection am borrowed (ram P r o f e w  
David Hawkins, one of the wiwst philo~phrn and dueotora of aur genera- 
tion. Some people find them w a r d s  inelegant. T h e  i t ,  however, art infel- 
lufool equivalent of finger painting, ond children need to "mess around" 
with ideas quite as much at they do with colon. 
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(2) Can you write a formula for Ranny's rule, using 
D ' s  and A's? 

(3) Nancy says Ranny's rule is 

0 + 3 ) + 2 = A .  
Do you agree? 

(4) Kathy says Ranny's rule is: "Whatever number 
they say, double it, and add three." What do you think? 

(5) Can you write a formula for Ranny'a rule, using 
'a a 'a? 

d x  ( n x ~ ) + e = * ,  o r h ( n x ~ ) + ( g x a ) + h = ~ , o r w h a t -  
ever) and, separately, guessing what the actual numbers a, b, c, d, 
. . , must be. Thus, with Ranny's rule, we say that the form must be 

Once we had decided upon this form, we saw that the actual 
numbers must be 3 Ã‘ b, 2 Ã‘ a, so Ranny's rule had to be 

If this discussion sounds too fancy for your taste, ignore it, and 
just guess the rules as the children guess them. That may work 
better, anyhow. 

(3) No. Let's try Mit Nancy's rule to SÃ‡ if it works; 

So Nancy's rule would give us a tatable that starts like this: 

Since this is not like Ranny's rule, Nancy's rule must be wrong. 

(4) Kathy is correct 

( 5 )  (U x 2 )  + 3 = /\. 
Notice that we now return to question 2, a standard bit of Madi- 

son Project "programing." 

(6) Can you make a graph for Ranny'a rule? 
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We know that a function (or rule) is linear if and only if it can be 
written in the form 

where a and b are "definite, fixed" numbers that are agreed upon 
before the guessing starts. You might call this an algebraic criterion 
for linearity. 

From a second point of view, we can look at the table, and say 
that a function is linear if and only if, when we arrange theonurn- 
bars in sequence 0. 1, 2, 3, 4, . . .. the differences between succes- 
sive A numbers are all the same: 

Differences - /\ Differences 

You might call this an arithmetic criterion for linearity. 
Now, the graph of question 6 gives us a third criterion for lin- 

earity: an equation ts linear if and only i f  the graph of its truth set 
is a straight line.* You might cat1 this a geometric criterion for 
linearity. 

If you reflect for a bit on what we have here, you can see why it 
is quite exciting and you will gain a deeper understanding of the 
"modern" mathematics curricula; for what we have is something 
that relates arithmetic to algebra and to geometry. The power of 
this kind of thing is lost when (as in traditional curricutal arith- 
metic, geometry, and algebra are studied separately. One important 
aspect of the "new" mathematics curricula is that we try to put 
mathematics together as a single, unified whole, rather than frag- 
menting it into little incomplete pieces by artificial lines of demar- 
cation. 

For emphasis, we can take two functions-one linear and one 
nonlinear-and look at them from all three points of view. 

Linear Example Nonlinear Example 

An algebraic view: 

Â¥Purist will insist, "if and only if the graph of i ts  truth *et is a straight 
line which iu not pomllel to the A {or vertical) oxis." I think you con safety 
ignore detail* of thk kind most  of the time, and nanefhelii imm a great 
deal of volunbln rnaftiematici. WIrnnvw thmm dttalls bettime important- 
arid ulueily their nuisance value gmatty exceeds their honest importance- 
then that is the time to cape with them. They ore not likely to be important 
in your work with children fit this stage. 
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An arithmetical view: 

Differences [I - 

Differences are 
all the same 
(i.e., always 3). 

A geometrical view: 

A Differences - 
- I )  0-,1.1 
0 1 3 - 0 = 3  
3 ) 8 - 3 = 5  
8 
) 1 5 - 8 = 7  

15 

Differences are 
not a l l  the same 
(1,3, 5, 7,. . . I .  

Graph points lie on 
straight line. 

Graph points do not lie on 
a straight line. 

(7) Joan made up a rule. When Alan &aid "ten," (7) Let's attack this problem by sheer guesswork, with no fancy 
Joan answered "fifty-three." When Alan said "five," theory. The pattern 
Joan said "twenty-eight." Do you know Joan's rule? 10 4 53 

5 + 28 

suggests 

and therefore suggests "rnultip)ying by 5." Of course, this isn't 
quite right In both cases we missed the target by 3: that is, we 
got 50 instead of 53 and 25 instead of 28. This suggests add- 
ing 3. So let's guess that Joan's rule is: Whatever number you 
tell me, I'll multiply it by 5, and ttien add 3. To settie the mat- 
ter definitely, we would now need to ask Joan if this really is 
the rule she is using. 
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(8) Can you write a formula for Joan's rule? 

(9) Can you make a graph for Joan's rule? 

(10) Why don't you make up your own rule, and see 
if people can gwm it. 

(11) Do you know what mathematicians mean by a 
function? 

(12) DO you know the difference between a formula 
and a function? 

[ST1 DEW P WE 77 

(8) The formula for this in Q /\ notation, would be 1 

(101 This will depend on your class. 

You might wish to view the film entitled "Guessing Functions." 

( I  I )  See the discussion at the beginmng of this chapter. 

We strongly recommend that you underplay this. or even omit it 
entirely, rather than overdo it with your children. But if you can 
keep it simple, it is worth trying. 

(1  2) You might say that 

and 

(or, better, use examples that arise naturally in your class) are 
two different formulas, bttt t l w y  represent the same function. 
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In the preceding chapter, some children made up "ruies," and 
other children tried to guess these rules, (In our own classes, as 
you can see in the film "Guessing Functions," we let children 
guess first by describing the rule in words, and if they get this 
right, they then try to write the formula in 0, A notation. If they 
get the formula right, they select a couple of other students to help 
them make up the next rule, and the game continues. All of this 
is-we hope-made clear in the film.) The work of the preceding 
chapter-as far as the children are concerned-was a matter of 
informal "guessing." Children are invariably good at this, and 
enjoy it, We might call this "experience with functions" or "readi- 
ness-building for functions." 

In the Teacher's Text, we presented a sketch of a somewhat more 
systematic approach to determining what rule the children were 
using. We would not ordinarily fefi this to our students! 

The essential feature of a systematic approach is toseparate the 
form of a rule from the actual numbers used. In particular, we saw 
how to recognize the form 

Some definite &me definite 
number number 

and to distinguish it from other forms (for example, by looking at  
the differences between successive A numbers in a table, or by 
marking points on a graph and seeing if they did, or did not, lie 
atong a straight fine). This is a form which children often use, but 
it is not the only form they use. (Incidentally, mathematicians call 
this kind of rule "linear.") 
Here are some different forms children sometimes use, which 

are not linear: 

The idea of trying to guess the form and the actual numbers 
separately is very powerful. In the present chapter, we shall try to 
suggest this approach to the children, (The methods shown in this 
chapter realty were made up by a ninth-grade class at Nerinx High 
School in Webster Groves, Missouri.) 

This chapter is optional! Omit it if you wish! 
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Form vs. Numbers 

E11aee 781 

The students in a class at  Nerinx High School, in 
Webster Groves, Missouri, have worked out some 
methods to help them guess functions. If you think 
these methods would help you, you may want to glance 
at the following few pages. 

I.  I S  THE FUNCTION LINEAR OR NOT? 

Sometimes people make up a rule somewhat like 
these: 

0 x 3 )  + 5=A 
(nx2)+-3=A 

u-5)+-1 = A  
and so on. 

In general, any rule of this sort looks like this: 

(Some (Some 
number number 

here) here) 

Rules (or functions) of this kind are called linear 
functions. 
Do you know why? 

(1) If the rule we are trying to guess i s  of this form, 
we can tell at once by making a graph and looking at it. 
What wilt the graph look like? 

(2 )  How can we tell by looking at a table? 

(1) The points will lie along a straight line. (Actually, along a line 
not parallel to the vertical, or /\, axis, but we don't usually men- 
tion this detail at this stage.) 

(2) If we arrange the numbers in sequential order 0, 1,2,3, . . ., 

and if WB then look at the differences between successive A 
numbers, they will off be the same if the rule is finear. Other- 
wise they will not be. 
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Example 1. I A Differences 

The differences ore all the same (in this case. 4). so the rule 
i s  linear and can tie written in the form 

1 

S m e  definite Some ##mite 
number numbflr 

Example 2. I_I - 
0 
1 
2 
3 
4 

Z_\ Differences 

The differences are not all the same (being 1. 2, 4, 8, ...), 
an@ so the rule is not linear. Ft c a n n o t  be written in the form 

We mieht summarize all of this by saying: 

If the function i s  linear, the graph will be a straight line, the A 
differences will all be the same. and it can be written in the form 
(0 K a) + b =A, where a and b are fixed, definite numbers. 
If the function is not linear, the graph will not be a straight tine, 
the A differences will not all be the same, and it cannot be 
written in the form (Q x m) + h=AI where a and b are definite 
fixed numbers. 

L_\ Differences - 
4, 7 - 4 = 3  
} 1 0 - 7 a 3  

10 
J 

13 - to = 3 
16 - 13 = 3 
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The differences ore all the same; the function is, linear; its 
graph wit) be a straight line; it can be written in the form 

As a matter of fact, a formula representing Hits function is 

(You can verify this by checking this formula against ttie table 
shown above.) 

D I A  Differences 

The differences are not all the same (2,3,4, . . .); the function 
is not linear; its graph will not be a straim line; it connot tie 
written in the fonn 

I 

Samiteflnite S o m i f t i n h  
nnmber iwmher 

[page 791 
(5) The differmas are not all the same {some are "2, others are -2); 

the function is not linear; its graph is not a straight tine; it can- 
not be written in the lorn 

As a matter of fact, its graph is 

A formula representing this function is 

h (-1 = A. 
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You can verify this formula by working it out: 

If you chose to omit Chapter 24, and have not studied exponents 
elsewhere, you may prefer to skip this example. 

(6) Hie (inferences are all the same (namely, +I),  so the function u 
linear. It can be written in the form 

fame number sama number 

We now know the form of the answer; all that remains is to 
find the actual numbers. 

(7) The differences are all the same (namely, 3). Hence the func- 
tion ton be written in the form 

Since we now know the form of the answer, all that remains is 
to find the actual numbers. 

Can you find these two "missing" numbers by studying the fol- 
lowing table? 

(8)  The diffÃ§fence are not all the same (since the first was 1, and 
the second was 3), so the function is not linear. It cannof be 
written in the form 
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II. IS THE FUNCTION EVEN OR ODD? 

Some functions have tables like this: 

For these functions, 1 gets the same answer that I 
does. 2 gets the m e  answer that -2 does, and so on. 

Such functions are called even functions. 
[pace 801 

Some functions have tables like this: 

In this table, the answer for 1 is the additive inverse 

of the answer for 1 ,  the answer for 2 is the additive 
inverse of the answer for 2, and so on. Functions like 
this are called odd functions. 

Some functions are neither even nor odd. Here is one: 

Which of these functions are even, which are odd, and 
which are neither wen nor odd? 

(9) Even 
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(10) Neither even nor odd 

(11) Odd 

lpaec 811 
(12) Even 

(13) Even 

(14) Odd 

(15) Odd 

(16) Even 

(17) Neither even nor odd 

( 18) Neither even nor odd 

(19) Even 

(20) Even 

(21) Even 

(22) Odd 

(23) How can the idea of even and odd functions (23) If Hie table indicates an even function, then the formula m y  
help you to guess functions? be a sum of even powers, as in 
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HI. ELLEN'S METHOD 

Sometimes, when ahe was trying to guess a rule, 
Ellen would say, 

'Use your rule on 10, and tell me the answer." 

When ahe got the answer to this, she would say, 

"Use your rule on 100, and tell me the answer." 

When she got this answer, she would request, 

"Use your rule on 1000, and tell me the answer." 

(24) Why do you suppose Ellen picked these numbers 
to aak about? 

If the table indicates an odd function, then the formula may be 
a sum of odd powers: 

If the table indicates that the function is neither even nor odd, 
then (fie formula m a y  be of a sum of some even powers plus 
some odd powers; 

Notice that: 2 is an even power (2 = 2 - P, so the exponent is 0, 
which is even); 3 is (in this sense) an even function (3 = 3 - x", so 
that again the exponent, which is the decisive point, is even)*; x 
is an odd function ( x  = x ' ,  so the exponent, which is 1, is odd); 4x 
is (in this sense) an odd function (4% = 4 . xl, so again the all-deci- 
sive exponent is 1. and is therefore odd); 3x2 is an even function 
(since the exponent 2 is even); 4xz is an even function (since the 
exponent 2 is wen); and so on. 

(24) Actually, using numbers such as 10, then 100, then 1000, 
and so on, helps to do two things; it reveals the "rate of poWU 
of the function-ail important mathematical idea which we shall 
explain presently-and it tends to separate the "dominant" 
terms from the "minor" terms-again, ideas which we shall 
explain in a moment 

*WÃ haw mllad y = 3 on awn function, in  the same of function*. Of 
WUIH, 3 - r~gordd  as o poiitive intÃˆge in (he m>Ã of number theory - 
would b* an odd infogor. Diffemnt bwichw of mathemaffn aften use 
words differently (unfortunatelyl), Â¥ it often btornw important to knaw 
which branch of mothemfin it invulvmi. In th* present instnne*, wtwn w 
we thinking in t c n n s  af function thtcry ond ore classifying f u n r t i o ~  en 
'avm," "odd." or "netther," than 3 it on even function. When we om 
thinking in t m  of nurtbw theory and ore clwifying inteqert 01 "m" 
or "odd," then 3 it an odd integer. 
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The easiest way to see what mathematicians mean by dominant 
terms is to look at a simple example: Consider the function 2x+ 3 
= y. Here is part of its table: 

From looking at this table, you can probably guess what mathe- 
maticians mean by "dominant terms." When we used UV (UV: 
1000 -f x) ,  we got y = 2003. Here, y is approximately twice x; after 
all, 2003 is very nearly equal to 2000. {A discrepancy of 3 in a 
number as large as 2000 is almost never important in ordinary en- 
gineering or measurement, unless-for some special reason -un- 
usual precision is necessary, ff two cities are 2003 miles apart, 
they are. for almost all sensible purposes, 2000 mites apart, and 
so on.) 

For x = 1000, the term 2x dominates the term 3. If we use an 
even larger value of x (UV: 10,000+ x) ,  the "dominance" becomes 
even clearer: y = 20.003. A discrepancy of 3 in a number as large 
as 20,000 is (for nearly all ordinary purposes) even less significant 
than an error of 3 in a number as large as 2000. The "dominance" 
of the term 2x over the term 3 is even more pronounced. 

I f  we used still larger values for x ,  the dominance of the 2x term 
would become still clearer. (You may want to consider this ques- 
tion: if we used very small positive values for x-such as UV: 
x or UV: & -+ x or UV: & -Ã x - which term would be "domi- 
nant," the term 2x or the term 3?) 

We shall not try to put into words explicitly what we mean by 
dominant terms. Here, quickly, are a few more examples: 

x3 - x1 + 7 = y If x is large, the dominant term is 9. 

1 x + 5 + - = y If x is large, the dominant term is x. x 
(You might say, roughly, that you would happily settle for the x3, 
and forget about the -x* + 7, if x is a large number. This somehow 
suggests Mark Twain's remark that he would gladly do without the 
necessities of life, provided he could have all of the luxuries.) 

Once we are able to "separate out" the dominant term in the 
"rule" for large values of x ,  then we can easily see what is meant 
by rate of growth. . 

For the linear function y = 2x + 3, the table, as we just saw, was 



Evidently, if x is a large number, it isapproxtmateiy true that when- 
ever we multiply x by 10, the new y-value becomes 10 times as 
large as the previous one. 

For example: 

X t Y  

Takeavalueofx / 0,000, and you get back a 
10 times iarger / 1 \new y-value that is 

(approximately) 10 
times larger. 

In such a case, we say that (approximately) y grows at the same 
rate that x does. 

For the function 

y = X' + 7, I 
i 

here is part of the table: s 

18" 

For the function (or "rule"), we see that whenever we muitiply x 
by 10, the corresponding new y-value is 100 times as large as the 
previous y-value. 

For example: 
X t Y  

Now, 1,000,000 
by 10. is 100 x 10,000 

(using simpler, 
approximate numbers). 

When the table shows this pattern, it is usually a clue that the 
dominant term involves x2, and not x (or x3,  etc.). Hence, if we see 
this pattern in the table, we can reasonably guess that the rule has 
a form like 

x- + x + - = Y 
T T T 
Some Some Some 
definite definite definite 
number number number 

or perhaps like this 

Some definite number 

Some 
definite 
number 
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We would start fooklng for rules like 

2 2 - 3 x + 5 = y  

Let us now try "Ellen's method" on the rule in problem 25. 

(25) Using her method, Ellen got this table: (25) We can notice several things: 

Can you guess t h i s  function? 

(i) Evidently, the A numbers consist of two parts, the dominant 
term and a small "correction" term. Let's rewrite the table, to show 
this even more cleariy: 

As we use larger numbers, the pattern becomes dearer. 

1 

10 

100 

1000 

(ii) Looking only at the dominant term, we have: 

Dominant term in A number 

100 10,000 
1000 1,000,000 

Small "correclton" 
term in A number 

Here we see the rate of growth rather clearly. When we multiply the 
number by 10, the corresponding A number (or, at least, its 

dominant term) becomes multiplied by 100. This suggests that the 
dominant term involves 

2 

100.1 

10,000.01 

1.000.000.001 

Hence, we shall look for forms such as 

Some 
definite 
number 

impossible to tell 

Some Some 
definite definite 
number number 

probably 100 ---- 
10,000 

1,000,000 

probably 0.1 

0.01 

0.001 
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IV. LOOKING FOR THE RIGHT FORM 

Another very good method, which the Nerinx students 
often use, goes like this: 

tpatfe 821 
First try to list several likely forms. For example, 

these forms are often used: 

In these form, a, b, and c are definite numbers, 
chosen by the people who made up the rule. The letter 
x indicates "the number we tell them," and the letter 
y repreeenta "the answering number that they tell us." 

Once you have written your list of likely forms, try 
to ask queationa which will eliminate some of them or 
confirm one of them. Here are some questions the 
Nerinx students often use: 

(26) "Use your rule on 0, and tell me the answer." 
Suppose the answer is  3. 

Which forms on the list preceding would be eliminated 
by this answer? 

Or perhaps we shall look for forms such as 
Some definite number 
as numerator of M s  fraction 
, i. 

some 
definite 
number 

To give some more specific examples, we shall be looking for 
rules of the same general type as 

liii'i But we can see even more from our table! Let's look at  the 
"small correction term" which marks the difference between the 
actual A numbers and the dominant term in the A numbers: 

Small "correction" 
term in A number (representing "minor" terms) 

This is reasonably obvious. The minor term seems to be 

Hence, we guess 

(This is, in fact, the correct formula for the "rule" in problem 25.) 
As written out in detail, this all seems rather cumbersome. Re- 

lax- trust your "hunches" or your "intuition" -and 4 believe you 
will find that "guessing functions" is both easy and enjoyable. 
There is a system-or at least fragments of a system- but don't 
try to be too systematic: it spoils the fun. 

(26) This eliminates the forms 

b 
y = a x + -  x 

and 

b y = ax* + - v  
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(27) "Use your rule on 0, and tell me the answer." 
Suppose the answer is: "Our rule doesn't work for 0." 

Which forms on the list would be eliminated by this 
answer? 

(28) Suppose the table was: 

What forms does this table suggest? 

since division by zero would haw been required with these 
forms. if the sftfrfeirts had been using either of these form*, they 
should have answered, 

"two doesn't work in our rule." 

(27) See answer to question 26. This time the rules ax + b = y am) 
a + bx + ex2 = y are eliminated. 

(28) Let's look first for successive differences. In order to do this, 
we must arrange the x numbers in proper sequential order: 

x increases by 1. y incream by 2. 

x increams by 1 .  y increases by 2. 

Tfiase are too few values to settte the matter definitely, but 
it looks as rf the rule is  linear: 

where a and b am some definite numbers. Moreover, when we 
increase x by 1, y appears to increase by 2, so that it seems 
ti kely that 

Moreover, 3 the linear pattern holds, then we would expect 
that, if we told them 0, they would answer with a number half- 
way between 5 and 9. 

11 

That is to say, we expect they would answer 7.  Hence, the for- 
mula seems to be 

Notice that this was by no means the only way to think about this 
problem. You might, instead, have noticed: 

(i) The function is neither even nor odd; therefore it is probably 
the sum of an even term plus an odd term. 
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(291 Suppose the table was: 

What forms does this table suggest? 

As you begin to see what form the function probably 
has, you can try to find the actual numbers-that is, 
the numerical replacements for the variables a, 6, c, 

etc., in the form. 

(30) Can you find this function? 

(ii) You could also have guessed a t  the rate of growth, although 
this is a bit difficult when we have only used small numbers. 

Still other methods would have been possible. For example, you 
could have made a graph, etc. 

(29) Perhaps the first thing we notice abouttbistable is Mat i t f ~ m i  
to represent on even function: 

UV; 1 -+ x yiefds y = -2. 
U V s  1 -* x yields y = -2, which is the same as for x = 1. 
UV: 2 -+ x yields y = t. 
UV: 2 -t K yields y = 1, again, the same as for x = 2. 

Hence, we might guess ffie form 

- x 3 + -  = y. 

T 
Sams 

t 
Same 

definite definite 
number number 

To go on from here, we might say, "Use your rule en zero, and 
tell us the answer." 

Ipaae 831 
(30) We can see immediately, from (tie table, that we seem to be 

dealing with an odd function. This suggests forms of the same 
general type as 

7x = y 
X3=y 

Let's try to find the dominant term: 

Dominant term 

0 
0 

hard 

0 
to 

30 tell 

apparently 

Srnal t "correction" 
term. or "minor" term 

apparently "10 

apparently '1 00 
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It appears immediately that the minor term is - x ,  so we have a form 
generally of this type: 

Some 
definite 
number 

X ' - x =  y 
t 

Some 
definite 
number 

- X ' - X =  Y 
T 

Some 
definite 
number 

Can we tell whether this first term is x', xs, or x', or whatever? Yes, 
we can, by looking at the rate of growth of the function. 

Apparent dominant term in y 

100,000 
the dominant 
y-term becomes 
multiplied by 

10 
When you 
multiply 
x b y l 0  

100 

Since 100,000 = lo5, this suggests that the dominant term in- 
wives AS. Putting all of this together, we might guess that the 
"rule" is 

x s - x =  Y, 

which is, in fact, correct. 

99,990 

9,999,999,900 
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In the two precedingchapters, some students made upa "rulerr- 
actually a mathematical function-and we tried to guess their rule. 
Functions, however, need not come from a conspiracy of our cot- 
leagues, as they did in Chapter 25. They may also come from a 
wide variety of physical situations, social situations, and so on. 
In this chapter we shall study some functions obtained from vari- 
ous puzzles and games, from hanging weights on springs, and soon. 

In general, our task is to approach some situation or apparatus, 
and to try to achieve some "understanding" of i t  Specifically, we 
shall try to make up some "rrtodel," or "cognttive structure," that 
will crudely represent the complex reality in terms simple enough 
for us to be able to think about. This wil) calf for three mathematical 
tools: 

(i) The tabte, as in 

(ii) The graph, as in 

{iii) The formula (or equation), as in 

Because these will be our three principal theoretical tools, it is 
useful to ask how, if we are given one, we may obtain the others. 
In some cases this is very easy, while in other cases it can be quite 
hard. 
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Evidently, to obtain a true statement we must put 4 into the A: 

Hence we have 

Proceeding in the same way, with 2 Ã‘ a, then with 3 Ã‘ Q, 
and so on, we can construct the table: 

(As usual, discovering patterns can make our work easier. 1 
If we think this example is typical, then we can ff i t  in another 

square in our chart: 

End with- 

Start 
with: 

You and your class may wish to explore further the problem of 
filling in other squares on this chart. How, for example, would you 
start with a table and obtain from it an equation? 

This topic of "crossing back and forth" between tables, graphs, 
and formulas is one we have met, at least briefly, in Chapter 25 
and elsewhere (see also Discovery, Chapters 11, 15, 17. 18, 35. 
and 491. 

The three toots of tables, graphs, and equations are not thewhole 
story, however. If we start with, say. weights hanging on springs, 
we might make a table by recording, successively, various weights 
and the corresponding distance that the spring was stretched. How- 
ever, in measuring the distances that the spring stretched, we shall 
inevitably make errors. Rulers slip, we misread them, and some- 
times we do not look "levelly" from the ruler to the spring, etc. (To 
make matters worse, the spring may jiggle a bit.) 
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Consequently, we may, if we wish, make use of what we learned 
about "measurement uncertainties" in Chapter 17. (You may also 
wish to view the film "Weights and Springs.") 

There is a philosophical problem here that is worthy of a mo- 
ment's thought. The model which we shall make for, say, the stretch- 
ing spring will be oversimplified. Careful observation of real springs 
will show that their behavior is extremely complicated. (Actually, 
it depends upon many things, such as temperature, and even de- 
pends upon the past history of that indiv~dual spring. If we "mis- 
treat" a spring, it will behave differently from then on.} Since the 
reality is complicated, and our model is relatively simple (just how 
simple is for us to  decide), our model only roughly corresponds to 
the reality. In this sense, we might say that our model is "wrong" - 
and anybody else's model will be "wrong." too, a tthough more com- 
plicated models may match the reality more closely. (This does not 
necessarily mean that they are better models, for more complicated 
models will have the disadvantage that they are harder to think 
about.) 

Then, to make matters worse, our measurements of distances, 
times, weights, volumes, etc., will contain some inevitable mea- 
surement errors. In this sense, our numbers will also be "wrong." 

Does this make matters hopeless? By no means! Our models are 
wrong, but useful. Our measurement numbers are wrong, but use- 
ful. (In a somewhat similar sense, one might say our schools are 
imperfect, but valuable. Whatever is worth doing is worth doing 
moderately well, if that's the best that is possible.) 

It is worth recalling Piaget's ideas about cognition. All of our 
"knowledge" represents an oversimplification of reality, and in this 
sense ati of our knowledge is "wrongJ'-at the very least, it is 
incomplete. 

Now, by using expensive and intricate measuring devices, we 
can obtain numbers where the measurement errors aresmaSler- but 
still not zero! By developing extremely complicated models and 
mental imagery, we can match our mental imagery more closely 
to the reality - but there will st111 be differences! By taking great 
pains in our (earning, thin king, and "understanding," we can bring 
our "knowledge" to an impressive level of sophistication. We can 
cope with monumental tasks, like photographing the remote side 
of the moon, or flying from St. Louis to New York in an hour and a 
ha If. Nonetheless, even our best thought is "wrong." I t  is i mperfect, 
and, by suitably heroic efforts, it can be made better. 

In this sense our plight is one of perpetual open-endedness. We 
never arrive a t  the final answer. However far we journey in our mea- 
sunng, our thinking, our reflecting, our philosophizing, our 
studies . . . the unknown always lies ahead.* The unknown . . . and 
the uncertain. 

If newness, change, obsolescence, and a lack of ultimate an- 
swers do in fact characterizeour age as much as they seem to, then 
this gives our schools a major task in educating our young peopie 
so that they can cope with a future which always extends beyond 
the horizon of our present vision. 

This is, in large part, a new demand upon our schools- and upon 
those of us who educate the young. The eminent physicist Robert 

Thot this 0 true own within the "pure" fieldt of mcthtmtrttct ond logic 
is indicated by m e  remorkuble work of the gleat logician Kurt Gwltl, of 
Princeton's Inififute for Advanced Study. 
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Karplus, of the University of California at Berkeley, has introduced 
the word &sophobia, the "fear of leaving loose ends," to describe 
an attitude often found in our schools in the past. Lysophobia 
means demanding final answers to questions that we give to our 
students and that our students give to us. Of course, these are not 
really "final" answers- they are counterfeit "final" answers. For 
example: how many chemical elements are there? The "final" ans- 
wer used to be 92. How many were there in June, 1965? "What- 
ever goes up comes down" used to be a very ultimate truth, if you 
will pardon the phrase, yet nowadays it may go into orbit about the 
sun, among other possibilities. 

For the opposite of fysophobia, Karplus has introduced the word 
lysophilia, the "love of leaving loose ends." He argues, and many 
people are inclined to agree, that our schools must try to wean 
themselves from a traditional addiction to iysophobia, and to ac- 
quire instead a taste for lymphilia. It's probably somewhat like 
giving up smoking. 

For two very valuable discussions of this matter, on a philosophi- 
cal level, you may wish to pore thoughtfully over Polyani (134)and 
TeiHard de Chardin (33). 

This idea has been growing gradually, and is not entirety 
new. Consider, for example, this excerpt from Ralph Waldo 
Emerson.* 

Where do we find ourselves? In a series of which we do not 
know the extremes, and believe that it has none. We wake and 
find ourselves on a stair; there are stairs below us, which we 
seem to have ascended; there are stairs above us. many a one, 
which go upward and out of sight. 

take this evanescence and lubricity of all objects, which 
lets them sdp through our fingers then when wectutch hardest, 
to be the most unhandsome part of our condition. Nature does 
not like to be observed, and likes that we should be her fools 
and playmates. We may have the sphere for our cricketball, 
but not a berry for our philosophy. Direct strokes she never 
gave us power to make; all our blows glance, all our hits are 
accidents. . . 

Dream delivers us to dream, and there is no end to illusion. 

If you like the process of trying to study reality, you and your 
students may get great enjoyment from Mathematics and Living 
Things, School Mathematics Study Group (Stanford University, 
Stanford. Catifornia). 

A very pleasant relation between the mathematical concept of 
slope of a linear graph and the physical concept of density-which 
moreover gives children experience with ratio and proportion - has 
been made into a teaching unit by Frederick L. Ferris, Jr., arid his 
colleagues, of the Junior High School Science Project of Princeton 
University. For information, write to Professor Ferris. 

*Ralph Waldo Emerean, E l l a p  and Potnu, selected and amingad #y G. 
F. Maine, with an Introducfian by DeloncÃ§ Fuguton (Collim, London and 
GI-, 1 962) 
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CHAPTER 27 

Where Do Functions 
Come From? 

[pane 841 
THE EASY THREE-PEG GAME 

(1) Suppone you have three pegs: 

and three washers, of  three different sixes: 

To play the game, you start with all three washers 
on peg A, with the largest washer on the bottom and the 
smallest washer on the top. 

You move one washer at a time, taking it off one peg 

and putting it on another. 
You are finished when you have all three washers 

on peg C, with the largest washer on the bottom and 
the m l l e a t  washer on the top. 

Can you get the washers onto peg C this way? 

[pane 851 

(2) How many moves did you need to get all three 
washers onto peg C? 

(3) Could you have done it in fewer moves? 

WHERE DO FUNCTIONS COME FROM? 257 

ANSWERS AND COMMENTS 

We start with a "counting" function, rather than a "measuring" 
one, so as to free ourselves, temporarily, from a need to consider 
measurement errors. 

(1) If you used the fewest possible moves, you proceeded like this: 

Since people do not usually count the initial starting position 
as a "move," you would probably count this as 5 moves. 

(This is a simplified version of the ancient puzzle known as"the 
tower of Hanoi." The use of "the tower of Hanoi" in this context 
was suggested by Donald Cohen, of the Clayton, Missouri, public 
schools; this simplified version was suggested by Knowles 
Dougherty, of Webster College. The simplified version, as we shall 
see, leads to a straight-line graph- that is, to a "linear function." 
The original version, as we shall also see, does not give us a straight- 
line graph- mathematicians would say it gives us a "nonlinear 
function.") 

(2} If you used the fewest possible moves, you used 5. 

(3) Mot if you Bid it the way we did in question 1, 
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(4) Suppose we change the nil= of the game. Every- 
thing else is the same, but we start with only two 
washers: 

Can you get both washers onto peg C, with the little 
one on top? 

(5) How many moves did you need? 

(6) Jean made thia table: 

Number of  washers Minimum number 
\ d of moves 

Can you fill in the two missing numbers in Jean's table? 

(7) What would happen if you ueed four washers? 

(8) Can you extend Jean's table? 

(9) What would happen if you used 100 washers? 

(10) Can you write a formula for thia function? 

(4) Here is the whole stow, starting with two washers: 

(5) H you used as few as possible, you used 3. 

(6) Number of washeis Minimum number of moves 
\1 1̂  

(7) You would require 7 moves: 

Number of washers Minimum number of moves 
^ ^ 

(8) Here is an extension - you could, of course go further: 

(9) You would require 199 moves, 
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(11) Can you make a graph for this function? 

(12) Does it work the same way if you start with 
only one washer? 

THE HARD THREE-PEG GAME 

(13) You play this game with the same rules as the 
"easy three-pee game," but you add one additional 
rule: you must never, at any stage, put a iarger washer 
on top of a smaller washer, 

With this additional rule, can you move the washers 
from peg A to peg C? 

*Mi>: MiitheinoticMns have used the idfa of "function" 
in ~ v e m l  diffamnt ways. In the prtent thfÃ§-p game, 
rtf function matches the nrality only when the number 04 
dnks is a psitiw integer. However, the notion of "extend- 
ing systems" which we stwdied in Chapter 24 con be op- 
plied in many plaf*, including hare. In the graph shown, 
we hav exttndfrd the function to include xem and n591)- 
tim values. Of cewrtft. wo should not be nipiied if this 
extwded function foils to mntch the physical reallty (w 
represented by the gome). 
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From looking at this graph*, you can see why mathematicianscall 
this a linear function. 

(12) Yes; the same general pattern holds. You require 1 move. 

(13) We tern now to the original version, tiy adding the rule that you 
must mover, in mny move, place a larger washer over a smaller 
one. H you start with 1 washer or with 2 washers, you proceed 
exactly as in the "easy version." (f you start with 3 washers, you 
can proceed like this: 

This. evidently, required 7 moves. 

A table, summarizing our work thusfar, would look like this: 

Number of washers Minimum number of moves 
I/ 

The hard three-peg game 
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(14) Can you make a table for the "hard three-peg 
game"? 

Number of washers Minimum number 

(15) Suppose you used 10 washers, how many moves 
would you need? 

(16) Suppose you used 100 washers, how many move8 
would you need? 

[STUDENT PAGE B6 

Before going further, you may want to pause and work out for 
yourself the case where you start with 4 washers, and the case 
where you start with 5 washers. By then, if you reflect on what you 
have done, you may be able to make up a complete "theory" for 
this game. 

(14) Here is more of the table: 

Number of washers Minimum number of moves 
\ d 

: 1 :  
The hard three-peg game 

(151 One way to answer this would be to extend our table: 

So, ttie answer is, for l O  washcre, we would require 1023 moves. 

Notice the power of mathematics; it would have taken sometime 
to work this out directly, even if you can count to 1023 without 
making any mistakes! Professor Warwick Sawyer has pointed out 
that one of the reasons for knowing arithmetic is so we can recog- 
nize patterns when they are lurking right before our noses. Well, 
there is another pattern here that we have not yet exploited. We 
will need it for the next problem. Can you find it? 

(16) Our powerful method of problem 15 lets us imagine making 1023 
moves without having to do it. Even that method, however, is not 
powerful enough to handle this problem easily. We need a more 
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powerful method still. Can we find one? Well,the place to look 
is usually for some pattern that can be put to use. Look at the 
numbers 

1,3, 7, 15,31,63, 127, 255,511, 1023, ... 
Bo they remind you of anything? They do, if you know enough 
arithmetic. Om fundamental pattern of arithmetic is 

These are the "wiccessive powers of 2": 

In the statement 2" = 1024, Hie small, raised numeral 10 
is known as the exponent. The number 2" is read "2 to t h ~  
tentti power," "2 with the exponent 10," or simply "2 to the 
tenth." 

Notice that we can group factors like this: 

Thus Z2 x P = 2*. In general, far whole numbers n and m, we 
h a v 1 ? 2 ~ x 2 ~ = 2 " + ~ .  

We can stso group factors like this; 

let's by out all these patterns on our problem, and see if (hay 
are powerful enough to let us handle it reasonably easily. 

Evidently, our table is: 

16 - 1 

The table can also be written as; 
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Hance, further on in the table, we should find: 

From a number as long as this, it would make next to no dif- 
ference were we to add one, 

99 
100 
101 

or to subtract 1, so we shall not hotlw with the "minus" part of 
of ow formula. If we use T O O  washers, we shall require approxi- 
mately 1,000,000,000,000,000,000,000,000,000,000 moves. 

If someone bet you $1 00 that you couldn't work the hanlthrec- 
peg problem starting with 100 washers, would you be wise to 
accept? You can buy washers for one-tenth cent apiece, so 100 
washers would only cost 10 cents. Would you accept the bet? 

2" - 1 
21W - I 
2"" - I 

(18) Can you make a graph for th is  function? 

This is exactfy what we want! H we use 100 washers, we shalf 
require 2"' - 1 moves! Now, 2lW - 1 is really our answer. 
To anyone who knows flow to read exponents, this tells us ex- 
act ly  how many moves we require. 

Some people might prefer a way of writing the answer that 
was less exact, but looked more familiar. Well, perhaps we can 
tfo that. too. Mow, we have seen that 2'" = 1024. 

We would be approximutely correct (our error would be less 
than 3 percent which i s  usually considered reasonable) if we 
said 2'' = 1000 - lo3. Now, 
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Notice that this graph is not a straight-line graph; this function 
is what mathematicians call a "nonlinear function." 

(19) Lany says that if 4 is the number of moves (19^ \sw ' wrreCL 

you need for n washers, then 

Do you agree? 

THE METALSPRING FUNCTION 

(20) Hang upa coiled metal spring, and hang weights (20) You may want to view the Madison Project film entitled "Weights 
on it. YOU can get a function like this: and Springs." k's up to you what model you use. It is usually rea- 

sonably accurate to use a straight-!in6 graph. But is it really per- 
Number of grains of Murober of inches fwffy accurate? 
weight attached to the spring stretches 

(21) Can you make a graph for this function? (21) and (22) See Hie film "Weights and Springs," or simply usa 
careful observation and analysis on your own spring. 

(22) Can you write a formula for this function, using 
0 ' s  and As? 

(23) How much would the apring stretch if you hung (23) This will depend upon your spring. 
27 grama on it? 

(24) How much would the spring stretch if you hung (24) This will Impend UPOH your spring. 
41 grams on it? 

(25) HOW much would the spring stretch if you hung (25) This will depend upon your spring; it might be badly overioaded 
1,000,000 grams on it? long before you reached 1,000,000 grams. 

(26) How much would the spring stretch if you hung (26) Presumably, it would stretch 0 inches. 
0 gram8 on it? 

. (27) How much would the spring stretch ifyou hung (27) Unless your spring is very delicate, this will be t00 ~fliaff to 

+gram on it? measure. Your guess as to what happens is as good as mine. 

i THE RUBBER-BAND FUNCTION 

I [page 871 
(28) This is exactly like the "metai-apring function," (28) Usually rubber bands are far more Complicated metal 

except that you use a "chain" of  rubber bands instead springs. You wifl probably find (fiat a linear function (that is a 
of a metal spring. Can you make a table for this func- straight-line graph) is "of satisfactory in this case. You need 
tian? Can you make a graph for this function? Can a more complicated model, 
you write a formula for this function, using 0's 
and A'B? 
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Weight 

Make a table: 

Number of inches Number of inches 
hand moves \ d weight moves 

(30) Can you make a graph for this function? Can 
you write a formula for it, using 0's and &a? 

THE PULLEY-FORCE FUNCTION 

(31) Use the same pulley as in questions 29 and 30. 
Use two spring balances (or some other method for 
measuring farces), like this: 

//////////////////// 

Pull hard enough at A andB so that the two forces 

"just balance," and the rope and pulley wheels don't 
move. (page 881 
Can you fill in part of this table? 

Force at Ah dFom at B 

(29) through (32) See what you can learn from your own tabor* 1 
work and careful analysis. Don't worry that things never work 
out exactly-that's life! 

Can you make a graph for this function? Can you write 
a formula for this function? 



(32) Linda's father says that phyaiciste use conser- 
vation laws. By looking at your work with the pulley, 
can you find anything that is unchanged (or, as the 
physicists say, conserved)? 

(33) Jerry says that the hand at A moves farther, 
but doesn't pull as  hard as the force at B. Jerry says 
that the sum 

F i l l  

is  conserved, where F is the force and d is the 
distance moved. 

That is, if f ( A )  and &A) mem the force and distance 
at A. and F(B> and do mean the force and distance 
at R, then 

FI.A) + dbii = F(Bi + d(B). 

Do you agree? 

(34) Toby has some pieces of wood 1 cm by 1 cm by 
5 crn, shaped like a block or a brick 

What is the volume of one piece of wood like this? 
What is the surface area? 

(35) Suppose Toby glues together two of the pieces, 
like this: 

I I 

4 L l c m  
I I 

What will the volume be? What will the exposed sur- 

face area be? 

(36) Suppose Toby glues three pieces together, 
like this: 

What will the volume be? What will the exposed sur- 
face area be? 

Ipaee 891 
(37) For Toby's "stairs," can you fill in this table? 

Number of blocks Exposed surface 

(33) Jerry's law does not work, as you should be able to show with 
the data from your pulley. What law does work? 

of wood 
'3 d 

(34) The volume is 5 cubic . mimeters, which might bÃ abbreviated 
as either 5 ec or 5 cm*. The total surface area is 22 square cen- 

I 
timeters, or 22 em2. 

I 

(35) Volume: 10 cm3. Total exposed surface area: 36 cmg. 

A 

(36) Volume; 15 cm3. Total exposed surface area: 50 cm2. 

(37) Actually, we can make two relevant tables. The table for the 
volume eoutdn't be simpler: 

Number of blacks of wood Volume (in cm1) 
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(38) Can you make a graph for this function? 

(39) Can you write a formula for this function? 

[STI DEW Pt i ;E  89 

The table far h e  exposed surface area is a good bit trickier, 
however; 

Total exposed sur- 
Number of blocks of wood face area (in cm*) 

\ I/ 

This problem, originally suggested by Professor David Page of 
the University of Illinois, has been used with children of various 
ages for many years, now, and has been written about in several 
places. See Discovery, Teachers' Text, pp. 271-273; also Page 
( 1  72). 

(39) There are many possibilities (see Dlitoveq, Teachers' Text. 
pp. 271-2731. Here are a few: 

(which can be obtained by noticing mat 
after the first block, each additional 
block adds 14 cm' of additional surface 
area) 

(which can be obtained from the graph, 
if we have observed carefully the "slope" 
and "intercept" patterns on linear graphs) 
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t * t t T 
Front Back Top Stairs Stairs 

T 
Both 

anil "facing "facing ends 
bottom up" dawn" 

(40) If Toby used 10 blocks, what would the exposed (40) The fllrmula 
surface area be? 1 4 x m ) + 8 = A  

is probably the easiest to work with, so we shall use it (Would 
Hie others give the same answers?) Making numerical replace- 
ments for the variables: 

uv: 10 4 Q 

1 4  x 10) + 8 = [Ã‘ 
140+8=[Ã ‘  

148 = 0 
Evidently, to get a true statement we must put 

10 148 

The answer is 148 cm*. 

(41) If Toby used 100 blocks, what would the exposed (41) Again using UV, 
surface area be? uv: 100 - 

(14 x lm) + 8 =A 
1408 =A 

To get a true statement, we must put 

* I * 

The answer is 1408 cm'. 

(42) If Toby 4 ti blmks, what would the e x p d  (42) UV: n - 
surface area be? 

(14 x n )  + 8 = A 
The exposed surface area would be (14 x n)  + 8 cm2. 
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As often happens, one of our main tasks here will be to try to 
avoid confusion. In traditions! ninth-grade algebra, we used the 
device of "writing letters together" to indicate multiplication, for 
example, 

AB = (A ) {B )  = A  x 5. 

We now wish to use a somewhat similar-looking notation that does 
not indicate muitiplication, but refers instead to something quite 
different. 

Once we have had the experience of using "rules," as in 

or in studying the three-peg game, or in "guessing functions," etc., 
we can, hopefully, think about the genera! process of using some 
rule or other. Now, at the third stage in Bruner's Trilogy, we seek 
a notation for writing this idea of "using some rule or other." 

Suppose someone has made up a rule. We tefl them 3, and they 
answer 7. We tell them 4, and they answer 9. 

We tell them They answer 

The new notation we are seeking is sometimes written this way: 

Written Read 

f(3) = 7 "f of three equals seven." 
f W = 9  "f of four equals nine,'' 

Alternatively, it is sometimes written this way: 

A third choice i s  to write: 

Written Read 

F - 3 4 7  "The rule F maps 3 into 7." 
F : 4 + 9  T h e  rule F maps 4 into 9." 

Using the first of these methods, we could write the general case 
for the rule as: 

Written Read 

f(\1) = (2 x [I) + 1 "foi boxequalstwotirnesbox 
plus one." 
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Using the third method, we could write: 

Written Read 

F:  - (2 x 0) + 1 "Therule Frnapstmx intotwo 
times box plus one." 

Notice that fl3) does not mean "multiply f by 3." 

CHAPTER 28 

The Notation ftx) 

47) Pam made up a rule, which worked like this 
If you told her 2, she answered 5. 
If you told her 3, she answered 6. 
If you told her 4, she answered 7 .  

Debbie wrote the rule this way: 

P . 2 4 5  
P : 3 4 6  
4 - 7  

P : D - U + ~  
Can you complete these? 

(a) P: 5 + - 
(b) P: 6 --+ - 
(c) k - 4 1 5  
(dl P: x 4 - 
(el P: w -- - 
( f )  P: 1.002 -- 
(g) P : x + 3 - + - -  

These first six problems are "warm-up" questions to help the 
students to recal I the "secrets" for quadratic equations (see Chap 
ter 10) before we begin our new work for this lesson, which will, 
of course, deal with the notation f ix ) .  

Now we start to work with "functions." 

(7) (a) P: 5 4 8 
(b) f: 8 4 9 

{el f: 12 4 15 
(dl P: x 4 x + 3 
(el P: w Ã‘ w + 3 
(f) P: 1.002 4 4.002 
t g ) P : x +  3 Ã‘ x + 6  



181 Frank used Pam's rule th15 way (8) (a) P(4)  - 7 (Read: "P of 4 equals 7.") 

l i p  u ~ o I + :  lie read it a*: (b) P( l )  - 4 (Read: "P of 1 equals 4.") 

P (21  - 5 "I' of 2 equals 5." (c) P(+l = 3f (Read: "P of + equals 34-.") 
(d l  P(19) = 22 

P 43)  = 6 "I' of  3 equals 6." 
(Read: "P of 19 equals 22."1 

(el P ( x )  = x -i- 3 (Read: "P of K equals x - 3.") 
P (--I = Q + 3 

(f) P(t) = t * 3 
Frank wrote t h ~ q  on the chalkhoard to explain how (g) P(w) = w * 3 

hi- wrntia Elm'< rule- (h) P(Ã + 2) - s J- 5 (Read: "P of s * 2 equals s - 5,") 

4 :  'Ã̂ 
Can you f i l l  in the missing imput or output nurnliers7 

19)  John mndr the rule 

Cnn you complete these7 
Part (c) calls for a little writing. I f  J -  r Ã‘ 18, then this means 

Subtracting 18 from each side, we get 

a quadratic equation for which the truth set is ' 5 ,  3 .  Hence, we 
haveJ 5 - 18and  alsoJ 3 Ã‘ 18. 
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(10) We can also use Frank's method to write John's 
rule: 

J ( X )  = -f - 2< + 3. 

Can you complete these? 

(a) /(o) = - -  - 
(b) J(1) = - 

(c) J ( 2 )  = - 
(d) J(Ioo)= -- 
(e) J ( -  = 83 

(f)  J [ t + 2 ) = -  

Y(2  x w )  = - 
(h) J(U) = - 

( i )  J ( N ) = -  

(11) Ruth made up the rule 

~ ~ = K I x D ) - ( ~ ~ D ) + ~ o .  

Can you find the truth set for the open sentence 

"(0) = O ?  

(12) For Ruth's rule 

R: [ a x  0) - (7 x u) + lo], 
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This, too, calls for a little writing. If J(s) = 83, then we have 

with the truth set {+lo, 8}. Hence we have J(10) = 83 and also 
j(-8) = 83. 

(f) ~ ( t  + 2) = (Ã + 2)' - 2(t + 2) + 3 
= f + 2 t + 3  

(g) ~ ( 2  x w )  = (2  x w)' - 2(2 x w )  + 3 
4 w ' - 4 w + 3  

(hi~(n) = (0 x 0 - ( 2  x 0) + 3 
(i) J ( N  = N' - 2N + 3 

(12) (Q x Q) - ( 7  x n) + 10 = 2; 

adding; 2 to each side, we got 

AIex made up the open sentence 

Can you find its truth set? 
[pace 921 

13) A1 u d  Ruth's rule and made up the opn  sen- ( 13) (a x ) - ( 7 x ) + 10 = + 
subtracting 4 from each side, we get 

Can you find the truth set for Al'a open sentence? 

(14) can you find ~ ( 7 ) ?  (14) ~ ( 7 )  = 10 (Read: "R o f 7  e~ua ls  10.") 

(15) can you find R(-1) ? (15) R( 1) = 1 + 7 + 10 = 18 
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(16) Ruth's father s a y  the idea of a "function" or a 

"rule" ia always something like this: 
You put Knnathln# 

\ 4' (Usually numbers) in here 
"tnpul" hopper - 

come Hit here. 

What do you think? 

(17) Charles says the threfrpeg game is a good 
example of a function. If we use one ring, it takes one 
move to complete the puzzle: 

1 
HI takes MM r m . 1  

If, instead, we use two rings, the puzzle requires three 
moves: 

3 
1 It requires three moves.] 

Suppose we construct a "function machine" that will 
match up numbera the same way that the three-pg 
game does. What number would come out of the spigot 
of thia machine if you tossed "three" into the hopper? 

(18) How many different ways of looking at functions 
do you think there are? 

(16) This question is  meant to focus the student's attention on the 
input-output aspect of functions. 

(17) It would take 5 moves to complete the puzzle. Here the sturtsnt 
is to recognize the pattern produced in the three-peg game; If 
you use n rings it takes 2n - 1 moves to complete the puzzle. 

(18) Functions have been described using tables, graphs, and eya-  
tions. They have also been described as mappings+ 

as rules in sentence form, 

If I tell you n, you teii me n + 3; 

and as rules written in function notation, 

f(n) = n + 3. 

Finally, functions have been described in terms of input and 
cutout numbers. 

Perhaps your pupils will be able to describe functions in 
other ways. 



CHAPTER 23 

Some Operations on Equations 

[pare 931 

(1) Jerry says that two different equations may 
have the game truth set. What do yousuppose he means? 

(2) Do these equations have the same truth set? 

( n x n ) - ( a x D ) + * = o  

( n - 2 ) x ( D - 3 ) = 0  

(3) Do these equations have the same truth set? 

( ~ ~ 0 - ( 4 ~ ~ ) + 4 = 0  

3 4 3 5  

(4) Do theae open sentences have the same truth 
set? (Use only integers as replacements for the 
variable [")Â¥ 

3 < r ] + 1 < 6  

( Q x Q ) - ( 7 x m + 1 2 = 0  

(5) Do these open sentences have the same truth 
set? 

2 < 0 + 1 < 5  

( ~ x n ) - ( 7 ~ ~ ) + 1 0 = 0  

chapter Â£i' f pasea 93-97 of Student Discussion Guide 

SOME OPERATIONS ON EQUATIONS 

(1) This probably is clear. As an example, 

2 x Q) + 3 =  11 

and 

r] + 10 = 14 

are two different equations, but either has the troth set {4). 

(2) Yes. Each has tile tnrtti set {2,3}. 

(3) Yes. Each has the tnrtti set {2}. 

(4) Well, let's by it dirt and see. For 

the truth set (using only integers) is {3,4 
Now, let's look at 

It evidently has the tnrtfi set {a, 4). 
Hence, both open sentences do have the same troth set 

( 5 )  Lsfs try it out. The inequality 

has the truth set {z, 3). 
The quadratic equation 

has the truth set {2, 5}. 
Evidently, these two open sentences h o v  differant truth 

see. 

273 
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( 6 )  Eileen says that two equations which have the 
same truth set are called equivalent equations. What 
do you think? 

For each of the following pairs of equations, can you 
decide whether or not the two equation8 are equivalent? 

(6) Eileen is correct 

(7) Equivalent 

(8)  Equivalent 

(9) Equivalent 

( 10) Equiualsnt 

( 1 1) Equivalent 

(12) Not equivalent 

( 13) Not equivalent 

(141 Not equivalent 

( 15) Equivalent 

(16) Not equivalent 

(1 7) Equivalent 



(20) There are certain things you can do to an 
equation to produce a new equation. For example, 
you might add 3 to the "left-hand side" of the equation. 

If you start with the equation 

0 + 10 = loo 

and add 3 to the left-hand side, you get the new 
equation 

+ '3 = '00. 

If you add 3 to the left-hand side of one equation, in 
order to get a new equation, do you suppose the new 
equation will have the same truth set as the original 
equation? 

(21) Do somethinfr to the equation 

3 x 0 ) + 2 = 3 5  

so as to produce a new equation. Did you change the 
truth set? 

(22) Do something to the equation 

so as to produce a new equation which will have a 
different truth set. 

[ a w e  951 
(23) Do something to the equation 

(-1 + 3 = 7 

so as to produce a new but equivalent equation. 

(24) Beryl says that things you do to equations that 
produce new equations with the same truth set are 
called transform operations. What do you think? 

(25) Can you use a transform operation on the 
equation 

3 x 0) + 25 = 85? 

What new equation did you get? 

(261 LEx says that he knows five different kinds of 
transform operations. How many do you know? 
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(18) Equivalent 

(19) Not equivalent 

(20) No, in general, it will not 

(2 1) The discussion here will depend upon your class. 

(22) This will depend upon your class. 

(23) This will depend upon your class. 

(24) Beryl is correct 

(25) This will depend upon your class. 

(26) (i) Adding the same number to each side of an equation 

(ii) Subtracting the same number from each side of an equation 

(iii) Multiplying each side of an equation by the same number, 
provided that number is not zero 
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(27) Jerry said he thought Lex was wrong. Lex said, 
"Let me give you a clue!" Then Lex wrote: 

\ ~ + 3 = 5  

fn + 103 = 105 

Do you know what Lex meant? 

(28) Jeannie started with nine equations and did 
'something' to each one, to produce a new equation 
in each case. Can you describe what Jeannie did in 
each case? Was it a transform operation or not? 

la) \Jeannie's original quation: 3 + = 21 

(b) Jeannie's original equation: 3 + [I = 50 I Jeannie's new equation: 4 + \ 1 55 

(ivl Dividing each side of an equation by the same number, 
provided that the number is not zero 

(v) Using PN, with any identity Or true statement; for example, 

2 x n - 8  

can be changed to 

+ = 8- 

(27) lex means to suggest: 

Adding the same number to each site nt 
the equation 

Multiplying each side by the same 
(nore-zero) number 

Subtracting Hie same number from each 
side of the equation 

Oniding each side by the same 
(non -zero) number 

Using PN, plus an identity or a true 
statement 
(Here, Hie identity 2 x = + fl 
has been used.) 

(28) (a) She added 1 to the left-hand side, but left the right-hand 
side unchanged. NO* a transform operation. 

(h) She added 1 to Hie left-hand side and added five to the 
right-hand side. Not a transform operation. 

(c) She multiplied each side of the equation by 2. This is a 
transform operation; the truth set was not changed by this 
change in the equation. 
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(d) Jeannie'a original equation: 

( (m+a;+i-a+8 
Jeannie's new equation: 

( 2 x I J ) + s = Q + s  

Jeannie% new equation: 

( Q + D ) + ~ = ~ ~ + ~  

Jeannie'a new equation: 

Jeannie's original equation: ( (2 x 0 + 7 = 31 

(h) Jeannie's original equation: 1 (D + 3) = 10 

Jeannie's new equation: 

V ] + 3 ) + 5 = ' 1 0 + 5  

Jeannie's new equation: 

( n - 2 ) x ( n - 7 ) = 0  

{29) What do we mean by a transform operation? 

(LI) She usad the identity 

plus PH. This is a transform operation. 

(el She subtracted 10 from each side ol the equation. This is 
a transform operation. (That is to say, the truth sets of tire two 
equations are necessarily Hie same.) 

(fl She subtracted Q from each side of the equation. This is 
a transform operation. 

{g) She imiltiptied some terms by 2, but left others unchanged. 
This is not a transform operation. 

(it1 She added 5 to each side of the equation. This i s  a traits- 
form operation. 

(i) This is a tricky om, but an important one. Jeannie used the 
identity 

plus PH. This is a transform operation. 

(29) Actually, there are some subtleties here that may tleseive dis- 
cussion, but we oriinarity omit them at this stage. The children 
don't think of them, and we prefer not to introduce them at this 
time. Hence, we settle tor the simple statement: 

A transform operation is something you can DO to an 
equation that will  leave the tmtti set unchanged- 

Or, on this same level of simplification: 

A transform operation is a systematic procedure for start- 
ing with one equation and obtaining a new, but equivalent, 
equation. 
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(30) Are these equivalent equations? (30) Yes. 

(31) John soya that Lex's "five kinds of transform 
operations" are not really all different. What do you 
think? 

[page 971 
(32) John wrote: 

7 - 5 = 7 + - 5  

What do you suppose he meant? 

(33) John also wrote: 

3 x r"]) + 10 = 25 

[ ( 3  x f]) + 101 - 10 = 25 - 10 

f ( 3  x a) + lo] + -10 = 25 + -10 

What do you suppose he meant? 

(34) How many different kinds of transform opera- 
tions do you know? 

Can you find the truth set for each equation? 

(36) (D x a) - ( 5  x u) + 10 = 4 

(31) John is thinking (correctly, to be sure) that "subtracting a num- 
ber" is realty the same thing as adding tire "opposite" nf the 
number. Since we allow both positive and negative numbers, we 
can include "subtraction" within the notion of addition. The 
same holds for multiplication and division. 

(32) The "subtractionw problem 7 - 5 is the same as Hie "addition" 
problem 7 + 5. 

{33) Again, "subtracting" 10 from each side is really not different 
Iron "adding" '10 to each side. Hence, on Lex's list of five 
kinds of transform operations, we can delete two (namely, those 
that speak of "subtracting" and "dividing"). 

(34) If you combine "addition" and "sutrtraction," and if you also 
combine "multiplication" and "division," then you would pre- 
sumably list three "different" kinds of transform operations: 

(i) Adding the same number to each side of an equation 

(ii) Multip(ying both sides by the same non-zero number 

(iii) Using PN plus some identity or true statement 

(35) One method far solving this problem would be to subtract 4hom 
each side of the equation, to get 

(36) Similarly, you can get the equivalent equation 

(37) Subtract 

from each side, to get the equivalent equation 

(38) {7} (How did we do it so easily?) 

(39) {-45l] (Can you do it without writing?) 



14(11 Arc these equivnirnt rquationfl (40) No. For the equation 
r ti- - 31 - 5 3 = 5 ,  - 

(C - 3)' = 2s 
the truth set is B 1. 

However, for the equation 

we can say that either 

Hence, the truth set for 

is [a, 2 1 .  Since 1 8 1 + 18, 2 1, the equations are not equiva- 

lent 
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This short chapter is intended to make sure that the students 
notice that some of the transform operations on equations do not 
work if they are applied to inequalities. For further reading, see 
Appendix A, Dupree (72). 

CHAPTER 30 

Some Operations on ANSWERS AND COMMENTS 
Inequalities 

When mathematicians aay that two inequalities are 
'equivalent,"tthey mean that both inequalities have 
the same truth set. 

ha this chapter, let's agree to use only positive ink- 
gem as replacements for the variables. 

(1) David made up the inequality ( 1) Sincft we are using only positive integers as replacements for 
the variables, the inequality 

(2 X D )  + I K 10. 

Can you make up an equivalent inequality? (2 X 0) + 1 < 10 

has the truth set { I ,  2,3,4}. 

Naw, an "equivalmt inequalttyu would be me having this 
same truth set Hence (to give one possible example) 

< a + 8 < 1 3  

would be an equivalent inequality. 

(2) Ibm made up the inequality 

0 + ~ < 8 .  

Can you make up an equivalent inequalitŷ  

(2) Here are several possibilities: 

r ] + 6 < 9  



(3) Are these inequalities equivalent? 

i J + 3 < 1 a  

2 x m) + 6 < 20 

(4) Are these inequalities equivalent? 

u - 2 x 4  

1 x (Q - 2)  < -4 

(51 Are these inequalities equivalent? 

+ 3 "  7 

Q + ~ C I O  
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The ineguafity 

m + 3 < 1 0  

has the truth set { I ,  2, 3.4, 5,6}. 

The inequality 

has Hie truth set { 1,2, 3,4, 5,6}. Since the truth sets ore Hie 
same, the inequalities are quhafenf. 

The inequality 

hashe troth set L = (1,2,3,4, 5,}. 

The inequality 

leouires a bit more ttiaugk Let's just try a few numbers "at 
random" to see what happens: 

uv: i --+ a 
1 x ( 1  - 2 )  < 4 

-1 x -1 < -4 

1 < -4 False 

Thus 1 is not an element of the truth set, Ti, for this second in- 
equality. 

Since 1 e r, and 1 r,, we know immediately that 7, + Ti 
and that the inequalities ore not equivalent. 

This example shows us that multiplying both sides of an inequat- 
ity by "1 does not constitute a transform operation. 

(5) The inequality 

m + 3 < 7  

has the truth set 7, = { I ,  2, 31. The inequality 

has the trutfi set r, = {I, 2, 3,4, 51. The inequalities are not 
equivalent. 

(6) What transform operations can you find for (6) (i) Adding Hie Same number to both sides 
inequalities? (ii) Suhtraicting the same number from each side (if you choose 

to consider this different from i) 

(iii) Multiplying botti sides by the same positive number 

(iv) Multiplying both sides by the same negative number, and 
at the same time replacing the symbol < by >, or vice versa 

(v) Using any identity or true statement and PN 
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We have been using this distinction for some time now. In the 
present chapter we try to make it more explicit. Perhaps our best 
approach is by way of an example. 

Example 1. A teacher wants to write an examination for his stu- 
dents, with the foftowing five questions: 

I Examination 1 Find the truth sat for each open sentence. 

The teacher wants to make a brief memo to himself, indicating 
all five questions with as little writing as possible. He could write: 

1. UV: 5 4 a, 6 Ã‘ b 
2. UV: 3 Ã‘ a, 2 Ã‘ b 

3, UV: 15 Ã‘ a, 26 -+ b 
4. UV: 21 ~t a, 20 Ã‘ b 
5. UV: 50 --+ a, 96 Ã‘- b 

in old-fashioned (but valuable) language, the symbol repre- 
sents a "variable" or an "unknown," and the symbols a and b rep- 
resent "constants." 

Example 2: If an equation fCxl= y leads to a straight-line graph, we 
have seen earlier in this book (and also in 0iscovery) that the equa- 
tion can be written in the form 

I I 
Some defmite number here Some definite number here 

For instance, if the "slope" pattern is "over one unit to the right, 
and up three units," then the first missing number must, in fact, 
bea 3: 

D x 3 ) + - - = A .  

If, further, this tine intersects the /^ tor vertical) axis at the 
point (0, 51, then the other missing number must be 5: 
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A 

J -3 units 

I 
1 unit 

The "blanks" or "missing numbers" 

represent constants, whereas the Q and /\ represent variables. 
if we use the notation introduced by Mete, and modified by Des- 
cartes, we would write 

or, alternatively, ax + b = y. 

Now, it is important here that (Swing the period of time white we 
are working on a single problem, the numbers used as replacements 
for a and b must not be changed. During the course of working a 
single problem, we wilt ordinarily use various different numbers as 
replacements for the variables and A. (Geometrically, this cor- 
responds to the fact that we keep the line fixed, and do not move 
it, but we do turn our attention to a variety of differentpointson this 
line. The constants a and b determine which line we are talking 
about; the variables Q and A determine which point we are talking 
about.) 

Let us give an example of what not to do. If, say, we allowed the 
a number to vary during a problem, we might try putting the same 
number in the Q and also in a, so that the equation would become 
(for simplicity, let's use UV: 0 -+ A) 

but this is the equation of a parabola 
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" Variablest' vs. " Constants" 

In the seventeenth century Renri Descartes, whose 
work we have encountered earlier, decided to dis- 
tinguish between different ways that we use 0, 
A, xi U, A, d and so on. In some caaes, Descartes 
would say that we were dealing with constants. In 
other caea, he would say we were dealing with vari- 

ables.* 
In order not to get mixed up, DescarM"; decided to 

use letters near the begitutin~ of the alphabet to 
represent constants. (We shall do the same thing, 
but we shall add also letters near the beginning of 
the Greek alphabet: so we shall use a, 6, c, a, 8 ,  
T , and so forth, to refer to c o n h t e . )  

When he wanted to refer to what he called vari- 
ablea, Descartes used letters near the end of the 
alphabet. We shall too, but we shall also use n, 
A ,  etc. Hence, when we want i% refer to what Des- 
cartes called variables, we can write: x, U, z. w, u, 
~ . D , A . V , ~ , e t c . )  

Modem mathematicians end logicians do not always 
use the words "variable" and "constant" in quite 
the same way that Descartes did, but nonetheless 
Descartes' idea is really still valuable and is still used 
in one fana or another. - 
* ~ n  fack DeflCartefl #a& not the earlieat niAthrmatiman to decide to die 

and not the equation of a straight line at all. By allowing our "con- 
stant" to vary during the discussion of a single problem, we have 
arrived at nonsense. 

So-even if it is difficult to describe the difference-the fact 
remains that "variables" and "constants" realty are different. 

Probably in most cases your intuition and your own good sense 
are the safest guides in distinguishing the different roles assigned 
to variables (like 0 in the examples just given) and to constants 
(like the a in the problem above). Don't worry too much about this 
distinction; most people seem to use variables and constants cor- 
rectly most of the time, even d they are unable to describe exactly 
what the difference is. 

In many cases, you can imagine that the person who makes up 
the problem wit1 assign numbers to the "constants"; the person 
who solves the problem wilt assign numbers to the variables, as the 
occasion may demand. 

Let's see what we can learn from going through the Student Dis- 
cussion Guide. 



Now, what waa it that Descartes meant, anyhow? 
Let's give some examples first. 

Example 1 

Some airplanes have two engines, some have three, 
and some have four. Perhaps, then, to the engineer 
or designer who seta out to design a new airplane, 
the number of engines is a "variable." 

However, to the pilot who flies the plane after it is 
built, the number of engines ia a "constant"-if he 
takes off with a two-engined plane, he cannot simply 
decide in inidflight to change to three engines. 

Example 2 

Suppose a teacher is making up a test. If he wants 
to put in one question about quadratic equations, he 
can write: 

Find the truth set for 

( a x 0 - ( 5 ~ 0 + 6 = 0 .  
base 1001 

Or, if he prefers, he can write: 

Find the truth set for 

Or he can, instead, write: 

Find the truth set for 

Hence, to the teacher who is making up the proh- 
fern, the numbers to go here 

and here 

are "variables." 
For the student taking the teat, however, these num- 

bers are constants. The student is  supposed to answer 
the question that was actually aaked, and not mnte 
other question that might have been asked. 

Perhaps the important idea is that, while all these 
letters (a, ft, x, y, etc.) and frames (Q A, etc.) realty 
name variables (and that is  what the modern logician 
would say), there may be a definite point in time when 
we chme to make numerical replacements for these 
variables, and that time may come sooner for some 
variables than it will for others. 
Thus the pilot is still free to determine the direction 

of  the airplane - for him, that is still a variable - but 
the choice of how many engines to put on it was made 
long before he took. off. 
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To emphasize this distinction, we could write our 
quadratic quation problem like this 

~ x D - ( a ~ D ) + b = O  

or e1ae like this 
r - a x + b = o ,  

To the modem logician, u, x, a, and ft all denote 
variables. But the teacher will make a numerical re- 
placement for the variables a and b, so that-if we 
are students-by the time the problem gets to us, 

a and b will be constants. 

(1) Suppse you are the teacher. Make numerical 
replacementa for the variables a and b in the qua- 
t10n 

Q x Q ) - ( Q x [ ~ + ~ = o ,  
[page 1011 

so as to get a reasonably easy examination question. 
(Make sure you can solve it yourself! ) 

(2) Now suppose you are the student. Exchange 
your paper with someone else, and see if you can 
solve the quadratic equation he made up. (Also, see 
if he can solve yours!) 

(3) In modem language, we would call the Q, 
a, and 6 of question 1 variables. Deacartea, however, 
would have called some of them variables and some of 
them conslank. 

Which would Descartes call constants? Which would 
he call variables? 

( 4 )  If we study these graphs, we notice two im- 
portant patterns. 

This wili depend upon your class. Here are a few possibilities: 

(a) UV: 7 ~f a, 12 + & 

( D X D ) - ( 7 ' < D ) + ' 2 = Â ¡  {3,4) 

fhl UV: 1968 -4 a, 1967 4 b 

1 ' )  

(d UV: 0 4 a, -16 4 h 

This will depend upon your class. 

Descartes would have said that a and b stand for constants, 
whereas fl stends for "the unknown" or "a variable!' 

The graph wilt intersect the vertical axis at (0, b). 
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( 5 x n ) +  2 -  A 
We can say that if the equation is 

[page 1021 

[ a x r J  + b =  A ,  
then the "slope" or "steepness" pattern is: "over one 
to the right, and up a," The number b alw has a geo- 
metric sivificance. Do you know what it is? 

(5) In question 4, which would Descartes call vari- 

ables and which would he call constants? 

(6) Geoff says that before you start in on working a 
problem, you choose definite numbers for the constants. 
While you are working that one problem, you don't 
change these constant numbers. But once you finish 
that one problem, if you want to go on to another prob- 
lem, you may choose new canatants. What do you 
think? 

(7) Can you give some examples of variables and 
constants? 

The a and b stand for constants, whereas the and A stand 
for variables. Or, as we have said, the a and b specify the par- 
ticular tine we are talking about, whereas the and A deter- 
mine points along that line. 

Geoffs description is a very good one (but be forewarned-ex- 
ceptions do occur!). 

In addition to examples occurring earlier, here are some. 

(a) In our work on guessing functions, whenever we guessed 
the form first and then guessed the actual numbers later, we 
were working with constants. The forms, as we did write them, 
and as we should have written them include: 



As we did write them As we should have written them 

(!)I In Discovery, Chapter 37, we studied what we called "ma- 
chines." What was meant was a process in several stages. 

Stage 1: We solved various equations, all with the same pat- 
tern; 

Stage 2: We used variables and constants to write the q ~ n -  

eral form for all of the equations 

Stage 3: We found the general solution to the general form 
of the problem 

Stage 4: The gemrat sofution can now be used to solve any 
ipecr f ic  problem by using nothing more than UY. Suppose we 
wish to salve 

We look at the general solution 

and use UV 

UV: *31 --+ a 
-204 Ã‘ b 

The troth set is {-204-+3l},which can atm be written (-2351. 
These "general sotutionsn are also often called "formulas." 
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We continue the work on the general form of a problem and on its 
genera! solution, which we began in Chapter 31. (See also Discov- 
ery, Chapters 37, 38, 41, and 50.) 

Plato, of course, wrote about aristocrats or ruiers who determined 
what was to be done (in the sense of strategy), and administrators 
or auxiliaries who attempted to carry out the policies of the rulers. 

A somewhat parallel situation can be found in two instances in 
today's technology. In the first instance, we have scientists and 
creative engineers who attempt to determine what is to be done, 
and then embody this knowledge in handbooks, textbooks, and man- 
uais of various sorts. We then have technicians, assistants, or other 
engineers who try to operate according to the knowledge that is con- 
tained within the handbooks and manuals. The parallel to Plato's 
society should be clear. 

There i s  a second parallel today, for we have machines-digital 
computers-that do what they are told, and we have human beings 
(computer programers) whose job it is to tef! the machines what to 
do. 

!n traditionat mathematics curricula most students never did 
team why we use "formuias." In effect, the "formula" or "general 
solution" is a communication from the strategist who made it up 
to the technician who is to use it. We try to stress this distinction 
in the present chapter. (Actually, of course, the same individual 
person may function sometimes as strategist and at other times as 
technician, just as he may be sometimes a pedestrian and at other 
times a motorist,) 

CHAPTER 32 

Plato's Aristocrats and ANSWERS AND COMMENTS 
Today's Digital Computers 

In his book entitled The Republic, the ancient 
Greek philosopher Pieto (born 427 B.C.; died 347 
B.C.) wrote about the roles of the "aristocratan and 
the "nonaristocrats." You can read about this in a 
short modem essay, entitled The Teaching of Science 
as Enquiry by J. 3. Schwab.* 
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To get gome idea of what Schwab (and Plato) are 
talking about, imagine that Mr. Hawkins is a scientist 
and that he has an assistant who knows 
(a) the basic rules of arithmetic, 
(b) how to use UV (use of variables! correctly; 

but outside of this the assistant does not know any 
aleebra. 

Now, Mr. Hawkins realizes that they will soon nee<! 
to solve a large number of problems, all of the same 
type, like this: 

Consequently, Mr. Hawkins writes on a slip of paper 

(1) Will the assistant now be able to help solve 
these problems? 

(2) Suppose you want your assistant to help you 

solve problems like these: 

5 x Q = 2 1  
[page 1041 

What could you write on a piece of paper BO that your 
assistant will be able to help you, if he uses only UV 
and simple arithmetic? 

(3) Suppose you want your assistant to help you 
solve problems like these: 

( 3 x r " ] ) +  5 = 1 1  

(2 x a) + 15 = W 

5 x r " ) ) i  6 = 1 7  

What could you write on a piece of paper 60 that your 
aasintant wilt be able to help you, if all he knows is 

simple arithmetic and how to use UV correctly? 

(1) He should be able to salve the problems, since alf that is now 
required is the use of UV, followed by appropriate operations of 
arithmetic, and we assume the assistant is  competent to handle 
such matters. 

(2) You could write: 

When you encounter an open sentence of the form 

remember that the truth Set is 

{:I. 
Caution: This method will not work if a = 0. 

You might write: 
r 

I Whenever you encounter an equation like 

I remember that the tnrBi set is 

I Beware: This method will not work if a = 0. 
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(4) Do you know what mathematicians mean when (4) I'll leave this to you t# tiy to clarify in discussion with your stu- 
they talk about "the general form of a problem"? rients. As an example, see question 3. Notice that for problems 
What do they mean when they say "the general solu- of the general pattern 
tion of a problem"? 

the generaf form of the problem is 

and the general solution is 

(5) Mathematicians call the equation 3x t 5 = o (5) Using our distinction between constants and variables, we can 
linear (or "of degree one"), they call the equation say that 
Â¥ - 5x 4 6 = 0 quadratic [or "of degree two"), and 
they call the equation x' - + 3->: - 5 = 0 cubic n = y Or a = is of degree zero (a constant function), 
(or "of degree three"). 

mx + b = y or (a x 0) + b = A is of degree one 
(linear), 

and so on. 

The classification for equations is similar to the classifica- 
tion for functions: 

ox + h = 0 or (a x j]) + b = 0 is a first-degree equa- 

tion (linear), 

ax2 + bx + c = 0 or (a x a=) + (b x a) 
+ c = 0 is a second-degree equation (quadratic), 

and so on. 

With this system Df classification, not every equnition (nor 
every funttbn} has a degree. For example, none of the f ~ l -  
lowing do. 
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What do you suppose they would call each of the fol- 
lowing? 

(6) How could you write the ~ n e r a l  form for a 

linear equation? 

(7) Could you write the general solution for the 
general linear equation? 

(8) How could you write the general form for a 
quadratic equation? 

(9) How could you write the general solution for 
the general quadratic equation? 

(10) How could you write the general cubic equa- 

tion? the general fourth-degree equation? the gen- 
eral fifth-degree equation? 

y = sin x 

We could easily extend our system of classification to include 
a few more equations and functions, but we shaft not bother to do 
so at this time. 

(a) Quadratic (degree two) 

(b) Cubic {degree three) 

(c) Linear (degree one) 

(dl Linear (degree me) 
(el Quadratic (degree two) 

(fl Quartic (degree four) 
(el Degree seven 

(hl Cubic (degree three) 

(6)  O X +  b = 0 o r ( o x a ) + h = Q  

(The general linear funetion would be a x  + b  = y.1 

(8) There are several possibilities. The mast wmmoit is 

ax2 + bx + c = 0, 

where a + 0, but we could instead write 

x 2 + a x + b = 0 .  

In the present book, we shall find it convenient to write 

You may need to think-and to write-for a few moments to see 
why these three different forms really say the same thing. 

(9) We hope that, at this stage, your students will not be able to an- 
swer tins question. (This question is inserted at this point in or- 
der to help the student see where he stands, by locating the 
"boundary" or "frontier" of his present knowledge. He con solve 
the general linear equation; he (presumably) cannot solve the 
general quadratic equation.) 

(10) Again, there are many possibilities. Hare is one: 

General fourth-degree equation + 0x3 + bx= + ex 
+ d = O  

General fifth-degree equation xs + a d  + fax= + ex3 
+ d x + e = O  
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(ID How could you mite the p e r a t  solution for (1 1) Presumably at th is  stage your students can solve none of these. 
each type of equation in question lo? 

Some people may wonder why we include questions that stu- 
dents can't answer. We feel very strongly about this: if you don't 
know the distinction b e k e n  what you do know and what you don't 
know, then all of your knowledge is suspect. 

When, for example, you go to a physician, you are trusting him 
to refer you to a specialist whenever your illness lies outside the 
range of his own knowledge. We should all try to advance the fron- 
tiers of our knowledge as far as possible, but we should know where 
those frontiers lie 



Problems 

One of the very important mathematicians of this 
century is George Polya, of Stanford University. Pro- 
fessor Poiya has succeeded in solving many problems 
that no one else had ever been able to solve. He has 
reflected on this experience, and written a number of 
suggestions on how to go about solving difficult or 
puzzling problems.* 
The kind of suggestions Professor Polya has made go 

somewhat like this: 

{a) If the problem is  too hard, can you see which part 

of the problem is making it hard? 

(b) la  there any way to eliminate (or ignore) the 
"hard part"? Could you solve the easy part of the 
problem? 

(c) Could you find a different problem that might be 
easier? (After you've solved this easier problem you 

may have teamed enough so that then you can solve 

chapter 3 3 / P q e s  105-107 of Student Discussion (h ide  

HINTS ON How TO SOLVE 
PROBLEMS 

When they are confronted by a problem, one of the most common 
complaints of students is, "I don't know where to start!" One com- 
mon answer is to show the student where to start. 

In our view. this answer is usually unsatisfactory. it's too spe- 
cific. It may get the student started on that probtem - but how long 
will it be before he encounters some new problem where, once 
more, he says, " I  don't know where to start"? 

Actually, there is a better approach. This is the approach which 
has been described in detail by Professor George Polya, and by 
others. I t  consists of replacing one "hard" question by a sequence 
of easier ~uestions. This method is of the greatest importance. if 
we do not show it to our students, we leave them seriously handi- 
capped for aft their future work in solving new kinds of problems. 

- 
'&iiifte F o b .  How to Sdm I1 I I h b f d a y  Anchor W e ,  New York. 19571 
GwtSft h ly4 ,  M a l h m a h ~  and Piausihle R r t ~ ~ f t i r t f f ,  Two ualiimea <Prim- 

(ad U'rtivtrftity Prenn, Pinftcaton, NJ , 19541 
ihwa Polyn, .VafhitwincctI Dwcwen On Understonding. Liarn~nu, and 

Tewhina Prahkm Setum~. Two vnluniw {John Wiky and %B, New York. 
19651. 



the hard problem. Obviously, you want the easy prob- 
lem to be at least a little bit similar to the original 
hard problem.) 

(dl Can you change this new problem around, BO that 
it will turn into some kind of problem that you already 
know about? T h i s  i s  often called "reducing it to a prob- 
lem that has already been solved," 

(el If you succeed in solving one kind of problem, you 
may want to ask yourself if what you have just done 
might let you go forward and solve some other harder 
(or more general) problems. 

In the next chapter, we want to work on a famous 
mathematical problem, namely, the task of finding 
the general solution of the finera! quadratic equa- 
tion. Professor Polya's suggestions can help us. 

First, however, it may be wise to practice using some 
of his methods. 

(1) Solving the general quadratic equation is a 
fairly hard problem. Perhaps we should start with 
some easier ones. Are there any quadratic equations 
that you already know how to solve? Can you make up 
some "easy" quadratic equations that you can easily 
solve right now? 
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( 1 1 This first question is a good example of what we mean. Suppose 
someone asks you to solve the general quadratic equation. That 
is a hard problem. Many -probably most - students would have 
the feeling that they didn't know where to begin. 

But let's try to replace this hard question by several easy 
questions. Do we know what is meant by a "quadratic equation"? 
(If not, reread the answer to question 5, Chapter 32.) Can you 
write down a quadratic equation or two, so we can get a took at 
one? Here are some: 

Now that we've had a look at a few quadratic equations, lets 
see if we can write down a few really cosy ones that 
we'll be able to solve without difficulty. Here are some: 

These are all easy; in fact, we made them up by thinking of 
the truth set first, and then writing down the equation. For ex- 
ample (see Chapter 101, if we want the truth set to be 2,3} we 
take the equation 

and find the missing numbers by saying 2 + 3 = 5 and 2 x 3 = 6, 
and so we have x2 - 5x + 6 = 0. 
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Are there any other easy kinds tff quadratic aquations? Yes; 
if the equation is factored, as in 

the truth set can be found at once; in this example, il is {5,27}. 
Furthermore, if in the equation 

we use 

UV: 0 Ã‘ a 
0 Ã‘ w, 

WB have 

Now, i f  b is  negative, and 2 perfect square, as in 

the truth set can be written dawn immediately; in this example, 
it i s  4̂, -4). 

We now have three leads that we can follow: (tie first involves 
Hie coefficient rules 

the second involves factoring [as in 

and the third involves perfect squares, 

We could follow any one of these three paths, but themewe 
have chosen to follow is the third: looking for equations that in- 
volve perfect squares. 

(2) Solving the general cubic equation is also a (2) Well, if We know how to use the coefficient rules in this case, 
hard problem. Are there any cubic equations that you we can think of the answer first, and then make up a problem to 
can aolve right now? go with it. Now, in this book (and in ~iscovery} we havenever 

studied the coefficient rules for cubic equations. However, such 
rules do exist; in fact, we can figure them out  

if the truth set is 

{b 'i. r*}, 

then the equation is 

x - r , )  + ( x  - ri) . ( x  - r,) = 0. 



-- 
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(3) Let's try reducing a new problem to an old one 
that you already know how to solve. Suppose that 
your assistant has a piece of paper that tells him how 
to solve equations like this: 

n + 1 = 1 0  

Here, in fact, is what the paper says: 

Now, one day your assistant is confronted by the pmb- 
lem 

[Ã‘] 13 = 25. 

He can't do this by merely using UV and the formula 
on his piece of paper. W h y  not? What can he do? 

(4) Can you extend your solution to harder or more 

general probIms? You already know how to solve 
the equations 

X 1 =  9 
J P =  16 

and ao on. X* = 121 

If we "multiply this out," we eel 

Consequently, if we want the truth set to be {2,3,4}, then the 
equation should be 

Well, that method may (or may not) look very promising. Let's 
see if we can find some others. 

If the quation is factored, as in 

then we can mite down Hie trutti set immediately; in (tie present 
example, it is {5, 1, lo}. 

If the equation involves a perfect cube, than we can write 
down one element of the truth set immediately; for example, 
x3 = 8, {2, r,, r , } ,  where we know the root 2, hut we do not im- 
mediately see what rp or r, should he. (In fact, they are more 
complicated.) 

E v e w i n g  cmsidered, cubit equations are harder than quad- 
ratic equations, so let's not try to pursue them too far just yet 

(3) If he knows about tronfferm operations, he can subtract 15 
from both sides of his equation, getti@ 

Now, this new equation is of the type that he can sofve by look- 
ing at his piece of paper and using UV. Using UV: 3 + a, the 
truth set is { T O  - 3}, or h]. 

in Poiya's language, the assistant has reduced this new prob- 
lem to an old problem that he already knew how to solve. 

If your class is confused by this problem, and if you want to give 
them a hint, you might say, "Suppose the assistant knows about 
transform operations. Would that help him?" 

(4) Yes. There are several ways to write this, or to think about it. 
One is to say that for the equation (X - 21' 49, the number for 
the term ( x  - 2) must be either '7 or -7. Therefore, either x - 2 
" 7 o r x - 2 = 7 .  If x - 2 =  +?,thenx=+9.If x -2=7 , then 
x = -5. Hence, for the equation (x - 2)' = 49, the truth set is 
3 ,  -51. 
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Could you use this to help you solve 

r - 2 )  = 49? 

Notice that we could generalize this still further. The number 
here 

( - __) = 49 
t 

didn't have to he 2. It could have been any number; 

Then either x - a = +7 or x - o = -7. Hence, either x = a + +7, 
or x = a + -7 (which we might prefer to write as x = u + 7 or 
x = a - 7). Hence, for the equation ( x  - a)' = 49, the truth set 
is { ( t+7,0-7] .  

Question: Does the 49 have to be 49? Could you generalize this 
method still further? 

(5) Again, try reducing a new problem to an old (5) Yes, you can turn unfamiliar new problem into a familiar 
one that you already know how to solve. If you can old one, by using the identity 
solve the equation 

s - 6x + 9 = f x  - 3)'. 
(x - 3 )  = 121, 

Here is haw it goes; 
can you use that to help you solve 

(1) x' - 6 x  + 9 = 144 
Xs - 6x + 9 = 144? 

(ii) - 6s + 9 = ( X  - 3)$ 

(iii) (n - 3)' = t44 PN, from line (i), usmg line (ii). - 
Now, the problem 

is a familiar kind of problem that we can easily solve (see ques- 
tion 4). 

(6) Can you solve the equation 

J P - A c + 7 = 7 9 ?  

(6) This is a very good illustration of Professor Potya's method of 
breaking one big question down into several little ones. Using 
our method of looking for perfect squares, we know we could 
solve a quadratic equation like x x  = 144, getting PI 2, -121. 

We could extend the method, and solve ( x  - 2)' = 144, getting 
1 2  + 2, 12 + 2}, or {+H, lo}. 

We could wen solve xz - 4x + 4 = 144, since x* - 4% + 4 
= (x - 2)'. 

Now,  how about x2 - 6x + 7 = 79? Can we use an identity of 
the type 

Let's look at a few identities of this type to see how they wofk: 
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Evidently, the number that goes here 

must be one-half of the number that goes here 

x ' - - x + _ _ _ _ = ( x - - , - .  

t 
)' 

Hence, in our present problem, the missing numtinr must be 3: 

Now, if we look back at the patterns for this kind of identity, 
we see that the number that roes here 

x a - _ _ x + _ _ = ( x - -  

t 
)' 

must be this square of the number that goes here 

Hence, in our present problem, this number 

must be the square of this number 

x - 6x + 7 = ( x  - 3)'. 
t 

Unfortunately. it isn't: 7 + 3'. 
Indeed, we can now answer three Potya-type questions: 

(i) What's difficuh about this problem? Answer: It has a 7 
here: 

x2 - 6 x  + 7 = 79. 
T 

(ii) What number would you like to see in place of the 77 An- 
swer: 9. 

(iii) Is there any legal way to get a 9 there? Answer: Yes. Add 
2 to each side of the original quadratic equation 

x2 - 6% + 7 = 79, 
to get 

x* - 6% + 8 = 81. 

(iv) Now we have turned this unfamiliar new problem into a 
familiar ofd kind thot we already know how to solve! Here Wfl 

go: 

ti) x2 - 6 x  + 9 = 81 

tii) x1 - 6x + 9 = ( x  - 3) 

(hi)  ( x  - 3 1 2  = 81 PN, from line (i), using line ( i i ) .  
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low 1071 
(7) Your assistant has a piece of paper which says: 

For t h e  equat ion  

"the t r u - t h  s a t  is 

This last equation means that this number 

must be "9 or it must be "9. Hence, either x - 3 = +9 or x - 3 
" 9 .  In the first case, x =+I 2; in the second case, x =-I% Hence, 
Hie truth set for x2 - 6 x  + 9 = 81 must be p12, -6). 

Now, we obtained Sw equation x' - 6 x  + 9 = 81 by adding 2 
to each side of the equation x2 - 6 x  + 7 = 79. Since adding2 to 
each side is a fransform oporirtion, the equation x3 - 6% + 7 
= 79 must have the same truth set as the equation xx - 6x 
+ 9 = 81. Consequently, x' - 6 x  + 7 = 79 must have the truth 
set {w, -6}. 

(7) He should observe that 4 = 4 and that 4' = 16+ 10. Hence, be 
cannot take the rule on the paper and use It for the equation 

Instead of a 10 here 

x' - 8% + 10 = 19, 
t 

he wants a 16. Consequently, he should add 6 to each side of 
the equation and then proceed according to the instructions on 
his paper. (See question 6.) 

Now, your assistant runs into this problem: 

S - B J C  + 10 = 19 

What should he do? 



CHAPTER 34 

AD the Quadratic Equations 
in the World 

In this chapter, we want to solve the general qua- 

dratic equation. We'll try to proceed by small steps, 
and make use of Professor Polya's suggestions. 

(1) How can you write the general quadratic equa- 
tion? 

(2) Can you think of any quadratic equations that 
are ao easy that you can solve them just by looking at 
them? 

(1) There are many possibilities. We prefer to use 

since this will be convenient for the work of the rest of this 
chapter. 

(2) As we saw in the preceding chapter, we have three possible 
lines of attack: 

Using coefficient rules a2 - 5x + 6 = 0 
2 + 3 = 5  
2 x 3 = 6  

Factoring Cx - 21) + ( X  - 4) = 0 
Looking for perfect squares x2 = f 6 

In this book we shall follow the third line of attack (seeking per- 
fect squares, a method known to ancient mathematicians as early 
as 2000 B.C.*). If any of your more capable students wish, they can 
write a chapter parallel to this one, in which they use the method 
of factoring as their basic line of attack.^ 

*See E v t t  (151). 

h i s  is not raolly vary dirfÃ§rin from our present mÃ§thM) In onfw to b9 
sum that 

f - Ax + B = 0 

can be factnreri, you naÃ§ to ulttt a fann that you know will factor. The nim- 
lest choice is probably a &iff-* of squares: 

xa - If = ( X  - R) . (X + R). 

This  irwans writing your equation mf the form 

(x -a)"-' = 0. 

The fait is nounably stmightforwad. 
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(3) Can you find the truth set for the open sentence 

-r1 = I A ?  

(4 )  Can you find the truth set for the open sentence 

(x - 1)' = 49? 

(5) Can you find the truth set for the open sentence 

x - 3)' = 144? 

(61 Can you find the truth set for the open sentence 

x - 2)' = 81? 

(7)  Paul wrote this on a piece of paper: 

IÃ‘Ã‘Ã‘Ã‘Ã‘Ã 
For the open sentence 

t 
( x - p )  = 1 4 4 ,  

t h e  t r u t h  set is  

L P  + 1̂ ?-lz]. 

\ 

Since we wish to fotiow the lead of seeking perfect squares, we 
shall look carefully at all three easy types just mentioned, but tt is 
the type 

xi = 16 

which we shall especiatty pursue. 
Having solved 

X" 16, 

we shall now seek to generaiize this (see problem 4 of Chapter 33). 

(4) We proceed as in question 4, Chapter 33. Since ( x  - I)' = 49, 
the number inside the parentheses must be either +7 or "7. 
Hence, either x - 1 = '7 or x - 1 = -7. In Hie first case, we 
get x - 1 = +7Â x = +8; in the second case, we get x - 1 
= 7, x = 3. Hence, the equation (x - I)' = 49 has t h ~ t n i t h  
set {'8, -6}. 

You may prefer to have students think about this problem intu- 
itiuety, without going into any verbal explanations such as this. 

(5) Since ( x  - 3f = 144, the number inside Hie parentheses must 
be either *I2 or -12. Hence, either n - 3 = *12 or x - 3 
= '1 2. We can solve the two linear equations above by adding 
3 to each side, getting x = ' 15 or x = -9. Hence, the equation 
( x  - 31' = 144 has the truth set [+I5 -91 , 

(6) This is precisely similar to questions 4 and 5. You can itiscuss 
it in exactly the same way. However, for the sake of variety, we 
show a method which mathematicians often use, called "chang- 
ing variables." 

Since "the number inside the parentheses" is x - 2, we intro- 
duce a new variable t by letting t = x - 2. Then t2 = 81. Hence, 
either f = '9 or f - '9. How, using t h  definition of t  (t = x - 2)  
we get either x - 2 = '9 or x .- 2 = "9. Solving these last two 
linear equations, we get either x = +I 1 or x = -7. Hence, the 
equation (x - 213= 81 has the truth set {'TI, -7). 

(71 Yes. Ke uses UV 2 + p to get the statement that the open sen- 
tence ( X  - 2)' = 144 has the truth set {2 + 12,2 - 12/, which 
can be written as '14, -101. 

Then Paul gave the paper to his assistant. Suppose 
his assistant needs to solve the equation 

(x - 2)' = 144. 

Can he do it? 
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(8) Jerry says that Paul was foolish to write " 144" 

on the paper. What do you think? 

(9) What do you suppose Jerry wrote on the paper 
that he gave to his assistant? 

(8) Jerry has a point. The number here 

( x  - = 144 
T 

doesn't really have to be 144. Any number k will do, provided 
we can find the square root of k. If, instead at writing 144 here 

Paul had written 

then he W O U I ~ ~  have solved a mom general problem- he would 
have given his assistant a more powerful procedure. The differ- 
ence, of course, is that Paul's assistant, as matters stand, can- 
not solve 

( x  - 2)' = 49 
tx - 3)' = 36 
tx - 51' = 121 

If Paul had followed Jerry's suggestion, the assistant would be 
able to solve all of these. 

(9) Presumably, Jerry wrote: 

If you encounter the equation 

(where p and k are given numbers), remember that the 
truth set is 

Modern mathematicians use the symbol f i t0 refer to the Ron- 
negative square root of k. Thus, 1̂44 = "I 2. Do not use 1/144 to 
stand for '12; this would be contrary to the best present practice. 

Jerry's method is not perfect; it works very nicely, provided we 
are able to findthe square root, @ If, however, we cannot find this 
square root. the method fails. 

When can we find square roots, and when are we unable to? This. 
of course, depends upon the sequencing of the mathematics cur- 
riculum in your school. In our own practice, at this stage in a stu- 
dent's career, he can find the square roots of perfect squares, such 
as 

'121 = '11 

and so on, but these ere the only square roots he can find. 
In fact, he can prove (more or less, anyhow) that, among the num- 

bers that he knows, there is no number whose square is 2, and there 
is no number whose square is -4. 

The introduction of matrices will put matters in a different light - 
but we haven't reached this point yet. 
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(10) Suppow the next problem w a ~  

( X  - s y  = 81. 

Can PauI'a aasisbnt mlve this? Can Jew's w i s h n t  
aatve it? 

[page 1091 
(11) For the problem 

Did the am~tartt do the right thing? 

(12) Pretend you arm Paul's msiatant. (That means 
you know &out UV and nimple s r i h t i c ,  but you 
don't know mything abut quatiom unleaa you can 
read it on a d i p  of pap! )  How would you solve 

(13) Stop prehnd~ng you are Paul's assir&mt. NOW 
you are a very clever sientkt. Can you find the truth 
st for the open sentenm 

(Remernhr, in -8' W ~ F I  h and k are ''am- 
5ta11ta.~ That meam that mmebcdy else will put num- 
hr~ in for h and k, before they give you the problem.) 

What will you w r i k  on the d i p  of p ~ p e r  you give b 

your ~ ~ t ?  

(10) Presumably, Paul's assistant canmt s o l v ~  *is, since it involves 
an 8 I at a spot in theequation where Paul's mistant can cope 
only with 144" 

jerw's assistant, on the other hand, can solve 

by using UV as fallows: 

in his e~uatian (x - = k. 
Then fi= m= +9 and the twth set is {5 + 9,s- 91, which 

can be written { 14, 4) .  

( 13) G i i  p u r  assistant a $tip of paper with the faifowing written on ik 

ff you want t~ solve the equation 

( X  - hj' = k, 

where YOII am to#d &finite numbem for h and k, and you 
are hying to find values for n, then the truth sei is 

{ h +  f i , h - G } .  
That means mat if yw put the number h + fi in for x, 
flu wil! get a me statement, and similarly for h - fi. 
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(14) h & n d  you are J w ' a  assistant. How will you 
solve a h  of h e  following equations? (Whenever you 
u e  IN, wrik it down aa UV: 3 - h, mbatihting for 
3 whatever number you do use, and m on.) 

1 101 

Behm we can go any further, we'll need to me nume 
identitiea. It might he a g d  idea h practice a few 
identiti- right now. 

(15) What do we mean by an identity' 

(16) IB khia an identity? 

If you have tro" ble seeing why we wrote this, you can think about 
the equation 

( X  - h I a =  k 

the same way that w did w ~ t h  problems 4, 5, and 6, eartier in this 
chapter. 

(14) Jew's a s s i M  can use UV, as follows: 

uv: 4 - p T h a  solutions 
169 + k 

&= -= +13 
make use of 
the "piece of 

{4 + 13,4 - 131, or {IT 3 )  paper" which 

(GI ( X  - 15)' = 225 Jerry gave to 

uv: 15 + p his assistami. 

225 --+ k See question 9, 

$= @%= 15 page 303. 
{IS + 15,15 - 151, or {M, 01 

(15) Here is one way fa say what an idmmtib is: 

An i d e r n  is an ripen sentence hat b ~ o m e s  true w h a -  
ever you make a legal numerical rep#acment far the vari- 
ables. 

The studam often say this more wllquiatly a= 

la say this very precisely is difficult, and usually unnecessary. 
Sufficient unto the day is the rigor thereof. One can always make 
things more precise as the occasion requires. 

( ~ - 3 ) x ( ~ - 3 ) = ( ~ x ~ ) - Q  

(4 - 3) x (4 - 3) = (4 x 4) - B 

1 x 1 = 1 6 - 9  
1 = 7  False 



(18) T h i ~  is the &ginning of a krimgular army of 
numbers that maLhmaticiam call "Pancal's triangle'': 

1 

1 1  
1 2 1  

1 3 3 1  
1 4 b 4 1  

Can you fill in the next iine across? Can you 611 in the 
line &er that? and the next? 

Consequently, the apen smtmce 

is not an identity (if it were, than putting 4 into Me= wauM hm 
yielded a t t ~ e  statement). 

(171 YEIS. You can prove this-which takes a bit of wiling-by making 
a deriwation, We can sketch out the derivation here in bridfom: 

L 1 

[!I) ( R  + s)' = {R' + [RS I + RS . I]} -+ s 
DL 

(il ( R  + s)' = {R' + (RS - [ I  + 
oef. Mum. 

(j) ( R  + s)= = { R ~  + RS 2) 
CLM 

{k) (R + 5)' = {R' + ZRS) + 5' 

(11 {R s)' = RZ + 2RS + 5' 

The elimination of the ham 
is possible because of the 
agreement that R' + 2RS + sz 
means carry OM the multiplica- 
tions, then add R' + ZRS, and ta 
this result add s2. 

am. 
{IS) This triangular amy of numbers is o? conside~alsle tmporlance 

in various pam of mathematics. It has been named akfthe great 
French mathematician Blaise Pascal (1623-16621, who studied 
kt carefully. Actually, Pascal was flat the first mathematiclan to 
study this array; according to Eves [EVES (l5l1, pp. 257-2611, 
the earliest k n o w  reference is  in the work of the C h i m e  alee- 
braist Chu Sh'i-kie, in 1303, Here are some additional lines: 

1 
1 1  



(21) (R  + s)' = R' + 2R5 + S' 
If *e indicate the dimensions by letters, 

- -Y 
- - 
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(22) &re you get your choice of two vemiom of this 
picture. Both veraiom ahow a cube sliced up inta pi-, 
mme d which are themselve~ cubs. 

(8) The cluthed one 

b repramt the aame big b l d  d w d ,  which has been 
sliced inb smaller p a .  

How many -11 pi- are there? 

then we see that the largest square is a + b on a side; hence ~ t s  area 
is (a + bI2< Bt~t  this is equal to the sum of the areas of the twa smab 
fer squares, plus the two rectangles. These areas are as shown in 
the fdtowing figure. 

Thus their sum is az + 2ab + P, 
However, the picture seems to shw all these little pieces fitting 

together "just right'' to make the big square if thts iscowect, their 
areas must be equal: 

This obviously suggests 

we can get either from the other by using UV. 

(221 There are 8 small pieces that, togather, make up the large cube. 
The large cube itsew has We w l u r n ~ ~  {A  + B)'. The medium-sized 
cube in !he iower I& tmrtl has the volume A'. The small cube 
in the upper rigM rear has the volume 8'. The three VlaV9 
p i e c ~ s  have the volume A%. The three "brick-shaped'' pieces 
have the volume AP. 

Maw the picture seems !a show a# ai thm smaller pieces 
fitting together ''just right" to make up the total cube. If this ig 
correct, their volume must add up to the volume ol the tab! cube: 
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Can you find the volume of each of the small pieces 
if the faces have the dimensions shown below? 

[page 1 121 
(231 Which identity in question 19 do these volumes 

suggest? (In fact, if you really "believe" this picture, 
it virtually gives you a proof of one of the identities. 
How come?) 

(24) If you were not sure of your answer to question 
21, suppose the dimensions were written in like this: 

(23) See the answer to question 22. 

(24) See the answer to question 21. 

Compute the area of the large square (of side A + B) by 
two different methods. 

Now, which identity in question 19 does this suggest? 
(In fact, if you "believe in" this picture, you have almost 
"proved" the identity. How come?) 

(25) Anne aaya that she remembers 

R + sy 
by saying: 

'The square of the first term R1 

plus twice the product of the R ' +  2RS 
two terms 

plus the square of the second R + 2RS + S' 
term." 

Can you complete this identity? 

( A  + B )  = A + 

(26) We've spent enough time looking at identities. 
Let's get back to work trying to solve 

+ A x + f i =  W. 

Where were we? How far had we gone? 

(26) See the answer to question 14. At that point we had worked out 
a formula which allowed us to solve any quadratic equation of 
the form 

( x  - p)3 = k 

(provided we could find the square root, fi). 



(27) Solve 
( x  - 3 )  = 169. 

(28) Suppose you saw this prohiem: 

1Ã‘Ã‘Ã‘Ã 

Inage 1131 
When you find the missing piece of paper, what number 
do you hope will be written on it? 

Solve these equations. 

(29) (x 10)' = 9 

(28) Our system depends upon the fact that, if you look at this number 

i f  you take one-half of it, 

and if you square that, you should get the number that goes here 

Hence, the number we should like to see there would be 

3' = 9 ,  

If you are not sure where we got this idea, try out a few examples: 

I f  you want to prove this in general, you can consider 

129) ( x  - 10)' = 9 
uv: 10 - p, 

, - 9 - k  
,ik c Jg s '3 
1 0  + 3, 10 - 3 ,  or ' 1 3 ,  '71 

(32) Oh! Here's some trouble! Our paper lets us solve equations of 
the form 

( x  - = h; 
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but this new equation 

is not of this form! 
However, fotlowing Pofya's suggestions, let's see if we can 

turn this new problem into some familiar aid (woblem, Can we 
write 

xz - 16x + 64 

in the form 

(x - 

Hooray! We can! Here is the way to do it: 
We take + x 16, which is 8, then quare it and that is ttw num- 

ber we find here 

x2 - 16x + 64. 
T 

Consequently, x1 - 16x + 64 = (X - 8)'. 

We now use this identity to change the new problem into a 
familiar old pmbtem; 

(i) K' - 16x + 64 = 81 

( i i )  ~2 - 16x + 64 = ( x  - 8)' This is an identity, 

PN, from Kite { i ) ,  
using line (ii). 

Now, 

(x - 8)' = 81 

is the type that we do know how to salve 

UV: 8 4 p, 
81 4 k (Here we are using the note 

Ĵks m=+9 Jerry gave to his assistant. 
8 + 9 ,8  - g } , ~ ~  { + I T , - I }  Seequestion9, page303.1 

(33) Similar to question 32. Use the identity xa - 2x + 1 = (x - 4)' 
to change the equation to ( x  - 1)' = 4, which we can now solve 
using the formula on our paper: 

UV: 1 ~f p, 4 Ã‘> k 
J k =  -^4="2 
1 4" 2 , 1  - 2},or {+a, l ]  
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(37) Can you find the truth act for the open sentence 

JP - ̂  (;)= = w? 

(38) Can you find the truth set for the open sentence 

x 1 - a x + b = w ?  

It is important to bear in mind that these last few probtems have 
been working smoothly because in each one, if you take the number 
here 

divide it by 2, and square the result, then you do get the number 
here 

If that were not so, what could we do? 
Anyhow, question 36 is another easy one: 

and this is a 9. 

(37) This, tog, is of the m y  type, since if wa take the number here 

divide H by 2, and then square his, we find that this is the number 
here 

Hence we have 

and the truth set is 

NOTE: 
Questions 38 through 44 present a typical Madison Project se- 

quence. Question 38 sets the task. {if a student solves this, well 
and good. If not, he should go to the following problems.) Questions 
39 through 44 discuss various ideas for attaching question 38. 
Question 44 is really a recapitulation of question 38. By then, stu- 
dents should be able to answer the question. 
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If a student was able to solve question 38 on its first appearance, 
he presumably did something like this: 

(i) Possibly 

i s  true, and possibly it's false, I don't know for sure, 

(+I )  But, in order to use the paper 

I must be sure that, if I take the number here 

x s  - a x  + & = w ,  
T 

take 4 of it 

a - 
2 

and square the result 

this will be the number here 

(iii) Since I am not sure about b, I ' l l  move the b out of the way 
(by subtracting b from each side of the equation): 

x = - a x  = w - b .  

(iv) Since I know I must have 

in the spot here 

' f l  put it there (by adding it to each side of the equation): 

(v) Now, I can use the identity 

to let me rewrite the original equation as 



314 CHAPTER 34 

(39) Ellen gave her assistant a piece of paper which 
said: 

What do you suppose it says on Paper 123A? 

(40) Pretend that you are Ellen's assistant. How 
would you solve the equation 

x'-  lox + 15 = 39? 

Trace out your path on Ellen's "map" (which mathe- 
maticians call a "fiow chart"), 

Here weagain use the note that Jerry gave to his assistant (see 
question 9, page 303). 

(v!) But this last equation is like the one on my paper! l can solve 
it by merely using UV: 

a uv: 7 p 
a '  

W - b + ( ? )  d k  

Thus the truth set must be 

This last formula represents the general solution for the general 
quadratic equation. (Don't worry that it looks different f rom the "tra- 
ditional" formula. See question 1, Chapter 35.) 

x - a x + Â ¥ b =  Paper 123A 

use t f i i i  mettiod only i f  (;)* = b . 
The originat equation is equivalent to 

0 = 
x - -) = w 2 
and the tnrth set is 

(40) The paper that Eflen gave to her assistant contains an example 
of a so-called "flow-diagram." as used in modern electronic dig- 
ital computing work. Flow-diapains of one sort or another are 
often found on the walls in classrooms these days; for example, 
here is one made up by some children: 
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breakfast 

& .  church 

~ e t  on If 

school NO 

bus 

f low-diagrams are valuable when we want to see in vafy explicit 
form the framework of decision making that is invotved in soh- 
ing some problem. H we follow our path tlmiugh Ellen's diagram, 
in order to solve the equation ~2 - lox + 15 = 33, here is the 
result: 

he answer 
is 'no.'' 

a = 10 

b < Q2 

The answer 
is "no." 

If "no" zzr 
Add the s m  number to hotti 
sides (ri the equation so as to 
make 

Now, go to Paper 123k 
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(411 Pretend that you are Ellen's assistant. How 
would you solve the equation 

Â¥ - 12r + 45 Â¥ 187 

Again, trace out your path on Ellen's flow chart. 

(42) Pretend that you are Ellen's assistant. How 
would you solve the equation 

x1- 22x + 121 = I%? 

Trace out your path on the Sow chart on Paper 137W. 

(43) Can Ellen's assistant solve any quadratic 
equation in the world? 

(44) Anne and Jeanne worked out a general solution 
for the general quadratic equation this way: 

What ia the truth set for this open sentence? {Itemem- 
her, in Descartes' words, x is the "variable" or the 'im- 
known," whereas A, B, and Ware "constantB.") Mathe- 
maticinns call this method "completing the quare." 

When we refer to Paper 123A, wa find (fiat it enables us to 
w\w the equation 

without difficulty: 

(41 {9,3}. Follow the same general procedure as in the answer to 
question 40. 

(42) {25, -3). Follow the same general procedure as in the answer to 
question 40. Notice that + x 22 = l l  , I  1' = 121, so the answer 
to the firat question is "yes!' 

(43) Yes, provided she rfoesnt encounter trouble in findimg the square 
foot 

(441 This is in our familiar form: 

Hence, we solve it by using UV: 

The truth set must be 
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- Some History 

There have been two advanced periods of  civiliza- 
tion in European or Western history The first was the 
civilization of the ancient Greeks (and their neigh- 
bors, such as Sumeriaas, Persians, and so forth). If 
we try to identify the early beginnings of this ancient 
civilization by using mathematics as our criterion, we 
might decide that it was well under way, in Babylonia, 
by 2000 B C.* 

Just before 1000 B.C.. the site or the "most ad- 
vanced" civilization began to ~h i f t  from Egypt and 
Babylonia to the areas inhabited by the Hebrews, Aa- 
~yrians,  Phoenicians, Greeks, and at least as far west 

as Sicily. Of this newly developing society, Howard 
Eves writes, "The static outlook of  the ancient orient 
became impossible and in a developing atmosphere of 
rationalism men began to ask why as well as how.") 
Some great mathematical thinkers of this period 

were Thales (around 600 B.C.), Pythagoras (born 
about 575 B.C.; died about 500 B.C.), &no (495-435 
B.C.1, ~udoxua (408-355 B.C.), Diophantus (born about 
400 B.C.), Euclid (330-275 B.C.), Archimedes (287- 
212 E.0.1, and Hpparchus (born about 160 B.C.). 
Using these wen as paid=, we might say that the 
'golden age" of Greek mathematics began roughly at 
600 B.C., and began to vanish around 200 B.C. Some 
Greek mathematicians were still at work as late as 
250 A.D. (e.g., Pappus), but by then the "golden age" 
was well over. Indeed, all of  ancient civilization was 
gradually destroyed as a living society, although frag- 
ments of it remain, in various forms, even today. 
Human life in the Western world entered the period 
known as the "Dark Ages."* 

(Mathematical activity was not confined solely to 
Europe. Indeed, very important mathematical discov- 

c h a p t A / ~ u g Ã §  115-121 of Student Discussion Guide 

Schwab (1) and Eves (1511, see Appendix A, provide excellent 
background for this chapter. 
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cries were made by the Hindus, particularly with re- 
gard to better methods for writing mathematics. 
These Hindu discoveries were later to play a very im- 
pwtant role in Western mathematical progress, but 
the Hindu results were largely unknown to the ancient 
Greeks.) 

The dates for the Dark Ages may be taken as roughly 
450 A.D until 1000 A.D. Of this period, Eves writes: 

The penod starting with the fall of the Roman Empire in the 
middle of the fifth century and extending into the eleventh 
centun'y in known as Kurope'n Dark Agw, for during this period 
civilization in western Europe reached a very low Ah, Schooling 
became almost nonexistpnl, Greek learning all but disappeared, 
and many of the arts and crafts bequeathed by the ancwnt world 
were Forgotten. Only the monk* of the Catholic monasteries, and 
a few cultured laymen, p m w e d  a slender thread of  Greek and 

[page 1 161 
Latin learning. The period was marked by much physical vio- 
lence and intense religious faith. The old social order gave way 
and society became feudal and ecde'liaatical. 
The Romans had never taken to abstract mathematics, but 

contented themselves with merely practical aspects of the sub- 
~ B c t  associated with commerce and civil engeering. With the fall 
of the Roman Empire and the subsequent c l h g  down of much 
of esst-west trade and lhe abandonment of state enfinering 
pngecte, even these interests waned and it is noexafwatian to 
say that very little in mathematics, b^yorid the development of 
the Christian calendar. was ~ccomplishcd in the West during 
the whole of the half miilennium covered by the Dark Ages ' 

Around 1000 A.D. Western society "started moving 
againx'-started building along a "new frontier" of  
civilization, as we today might describe it-although 
for the 500 years from 1000 A.D. until 1500 A.D. the 
pace was fairly slow. This rebirth occurred in part as 
a result of Asian culture reaching Europe, particu- 
larly by way of Spain. The case of the French inathe- 
matical scholar and churchman, Gerbert, is interest- 
ing and points in the direction of what was to come. 

Gerbert was born i n  Auvergne, France, about 950 A.D. 
He traveled to Spain, where he studied in a Moslem 
school, and he may have bwn the person who intro- 
duced into Europe some of the Hindu methods for writ- 
ing mathematics. He may also have designed clocks 
and musical instruments. In the year 999 he became 
the leader of the Roman Catholic Church, assuming 
the title of Pope Sylvester II. 

As we have seen earlier, in the early part of the thir- 
teenth century (just after 1200 A.D.) something new 
was added to European life: the great universities 
were started, particularly at Paris, Oxford, Carn- 
bridge, Padua, and Naples. A new civilization was be- 
ginning to appear-the one of which we, today, are the 
most recent part. 

As history gow, our civilization is  surprisingly new: 

even being generous, we would say that it is less than 
1000 years old; looked at more narrowly, we might 
date it from about 1453, in which case it is more like 
500 years old. Many parts of the United States are of 
the order of 100 years old kg.,  the state of Colorado), 
-"""""- - 

'Even, up cttt Chapter 6 



and others (such as  the city of St. Louis. Missouri) are 
about 200 years old. Of course, all of our "civilization" 
in the United States has been buiSt upon the civiliza- 
tion of Europe, and in surprisingly many ways we have 
even built upon what we have Seamed from the civili- 
zations of the ancient Greeks and their neighbors. We 
are nonetheless in many important respects a surpns- 
ingly new society, and we clearly have the reeling that 
we are headed for new frontiers-although, as  always 
when civilization is moving forward to new and un- 
precedented heights, we cannol see where we are 

going. 
In a11 of the approximately 4000 years from the ear- 

liest beginnings of ancient civilization, through the 
Dark Ages, and up until the present time, at what 
point did the study of quadratic equations appear? 

Clearly, were you able to show a problem in quad- 
ratic equations to a "typical" man of the Dark Ages, 

fpwc Ã 171 
he would have been unable to solve it. Presumably he 
would even have been unable to understand what it 
was that you were trying to do. Quite likely he would 
not have cared, anyhow. 

But the question is, was this ignorance of something 
that the ancients had worked on and finally came to 
understand, or was i t  ignorance of new mathematical 
discoveries lhat were not made until after the Re- 
naissance? Had this knowledge been "lost," or had it not 
yet been discovered? 

When did men first learn to work with quadratic 
equations, and to understand them? 

, 4-++ *-- - - 
k&d% ThL B~dh KkL',4'e2A Dart. Ages 

Age of of Middle 
and 

~ m k  Wllit A ~ e s  MOUern Per mods 
MatheTTiatlc5 

The answer is surprising, if not nearly incredible. 
The study and understanding of quadratic equations 
i s  very old indeed. It dates from the early  beginning^ 
of ancient civiiization. Here is what Eves writes about, 
it- 

"By 2000 B.C. Babylonian arithmetic had evolved 
into a well-developed rhetorical algebra. Not only 
were quadratic equations solved, both by the equiva- 
lent of substituting in a general formula and by corn- 
dieting the square, but some cubic (third degree) and 
biquadratic (fourth degree) equations were discussed."* 

We need to clarify one paint. The way that we today 
write quadratic equations i s  due to Descartes, who 
lived in the seventeenth century. Hence, the ancients 
clearly did not have our modem method of writing 
quadratic equations. (But. then, they also wrote num- 

"Eves. iff), t f l . .  p. 33 

SOME HISTORY 
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bers differently, so that does not necessarily put them 
out of the running for understanding quadratic q u a -  
t i n s  and being able to work with them.) 

It might be well for us to recapitulate the process 
of "completing the square.'' Here it, is, using num- 
bers: 

1 (b) We see that this number is not what we wish 
it were. Why? In fact, 

and so we wish that this number were 9. 

(c> Consequently, we decide to add 6 to each side 
of the equation, so that we have 

(d) Now, we can rewrite this as 

{x - 3)' - 16. 

(el Evidently, the truth set for the equation in line 

(f) Unfortunately, we have solved the wrong problem. 
The set {7, - I }  is the truth set for the eqwticn 

However, we were asked to find the truth set for the 
open sentence 

2 - & + 4 = 1 1 .  

(g) Fortunately, the two changes in the equation 
which we have made were both "transform operatiom." 
Hence, the equation 

~ ~ - 6 x + 4 = 1 1  

has exactly the same truth set as the equation 

x - 3)' = I&. 

(h) Hence, the truth set for the equation 

If we use Descartes notion of "constants" and "vari- 
afalea," we can use this same method of "wmpieting the 
square" to derive the general solution of the general 
quadratic equation. 

(a) The general quadratic equation can be written 
in the form 

xz - Ax + I3 = W. 



(b) Now, we want to make sure that 

( x A)' = B. 

Since we do now know, in general, whether or not 
this is true, we can avoid the matter entirely by sub- 
It-acting R from each side of the equation: 

(c) Now, since we want to see 

inserted on the left-hand side, our simplest procedure 
will be to put it there. How can we do this in a legal 

[page 1 191 
fashion (that is, by using a "transform operation")? 

The answer is simple: we shall add 

to each aide of the equation, which gives us: 

(dl Since we have now made the left-hand side into 
a "perfect square," we can write: 

te) For this equation, the truth set is 

We can now hand our assistant a piece of paper that 
says: 

Pot" t h e  open sentence. 

X' - A x  -c B -  W, 

t h e  t r u t h  set is 
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W Many books in the first half of the twentieth cen- (1) Starting with the form a x *  + bx + c = 0, we know that uXO (for 
tury wrote the general quadratic equation in the form otherwise the equation would be lineor and not quadratic). Con- 

ax' t bx Â¥' c = 0. 
sequentty, we may divide both sides of the equation by u, getting 

Use the formula which wejust obtained to find the truth b c 
x Z +  - x  + - = 0. 

a a 
(1 1 

Set for this equation. 

This is almost our form 
Although the ancients solved the general quadratic 

equation, and also some cubic and quartic equations, x - Ax + 8 = W. (2) 
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they were never able to solve the general cubic equa- 
tion nor thegeneral quartic equation. In large part they 
must have been handicapped by their lack of our mod- 
em methods for writing mathematics. (Imagine doing 
mathematics, for example, with your eyes closed!) 

fpaae 1201 
When did man first come to understand the general 

cubic and quartic equations? Here is what Eves writes, 
describing the event: 

Probably the moat spectacular mathematical achievement of 
the sixteenth century was the discovery, by Italian mathemati. 
ciians. of the ai&raic solution of cubic and quartic equatiuns. 
The story ofthis di'scovety, when told in its moat colorful veraion. 
rivals any page written by Benvenuto Cellini. Brieflv toid the 
factsiteem u> be these. About 1515.Scipioriedel ~erro~l465-1Vfi1, 
a prolessor of  mathematics at the Dnivetstity of B o l m a ,  ~olved 
algvbraically the crhic equation x'+ rnx = n, probablv basing his 
work on earlier Atnbic snurces. Hedid not publish hiarewit but 
revealed the secret to his pupil Antonio Fior Now about 1535. 
Nicoln of Brescia, commonly referred to as Tartaglia 'the stam- 
merer) because or a childhood injury which fiffecttfi his speech, 
claimed to have discovered an algebraic solution of the cubic 
equation x3 Â¥+ pf1= n. B~heving this claim was a bluff, Fior chal- 
lengai Tartaglia to a public contest o f  wiving: cubic equations, 
whereupon the latter exerted himself and only a few day8 before 
the contest found an alwlimic solution fnr cables Tacking a qua- 
dractir [am, Enbrine the contest t-quqped to solve two types of 
cabir equations. whereas Fiorcoiild solve hut one type. Tsrta~lia 
triumphed mmp~ttcly. Law? Girolamo Cardam, an unprlnripied 
p n i u x  who taught mathematicsand prnctiffd medicinein Milan, 
upon Civtng a solemn piedw of wcrecy wheedled the key to the 
cubic from 'Ritta~lin In 1545, Hardano publiihcd his A n  muEna, 
a great Latin trcaliise on ni~ehra, flt N u r e r n t ~ ~ g ,  Germany, :ind 
in it tipp~nrcd T.irtaglia'3 ~olut~rtn of the cubic 'I'nrtflpliahs vehe- 
ment p h t s  werp met hv l d o v i o a  Ferrari. Cnrdanft'u most 
capable pupil. whonrmi'ii that Cardano had received hisinforma- 
tmn Irnm del Ferro throurh a third party and accused Tartaciia 
of  piagiar~sm from the same source, There ensued nn acrimonious 
dispute from which lhrtaplia was pcrhupa lucky to m a p  silive. 

Since the actors in the above dram* si>em not alwaw to have 
had the highest regard for truth,one linds R number of vnriatinns 
in h e  details of the plot. 

The solution at the cubic tquatinn Jf' + mr = n given the Car- 
dano in  hi'i Ari mapm is essentially the following Consider the 
identity 

If we choose a and b so that 

then x is given by n - b. Solving the last two equations simulta- 
neously for a and 6 we find 

and x is thus determined, 
It wasnot long after thecubic had h e n  solved that an algebraic 

solution was d~wivered  for the general quartic (or biquadratict 
equation In 1540, the Italian mathematician Zuanne de Tonini 
da Cm proposed a problem to Cardano which led to a quartic 
equation . . Although Cardano waq un~blie tosolve the equation. 
his pupil t'prrari succeeded, and Cardano had the pleasure of 
publishing this Station also in h ~ s . 4 r ~  m a g n d  

(2) Explain Cardano's solution of the equation 

If we rewrite equation (1 ) as 

then we can solve it by using equation W and UV. 

Then, the truth set 

becomes 

We can put these over a common denominator of Zu, getting --- 
- b + ^ / h ' - k c  -h-,&--Xc/ 
1 20 2a \ ' 

t 

and, if we write this in traditional notation, we get the traditional 
formula 

Note: There are good reasons for avoiding the "traditional" 
notation Â± This notation has been used ambiguously in the past. 
Sometimes it has meant that either sign might be chosen and 
would necessarily be correct. A t  other times it has been used to 
mean that one sign or the other was correct, but not necessarily 
both. 

(2) Whether by good luck, or otherwise, Cardano bad an opportun- 
ity to think about the identity 
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The similarity of the two forms which Tartaglia per- 
haps observed is illustrated in the diagram below: 

p^n p  ̂
must go herel must go here 

and to observe its similarity to the equation he wished to solve, 

~3 + mx = n. (2) 
e 

There is a striking similarity of form between (tie two; each 
involves some number cubed, 

plus this same number to the first power, with some coefficient, 

set equal to something else, 

If we want to solve equation (Z), can we first turn it into equa- 
tion (1 )? This would require 

^- But this works out very nicely! If we are given the equation 

that means we are given m and n, and asked to find x. But it we 
are given m and n, then the equations 

can be used to determine o ami b (we shall work this out in just 
a moment). 
How, since we know a and b, we can determine x,  

which completes the job. (Well, there might be some other pos- 
sible values of x that we have overlooked, but at least wa have 
made a beginning.) 

Perhaps we should go backwards a moment, and see how we 
got from m and n to Q and b. We had 

If m = 0, we know x = *. Hence, assume m # 0, Then a #O 
and bx0, and we can divide both sides of equation (3) by 3b, 
getting 

which can thÃ§ be used to eliminate a from equation (41, 
The rest of the work is straightforward, provided you are care- 

ful with radicals and exponents. 



effect. had written thic note 

t n e  equation 

m x  - in 
- h ,  w h e r e  

( 3 )  If we let 

X f + i r ,  

and substitute into the equation 

x + ox3 + bx + c = 0, 

we get 

which is 

to-' We now (havine looked carefully at this last equation above) 
I use Pnlyn's idea nf  "nducing it tn select such that 
1 Ihnt he alriwdy knew how in solve." 

1 1  in write 
3" * 0 = 0; 

that is, so that n = - ', thereby getting a cubic equation for t in 
which there i s  no f3 term. We can then use Cardano's procedure. 



The Idea of " Mappings" 

Part Five Matrices 

In a format sense, mapping, correspondence, and function all 
refer to the same thing. PsychologicaHy, however, they do not, and 
the way we think about mathematics is every bit as important as 
the way we write it or explain it. 

or " Correspondences" 
[pace 1221 

Mathematicians nowadays think that the idea of 
correspondences is very important. Let's see if we can 
figure out what they mean when they use the word 
correspondence. 

Jerry made this correspondence: 

(1) In Jerry's scheme, what corresponds to A? (11 A corresponds to the kite. 

A - 
(2) In Jerry's scheme, what corresponds to W? (2) W corresponds to the face. 

w - -  

(3) In Jerry's scheme, what corresponds to (3) The car corresponds b B. 
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(4) Andy made this correspondence: 

1 -100 

9 -2; 

In Andy's scheme, what corresponds to I? 

(51 In Andy's scheme, what corresponds to 2? 

[page 1231 
(6) Suppose that A is this set: 

And suppose that B is this set: 

Can you make a correswndence between the ele- 
ments of  A and the elements of R? 

In your scheme, which element of B corresponds to 

Will others in your class have a correspondence 
different from yours? 

Which correspondence in your class i s  correct? 

(6) This will depend upon your class, and each student's correspon- 
dence may, indeed, be different and correct. 

The correspondence need not be one-to-one. For example, here 
is a one-to-one correspondence: 

Every element of set A corresponds to exactly one element of set 
B, and every element of set 6 corresponds to exactly one element of 
set A .  (This is often called "one-to-one onto."l 

Let's look at what mathematicians mean when they say a map- 
ping is "one-to-one into." Let set W be { A ,  8, C\ and let set U be 
{R, S, T, v ] .  Then the foilowing mapping is "one-to-one into": 

To say it more fully, we have "mapped set W one-to-one into set 
U." Since set W contains three elements, and set U contains four 
elements, we cannot possibly map set W one-to-one onto set U. 

We could describe the idea of a "one-to-one into" mapping by 
saying: 

Set X is mapped one-to-one into set Y if every element of set 
X corresponds to exactly one element of set Y ,  while every el@- 
merit of set Y either corresponds to exactly one element of set 
X, or else to no element of set X. 

The mapping 



(7) Joe says this is a mapping of the set A into the 

-Jn 
P 

u 
What do you think? 

(8) Tom wrote Joe's mapping like this: 

J: a -- 
[page 1241 

Can you make up another mapping of  the set A into 
the set B? Can you write it the way Joe wrote his? Can 
you write it using Tom's method? 

(9) How many different mappings of set A into set 

B can you find? How many different mappings of A 
into B do you suppose there are altogether? 

is not one-to-one because the element R corresponds both to A and 
to B. 

You need not Worry about these ideas at all at this point, unless 
you wish to. 

(7) JM is right We say we have mapped set A into set B if every 
element of A corresponds to exactly one element of B, but not 
necessarily vice versa. This, then, 15 a mapping of A into 8. We 
use the more restrictive phrase "mapping A onto 6" if every 
element of 8 is the image of at least one element of A-that is 
to say, "all of B is covered." 

In the present example, the mapping is no# "onto," since F 
and 0 are omitted-they are not the images of any elements 
0f A. 

(8) Tom's notation i s  the most important idea in this chapter. t 
hope it is clear haw this natation works. (If not, wait until you 
have seen a few more examples.) 

(9) There are 256 different mappings. 

Let's try to count them: 

(i) We can map Â¥/s-:/?' in four different ways (intoe, p ,  , 
or l? 1. Perhaps, to keep track of all the possibilit~es, we should 
make a tree diagram, as we did in Chapter 14. 

r 
Tha column shows the 
four possible images of 
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(ii) After choosing one of these four possibilities, we face a new 
decision point (as the tree diagram will show). We can map- , ,, 
into any of four different images (remember, we are not re- ' + -  

quiring the mapping to be one-to-one): 

This column shows This column shows 
the possible the possible 

linages of maw, of 

' '. ',- 
2 

once the image of 

Â¥'oÃ‘ 
has been selected. ': '- 

(iii) After making our second choice (namely, how to map I, 
we again come to a new decision point, and again have four choices 
for mapping 6 :  

4 jL" i 
Possible Possibk Possible 

images of images of images of 6s ;-. 6 
^T- once the 

ima~es of 
image of d . - "  
Â¥^- and 
has w e n  . ', 
selected. - t -  

ha; been 
selected, 



(10) A1 says one way to show a mapping of set A into 
set 5 is  to list the elements of A in a column here 

and to list the elements of set B in a column here 

Elements ^ 
and then to draw arrows from each element of A to 
eome of  the elements of 8, sort of  like this: 
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(iv) Finally, for each choice of the image of 6 ,  there are four 
possible ways to map a : 

8 ' .  
8 - 

etc. 

Possible Possible Possible Possible 
images of images of images of images of 

Now, we claim that every possible path through this "maze" (or 
tree diagram), remembering that each arm is a one-way street, cor- 
responds to exactly one mapping of the set A into the set B ;  also, 
conversely, every mapping of A into 6' corresponds to a trip through 
this "maze." There are evidently 

"exits" from the maze, which (remembering that each arm isa one- 
way street) means there are 256 different paths through the maze, 
which means there are 256 different ways to map A into 8. 

(10) This will depend upon your class. 

Can you make up a mapping and write it this way? 
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(11) Sam used Al's method to write "P and Q as a (1 1) Sam is Correct 
mapping of JTT, TF, FT, VF\ into [T, F} like this: 

What do you think? 

(12) Can you use Al's method to write "P or Q as a (12) TT 
mapping of 1 TT, TF, FT, FF into {T, F} ? 

TF 
FT 

FF / F  
P or Q 

(13) Can you use Al's method to write (13) T l  

/' -> Q 

as a map pin^ of 1 TT, TF, FT, FI^ into {T, F [ ? 
FT 

TF FF 3: 
P = Ã ˆ  

(141 Can you use the operation 

u : r J d O m  

tomaptheset {'l;3;4,-lo} intothesct {-1;3,*l0,+4}? 

Can you write the map pin^ by Al's method? 

[pane 1251 
(15) Can you use the operation 

u : u - u  
tomaptheset{'1,'2,'3, 5,0}htotheset{  1, 2, 3,-4, 
-5, '1, -2 ,  + 5 , 0 ?  

Can you use Al's method to write this mapping? 

(16) Can you use the operation 

i y :  L-J +?U 
to map the set - I ,  '2, -3, '5 1 into the set < * I ,  0, -2, +4 )?  

Can you use Al's method to write this mapping? 

( 16) No. The "image" set {*I ,  0, '2, *4}does not provide for an image 
of '3 and an image of *5 under the mapping 

it: +3 ---+ 3 
U; "5 Ã‘ 5. 
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(17) Can you take the mapping 

and write it, using Tom's method? 
Mappings appear in many different disguises. Mathe- 

maticians try to see through these disguises and recog- 
nize the mapping, whenever they can. 

(18) Tony says that the "Guessing Functions" game 
is really a mapping in disguise. What do you think? 
Can you make up a rule and show how it can be written 

using Al's method? 

(19) Elizabeth says that hanging weights on a spring 
gives you a mapping. What do you think? 

(20) Toby says that using a magnifying glass gives 

you a mapping of "pictures" into "large pictures." 
Suppose you used a magnifying glass on these pictures: 

What would you get? Can you wnte this, using AI's 
method? 

(21) Ellen says that you can use equations like 

to map the ordered pair (5 ,6 )  into the nonordered pair 
(2,3). Can you figure out how she does it? 

(17) We need to choose same letter to stand for the "rule" or "map- 
ping" itself, let's use R. Then we can write: 

R : 2 0 0 Ã ‘ *  

Tom's method was presented in problem 8, page 327. 
incidentally, we could also write this mapping using the function 

notation from Chapter 28. Again, we must choose a fetter to stand 
for the rule itself. Suppose we choose r. Then we would write: 

d l )  = + (Read: r of 1 equals one-third.) 

rW = 4 (Read: r of 2 equals one-half.) 

d l 0 1  = $ (Read: r of 1 0  equals one-fourth.) 

d20)  = + (Read: r of 20 equals one-fifth.) 

r(100) = + (Read: r of 100 equals one-fourth.) 

r(200) = + (Read; r of 200 equals one-fifth.) 

(181 This will  depend upon your class, 

(21) Ellen is correct She puts the ordered pair ( 56 )  into the ewa- 
tims as coefficients [Descartes' "constants"), 

~ x Q ) - ( ~ x Q ) + ~ = O ,  

and then finds the truth set 

Why does order make a difference for the pair (5, 6). when we 
use the numbers this way? Why does order not make a difference 
for (2, 3)? 
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[pace 1261 
(22) Using Ellen's method, the ordered pair (8, 151 

would map into . . 

Since Ellen maps (5, 6) into (2, a), 

mathematicians say that 

'(2, 3) is  the image of (5, 6)." 

(23) When you use Ellen's mapping, what i s  the 
image of (8, 1517 

(24) When you use Ellen's mapping, what is the 
i m q e  of O, 14>? 

(25) When you use Ellen's mapping, what is the 
image of (13, 22)? 

(26) Can you write Ellen's mapping, using Alas 
method? 

(27) The world globe is (approximately) a sphere. 
How could you make a flat map of the world? 

The notation we are using here works as follows: where order 
is important, we use parentheses; wherever order is not important. 
we use braces. 

So Ellen's mapping, thus far, might be written 

f: ( 5 ,  6 )  + {2,3} 

E: ( 8 ,  15) --+ {5 ,  3) 

What would this be: E: (6, 5) + ? 

Could we say E: (8 ,  15) Ã‘ {3, 5}? Yes, because it does not mat- 
ter which root of an equation we say first. Hence, in this case. 
order is not important, 

(23) {5,3} is  Hie image of (8, 151. 

Or, we could also say {3, &} is the image of (8, 15). [8ut you 
must not change (8, 15) to (15, 8)!]  

2 , 7 }  is the image of (9, 141. 

{ 1 1, 2) is the image of (1 3, 22). 

Could we also say {2, 11} is the image of (13, 22)? 

(26) (5,6)- 2 * 3 }  

(8, 15) ^ {5m3} 

(6, 5) * i5 ,  ' 1  
(9, 141- 7 . 2 1  
(13,221-{ll, 2} 

We could also write Ellen's inapphg, using functional no- 
tation: 

(27) There are many possible methods. 



(281 Lex uacd this method: 

He mapped point A (on the sphere) onto point R (on 
the cylinder). He mapped point C (on the sphere) onto 
point R (on the cylinder), 

What will Lex's flat map look like" Will a country 
be the same ~ i 7 e  on the flat map as it i i  on the sphere7 
If not. will it be larger or smaller on the cylinder than 
on the sphere" 

(29) John says that when we use exponents we are 
using a mapping in disguise. 
John wrote: 

E : U - w -  

Can you find the image of 2, using John's mapping? 

[PBRP 1 2 71 

(30) Use John's mapping on the art 1 , 2 , 3 , 4 .  What 
i s  the image wt? 

You may want to refer to the Encyclopedia Bnffanica article on 
maps. especially the section on protections. (You may also be in- 
terested in the article on Mercator.) 

George Reynolds of the Scarsdale, New Yorh, Public Schools has 
made an excellent teaching unit out of the ideas of map projec- 
lions. Dr. Reynolds has used his unit at the elementary school level, 
but similar units could surely be used for secondary school or col- 
lege. 

(28) The dimension of a country from north to south will be greater 
on the sphere than it is on the cylinder; by contrast, the dimen- 
sion of a country from east to west will be greater on the cylinder 
than it is on the sphere. Countries near the north or south pole 
are affected more in both of these ways than countries near the 
equator. (Indeed, right on the equator the east-west dimension 
i s  not changed at all.) 

If we start with a country on the sphere and consider its image 
on the cylinder, we see that the image has been enlarged in the 
east-west direction, and diminished in the north-south direction. 
What, then, has happened to its area? Depending on the precise 
amount of these two chances, the area might have become 
larger, or smaller, or stayed the same. A careful use of similar 
triangles and trigonometry-an argument that we would not use 
below the high school level-enables you to show that, to a first 
approximation, tire area of a country is not changed. 

(29) F: 2 - T O O  (Read: â maps 2 into 100.) 

e - 3 - 1 0 0 0  

E! 1 - 10 

E0-1 

E! -1 + 

C: -2 - 
Or, using functional notation: 

~ ( 2  ) = 100 (Read: C rt 2 equals 100.) 

c(3) = 1000 (Read: E d 3 equals 1000.) 

The image of 2 is 100. 

Hence, the image sei is (10, 100, 1000, 10,000[. 
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131) Can you use Al's method to write the mapping 
in question 30? 

(32) Using John's mapping, what is the image of 5? 

(33) Bill mapped the figure 

into the number 12. 

Using Bill's mapping, can you find the image of the 
following figure? 

(34) Using Bill's mapping, can you find the image 

of this figure? 

I p a w  1281 
135) Can you write Bill'smapping, using Al's method? 

[ST1 DEVT 1'At.E 128 

(31) E: 1 ~r 10 Read: Â maps 1 into 10.) 

E: 2 Ã‘ 100 Read: Â maps 2 into 100. ) 
F: 3 -+ 1000 (Read: E maps 3 into 1000.) 

E: 4 Ã‘ 10,000 (Read: E maps 4 into 10,000) 

(32) E: 5 Ã‘ 100,000; so, the image of 5 is 100,000. 

(33) 4.0 



(36) Debbie says that Bill mapped plane figures 
into numbers, by using the idea of  area. She says she 
wilt map plane figures into segments, by drawing the 
figure on a grid, pretending the sun is directly overhead, 
and mapping the figure into its shadow on the x-axis, 
Debbie is pretending that the x-axis is the ground. 

Figure A is mapped into its shadow A'. 
Figure II is mapped into its shadow B'. 
Figure C is mapped into its shadow C'. 

Using Debbie's mapping, can you find the image of 
this triangle? 

(37) Using Debbie's mapping, choose some figures of 
your own, and see if you can find the "shadows." 

(38) Using Debbie's mapping, what is the image of 
the point (3,4)? 

(39) Suppose 0 < b. Using Debbie's mapping, what 
is the image of the point (a, A)? 

(40) Suppose b < 0 Using Debbie's mapping, what 
is the image of  the point (a, b)? 

(41) Can you use a light bulb or a flashlight to map 
some physical objects into their shadows? 
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The image is the segment 

X I 2  5 x 5 7 ) .  

(Read: The set of a## points with the name X, such that 2 x 7; 
or more briefly, the set of all x such that 2 x 5 7.1 

(37) This will depend upon your class. 

(38) The image sf (44) is  (3, 0). 

(39) If 0 < ib. the image of (a, b), under Debbie's mapping, is (a, 0). 
Since Oebbie's mapping is called a "projection," we might repre- 
sent it by the letter P. We could then write 

(40) Debbie's rule does not work ctearly for the point (o, b], if b < 0. 
Can you extend it so that it wilt? (Of course, there are many pos- 
sible ways to extend it) 

(41) This can be fun. In fact, there is a peat deal at mathematics 
that can be studied through shadow pictures, as shown in the 
follnwing example. 
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[pace 1291 
(42) Earle says you can map the plane (which mathe- 

matician~ write "Ra') into itself. 

Earte made up this mapping: 

xmw = x + 5 

* new = OM 

He used his mapping to transform the figure 

into this figure: 

What do you think? 

(43) Dexter used Earleas mapping to find the image of 
this figure. , 

Aim a flashfight obliquely at the wall. Hold a circular disk in 
the light, so that it is parallel to the flashlight tens (Ie., perpen- 
dicular to the center line for the cone of light). 

^ 

View looking down from 
the ceiling 

What shape will the shadow m the wall be? 
Turn the circular dish. 

its vertical diameter stationary 
can produce other positions, two 
of which are shown here. 

Prove, mathematically, that there must be two different posi- 
lions of the disk which will make the shadow an the wall cir- 
cular. (One argument you can use to prove this depends upon 
continuity, and is essentially topological!) 

(42) Earla's mapping moves any figure 5 units to the right, but leans 
it otherwise unchanged. You can easily verify this for yourself 
by using the numbers that are the coordinates of key points, 
such as (perhaps) the vertices. 

(43) Dexter is wrong. He moved the figure five units up instead of five 
units to the right (See answer to question 42.) To understand 
this you may wish to notice that the original center of the circle 
is located at (2, 2). Under Earle's mapping, this becomes 
(2 + 5,2), which is (7,2). 



He got: 1301 

Do you agree? Can you draw a figure in E, and then 
find its image, using Earle's mapping? 

(44) Bernie mapped E ,  into E , using this mapping: 

Using Bemie'a mapping, what IB the image of ( I ,  0 )? 
What is the image of (a, o)? What is the image of 
0,1)? Can you show thii by At's method (as Al did in 
question 10, earlier in this chapter)? If you start with 
the set ( ( 1 ,  o), (0, o), (0, 1 ,}, what is the image set? 

(45) Nancy mapped E,  into B y  by this mapping: 

Â¥Ane = O y o l d  

n e w  = "old 

Can you draw a figure in E, and then find its image, 
using Nancy's mapping? 

(44) Again, let's try 3 few points, and see if we can discover how this 
mapping works. Let's call the mapping 6. 

Before After 

. , , and the mapping 6 swnns to ram everything 9V in a 
c b e k w i s e  direction. 

Before After 

Here. again, you can verify this by performing the arithmetic 
on the coordinates of a few selected points. 

(45) Let's try a few points, first 

Before After 
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Here are some more: 

: (0 .0 )  - (0,0) (Read: N maps (0,0) into (0.0}.) 
N: ( 1 , 0 )  Ã‘ (0, 1 ) (~ead: N maps (1.0) iÃˆto(0 1 ).) 

Can you give a geometrical description of what seems to be 
happening? 

N: (1.1) -. ( -I , ! ;  



(46) Draw some figure in Ry. Can you find its image 
using Bernie's mapping? 

(47) Ted mapped E into E ., like this; 

Can you find the image of (0, o ) ,  using Ted's map- 
ping? Can you find the image of ( t , 0 )? Can you find 
the image of (0, I )? Can you show the mapping of 

{ ( I ,  0), (o,o), (0, I ) } ,  using Al 's  method? 
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The mopping N rotates any figure W counterclockwise. 
The point (0, 0) remains fixed. For example: 

Before J v 

After 

(46) See answer to question 44. 

(47) Again, lets just "play arouniT for a moment; let's try a few points 
and see what happens: 

(All points on the yaxis are left where they were! They are not 
moved at all!) 

Let's plot a few of these: 

place, they are &t moved at ail. 
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.. . and the mapping T "reverses" everything symmetrically 
about the y-axis. Mathematicians calf this a "reflection in the 
y-axis." 

Before After 

Using Al's method, tile mapping of {(I, 01, (0,0), (0, I ) }  is 

(48) Draw some figure in Ei. Cm you find its image, (48) SO% the answer to question 47. 
using Ted's mappin< 
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You may want t o  view the film entitled "Introduction to Matrix 
Multiplication." This topic appears also, briefly, in the films "Sotv- 
ing Equations with Matrices" and "Matrices." 

For a good reference on matrix multiplication, see Kemeny (82). 

ore Arithmetic ANSWERS AND COMMENTS 

Mathematicians have often built important and 
elaborate mathematical aystems by starting with a 

very "commonplace" idea, which they have been able 
to extend in some significant way. Let's see if we can 
do it. 

(1) Andy goes to a candy store that sells pepper- ( 1) (3 1 0) X 

mints (for 2< each), chocolate almond bars (for I0<( = (3 x 2) + (1 X 10) + (0 X 50) 
each), and chocolate-covered ants (for 506 a box). We 
can write this as: 6 + 1 0  + 0 

= 1st 

Suppose that today Andy buys three peppermints, 
one choc~late almond bar, and zero boxes of chocolate- 
covered ants {aa a matter of fact, Andy always buys 
zero boxes of chocolate-covered ants). We can write 
this as: 

3 1 0 )  
The numbers 

are called a price matrix, and the numbers 

are called a demand matrix.* 

Can you multiply the demand matrix 

'With the inlJwiuctwn of o u t n c e ~  we tuw turnitiff ifl the maU^inutJcf of 
quit  m t  timea. Indeed, the of m m h m  was introduced tn the W r  
1657 by the Englmh mathematician Arthur Cavley 11821-IBM! ~Thesincular 
form td minx  The plural form of thÃ w w d  is mnlr îvs ) 



by the price matrix 

to get the amount of money that Andy spent? 

3 1 0) Q = ?  

(2) Joan says that you write: 

= (3 + 2) x ( I  + 10) x ( 0  + s o )  

= 5 x l I x 5 0  

Do you agree? 
[page 1321 

(3) Nancy says that you write. 

= 164 

Do you agree? 

(4) Jill says that you write. 

'3 I 0 )  x 

= (3 x 5 0 )  + ( 1  x 10) + (0 x 2 )  

= 150 + 10 + 0 

= l60# 

Do you agree? 

(5) Suppose that Andy goes to the store on Thum- 
day and buys 

( 4  3 0 ) .  

What did he buy" How much money did he spend? 

(6) Toby went to the store and bought 

I 3 0 .  

What did he buy? How much money did he spend? 

(2) No. Compare with the answer to question 1. 

(3) Yes. 

(5) Andy bought 4 peppermints, 2 chocolate alniomt bars, 0 boxes 
of chocolate covered ants. He spent: 

(6) Toby bought 1 peppennht, 3 chocolate almond bare, 0 boxes of 
chocolate covered ants. Toby spent: 
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(7) One day the store had a special sale. For that 
day only their prices were 

How much did each item cost at the sale price? 

(8) On the day of the sale, Nancy bought 

4 3 0 ) .  

What did Nancy buy? How much money did she spend? 

(9) Up until now we have h e n  dealing with acandy 
store that sells peppermints and chocolate almond 
bars, and tries to sell boxes of chocolate-covered ants, 

Sup- we now try to build an abstract system. We 
will forget all about stores and prices and quantities. 
All we will remember is the ptIern of what we have 
been doing. us in^ this same pattern, let's multiply 
these two matrices: 

(10) Can you use this same pattern to multiply the 
following two matrices? 

[paw 1331 
(11) Suppose that someone knew all about Q, A, 

a, b, c. x, a,. , . notation, but did not know matrix nota- 
tion. Could you write something that would show him 
immediately how matrix notation works? 

(7) Peppermints were I t  each, chocolate almond bars were 5$ each, 
and chocolate covered ants were 25( per box. 

(8) Nancy bought 4 peppermints, 3 chocolate almond bars, 0 boxes 
ol chocolate covered ants. She spent: 

This use of variables to enabie us to "pass instructions along to 
our assistant" is of great importance. Just to be on the safe side, 
let's pause for a moment and make sure that weagree that this nota- 
tion really does do what we claim it does. 

Since we win want to indicate replacements of variables by num- 
bers, it may be convenient to rewrite our answer to question 11, 
using frames instead of letters. (This makes no real difference; we 
do it only for convenience.) The answer to question 11 could, then, 
be written: 
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(12) Jane mays she could show him matrix notation 
by writing: 

A B C )  x 

= ( A  + D )  x ( B  + Â£ x (C + F) 

Do you agree? 

(13) Hal says he could explain matrix notation by 
writing: 

(A 8 C) x 

= ( A x , ~ } + ( B x B ) + ( c x c )  

Do you agree? 

The rule for substituting now does the rest of the job! For example, 
whatever number is put in the first Q must be put in at! the a s  
(there is one other). If, for example, this number were 3, we should 
have 

If you continue in this way. you will see that, once we have written 

the rule for substitution now compels us to use correctly what is 
called the "inner product" pattern! 

(12) Jane has, of course, written the pattern incorrectly. H e r  x and! + 
signs are located incorrectly. 

The correct answer would be 

which is identical with our answer to  question 11. (It makes nodif- 
ference whether you mark a location in the formula with A or or 
whatever, just so long as the same symbol is used 

and nowhere else! -and so on for all the other variables.) 

(13) No, Hal's paper will only allow us to multiply when the first two 
numbers are the same. Hie second two numbers are the same, 
etc. But it is not enough to be able to multiply 

We also want to be able to multiply 

and SIJ on. 
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(14) Ellen says she could explain matrix notation by 
writing: 

(A B C) x 

What do you think? 

(15) Courtney says he would write: 

What do you think? 
+(Vx/^I 

(16) Joe says that the way to multiply matrices is 
by m h  

and "from left to right OB the left and from top to bottom 
on the right," 

4 
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which we might also draw like this: 

Do you think th is  is a good description? 

(17) Can you multiply these matrices? 
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(14) EMen is right 

(1 5 )  Courtney is also correct 

(16) I do- but every man to his own taste. 
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(19) Can you multiply these matrices? 

420) Can you extend the idea of matrix multiplica- 
tion. still using the same pattern, so that you can mul- 
tiply these matrices9 

"8) (8 12 151 x ( ~ Q )  

5 = (8 x TO) (12 x 5) + (15  x 2) 

2 = 80 60 A 30 

= 170 

(1  9)  See the answer to question 11. 

120) Here we come to something new! Since we are ashedto "extend" 
something, we are entitled to be creative. Perhaps no answer is 

absolutely right, or absolutefy wrong. You may warn to entertain 
any reasonable suggestion from any of your students. However, 
you also want to end up with the same system that professional 
mathematicians have agreed to use. Here i s  how it goes: 

ti) The "answer" i s  itself a matrix, with two numbers in it: 

(i!) We always take our rows from the left-hand matrix and our 
columns from the right-hand matrix. Hence, we continue to use 
this pattern; 

(iii) For the first row, First column number in the answer, we 
choose the first ww (from the left-hand matrix) and the first 
column (from the right-hand matrix): 

Use this row4 ( T"""'3') 
0 1 7  Ã x ( ; ) . ( z ) -  

(ivl For the second row, first eofumn number in the answer, we 

choose the second row (from the left-hand matrix) and the first 

column (from the right-hand matrix); 



2 3 
Use this Ã£ (MX (1 )  (1)- 

(vl The matrix 

(1 ;; 
is the final answer. We do not try to "simplify" it any further. 

(21)  Lex says the idea is to use rows from the left- (21) [ex is right 
hand matrix 

and to use columns from the right-hand matrix. 

What do you think? 

(22) Ellen sava that the answer has this form: (22) Ellen is right 31 goes into the Q {See the answer to question 
A matrix with some number here. ,  . 7 20.1 

w ,  
and with some number here. 

If we write 

what number should RO in the 2 in order to make a 
true statement7 

(23) Whnt number should (TO in the ,I? 

l24t To find the 5 number, Eva wrote this: 

= 31 
Do you agree? 

(23) 11 7 (See the answer to question 20.) 

(24) Yes 
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(25) to find the A number, Marilyn wrote this: 

" I  
0 x 5 )  + (11 x 7 )  + (10 x 4)  = 77+ do 

Do you agree? = I17 

(26) Can you multiply these two matrices? 

(Nancy BEEP the answer should be a matrix with two 

numbers in it. Do you agree?) 
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(25) Yes 

Thus the final answer is the matrix 

a* 
that is, 

(27) Can you multiply these two matrices? (27) Here, again, we must extend 3 bit further; but by now the matter 
may be clear. You have three rows (in the left-hand matrix) and 
one column (in the right-hand matrix). Consequently, the answer 
wit1 be a matrix with three'rows and one column! 
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(28) Hal ~ a y s  the answer should be a matrix like this; 

Do you agree? 
Y 

(29) Ibm ~ a y s  the answer to question 27 should be 
a matrix like this: 

Do you agree? 

(30) Jane says the answer to question 27 should be 
a matrix like this: 

What do you think? 

(31) Can you extend the idea of matrix multiplica- 
tion, so that you can multiply "2 - by - 2" matrim? 

2 0 + 2 7 + 0  

47 - A 
v:  (4 x 2) + (6 x 9) + (8 x HI 

8 + 5 4 + 8 8  

150 + V 
Thus we hare 

. 

(28) No. See the answer to question 27. 

(29) Yes 

1 Here we extend ens more time! But Hie pattern by (TOW may he 
clear. 

ti) AS always, take row* from the left-hand matrix ami columns 
from the right-hand matrix. 

(ii) For, say, the -d row, firsf column number in the answer 

select the fcond row (from the left-hand matrix) and the fir*# 
column (from the right-hand matrix). 

(iii) Once you have selected the correct raw and column, you 
proceed as in questions 1,3,5, 6, and 8 (see afso questions 9 
and 101. 



Here is  the result: 

(: :Ix(: :)= 

(puF f  l.'th] 
'32t I,CX says  that t h e  idea i s  to use ?owe from the (32) lex is right. 

left-hunt) factor 

and columni from the riehl-hand factor. 

1 Â 

What do you think? 

Wi Ellen SBVS that (331 Ellen is correct (See the answers to questions 34 through 37}. 

What do you thinn? 

134l Jery  savs that Ellen ~ n t  the "42" by qnying (34) That is correct (This was tire f irst row, firs? column number in 
the answer, so Ellen chose first row and first column, following 

( 3  x 4 1  + 15 x 61 = A2. Lex's advice in question 32.) 

What do YOU think? 

(Wit How did Ellen get the  "25"? 

(36) How did Ellen get the  "76"? 

(35) This is the second row, second column number in the answer. 
Hence (remember question 32), we choose the second row (from 
the left-hand matrix) 

2 1 

and the second column (from the right-hand matrix) 

and then proceed as in question 9; 

So Ellen was right on this number. 

(36) The "76" is the first row, second column number in the answer. 
Hence, we select the first row (in the left-hand matrix) and the 
second column (in the right-hand matrix): 



0 7 )  How did Ellen ~ e t  the "14"? 

(3Rl Can you multiply these two matrices' 

139) Amy knows at1 about f-̂ , 4, -4, I!. t', . .. . and 
so on. hut she d m  not know how to multiply 2-hy-2 
matrices. Can you write something that will show Amy 

how to multiply 2-hy-2 matrices" 

Ellen was again right 

(37) The "14" is the s~cÃ§n row, first emlumn number in the answer 

First column 

so we select the second row (from the left-hand matrix) and the 
first column (from the right-hand matrix): 

(2 x 4) + ( T  x 6) 

8 + 6  

14 4 p 
Ellen, once asain, was right! 

Thus we have 
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(40) Jerry wrote: 

Does this show Amy how to multiply 2-by-2 matrices? 

(41) Steve wrote: 

Does thia show Amy how to multiply 2-by-2 matrices? 

(43) Who is  right, Steve or Mary  ̂

Can you muIUply these 2-by-2 matrices? 

(48) Jill says that we add matrices like this: 

(: ;)+(; ;) = t:: ;:;) 
What do you think? 

(49) Can you add these two matrices? 

(40) Ha; you cannot retrace Jerry's steps merely by looking at his 
answer. 

(41) Yes. Now all Amy needs to do is to use UV, 

(42) Yes. Again, all Amy needs to do is to use UV. 

(43) Both. They both say the same thing. 

(48) Jill is correct; this i s  the way that mathematicians ham agreed 
to add matrices. 

This is, of course, a rhetorics! question. There is noway (ordinar- 
ily, at this point) for the students to know. Nonetheless, we prefer 
to ask this question anyway-perhaps because it helps to get the 
chi tdren's attention. 
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(50) Can you write some axioms for arithmetic and 
algebra? 

(51) Do you know an identity that is called the "corn- 
imitative law for addition"? 

(52) In arithmetic and algebra, what is special about 
the number I? 

(53) Cam you write the identity that is known as the 
"law for I"? 

(54) In arithmetic and algebra, what is special about 
the number O? 

(65) Can you write the identity that is known as the 
"addition law for zero"? 

(56) Can you make up an "addition law for zero" that 
will apply to 2-by-2 matrices? 

(57) What 2-by-2 matrix correamds to the num- 
k 0 7  

(58) Is there a "multiplication law for zero" that 
works for matrices? 

[pace 1381 
(59) Can you write what might be called a "law for I" 

for matrices, instead of numbcrd? 

(50) Hopefully, the students can write a list of such axioms Q =Q, 
C + A = A + Q D x  I =Dandsofor th ) .  

(52) 0 x 1 = 0 is an identity (that is, multiplying by 1 "doesnl 
change anything"). 

(54) + 0 = n, (that is. adding zero "doesn't change anythingn), 

(59) Here we reach a crisis! The ohviaus thing to try is 

(: :) 
that is, 

. . . but when we muttiply these last two matrices, we encounter 
bauble.. . 

and 

(;I'D ::;)+(: S)' 
Here we face a dilwntna: Our attempt to find a matrix that "Ire- 
haves like tire number 1'' has failed. Is it because there it no 
matrix that behaves liXe the number I?  Or is it because we have, 
ourselves, made some error or left our work untinished? In the 
first case, any further search will probably be in vain. In the sec- 
ond case, ail we need to do is to get back on the job; persis- 
tence and shrewdness will ultimately be rewarded. 

But which is it? 



354 CHAPTER 37 

(60) Jerry says the "law for 1" for matrices would 
look like this: 

122?.( , )=( The matrix same that 2-by-2 you 

started with 
The "1" ma- 
trix, what- 
ever that 
may be 

Can you use the A, B, C, fl, . . . notation to write Jerry's 
law? 

(61) Mary wrote this: 

matrix, if 
there really 
is any 

What do you think? 

(62) Can you find the "1" matrix to put into "Mary's 
law"? 

(63) Don says the "1" matrix should be 

(64) Can you write the "law for 1" for matrices? 
What is the "1" matrix? 

This point is made very clearly I H  the filmed lesson entitled "Ma- 
trices"; it would be worth your while to view this film at this point. 

In point of fact, there is a matrix that "behaves like the number 
1." H is  

and, using it, we get a perfect parallel: 

Numbers 

D ^ = U  
2-by-2 Matrices 

Tin  "1" matrix, 
if mete i s  one 
(you mil I know then is, but (he s w n h  
may not at this stafe) 

(6 1) Mary is correct 

(62) See the answer to question 59. 

(63) This is a good guess; unfortunately, it won't work. (See the an- 
swer to question 59.1 

(64) See the answer to question 59. 

Notice that this is another typical Madison Project sequence of 
questions. Question 59 states the task (a student might be able to 
answer it completely at this point). Questions 60 through 63 con- 
tain hints, methods of attack, and so on - they "nibble away at the 
problem," breaking it into a sequence of easier questions. Finally, 
question 64 is a restatement of question 59; by this point the stu- 
dents shoutd be able to answer it. 



(65) George #aye that, for numbers, there i s  an axiom 

that says that every number except zero has a multipli- 
cative inverse, so that 

A x  h = 1 ,  

Do you think this axiom applies to the system of ma- 
trices? 
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(65) kll, more or less. The parallel is not pert~ct: 

The number 0 has no multiplicative inverse. 

The 2-by-2 matrix 

(: 3 
has no multiplicative inverse. 

The numbers 2, 3.4. etc., have the inverses 4.4, +: 2 x + = 1, 
Sx+=l,andsoun. 

Some 2-by-2 matrices have multiplicative inverses; 

(; :)x(-; -:)=(A ;) 
Some 2-by-2 matrices are not the zero matrix 

(: :)* 
and yet they have no inverses; here is one: 

0 Â¡o 
Here is another: 

There is no parallel, among numbers, far the matrices that 
are not zero, but stiff don't hove inverses. 

{However, after you finish Chapter 47 you my want to return 
to this prablem and think about it some more.) 

(66) Can you multiply these two matrices? 

(67) George says that if we use A to mean 

(: 3, 
then the multiplicative inverse 'A. would be 

so that 

(; -!) 
is the multiplicative inverse of 

What do you think? 
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(68) Can you find the multiplicative inverse of this 

matrix? 

(69) Can you find the multiplicative inverse of this 
matrix? 

(70) Do the matrices 

satisfy the commutative law for multiplication? 

(7 1) Do all matrices satisfy the commutative law for 
multiplication? 

(72) Can you multiply these two matrices? 

See the answer to question 66. 
i 
; 

(69) If you haven't already noticed it, you should now notice that 4 

matrix multiplication i s  not always commutative. ; 

For example, 

whereas 

so that 

In other words, if we use 2-by-2 matrices as replacements 
for rhe var l ebhsQandA t h e n ~ ~ A = A x D i s n o ? m n  
identity! 
Now that we have noticed that matrix multiplication does net 

aIways commute, we can be properly surprised to find thai 
every matr ix  commutes with its own inverse! 

Hence, 

is the muftiplicalive inverse of 

(70) Yes, they do; but this is net typical of matrix multiplication in 
general. (See the answer to question 69.) 

(7 1) No. Sometimes a particular pair of matrices will commte, and 
a few matrices commute with any other matrix, but these cases 
are exceptional. In general, matrices do not satisfy CLM. 



(73) Can you multiply these two matrices? 

(74) Can you find the multiplicative inverse of this 
matrix? 

(75) Can you find the multiplicative inverse of this 
matrix? 

Can you find the multiplicative inverses for these 
matrices? 

where p is  a number, and p 4 0. 
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(Compare the answers to questions 71,72, and 73.) 

(74) 

.where 'p denotes the multiplicative inverse of 
the number p. 

This matrix is its own inverse! 

This matrix is its own inverse! 



(89) Can you add these two matrices? 

(90) Can you find an additive inverse for the m- 
ber +7? 

(86) We can easily prove that this matrix has no inverse: 

IÃ‘Ã‘Ã 
Hence, no matter what matux we put here, the answer will 
always be 

and hence will never be 

Consequently, the matrix 

has no inverse. 

(87) Again, we can prove that this matrix has no inverse: 

4 
No matter what 2-by-2 matrix we write here, the "answert' ma- 
trix will always have a zero in the lower right-hand comer: 

t 
Therefore it will never be 

Notice that we can use IJV: 1 -> A, 0 -* 6; hut this only gives 
us the fifst row; there is no way to get the 1 in the lower right- 
hand corner.) 

(88) Again, 

- 0 

Hence there can be no inverse. (See the answer to question 87.) 

(90) 7 :  that is. "7 + "7 = 0. 
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191) Can you find an additive inverse for the num- 
ber -3? 

(92) Can you find an additive inverse for the num- 

ber o? 

(93) Can you find an additive inverse for this matrix? 

(94) Can you find an additive inverse for this matrix? 

(:: ",) 
(95) Can you find an additive inverse for every 

matrix? 

(96) Can you find an additive inverse for this matrix? 

(^ -I) 
(97) Can you find an additive inverse for this matrix? 
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(91) The additive inverse of 3 is +3; that is, -3 + '3 = 0, 

(92) The additive inverse of 0 is 0; that is, 0 t 0 = 0. I 
Remember, when we say we are seeking the "additive inverse of 

the number p" what we mean is that we are concerned with the 
truth set for the open sentence p + [Ã‘l 0. 

(95) Yes. This is exactly analogous to Hie situation with numbers. 

(97) YES, the additive inverse of 
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CHAPTER 38 

Ricky's Special Matrix 

(1) Can you multiply these two matrices? 

(2) Can you multiply these two matrices? 

(3) Riky says that he has found a special matrix: 

Can you tell what is  "special" about Ricky's matrix? 

This chapter continues [and in part retraces) the work of Chap- 
ter 37. The present chapter parallels very closely the content of 
the film "Matrices." 

Matrices is a very open-ended subject, as we shall show even 
more forcefully in the following few chapters. One can continue 
finding fascinating new properties of matrices, and new uses for , 

them, virtually indefinitely. There is no point of completion - no 
ultimate "finished" picture of the entire matrix story. 

Nowhere sn the Madison Project materials is the "light t ouch  more 
important than in these lessons with matrices. We recommend that 
you drop the subject of matrices the moment they cease to fas- 
cinate you and your students-if possible, before they cease to 
fascinate you and your students. 

In an attempt to provide for various student responses, we have 
included far more material on matrices than you will probably 
wish to use. !f our extensive treatment seems somewhat heavy- 
handed, we apologize, and suggest you foitow our advice and not 
our example. 

or, in full notation (which often seems preferable for use with 
children at this stage), 

(3) It plays (for 2-by-2 matrices) the same role that the number 1 
plays for numbers. Specifically, for numbers, 

U x 1 - 0  

whereas, for 2-by-2 matrices, we have 
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(4) Can you find any other "special" matrices? What (4) There is no end to the list of possible "special" or "interesting" 
is "special" about them? matrices. Here are a few (you probably should try writing some 

of this out for yoursetf, on scratch paper, as you read this list): 

( ) plays a role analogous to the number 2. 

( ) plays a role analogous to the number 3. 

(; t$ 
will reverse columns- far example, 

also, it will reverse rows, if used as a left multiplier; 

that is, it reverses rows or columns, and also doubles thÃ§m 

reproduces tha first column, but inserts zeros for (0 O/ the second column: 

also, if used as a left multiplier, it deals similarly with rows; 

) combines properties of (; s ) " ~  d(i 3- 
Do you see what it does? 

,when used as a right multiplier, leaves the first 
column unchanged, but doubles the second column: 

also, Wen used as a le f t  multiplier, it deals similarly with rows. 

, when used as a right multiplier, replaces each entry 
with Hie sum of ail entries in its row: 
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(5 )  Mary says that she has found a special matrix: 

(: 3 
Can you tell what is "special" about Mary's matrix? 

(6) Can you multiply these two matrices? 

(7) Can you multiply these two matrices? 

(8) Jeff says that 

c 3 
is a "special" matrix. What does it do? 

replaces a matrix by its additive inverse (opposite); 
it plays a rote analogous to the number -1. 

Evidently, one could go on like this forever. Among other pas- 
sibilities: 

These possibilities are listed here only to convince you that the 
subject is, indeed, open-ended, and to help you be prepared for 
some of the matrices that your students may "discover." 

Your students may not discover any of the matrices on this list, 
or they may discover other "interesting" matrices that are not on 
this list. 

I t  is probably wise not to "show" them or "tely them these ma- 
trices. Which "special" matrices - if any - they discover is rela- 
tively unimportant. What is important is that the children under- 
stand what i t  is that their "5pecial" matrix does that makes it "spe- 
cial." 

( 5 )  Mary's matrix, when used as a right multiplier, reverses columns: 

when used as a left multiplier, it reverses rows: 

(If you use Maty's matrix twice -on the same side-you gel 
back to where you started.) 

1 ;  what 1s "special" about this? 

(8) When used as a right multiplier, Jeffs matrix replaces the first 
column with zeros, but leaves the second column unchanged: 

when used as a l e f t  multiplier, il replaces Hie first row with 
zeros, leaving Hie second raw unchanged: 
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(9) Can you multiply these two matrices? 

(10) What "special" thing did the matrix 

do to the matrix 

Would it do the same thing to every 2-by-2 matrix? 
Can you prove it? 

(11) Can you multiply these two matrices? 

(12) What "special" thing did 

[ :) dOb(;  ;:) ? 
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Would it do the same thing to every 2-by-2 matrix? 
Can you prove it? 

(13) Nora says that 

is a "special" matrix. She says she found out by 
multiplying 

What "~pecial" thing does 

(: 0) 
do to e 3' 
Would it do the same thing to every 2-by-2 matrix? 

(14) Can you find any other "special" matrices? 

(15) Can you find a matrix  that would just double 
each element of any 2-by-2 matrix? 

(16) Dexter says that "double each element" means: 
You start with any 2-by-2 matrix 

c 3 
and multiply by your "special" matrix to get 

(: E ) x (  )=(it 3 
T .  

Dexter's special matrix 

What do you think? 

(10) See the answer to question 8. The secret of proving it, of course, 
is to use variables rather than numbers. 

(1  2) It reversed the columns. The "proof' again depends upon using 
variables: 

ft leaves the first column unchanged, and replaces the second 
column with the firs! (This may be a case where the algebraic 
equation expresses the idea more simply than words.) Since we 
have "proved" this by using variables ("A," "&" "C," and "D") 
instead of numbers, we know that it would do the same thing 
thing to every 2-by-2 matrix. 

(14) Again, there is no end to the potential supply. Drop the subject 
before it becomes tiresome. 

(I5) c 3 
(16) Dexter is right. You may want to emphasize to the children that 

"2A" was used here to mean "2 x AM "28" means "2 x n", 
and so on. 
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(17) Can you multiply these two matrices? 

(18) Can you multiply these two matrices? 

(19) Can you multiply these two matrices? 

(20) Can you multiply these two matrices? 
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(21) What doee the matrix 

do to the matrix 

c ? 

(22) Can you find a "special" ma* that will turn 

into 

(: 3 
(: 3 ? 

What is the special trick in doing this? 

(19) The result is the same as in question 18; the matrix 

has the peculiar property that it commutes with every 2-by-2 
matrix: 

An interesting (and pleasantly easy) question is: find the set of 
alt 2-by-2 matrices with this same property (namely, that they com- 
mute with every 2-by-2 matrix.) 

(2 1) According to what happened in question 20, it reversed the col- 
umns, and doubled every entry. 

What would have happened if we had used 

as a left multiplier, instead: 

(22) The "special trick" is that we must use our "special" matrix on 
the left, whereas in questions I through 21 we have been writing 
our "special" matrices on fhÃ right, 

Here is the solution to question 22; 
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Matrices: A New 
Mathematical System 

We have now built up a new mathematical ayrtem- 
namely, the system of 2-by-2 matrices. Although. like 
much modem mathematics, this system waa made up 
"just for fun," it turns out to be a very valuable system. 
If you continue the study of mathematics, you will find 
yourself using th is  system again and aeain. 

But this is not our concern right now. 
We have created a new mathematical system. Lei us 

now explore it! See if you can think of any interesting 
questions to ask. 

Here are some that other people have asked. 

(I) Jean wants to know: Do 2-by-2 matrices satisfy 
the commutative law for addition? 

(2) Hal wants to know: Do 2-by-2 matrices satisfy 
the commutative law for multiplication? 

(3) Jerry wants to know: Do 2-by-2 matrices satisfy 
the addition law for zero? 

(4 )  Ellen wants to know: Do 2-by2 matrices satisfy 
the multiplication law for zero? 

(5) Andy says that every integer or rational number 
has an additive inverse. Does every 2-by-2 matrix have 
an additive inverse? 

chapter y ^ f ~ u g e Ã  144-145 ofstudent Discussion Cuide 

(1) Yes. To prove it, you should use variables. 

(2) No, not in general. For example, 

Compare the answers to question 69, Chapter 37, ami ques- 
tion 19, Chapter 38. 

(3) Yea See Chapter 37. 

(4) Yes. See Chapter 37. 

( 5 )  Yes. See Chapter 37. 
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(6) Does every number have a multiplicative 
inverse? 

(7) Does every 2-by-2 matrix have a multiplicative 
inverse? 

(8) Do you know what mathematicians mean by 
algebraic closure? 

(9) Is the set of positive integers closed under 
addition? 

(10) Is the set of positive integers closed under 
subtraction? 

(11) la the set of positive integers closed under 
multiplication? 

(12) la  the set of positive integers closed under 
division? 

(13) la the act of 2-by-2 matrices closed under 
addition? 

(14) Is the set of 2-by-2 matrices closed under 
multiplication? 
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(15) Is the set of matrices of the form 

closed under addition? 

(6) Yes, except for zero. 

(7) No. See the answer to question 65, Chapter 37. 

(8) A set S is  algebraically closed under a binary operation, de- 
noted by* if* 

let's look at some examples: 

(i) The positive integers are closed under addition because 
whenever you try to add two positive integers, you can always 
express the answer as a positive integer, 

(ii) The positive integers are not closed under subtraction 
because if you try to subtract one positive integer from another, 
you may not be able to find a positive integer for an answer (be- 
cause the answer may be a negative integer, as in '10 - '13 
= -31. 

(9) Yes; see the answer to question 8. 

(10) No; see the answer to question 8. 

(1 1) Yes; that is tÃ say, if you multiply a positive integer by a positive 
integer, the result will necessarily be a positive integer. 

(12) No; lor example, 8 + 3 is not the name of a positive integer. 

(13) Yes; that is to say, ft you add a 2-by-2 matrix to a 2-by-2 matrix, 
the result will  be a 2-by-2 matrix. 

(14) Yes 

Let's try it: 

*We am using hÃ§r toflid standard nomtiomfrom inform01 "let" language. 
if, speaking idormofly, w think el a "~Ãˆ US me th ing  lika a "bun&' or 
a "coHtc?km," thm we wrttm 

e 5  

to moan 5 i s  (more-or-lets) a colluction, and a i s  one of the individual thing* 
included among the collection. If fhls mildly ctbstract tangwge seems con- 
fusing, you (tin forget it. 

The illustrative examples probably make clear what we mean by "alge- 
braic closure." (See, i f  you with, Appndix C, forofurtfwdi~uisionof "sets.") 



(16) Jerrold says that you can match up numbers 
and matrices like this: 

What matrix would Jen-old match up with the number 
7? with the number I? 

(171 Debbie aaya there is something special about 
Jerrold's matching: 

If you add two numbers, 
2 + 3 = 5 ,  

you get a result that 
corresponds to adding the 
"matched" matrices: 
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and since this '"answer" matrix is stit! in the form 

this set of matrices is closed under addition. 
We could ask, is the set of matrices 

closed under multiplication? 
Let's try it: 

T 
Any two rnattces yield a result of 
of this form this same form 

EUV: 0 - A ) .  

Hence, this set 1s closed under multiplication. 
We can keep exploring special sets of matrices in this same 

way. For example, is this set of matrices 

closed under muitiplication? 
Let's try it: 

1 
Any two matrices yield a result which 15 
of this torm no! of this form. 

Thus this set of matrices is not closed under multiplication. 

(17) Yes, Ft does. For example: 

Numbers Matrices 
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Does Jerrold's "matching" also work out like this far 
multiplication? 

(18) Nancy says that Jermld's matching is what 
mathematicians call an isomorphiam 
Do you agree? 

419) Debbie says you can match numbers like this 
to get an isomorphiam with respect to addition: 

What do you think? 

(20) Nancy says Debbie'a matching is also an iso- 
morphism with respect to multiplication. Do you think 
Nancy is right? 

(21) Charles made this up and claims it is a strange 
kind of isomorphism: 

Do you see how it works? 

(18) Nancy is rigtit 

(19) Dehbie is correct Here is an example of how Debbie's isomor- 
works: since we have 

1 - 2  
2 *-. 4 ,  

if WR add the left-hand numbers 

I + 2. 

the result should correspond to the result of adding the right- 
hand numbers; 

2 + 4. 

That is, we should have 
1 + 2 - 2 + 4 .  

The question is: do we? This would mean that we should expect 
the correspomisnce 

3 <Ã‘ 6 .  

and if we look at Debbie's table, we find that she does haw 3 
corresponding with 6, so the correspondence is an isomorphism. 
(Of course, checking one instance is not really a proof, but it 
does give the idea of how isomorphisms work.) 

Try some other examples. Can you use variables to show that this 
isomorphism always works? 

(20) Nancy is wrung. Here is 2 counterexample: 

In other words, 2 should correspond to 8 in our matching. 
Does it? No! 

So Debbie's matching is not an isomorphism with mpwt  to 
rnuffiplicofion. 

(21) Charles is correct This is a strange kind of isomorphism. Here 
is an example of how it works: 

Dues 303 <Ã‘ 6 in our matching? Yes! 

Can you see how the numbers in the second column were ob- 
tained? Can you use variables to show that this isomorphism always 
works? (Actually, what Charles ha5 here is cailed a "table of log- 
arithms," and it is useful for changing muttipiication problems into 
addition problems.) 



CHAPTER 40 

Matrices and Transformations 

(1) Ted has a method for using matrices to map a 
plane into a plane. Suppose he i a  using the matrix 

He would start with a point-say, (1, 2)-and write it 
as a column matrix 

and multiply like this: 

He would say: The image of (1, 2) is (2, 4). 
Can you find the image of (3 , l )  using 

(2) Can you give a geometric description of Ted's 
mapping? 

chapter 4OfPoffe 146 of Student Discussion Cui& 

In Chapter 36 westudied transformations; in Chapters37 through 
39 we studied matrices. In Chapter 40, we bring the two ideas 
together. Bringing together ideas from different parts of mathe- 
matics is almost always a source of greater power and deeper insight. 

(1) Notice that in Ted's method, the "input" paint, with its coordi- 
nates written as a column matrix goes here: 

t 
Input 

The "answer" (or "sutput" matrix or "image") gaes here: 

hmnvmsruawrm"*anwn 

Hence, to find the image of (3, 1)- that is, to find 

wa would write 

and so the image point is (621: 

r: (3, 11 4 (621  

(2) Ted's mapping words like a "magnffying glass" or a "uniform 
stretching," by a factor of two. The point (0, 01 remains fixed, 
and every figure is doubted in size (as judged by linear dimen- 
sions). For example: 

Before 

369 
After 
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(3) If you use Ited's idea, but use the matrix (3) 

instead of 
(: 3 
(: 3, 

can you describe the mapping geometrically? 

(4) If you use Ted's idea, but use the matrix (4) 

can you describe the mapping geometrically? 
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In the first and second quadrants, this is "Debbie's 
mapping." One could, therefore, use the present 
matrix mapping as an "extension" of Debbie's map- 
ping, in the sense of Chapter 24. 

Again, this is a "uniform magnification" or a "uniform stretch- 
ing," but this time by a factor of 3. If you are in doubt, pick a few 
paints outlining some simple figure, map each point as in ques- 
tion 1, and see how lire image compares with the original figure. 

{ 

Let's try out a few points, and see what seems to be happening: 

so M: (0, 0) 4 (0,O); the point (0,0) is not moved at all. 

s o w :  (1,O) Ã‘ (1,0); the point (1,O) is not movedatall. 

so M: {a, 0) Ã‘ {a, 0); any point an the x-axis is left unmoved. 

so At: (0, 1) -- (0, a), the point (0.1) is mapped into tO,0). 

so M:(E, b) -+ (u, 0); any point is "projected" onto (he x-axis. 

This mapping is what mathematicians cail "a projection onto 
the x-axis." For example, any point in the first quadrant will be 
mapped into the point on the x-axis directly beneath it 

Â 

Some original point 
in the first quadrant 

m Ori~ina! 
point 

Its 
image 

What happens to points in the other quadrants? (See question 
36, Chapter 36.) 

(5) If you use Ted's idea, but use the matrix ( 5 )  Let's say the original point (the "input") has the coordinates 
(x^ , yoid 1, and the image point has the coordinates (xÃ£Ã£ 

(; "3 YMH 1. 
Then we have 

can you describe the mapping that you get? 



and, by multiplying out these matrices, we get 

But this is precisely "Nancy's mapping," from question 45 of 
Chapter 36. 

( 6 1  What map pin^ (in ?nu g d  from this matrix' (6) AS in cur answer to question 5, we write 

and we get 

so that this is precisely "Ted's mapping" of question 47, Chap- 
ter 36. 

47) Make up wine 2-hy-2 matrices yourself, and we (7) This can be a lot of fun. Have the students make figures (such as 
if you can find whnt kind-; of geometric mappinEs your the letter "A," or Christmas trees, circles, squares, or whatever) 
matrices produce9 and compare the figures "before" and "after." When in doubt, 

use the numerical coordinates and carry out the matrix multi- 
plications. What happens is a bit like the "weird mirrors" you 
sometimes find in amusement parks. 
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If the preceding chapters have seemed somewhat confusing, 
this chapter-which is fun and easy-may help to make sense out 
of these various ideas. 

CHAPTER 41 

Matrices and Space Capsules ANSWERS AND COMMENTS 

[page 1471 

You may find it easier to think about matrices and 
transformations if you know something about where 
they are used. 

One example, very much in the spirit of the precedtng 
chapter, comes from space science. Suppose we have a 

rocket or a apace capsule (or, for that matter, an 
airplane) 

which is moving in space. Its motion can be very tom- 
plicated. It can "move along a path from one spot to 
another," 

but -really at the same time as the motion above-it 
can also change its orientation (or, as it i s  known in 
space science, ita attitude). For example, it can rotate 
like this: 

Or it can "flop over" like this: - 
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Now, it is essential to predict, and to observe, the 
motion of space capsules very precisely, using appro- 
priate mathematics and high-speed digital computers. 

The "flopping" kinds of motions are observed using 
'before" and "after" pictures of the kind we have just 
been studying. The "flopping" itself is regarded as a 

transformation, and is studied by means of its co rn  

(1) Suppose a apace capsule ia represented by this 
get of points: 

"Before" 

The set of points plotted on the graph above is  the set 

Now, at this instant, a computer down on earth sends 
up a signal which causes the capsule to fire some small 
'flipping" rockets and "flop over." The computer on 
earth made a transformation using the matrix 

Assuming that the rockets all worked correctly, and 
the capsule did what the computer ordered, what is  the 
new "position" or "attitude" of the space capsule? 

(2) Suppose that the capsule started in this position 

MATRICES AND SPACE CAPSULES 373 

(Alternatively, you could ovoid the use of variables here, and 
map one point at a time, using numbers: 

and so on.) 
This gives us this set of points: 

If we now plot these points, we get: 

(2) and (3) We suggest you rapresent the capsule by actual number 
coordinates, as we did in question 1, and then use the same gen- 
eral rnettlud that we used there. 

and the computer used the matrix 
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Epaee 1491 
What would the capsule's position be after the maneu- 
ver was completed? 

(31 Suppose the capsule started in this position 

and the computer called for a "flipping" movement 
according to the matrix 

How would the capsule look after this maneuver was 

completed? 

(4) Suppose the capsule started in this position 

and the computer called for a shift in attitude based on 
the matrix 

i-? 3- 
But . . . as soon as this maneuver was completed, some- 
one discovered that the computer had made a mistake! 
Instead of calling for the matrix 

(; 3, 
the computer ought to have called for a shift based on 
the matrix 

(: -A). 
What matrix will get us back to where we ought to be? 

maps (1, 0)  and (0, 1) as 

and represents a rotation ttirougn 90Â clockwise. ip;;;* ll::: 
Image of 
Point B 

Before After 

SO what has actually warred has been a rotation through 90Â 
clockwise, 
Now the matrix 
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(5) Suppose the space capsule started like this 

and the computer called for a shift based on the matrix 

After this maneuver was completed, the computer 
called for a shift baaed on the matrix 

and represents a rotation through 30Â counterclockwise. 

Image of Point A + .+ 
Before After 

SO what should hove happened was a rotation through BO' 
~ounterclochwise. To got things back the way they ought to 
be, then, we must rotate through 180Â counterclockwise. This 
means we want to use the matrix 

twice; but mat is equivalent to using the matrix 

so we shad use the matrix 

once. 

You can verify this, if you wish, by working everything out with 
numbers, as in questions 1 through 3. 

(5) After the faurtti maneuver the capsule has rotated 90Â counter- 
clockwise. 

To understand this problem, let's pause and look at  a little alge- 
bra. The first manuever went like this: 

We can write equation (1) in a more succinct notation: 

the matrix 

the column matrix 

(::I we can write using the symbol 7>* ; 

*Column mctricea are often written using a letter with an arrow over it, 
8 s  we have done here; they are hquently callad column vectors. 
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After this second maneuver was completed, the com- 
puter called for a third, using the matrix 

After the third maneuver was completed, the computer 
called for a fourth, using the matrix 

c -3 
What was the apace capsule's position after the fourth 
maneuver had been completed? 

[STUDENT PACE 150 

the cofumn matrix 

kew) we can write as "?", 

Then. the equation (1) becomes 

M .%=  % 
Now, for the second maneuver let us write the matrix 

as R ,  and the new coordinates as x; . Hence, we have 

For the third maneuver, we again use the matrix M; let us call the 

new coordinates "in'. Hence, we can represent the third maneuver 
as 

Finally, ti we write the matrix 

(Y -3 
as S ,  and the resulting new coordinates as ;;', then we can write 
the fourth maneuver as 

Now, let's put all this together. Remember that our original co- 
ordinates are g and our final coordinates are 2;. Then we have 

Fourth maneuver 

Third maneuver 

PN, from line (i), using line ( i i )  

ALM (which works also for 
matrices!) 

Second maneuver 

PN, from line (iv), using line (v) 

ALM 

First maneuver 

PN, from line tvii) ,  using line 
(viii) 
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Hence, we see that the matrix 

will take us from the first initial coordinates directly to the final 
coordinates. Let's see what the matrix is: 

Hence, the single matrix which we shall call F 

represents the result of all four maneuvers together! Now, what does 

do? 
Let's try (1, 0) and (0, 1): 1 I;t; - 

Image of 
Point B 

Before After all four maneuvers 

Consequently, the combined effect of all four maneuvers is a m 
tation 90Â counterelockw~se. 

We can also do this geometrically, using almost no algebra! Here I 

is how: i 

(a) The first maneuver used the matrix 1 

We saw (in question 1) that this corresponds to a rotation of 90Â 
clockwise. 1 
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(b) The second maneuver used the matrix 

("A -:)I 

which [as you can easily verify for yourself by studying what hap- 
pens to the points (1, 0) and (0, 111 corresponds to a rotation 
through 180Â (for 180Â¡ it doesn't matter to the final position 
whether we turn clockwise or counterclockwise). 

(c) Putting the first two maneuvers together, we get 900 clock- 
wise 

"V 
then 180Â counterclockwise 

n 
which amounts to 90n counterctockwise 

r .  
(dl The third maneuver again used the matrix 

that is, another rotation 90Â clockwise; hence the result of all 
three maneuvers thus far is to return to the original orientation 

(el Finally the fourth maneuver used the matrix 

which works like this: 

I Point I t Image of 
Point A 

Before After 

Thus this fourth maneuver is a rotation through 90" counterclock- 
wise 

This, then. is the final result of all four maneuvers together: a 
rotation counterclockwise through 90Â¡ 
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(6) A space capsule went on a long flight, lasting (6) Putting all these shifts together, we have 31 rotatiims counter- 
seven months. At the beginning of the f i i ~ h t ,  the cap- clockwise, each through an angle of 90Â¡ Now, every four such 
sule's attitude was like this; rotations gets you back where we started; hence, 31 - 28 = 3, 

and the result thus far is three rotations counterclockwise 

[paw 1511 
During the flight, the computer called for 260 shifts, 
according to this list: 

31 shifts, each based on the matrix 

26 shifts, based on the matrix 

(-; 3, 
203 shifts, based on the matrix 

(: -:I* 
What was the attitude of the space capsule after all of 
these maneuvers had been completed? 

A TABLE OF MATRIX INVERSES 

You may find it convenient to have this table of  
matrix inverses available in case you ever need to 

use it. 

through 90Â° which is equivalent to one rotation tfockwiw 
through 900; 

We then have 26 rotations clockwise, each through an angle of 
90Â¡ Again, four get you back where you started; 26 - 24= 2, so 
this is  equivalent to one rotation through 1800. Combining with 
the preceding result gives us 

the equivalent of one rotation through 90Â counterclockwise: 

Then we consider the 203 rotations through 180'. Now, any two 
of these get you back where you started; hence, 203 - 202 = 1; 
this is equivalent to one rotation through 180Â¡ Combining with 
our previous result, we have 

which is equivalent to one rotation clockwise through 90Â¡ 

Hence, the final orientation is: 
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[pace 1521 This table of matrix inverseswill be heipful inchapters42 and 43. 

:)x(-; -;)xK :I=(: :) 
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In this chapter we cover a lot of ground. Although we deal with 
only one topic - solving simultaneous linear equations - our meth- 
odology develops rapidly. We begin by merely guessing. This method 
is valuable, and has been unjustly disparaged in the past Unless 
we inhibit our students, they enjoy guessing; and "looking at the 
problem until you can find a clue that leads you to the answer" 
gives a very deep insight into the nature of the problem. If we let 
our students develop an expectation that they do not need to ex- 
ptore, that they can merely wait until we tetl them the answers (or 
at least until we show them the method), then the students almost 
visibly wither before our eyes-after awhile, they never seem to 
discover or explore on their own; they just sit there and wait until 
we tell them. 

The preceding paragraph attempts to defend our first method 
of approach in this chapter; by guessing (or, more accurately, by 
looking for clues). We quickly move on to other methods. The prob- 
lems are arranged so that the students learn to turn a "simulta- 
neous linear equation" problem into a "matrix" problem. They 
can solve the resulting "matrix" problem by using the Table of 
Matrix Inverses given on pages 151-1 52 of the student book. This 
approach should be easy enough if the students have had suffi- 
cient experience with matrices in the preceding chapters. 

Finally, in question 15, we suggest a parallel between simulta- 
neous linear equations and one equation in one unknown. If ques- 
tion 15 seems too sophisticated for the children in your classes, 
then please leave rt out, 

CHAPTER 42 

Simultaneous Equations ANSWERS AND COMMENTS 
[paw 1531 

In questions 1 through 5, the "method" is merely that of "look- 
ing carefully at the problem." 

(1) These are known as "simultaneous equationsn: (1) 9 4 

The same number must go in both US, and the same 

number in both A's. Can you find the n number and 
the A number to make both statements true? 

(2) Csn you find the number and the A n u d m  (2) 24 - 
to make both statements true? '-A 
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(3) Can you make a numerical replacement for the 
variable A and a numerical replacement for the vari- 
able R, so that both statements will be true? 

\ A + B = 1 6  
~ - ~ = 1 2  

(4) Can you make a numerical replacement for the 
variable x and a numerical replacement for the vari- 
able a, so that both statements will be true? 

x + s - 101 

(61 Can you find the truth set for this pair of simul- 
taneous equations? 

(6) Can you find the truth set? 

( 2  x A )  + (3 x 3) = 103 

( 5  x A )  + ( 5  x B) = 255 
This is the first problem where the students may be unable to 

guess the answer. 

Here we start a more systematic method. First, we take our two 
equations: 

Then we rewrite them in matrix notation, as 

Next we look in the Table of Matrix Inverses to find the multiplica- 
tive inverse of 

which is 

(-; -;). 
Now we "left-multiply" both sides of equation (1) by the inverse 

Next, we use ALM: 



(7) Debbie has a secret method for solving simul- 
taneous equations. She used her secret method on the 
pair of simultaneous equations 

and she says the correct replacements are 

- * - ? A  

2 Ã‘ B.  
Is Debbie right? 

[page 1541 
(8)  Debbie explained her secret method like this: 

First, she took the equations 

and rewrote them as a problem in matrix multipli- 
cation: 

(: :)xG)=(:)- 

Then, she looked in a table to find the multiplicative 
inverse of the matrix 

What she found waa 

Then. she took this inverse, and wrote 

Then she need the associative law tor multiplication 
(ALM), and got 

Then, she said 

and so she wrote 
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Finally, we carry out the matrix multiplications 

(7) and (8) This is the same method mat we used in answering ques- 
tion 6, 
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Finally, ahe carried out both of these matrix mutti- 
plications and got 

which is the same as 

A = (1 x 14) + (f x 26) = -35 + 39 = 4 

B = ft x 14) + (-1 % 26) = 28 - 26 = 2. 

Can you understand Debbie's "secret method"? Do you 
think you can use it to solve simultaneous equations? 

(9) Try Debbie's "secret method" on this pair of 
simultaneous equations: 

+ (3 x fl) = 32 

Ware you able to make it work? 

[page 1551 

Can you solve these pairs of airnuftaneou~ equations? 

[STL'DENT PAGE 155 

The table tells us that the inverse matrix is 

(-; ;)f 
so wa write: 

The table tells us the inverse matrix is 

(2 T i3) T ' 

so we write: 

(: -i) [(: 7 (:I = (; -;) (E) 
2 x 1 8 3 - 3 x 1 1 5  

x 183 + f x 115 
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Can you solve these systems of simultaneous equa- 

tions? 

1 A +  B + C - 7  
[paw 1561 

(151 Mary Frances says that Debbie's method for 
simultaneous equations i s  realty like a method for 
solving "one equation in one unknown." To convince 
her friends, Mary Frances wrote this: 

The table tells us that the inverse matrix is 

so we write; 

You can solve problems 12 through 14 by the same method. 

Notice that in this problem Me matrix equation is 

(15) I myself think Mary Frances' remark is interesting and valuable. 
Admittedly, it is a bit complicated. 

The point here is to suggest a close parallel between simvl- 
tonews linear equations and the theory of one equation in one 
unknown. 

School children may regard this mainly as an interesting cu- 
riosity, and we would leave it at that for the time being. Actu- 
ally, it is a very suggestive curiosity, pointing toward the great 
value of the modem theory of linear operators on function spaces 
or linear spaces. At present "linear spaces" constitute a very 
advanced (and somewhat esoteric) mathematical topic, but one 
which may become much more familiar in the years ahead. 
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The anginal pivblm: 

Idwbry thecoefficient* 
d the "uakrt~wni" 

Find the multiplied- 
t l w  mrtnrt for thia 
coefficient: 

-Lflt-multlply" the 
onfnnal ~ o t i o n  by 
this ihvei-th? 

UM A I M ,  

Use the "inverw" prop 
flrty 

UdÃ the LAW for 1, in 
Appropriate form 

A& get 

Complete any udn- 
ithe4 mult~pliatwna: 

Debbie's "Secret" Method 

Do you think Mary Frances has a good idea here, or 
not? What is wrong with her idea? Is there anything 
good about it? 

Kary Frinoa' "Shan. 
hmd" W w  d Writing 
DfbWa M e w  

4 
u=WHKwasfaruyou 
can BO in tho "nhortllandw 
Mla t lon  

An example (rf'XhwEflua. 
t h  In One U n k m n "  

3 x N - 1 2  
1 

here 
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TAXIS, WIDGETS, AND 
ALPHA-BETA-GAMMA Mix 

The purpose of this chapter is to give a few word problems that 
lead to systems of simultaneous equations; the problems, and es- 
pecially the first problem, give some idea of the somewhat oblique 
way that mathematics re tates to reality. 

For example, in problem 1 there are no "numbers," or any other 
mathematics, in reality itself. In order to use mathematics we must 
talk about not reality itself, but simplified abstract "models" of 
reality. 

To put this same idea another way; in problem 1 we areasked to 
determine a purchase of vehicles, sedans and station wagons, that 
will maximize a taxi company's profit in the year foliowing the pur- 
chase. 

Can we possibly "figure this out"? Obviously, we cannot-not in 
actual reality. To do so would require us (or the taxi company) to 
predict the future for one year in advance, and not even mathe- 
matics can predict the future. For example, it couid turn out that, 
in the production of new cars, certain defects (this year!) might 
appear in station wagons but not in sedans. The taxi  company 
could not know this in advance. Again, after the company bought 
station wagons, the town council might pass a law making it I lie- 
gal to use station wagons as taxis and limousines. Again, the corn- 
pany might not be able to predict this in advance. 

There are many other aspects of the future that the company can- 
not necessarily predict in advance: Wilt business for large groups, 
traveling in limousines, increase or decrease next year? Will any 
unusual services the company provides begin to "catch on" and 
create new demands for service? Will their accident record next 
year be better or worse than this year? (That can make a difference, 
since station wagons cost more than sedans.) 

What, then, are we to do? We must make some simplifying as- 
sumptions if we are to  make use of the data given us. Our con- 
clusion will be valid to the extent that these assumptions are good . 
approximations to reality, and only to this extent. 

Additional problems (and easier ones) leading to systems of 
simultaneous equations can be found in Discovery, Chapter 46. 
Also, some interesting problems (arising in geometry) are given on 
pages 248, 249. 250, and 252 of Brumfiel (75). See also Beber- 
man (87). 

CHAPTEH 43 

Taxis, Widgets, 
and Alpha-Beta-Gamma Mix 

[pace 1581 
(1) The Hurry-Up Taxi Company owns some sedans (1) Let US assume, fitst, that the situation is  not changing rapidly 

and some station wagons. In 1965 they owned 3 station aver a three-yeat period, SO that we can assume things ore the 
wagons and 7 sedans. In 1966 they owned 5 station some in 7965, in 1966, and in 1967. Let US also assume that, 
wagons and 12 sedans. In 1965 the company earned a averaged over an entire year, every sedan earns us much as 

387 
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profit of $53.560, after at! expenses were paid. In 1966 
the company earned a profit of $91,000, after all ex- 
pemea were paid. 

Vw 1967 they can buy a few additional cars. Should 
they buy sedans or station wagons? 

(2) The Acme Widget Company sells widgets. How- 
ever, they also sell wigglyups. On the day before Christ- 

every other sedan, and every station wagon earns as much m 
wery ofher station wug~a. Wftti these assumptions, we can 
make use of the data given to us. 

Suppose that the average earnings, of for  aft expeme* am 
paid, for one year for a sedan are represented by D dollars and 
that the annual earnings after expenses of a station wagon are 
W dollars. 

Then, for 1965, we have 

and for 1966 we have 

In other words, we have this system of simultaneous equations: 

(3 x W )  + (7 x D )  = 53,560 

( ( 5  x W )  t (12 x D) = 91,000 

In matrix form, this would be 

Using Debbie's method, we solve this as follows: 

In other words, after paying all expanses, a sedan earns a 
p d r t  of $5200 per year, or (on the average) $100 per week, 
whereas a station wagon earns $1 10. 

If ttie company can buy the same number of new station wag- 
ons as they could sedans (charging off the higher wagon cost as 
part of the "expenses already paid" before reporting these fig- 
ures), then they will  be better off to buy all new wacons, getting 
no new sedans, tf they could buy more sedans, then they must 
balance this against the fact that wagons earn 10% more offer 
all expenses ore paid. (This might depend upon haw the corn- 
pany went about the task of raising additional capital.) 

(2) One way to tackle this problem uses simultaneous equations 
and "Debbie's method." 
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tnaa they were hurrying to get all their orders packed 
into cartons, sealed, addressed, and shipped off. 

Somehody found two cartons which had been packed 
and sealed, but not labeled! What was in them? 

Well, they were either the order for Smith's Depart- 
ment Store or the order for Edward's Emporium. But 
which were they? 
The Smith's order called for 2 cartons, one containing 

7 widgets and 10 wigglyup and the other containing 5 
widgets and 7 wigdyup.  
The Edward's order called for 2 cartons, one con- 

teining 6 widgets and 10 wigglyups, the other con- 
taining 5 widgets and 8 wigglyupa. 

One man suggested weighing the cartons. They did 
and found that the first carton weighed 59.4 pounds. 
The second carton weighed 41 -8 pounds. 
Ltifty, one of the men in the shipping room, said, 

"Now I know; this must be the order for Smith's!" 
Bill, another shipping room man, said, 'Tin sorry, 

Lany, old fellow, but you're wrong! That must be the 
order for Edward's!" 
Was either man right? What do you think? 

(3) The W r a n  Chemical Company had a large 
supply of three chemicals, which wel l  call alphathane, 
betathane, and gammathane. 

They also had a District Manager who wrote all of 
bis records on old envelopes and then usually lost the 
envelopes. 

The First Vice-President telephoned the District 
Manager and asked how much alphathane, betathane, 
and gammathane he had in hia storage apaces. 

But the District Manager had written the amounts 
on an envelope, and he couldn't find the envelope. Then 
the District Manager spotted an old envelope where he 
had worked out some calculations, and he read thus to 
the Fitst Vice-President: 

Let D be the weight of one widget and G be the weight of one 
wigglyup. If this is tho Smith order, we have 

which can be written 

Using Debbie's method, we get 

This seems to be consistent with the data given la us. Appor- 
entfy the order tould be for Smith's! 

But wait! This does not yel settle the matter! Perhaps the Ed- 
ward's data wilt also prove to be possible! If the order is for 
Edward's, we have 

Wrttiout going further, we see that 

which is clearly impossible. This cannot be Hie order for 
Edward's! 

Suppose Hie district manager has A iims of alphathane, 6 Ions 
of betathane, and c tons of gammathane. If he used off of his 
alphathane, A, plus twice his amount of betathane, A + (2 x B), 
plus four times his amount of gammathane, A + (2 x B) + (4 x C), 
he would end up with 370 tons of soft mix, 

If he used four times ss much alphathane as he hasJ4 x A), 
plus five times as much betathane as he has, (4 x A1 + (5 x 81, 
plus six times as much gammathane as he has, (4 x A) + (5 x 8)  
+ (6 x C), tie would end up with 880 tons of onlinaly mix, 
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"If I wanted to make 370 tons of soft alpha-beta- 
gamma mix, I would need a!] of the alphathane I have, 

Ipagv 1591 
plus twice as much betathane as I have. plus 4 times 
as much gammathane as I have. If I wanted to make 
880 tons of  ordinary alpha-beta-gamma mix, I would 
need 4 times as much alphathane as I have, 5 times as 

much betathane as I have, and 6 times as much gam- 
mathane as I have. But, on the other hand, I could 
mix together all the alphathane, betathane, and gam- 
mathane that I have, and I would get 180 tons of hard 
alpha-beta-gamma mix. Does that answer your 
question?" 

Does it? 

t f  he had put all of his alphathane, A, plus all of his betathane, 
A + B, plus all of his gammathane, A + B + C, togettier, he would 
have had 180 tons of hard mix; 

Consequently, we have the system 

Since 

we must have 

Consequently, the district manager has - or, perhaps, Hie ex- 
district manager had-50 tons of alphathane, 100 tons of beta- 
thane, 30 tons of gammathane. 
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CHAPTER 44 

Writing Old Numbers 

Before teaching this chapter, you may want to view the film 
entitled "Complex Numbers via Matrices." 

(1) Actually, Dan's descriptinn is not campfete, but as far as it 
goes it appears to be a description of the nonnegative iirtegws. 

Dan's identity 

D + * = D  
suggests that a is ready another name for our old friend 
zero. This interpretation is also consistent with Dan's identity 

which appears, then, to be saying 

r ] x o = o .  

Dan's identity 

suggests that ft is  really just a new name for our old friend 1. 
In that case, Dan's statement 

indicates that v is  merely a new name for our old friend 2. 
Our verdict would be that this does not appear to be a new 

mathematical system. Ban has merely given new names to a 
familiar old system. 

We could express this by saying that there exists an isomorphism 

between Dan's [a , f i  , v , 0- ,  . , . \  and the set of nonnegative in- 

tegers {o, 1, 2, 3, . . .]. Now, as we have seen earlier, an isomor- 
phism is a one-to-one correspondence, in this case between { a ,  

p , ~ , o - ,  ...} and (0, 1. 2, 3, . . . I  : 
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(2) Sarah says Dan's system is really an old system, 
Dan just writes it a new way. Sarah says she knows 
what a really is. Do you? 

(3) In Dan's system, what >a@? How do you know? 

(4) In Dan's system, what is T ?  

In this case, the correspondence has the property of "preserving" 
sums and products. For example: 

We could also say this by saying that if S(o , fl , ? , . . .) is any 
statement involving a , 8 , Y , . , . , and if 30, 1,2, . . - 1  is the cw- 
responding statement involving 0, 1, 2 , . . , then S( a , ft , Y , . . .I  
is true i f  and only if S(0, 1. 2, . . .) js true, 

Some descriptions are "complete" in the sense that they specify 
exactly one thing. Other descriptions are "incomplete" in the 
sense that they might refer to one thing, or perhaps to a second, 
and so on. 

Thus. "Mrs. Brown" is an incomplete description: you cannot be 
sure who is meant, since there are surely several people who fit 
this description. 

"The tall lady with the red hair and blue eyes" is an incomplete 
description, since surety there are several of these. 

'Miss Cynthia Parsons, who in September, 1964, lived in an 
apartment house at the corner of Massachusetts Avenue and 
Beacon Street in Boston, Massachusetts, U.S.A." is probably a 
complete description, since it probably identifies exactly one 
person. 

Now, in mathematical logic, a description which describes 
exactly one thing (which will usually mean "exactly one math- 
matical system") is called categorical. 

Obviously, as the examples above show, the ordinary work of 
the world is handled by using incomplete descriptions. Complete 
descriptions are usually long and awkward. 

The same is true in mathematics, and in this book we shall use 
incomplete descriptions of mathematical systems -- that is, de- 
scr~ ptions which are not logically categorical. For example, Dan's 
description is not categorical. 

That means we have to agree to give one another credit for 
generally good intentions since Dan's description is not cate- 
gorical, you can't tell, for sure, just what mathematical system 
he is talking about. Hence, you can't be sure whether it's a 
"new" one, or just a renamed "old" one. 

But just as we do when someone saysUthe lady in the brown 
coat," you have to assume that we mean more or less what we 
appear to mean. We are not "throwing any curves" - at least, 
most of the time, we are not. 

(2) a is merely Dan's way of writing zero. 

(3) P is merely Dan's way of writing one. 

(4) Y is merely Dan's way of writing two. 
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(5) Is Dan's system really a new system, or is it (5) K appears to be our old friend, the system of nonnegative in- 
really a new way of writing an old system? tegers 

0 .  1,2, ...}. 

(61 Ellen made up a number system, with numbers (6) At  first glance, We see 
like <{>, 6, ft, f, 8 ,  H ,  T, 1(1, . . . . Ellen's system worked 
like this: fl+^ =D 

which can refer to a familiar old system only if # is a new 
name for zero. But we also have 

a>'* =u, 
which appears (at first glance) to mquife mat 4 be a name far 
one. 

These two identities, considered together, seem to say that 
Ellen's system musf be o new one, quite uniihe any we've seen 
before. 

But, there is  a catch here: Perhaps 4 is a name for zero, and 
all Ellen's ofher symbols also nome zero. This Will make every- 
thing come out ad right, and we shall have described the system 
which contains only zero. But there is one obstacle to this inter- 
pretation, namely, Ellen's statement 

* ?*f .  

which says that <f> cannot name the same thing that f names. 
Putting alt of this together, we conclude that Ellen's system 

muff be a new one. 

Is Ellen's system really a new system or i s  it a new 

way of writing an old system? 

(7) Jerry says that Ellen's system is  really an old (7) No. Jerry's interpretation wiil  not work. It would require 
system. Jerry says that 4 is really 0, 6 is really I ,  f i  is 
really 2, and BO on. Do you agree? r ] x  8 = f tomean n x 1 = 1 ,  

r ] x  <& = Q  tomean Q X O = ~ ,  

?i t to mean 0 #  1, 

These statements cannot be reconciled with any of our previous 
mathematical systems. 

(8) Martha says that Ellen's system is realty a new (8) Martha is right, 
ayatem, because <(> i s  aomewhat like 0, but not entirely 
like 0. What do you think? 

(9) Louis made up a method of writing numbers (9) Louis wrote xftm as 
using 2-by-2 matrices. How do you suppose Louis 
wrote O? 

(10) How do you suppose Louis wrote I?  (10) Louis wrote 1 as 

(11) How do you suppose Louis wrote 2? (11) Louis wrote 2 as (; ;)- 
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(12) HOW would 2 x 3 = 6 be written, in Louis's 
system? 

(13) How would 2 + 3 = 5 be written, in Louis's 
system? 

(14) How would Louis write '4? 

(15) How would Louis write the integer A? 

(16) Bernice says that Louis has set up an iso- 
morphism between our usual numbers and a subset of 
the set of 2-by-2 matrices. What do you think? 

(17) What subset of the set of 2-by-2 matrices did 
Louis use? 

(18) Under Louis's isomorphism, what "old-fash- 
ioned" number corresponds to the following matrix? 

Note: The correspondence 

4 s  S) 
I - ( ;  9 
- (: ;) 

A - ( ) where A is any integer 

is an isomorphism. This is the meaning of questions 12 and 13, 
and other similar questions. 

(16) Bernice is correct 

K you assume A is an integer, this system of matrices is isomof- 
ptric to the system of integers. If you require A merely to be a 
rational number, this system of matrices is is~morphic to the 
system of rational numbers. 

(18) None. This matrix does not appear in Louis's system. 
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- :: The Hesitant Search 
for New Numbers 

The origin of the basic ideas of counting surely dates 
back to quite early prehistoric times. Of course, as we 
have seen, OUT present method of writing the number's 
that we use in counting (thaiia to aay, 1,2,3,. . .)comes 
from the Hindus. Our method may have been intro- 
duced to France and Italy, by way of Spain, by Pope 
Sylvester II, who, as a young man, had studied in 
Spanish schools run by the Moslems. The date for this 
is about 1000 A.D. 

However, it appears that the method of writing 

was perhaps the only number idea that Pope Sylvester 
11 brought back from Spain. He appears not to have 
brought back the important idea of zero, although the 
Hindus had conceived the idea of zero at least as early 
as 800 A.D. 

There is a strange theme of searching and rejecting 
that threads through the history of mathematics, from 
the ancients down until nearly the present day: this is 
the hesitant search for new kinds of numbers. 
If, i n  fact, you know only the "counting" numbers, 

then what do you do when you want to cut a pie, or 
divide up a candy bar, or give number names to all of 
the points on the number line? 

This, and similar problems, led men to invent num- 
bers such as 

chapler&/~ases 162-164 of Student Discussion Guide 

Before teaching this lesson, you may want to view either the film 
"Solving Equations with Matrices" or the film "CornpSex Numbers 
via Matrices." Another relevent film, showing srnall-group instruc- 
tion with a class of sixth-grade children is entitfed "Srnall-Group 
Instruction; Committee Report on Rational Approximations.'' 

and so on. 
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In 1484 the French mathematician Chuquet worked 
out many ideas about exponents. He came to recognize 
the role of negative integers as exponents, which we 

have seen in such problems os 

Over a century earlier, Nicole Ores- (born in Nor- 
mandy about 1323; died in 1382) had worked with the 
number line: 

Both of these notions create a natural role for nega- 
tive numbers, but their introduction and acceptance 
were gradual. People needed them, but they "didn't 
really believe in them." 

For example, in 1644 the German mathematician 
MichaeI Stifel (1486-1567) published a volume entitled 
Arithroetia Integm. In this book, Stifel recorded the 
lines of "Pascal's triangle" as far as the line for 

R +S)" = R"+ 17R1% + - . .  + S". 

[pace 1631 
He used letters to represent "unknowns," and used 

the modem symbols + tfor addition), - (for subtraction), 
and V (for square root). However, when Stifel encoun- 
tered negative numbers w elements of the truth set 
for an open sentence, he rejected them, apparently not 
considering them "really appropriate," or wmething 
of the sort.* 

In 1672 Rafael Bombelti worked effectively with 
negative numbers, and appeared to have a considerable 
understanding of them. 

But, even after you have tile counting numbers' 

and also zero 

and also fractions and "mixed numbers" 

0 , 1 , 2 , $ , + , + , 2 +  ,... 

and also negative numbers. 

O , l , 2 , + , + , : , * , - 1 , 7 , j  

you st i l l  encounter the need for new kinds of numbers. 
Why? 
*Cornpan Evw, op tit., p 219 
tNawndmy~,mLh; twt~ntiathcoutury, you can find different boob by & k t  
authon that UM thm words "countmg numbera" to have riiWvttnt m i i m .  

Thw,  O~CTHITW,  is iitevitflhtfr Not all authors a m ,  no matter what the bpic 
under dimmion may tw In p:rttcvlar,one wiI Inowadaysanniet~nwi.pwtha 
wet& "muntinc numbtm" wed to relcr lo the eEemntg of the get { I ,  2, .'P, 
4, ..} and EH nther btxihm thew wrde will ' r e k  to the tIemeirtB or the net 
10.1, 3,Sv4,, ), kfweconrirue Lhat"muntsng"referstothe processrwatduÃ 
me when we 'wunt on ourflniffir^theli i t  wcirmreftgon~hle to pay Lhat the 
Counting numbera are I ,  2.3, 4 ,  . , on the other hand, as is mmetimes m- 
venien1,rf w e c h  tenrefffitrj theoountmg n u r n k r o ~  theod inm a m m  
toqucet imof  the form "how m a n y  then i t  i s  r e ~ o n e b l e  toassume thalwe 
are talkiw about the Art 10. I ,  2,3.4,. .L  since it may well happn that 
when mmmn~ "How many brothem& ynu hai'e7" the answer will turn 
out ta be0 S-om prtrplu wiifh that a11 b o o k a m i n  m p l e t e n ~ m e n t ,  but 
there i n  reason to fed that afl lone as Â£,r p e a  nn Lhic will not OCCILT <ind pr- 
haps it la a food thin# that it won'L 
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We have said earlier that the ancients, and the early 
Renaissance mathematicians, had worked out the en- 
eral solution of the general quadratic equation. That 
was so, in a purely "procedural" sense that paralleled 
ow own derivation of the solution of the general qua- 
dratic equation. They knew what to do- provided it 
worked out satisfactorily! 
Now, there ia one step in the procedure that will 

sotnetirnes fail to work out satisfactorily: this is the 
process of taking the square root. 
This can be written either as 

x * - A x + # =  W 

i~ a perfect square, such as 16 or 49 or 121. there is 
no difficulty. But there are two case8 in which there 

[page 1-1 
are difficulties-difficulties which early Renaissance 
mathematicians found quite serious. One case occurs 
if we encounter square roots such as 

\ / 2 w \ 3 5 " o r C  
and so on. 
The other case occurs if we encounter square roota 

such a8 

- o r  VT or 
and so on. 

(1) whatcan you say about these two kinds of (1) In Sifl case of smking numbers whose square is 2, we can 
squats roots (for example, f lversus a? "come close ? For example: 

Too small 
Too small, but very much closer 
Too small, but quite close! 
Too small, but wouldn't you call that 
close? 
Too big 
Too big, but much closer 
Too large, but close! 
Too large, but surely close! 

Continuing this process, we can get as close as you like (at- 
though one can prove that we Sila1f never get exactly 2). 

Now, the case of 

is entirely different Every number we know ho* a nof)qa- 
tiwe square; hence, we cannot get any "closer" to 4 than to use 
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(2) What can you say about the truth act for the 
open sentence 

-f = 4 ?  

(3) Here is a research problem. Using the isomor- 
phism 

to guide you, develop some new numbers, so that you 
will be able to solve the equation 

X' = -4. 

If you check for algebraic closure under addition and 
under multiplication, you can work out an entirely 
new mathematical system. (Incidentally, the system 
you make up here is  one which Descartes encountered, 
but he rejected it as not making sense. Today it is 
one of the moat important mathematical ~ystema that 
we know about.) 

In this case, we cannot even get close! Nonetheless, it is  actu- 
aity easier to handle equations like 

than it is to handle equations like 

(2) Usimg numbers we already know he., rational numbers), this 
truth set is empty. 

(3) The equation 

x" -4 

becomes, when translated into matrix language, the equation 

We'll leave this far you and your class to study. I f s  really a 
rather exciting problem. 
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Be careful not to confuse determinants with matrices. They are 
quite different. Note in particular that, whereas a matrix is realty 
a whole array of different numbers, a determinant is merely a fancy 
way of writing a single number. 

CHAPTER 46 

Determinants ANSWERS AND COMMEN~S 

Don made up a mathematical system, like a game, 
by making up some rules. 

(a) Don would begin by writing 4 numbers, like 
these: 

7 8 
1 2  

(b) Don did not want these to be the same thing as 
a matrix, because he already knew about matrices, 
and he wanted this to be a new system. So Don did not 

Instead he used straight lines and wrote: 

{c) Don said, "Whenever I write 

I: ;I 
what I really mean is 

(1) What number does Don mean when he writes (1) ( 7  x 2) - (8 x 1 )  = 14 - 8 = B 

(2) What number does Don mean when he writes (2) (1  x 4) - (2 x 3) = 4 - 6 = '2 

(31 What number does Don mean when he writes (3) (3  X 10) - (2  x 15) = 30 - 30 = 0 

A very fancy method for writing zero. 
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(4) What number does Don mean when he writes 

1: ;I ? 

(5) Jane doesn't know Don's system, but she does 
know all about how variables work. Can you use vari- 
ables to show Jane exactly how Don's system works? 

[STUDENT PAGE 166 

(4) (4 x 8) - (2  x 3) = 32 - 6 = 26 

Paper 1,000,372-WJ 

(51 11 
(6) What number does Don mean when he writes 

(7) What number does Don mean when he writes 

(8) What number does Don mean when he writes 

bane  1661 
(9) What number does Don mean when he writes 

(10) What number does Don mean when he writes 

186 

(11) Sandy's father says that somebody else, who 
called these things determinants, already invented 
Don's system before Dott did. 

What happens when you reverse the columns of a 2-by2 deter- 
minant? Suppose you reverse the rows? 

(10) Similarly, 301 x 255 - 1796 x 186 = -257,301. 

(11)-(12) Sandy's fattier is correct Wait until Chapter 47 to see 
whether determinants will be useful. 

(12) Alice says that Don's system doesn't look like it 
wit1 ever be good for anything. What do you think? 
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CHAPTER 47 

Matrix Inverses: 
A Research Problem 

As we saw in Chapter 33, Professor George Polya of 
Stanford University has tried to describe some of the 
methods that scientists and mathematicians use in 
research. 

We can try to practice some of  these methods our- 
selves. First, we need a problem to work on. Here is 
one: 

Problem; If you are given any 2-by-2 matrix, say 

can you find a matrix 

such that 

That is to say, if you are given a 2-by-2 matrix, can you 
find its multiplicative inverse? 

Suggestion: Can you read about this problem aome- 
where? 

Answer: Actually, you could read quite a bit about 
thin problem. However, that may not be necessary juat 
yet. Here isone problem that somebody else has already 
figured out: 

If you are given the matrix 

Among the most important tools of contemporary applied rnathe- 
matics are the various methods for computing matrix inverses. 
Some of the greatest mathematicians of the twentieth century 
have spent time trying to devise effective methods for solving this 
problem, particularly by using electronic computers. 

What we do i n  this chapter is, of course, quite elementary - but 
at least we are working on the same problem that great mathema- 
ticians have worked on in recent years, 

Presumably, if your students study carefully the illustrative 
example, 

they will notice a peculiar pattern. Does this same pattern always 
work the same way? We'll try it and see. What we are seeking is a 
matrix 

such that 

There are two easy ways to solve this problem. For the first method, 
the pattern of the illustrative example seems to work as follows. 
Few the matrix 

the inverse is found by taking the upper left-hand number and 
writing it in the lower right-hand spot: 
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its inverse is  

(I-: ;)- 
That is to say, 

Can you see a pattern? 

Let's see if we can use this idea to help us to find the 
inverse of each of the following matrices. 

Then by taking the lower right-hand number and writing it in the 
upper fdt-hand spot: 

Then by taking the lower left-hand number, taking its "opposite" 
or "additive inverse," and writing that in this same tower left-hand 
spot: 

Take additive inverse 

-5 3 

Finally, we use a similar procedure on the upper right-hand spot: 

Suppose, now, we try this same pattern on the matrix of question 
1. Will it work? Let's try it, and see' We can suggest the pattern by 
schematic pictures. 
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Now let's by it out and see if ft worked: 

We can compute this by matrix multiplication, 

so the pattern did work! 

We could describe this pattern, using variables, like this: 

The inverse of any 2-by2 matrix 

is  (if the pattern above always works!!) 

As a matter of fact, a really ambitious student might try this out 
at  this point, to see if it really does always work. Here is what he 
would find: 

Obviously, this method works if and only if AD - BC # 1. Other- 
wise, we must divide by AD - BC. Consequently, here is a rule that 
always works, provided AD - BC $ 0: 

If AD - BC + 0, then the matrix 

has the inverse 

[It is possible to show, without too much trouble, that if AD - BC 
= 0, then the matrix 

has no inverse whatsoever. Hence our failure to find one in this case 1 
is not merely excusable, it is creditable.] 
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Of course, in this discussion we have gotten way ahead of your 
class. Let us now return to your class, who are presumably working 
on questions 1 through 6. 

A second method for solving question 1 goes like this: It is true 
that matrices do not ordinarily satisfy the commutative law tor mu!- 
tiplication (CLM), but in some special cases matr~ces actually do 
satisfy CLM In particular, every matrix commutes with its own in- 
verse. Hence, if tin the illustrative example) 

then it must also be true that 

But this last equation tells us that 

is precisely the inverse we are seeking! 

New! Did it work? Lefs try it out and see: 

Multiplying these two matrices together, we get 
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so it did wsrk! The matrix 

has the multiplicative inverse 

Problem 7 is an example of what the Madison Project calls "tot- 
pedoing." We have led the students to making a generalization 
(what J. Richard Suchman would call a "theory"), and thestudents' 
theory is a good one as far as it goes. But it does not go wry far! In 
fact, we find in problem 7 that thestudents' method no longerworks. 

That is not catastrophic, In fact, 3 result like this is part of the 
daily experience of scientists, and actually probably of most people, 
if they are alert enough to notice, 

(7) Lefs try the same "pattern" method we have been usixe, and 
see how it works. 

Take additive inverse 

/ =̂ \ 
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How.. . did it work? Let's try: 

Multiplying, we get 

which is not what we want However, it Ã close! We just got 
twice what we want Therefore, all we need to do is to take 

and divide it by 2, to get 

Mow let's see if this wont work: 

We multiply, 

and so the correct inverse is 

Perhaps this is a good example of what Jerrold Zacharias has 
called "the exploitation of error." 

(8)  This is similar to question 7. 

This, again, is similar to question 7 (although 
there are also other ways to solve problem 9). 

Similar to question 7. 

Similar to question 7. 

Similar to question 7. 



Some of these problem; seem to be harder than 
others. If we can see which problems are "easier" and 
which are "harder," that may give us a clue as to how 
toproceed. 

If any of your answers thusfar have been wrong, 
those problems deserve special attention! Professor 
Jen-old Zacharias, a physicist at Massachusetts In- 
stitute of Technology, has suggested that the "exploita- 
tion of error" is a powerful tool in scientific research. 
What can we learn from looking carefully at the 
problems that were wrong? How were they different 
from those we got right? In what way were the wrong 
answers "wrong"? Were they completely wrong or 
almost correct? 

If you want, make up some matrices yourself and try 
to find their inverses. If you have trouble, see what you 

can learn by "exploiting error." 
Some people claim that the idea of determinants, 

from Chapter 46, can be helpful to us. If you wish, see 
if determinants really can be helpful. 
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This is somewhat similar to question 7, except that 
- in problem 13 it is  necessary to divide by 3, instead 

of 2. 

Can you find a method to tell in advance whether you wi!! need 
to divide or not, and tf so, by what number? (It is not necessary, but 
at this point you couid go back to the remarks followingthe answer 
to question I and see what ideas they may suggest.) 

(14) + Similar to question 13, except that in problem 14 (-+ 1) you need to divide by 4, instead of 2 or 3. 

{16) (-+- 3). Similar ta question 13. 

( 17) Let's try the method that was suggested by Hie remarks following 
the answer to question 1. 

H AD - BC 5* 0, then the matrix 

e :I 
has the inverse 

To apply this method to question 17, we use UV, as follows: 

Then AD-BC=A-Bland the method will not work if^-B=0. 
(You can easily show that in this case there is no inverse what- 
soever.) 

However, if A - 8 ?; 0, the inverse should be 

2 L) 
A - f i  A - B  

Let's by it out and see if it works: 

1 (; ; ) x ( ~  - -1 - A)=? A 

A - B  A - B  
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Multiplying out, we get 

1 (; ;) x("7 A) A 

- - 
A - 6  A - B  

A - B  A - 8  

(18) Can you find the inverse for any matrix (18) It is  not possible to find the multiplicative inverse far every 

(A 4 9 
2-by-2 matrix. If AD - BC = 0, then the matrix 

does not have any multipficative inverse. 

(19) When can you find the inverse for the matrix (19) At this wint we can state the complete rule: 

Case 1. If AD - BC = 0, the matrix 

does not have any multiplicative inverse. 

Case 2. If AD - BC+ 0, then the matrix 

has the inverse 

Hopefully, thinking carefully about the questions in this chapter 
should have led your students to cwjmtvrfr this result (at least 
for case 2, which is the one we presently care about). 

But once you w Ã § s  this result, it is perfectly easy to try out 
your guess and see whether or not it really does work: 



We multiply out: 
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Suggestions for Further Reading- 
An Annotated Bibliography 

The study of mathematics is more than life long. No 
one achieves, within his lifetime, a complete knowledge 
of all mathematics. (To make matters worse, the same can 
be said of education, psychology, history, or any of the 
other subjects with which a teacher deals.) 

I am sure that most readers will have questions that are 
not answered in this text. The following books may help. 

PEDAGOGY AND PHILOSOPHY - 1 

Perhaps the most immediate questions will relate to 
what Explorations (and the "new curriculum" projects in 
general) are trying to accomplish for children. There is, 
fortunately, an excellent essay which may answer many of 
these questions: 

(1) Schwab, J. J., "The Teaching of Science as Inquiry," 
in J. J. Schwab and Paul F. Brandwein, The Teaching 
of Science (Harvard Univ. Press, Cambridge, Mass,, 
1964). 

Also of considerable interest are: 

(2) Bruner, Jerome S. ,  Toward a Theory of Instruction 
(Harvard Univ. Press, Cambridge, Mass., 1966). 

(3) Holt, John, How Children Fail (Pitman. New York, 
1964). 

(4) Mearns, Hughes, Creative Power (Dover, Mew York, 
1958). 

(10) Brecher, Ruth, and Edward Brecher, "Gifted Chil- 
dren Heed Freedom to Learn," Parents' Magazine 
(June, 19621, pp. 44 ff. 

(1 1) Bfuner, Jerome S., The Process of Education 
U-larvard Univ. Press, Cambridge, Mass., 19631, 

(12) -, "The Course of Cognitive Growth," American 
Psychologist, W. 19, No. 1 ( 1964). 

( 13) Cantor, Nathaniel. The Dynamics of Learning (Henry 
Stewart, New York, 19611. 

(14) Clarkson, David, "Taxicab Geometry, Rabbits, and 
Pascal's Trianate- Discoveries in a Sixth-Grade 
Classroom,"   he Arithmetic Teacher, Vol. IX, No. 6 
(October, 19621, pp. 308-3 13. 

(15) Cleary, J. Robert. A Study of Jest Performance in 
Two Madison Project Schools and One Control 
Schooi (Madison Project, Webster Groves, Mo., 
1965). 

(16) Cohen, Donald, "A Lesson on Absolute Value," The 
Arithmetic Teacher, Vol. 1 1, No. 8 (December, 19641, 
pp. 561 and 562. 

(17) Courtis, Stuart A., "Our Choice: Revolution or 
Destruct ion," Educational Leadership, Vol. 20, No. 
8 (May, 19631, pp. 520-522. 

(18) Davis, Robert B., "Solving Problems and Construct- 
ing Systems-Quadratic Equations and Vectors," 
Report of an Orientation Conference for SMSG Ex- 
perimental Centers, Chicago, Illinois (September 
19, 1959, pp. 97-101. 

(19) - , The Madison Project: A Brief Introduction to 
Materials and Acffvjties (Madison Project, Webster 
Groves, Mo., 1962). 

(20) - , /Votes on the Film: A Lesson With Second 
Graders, Booklet to accompany film (Madison 

PEDAGOGY AND PHILOSOPHY - 11 (21) 

( 5 )  Ashton-Warner, Sylvia, Teacher (Simon and Schus- 
ter, New York, 1963). (22) 

(6) Avers, Paul W., "A Unit in High School Geometry 
Without the Textbook," The Mathematics Teacher, 
Voi. LV!l, No. 3 (March, 1964). pp. 139-142. (23) 

(7) Berne, Eric, Games People Play (Grove Press, New 
York. 1964). 

(81 Boole, Mary Everest, The Preparation of the Child (24) 
for Science (Oxford Univ. Press. New York. 19041. 

(9) Boulle, Pierre, The Test (Popular Library, New 
York, 19601. 
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Project, Webster Groves, Mo., 1962). 
, Notes on the Film: First Lesson, Booklet to 

accompany film (Madison Project, Webster Groves, 
Mo., 19621. 

, Notes on the Film: Matrices, Booklet to 
accompany film {Madison Project, Webster Groves. 
Mo., 1962). 

, "The Evolution of School Mathematics," 
Journal of Research in Science Teaching, Vol. 1 
(19631, pp. 260-264. 
- "Report on Madison Project Activities, Sep- 
tember, 1962 -November, 1963," Report sub- 
mitted to the National Science Foundation(Decem- 
ber, 1963). 
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(25) - , A Modern Mathematics Program as It Per- 
tains to the interrelationship of Mathematical Con- 
tent, Teaching Methods and Classroom Atmosphere 
(The Madison Project), 1963 (Report submitted to the 
Commissioner of Education, U.S. Dept. of Health, 
Education, and Welfare). 

(26) - , A Modern Mathematics Program as It 
Pertains to the interrelationship of Mathematical 
Content, Teaching Methods and Classroom Atmo- 
sphere (The Madison Project), 1965 (Report sub- 
mitted to the Commissioner of Education, U.S. 
Dept. of Health, Education, and Welfare). 

(27) - , Experimental Course ReporttGrade Nine 
(Report #1, June, 19641, (Madison Project, Web- 
ster Groves, Mo.). 

(28) - , "The Madison Project's Approach to a 
Theory of Instruction," Journal of Research in 
Science Teaching, Vol. 2 (19641, pp 146-162. 

(29) - , "Recent Activities of the Madison Proj- 
ect," American Mathematical Monthly (January, 
1965). 

(30) - , "What Do We Mean by Discovery?" Paper 
written for presentation at the meeting on "dis- 
covery" learning. Social Science Research Council, 
January 28-29, 1965. 

(31) - , "Math Takes a New Path," The PTA Maga- 
zine, Vol. LVH, No, 6 (February, 19631, pp. 8-1 1. 

(32) - , "Some Remarks on 'Learning By Dis- 
covery';' (Madison Project, Webster Groves, Mo., 
1965). 

(33) de Chardin, Teilhard, The Phenomenon of Man 
(Harper Torchbooks, New York, 196 1). 

(34) Dienes, Z. P., Power of Mathematics, pp. 17-25 
(Hutchinson Educationaf Ltd,, London. 1964). 

(35) Feynman, R. P., R. B. Leighton, and Matthew 
Sands, The Feynmart Lectures on Physics (Addison- 
Wesley, Reading, Mass., 1963). 

(36) Gallagher, James J., Research Trends and Needs 
in Educating the Gifted, A Critique (U. S. Department 
of Health, Education, and Welfare, Off ice of Educa- 
tion. Superintendent of Documents Catalog No. FS 
3. 23535036, 1964). 

(37) Gibb, Glenadine, Phillip Jones, and Charlotte 
Junge, The Growth of Mathematical ideas, Grades 
K-12 (24th yearbook of the National Council of 
Teachers of Mathematics). 

(38) Goodman, Paul, Compulsory Mis-education, pp. 
53. 54, and 81 (Horizon Press, New York, 1964). 

(39) Gross, Ronald. "Two-Year-Olds are Very Smart," 
The New York Times, Magazine Section (Septem- 
her 6, 1964). pp. 10-1 1. 

(40) - , "What We Don't Know May Help Us," 
New York Herald Tribune, Book Week (February 7. 
19651, pp. 5 and 15. 

( d l )  Hawkins, David. "On Living in Trees" (Karl Muen- 
zinger Memorial Lecture, Univ. of Colorado, Boul- 
der, Cofo., 1964). 

(42) Henry, Jufes, Culture Against Man (Random House, 
New York, 1963). 

Huxley, Aldous, "The Education of an Amphibian," 
in Tomorrow and Tomorrow and Tomorrow (Signet 
Books, New York, 1964). 

, "Education on the Nonverbal Level" in 
Alfred de Gratia and David A. Sohn, Revolution in 
Teaching. New Theory, Technology, and Curricula 
(Bantam Books, New York, 1964). 
Kaufman, Bel, Up the Down Staircase (Prentice- 
Half ,  Englewood Cliffs, N.J., 1964). 
Kelfey, Earl C., The Workshop Way of Learning 
(Harper, New York. 1951). 
Kemp, C. Oration, "Comparison of Manifest Needs 
of Open and Closed Minds," Journal of Research in 
Science Teaching, Vol. 2, Issue 2 (June, 1964). 
Kersh, Bert Y., "Learning by Discovery: What is 
Learned?," The Arithmetic Teacher, Vol. 1 1 (19641, 
pp. 226-232. 
Matthews, Warren N., "Letter to the Editor," The 
Mathematics Teacher. Vol. LVII, No. 3 (March, 
19651, p. 231. 
McCIelland, David C., The Achieving Society 
MfNNEMAST Project, A n  Overview of the MINNE- 
MAST Mathematics Curriculum, Kincfefgaften-3rd 
Grade (Univ. of Minnesota, Minneapolis, Minn., 
April, 1965). 
Murphy, Lois B.. et a/., The Widening World of Child- 
hood (Basic Books, New York, 1962). 
Weill, A. S., Summerhill (Hart, New York, 1960). 
Page, David, "Well-Adjusted Trapezoids," Up- 
dating Mathematics, Vol. 4, No. 8, Section 11 
(Croft Educational Services, Mew London, Conn., 
1962). 
Pincus, Morris, "An Adventure in Discovery," 
The Arithmetic Teacher, Vol. 11, No. 1 (Januafy, 
19641, pp. 28-29. 
Polya, George, Mathematics and Plausible Reason- 
ing, 2 volumes (Princeton Univ. Press, Princeton, 
NJ., 1954). 

, How To Soive It (Doubleday, New York, 
1957). - , Mathematical Discovery: On Understand- 
ing, Learning and Teaching Problem Solving, 2 
volumes (Wiley, New York, 1965). 
Reik, Theodor, Listening With the Third Ear (Farrar, 
New York, 1948). 
Rockcastle, Verne N., et at,, Piaget Re-discovered. A 
report of the Conference on Cognitive Studies and 
Curriculum Development, March, 1964 (School 
of Education, Cornell Univ., Ithaca, N.Y.). 
Rogers, Carl R,, Client-Centered Therapy (Houghton 
M ifflin, Boston, Mass., 1959). 

, On Becoming a Person (Houghton Mifflin, 
Boston, Mass., 19611. 
Report of the Cambridge Conference on School 
Mathematics, Goate for School Mathematics (Hough- 
ton Mifflin, Boston, Mass., 1963). 
Sanders, W. J., "The Use of Modets in Mathe- 
matics Instruction," The Arithmetic Teacher, Vol. 
11, No. 3 (March, 19641, pp. 157-165. 
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Sawyer, W. Warwick, Vision in Elementary Mathe- 
matics (Penguin Books, Baltimore, Md., 1964). 
Skinner, 8. F., "Why Teachers Fail," Saturday Re- 
view (October 16, 19651, pp. 80 ff. 
Smedslund, Jan, "Internat Necessity and Contra- 
diction in Children's Thinking," Journal of Research 
in Science Teaching, Vol. 2, No. 3 (September. 
19641, pp. 220-22 1. 
Snyder, Henry D., "An Impromptu Discovery Lesson 
in Algebra," The Mathematics Teacher (October, 
19641, pp. 415-416. 
Tolman, Edward Chace, "Cognitive Maps in Rats 
and Men," Behavior and Psychological Man, Chap- 
ter 19 (Univ. of California Press. Berkeley, Calif., 
19581. 
Torrance, E. Paul, "Creativity" Research Pam- 
phlet Series, What Research Says to the Teacher, 
#28, April, 1963 (Department of Classroom Teach- 
ers, American Educational Research Association of 
the National Education Association). 
Whitehead, Alfred North, Aims of Education (Men- 
tor Books, New York, 19291, 

MATHEMATICS 

For most readers, the critical need will probably be 
for further help in the study of mathematics itself. Here 
are some fairly basic books: 

Dupree, Daniel E., and Frank L. Harmon, Modern 
College Algebra (Prentice-Hall, Englewood Cliffs, 
N.J., 1965). This is fairly similar to Professor 
Fine's book (reference 74), but is possibly some- 
what easier. Topics match closely with Explorations: 
logic, sets, functions, graphs, complex numbers, ex- 
ponents, open sentences, inequalities, sirnul- 
taneous equations, determinants, matrices, the 
exponentiat function, the binomiai theorem, etc. 
Humrnel, James A., Vector Geometry (Addison- 
Wesley, Reading, Mass., 1965). Despite its ap- 
parently specialized title, this volume provides 
a good general mathematical background for much 
of the material dealt with in Explorations. 
Fine, Nathan J., Introduction to Modern Mathe- 
matm (Rand McNaHy, Chicago, Ill., 1965). This is  
a very good book, carefully written by a very good 
mathematician. It deals with many of the same 
topics found in Explorations: logic, functions, sets, 
graphs, axioms, matrices, simultaneous equations, 
probability, isomorphism, transformations, etc. It 
does not require a strong previous background in 
mathematics - it starts from a high school level. 

Some teachers may feel that what they really need IS a 
modern approach to ninth-grade algebra. Several good 
books are available, for example: 

(75) Brumfiel, Charles, Robert Eichofz, and Merrili 
Shanks, Algebra 1 (Addison-Wesley, Reading, Mass., 
1961). 

In the general area of relatively simple books dealing 
with the ideas which we have encountered in Expiorations 
there are many that might be recommended. Here are a few: 

Alfendoerfer, Carl 3.. and Cletus 0. Oakley, Prin- 
ciples of Mathematics ( McGraw-H il I, New York, 
19631, Topics include matrices, logic, sets, axioms, 
isomorphism, simultaneous equations, functions, 
graphs, complex numbers, going even into ideas of 
calculus. This book has been popular for a long 
time (it was originally published in 19551, and is 
usually considered quite readable. 

(76a) Byrne, J. Richard, Modern Elementary Mathematics 
(McGraw Hill, New York, 1966). 

(77) Fletcher, T. J., et al., Some Lessons in Mathemat- 
ics. A Handbook on the Teaching of "Modern" 
Mathematics (Cambridge Uniw. Press, New York, 
1964). This is a very valuable book. Teachers in the 
United States will be intrigued by the point of view 
of their British colleagues, as revealed in this 
book and in others that may be forthcoming from 
this same group of authors. Topics include geomet- 
rical mappings or transformations, graphs, ma- 
trices, vectors, sets, logic, binary numerals, and 
industrial applications. 

(78) Montague, Harriet, and Mabel Montgomery, The 
Significance of Mathematics (Charles Merri l l Books, 
Columbus, Ohio, 1963). Topics include matrices, 
sets, logic, axioms, history, and statistics. 

(79) Sanders, Pau I, Elementary Mathematics - A Logi- 
cal Approach (International Textbook Co., Scran- 
ton, Pa,, 1963). 

(79a) Howard, Charles F., and Enoch Dumas, Teaching 
Contemporary Mathematics in the Elementary School 
(Harper and Row, New York. 1966). 

Of somewhat different interest are these books: 
(80) Exner, Robert M., and Myron F. Rosskopf, Logic in 

Elementary Mathematics ( McGraw-HiU, New York, 
1959). This is a vafuable book for those who wish 
to pursue logic further than we have been able to 
go with it in Explorations. 

(811 Jones, Burton W., Elementary Concepts of Mathe- 
matics tMacmillan, New York, 1947). Ttus is a par- 
ticularly good reference for anyone who is puzzled 
by the "symmetry," "reflection," and "transfor- 
matron" ideas in Explorations, and who wishes to 
understand these ideas better. (For this same topic, 
consult the film "Reflection," produced by David 
Roseveare of the British Broadcasting Corporation 
(BBC), and pages 16-23 of the BBC pamphlet 
Middle School Mathematics, Autumn, 1964. These 
are not readily available, but they do exist; con- 
tact David Roseveare, Kensington House, Room 
505, London, England.) 

(82) Kerneny, John, Laurie Snel!, and Gerald L Thomp- 
son, Introduction to Finite Mathematics (Pren- 
tice-Hall, Englewood Cliffs, N.J., 1956). This book 
contains some unusual topics, particularly in re- 
lation to matrices and to trees. 
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(83) Mostelier, Frederick, R. E. K. Rourke, and G. B. 
Thomas, Jr., Probability: A First Course (Addison- 
Wesley, Reading, Mass., 1961). An excellent book 
for those who wish to pursue the ideas of statistics 
and probability. 

For those who have an adequate knowledge of the con- 
tents of the books listed above, and who want to go on 
to more advanced mathematics, the field is wide own. 

shall list three books, out of several hundred possible 
choices: 

(84) Birkhoff, Garrett, and Saunders MacLane, A Survey 
of Modern Algebra (MacMillan, New York, 1944). 
This book has long been, deservingly, the standard 
reference book in algebra. 

(85) Britton, Jack R., R. Ben Kriegh, and Leon Rutland, 
Universrty Mathematics, Vol. 1 (Freeman, San Fran- 
cisco, Calif., 1965). An introduction to calculus, 
from a point of view that appears to be consonant 
with that of Explorations. 

(86) Eves, Howard, and Carroll V. Newsom, An lntrodw- 
tion to the Foundations and Fundamental Concepts 
of Mathematics (HoK, New York, 1958). An excel- 
lent book. 

Also of interest: 

(87) Bebeman, Max, and Herbert E. Vaughan, High 
School Mathematics (D. C. Heath, Boston, Mass., 
1964). 

(88) Crouch, Ralph, and David Beckman, Linear Algebra 
(Scott F a m a n ,  Chicago, Ill., 1965). 

(89) Curry, Hashel I, Foundations of Mathematical Logic, 
(McGraw-Hill, New York, 1963). 

(90) Levi, Howard, Elements of Algebra (Chelsea, New 
York, 1960). 

(91) Lister, Frederick M., Sheldon T. Rio, and Walter J. 
Sanders, Freshman Mathematics for University Sf#- 
dents (Prentice-Hall. Englewood Cliffs, N.J., 1964). 

(92) Maria, May Hickey, The Structure of Arithmetic 
and Algebra (Wiley, New York. 19581. 

(93) Mendelson, Elliott, Introduction to Mathematical 
Logic (Van Nostrand, Princeton, N.J., 1964). 

(94) Moise, E. E., Elementary Geometry from an Ad- 
vanced Sfaodwiflt (Addison-Wesley, Reading. Mass., 
1963). 

(95) - , The  Number Systems of Elementary Mathe- 
matics (Addison-Wesley, Reading, Mass., 1966). 

(96) Newman, J, I?., and E. Nagei, GodeYs Proof (New 
York Univ. Press, New York. 1960). 

(97) Ohmer, M. M., C. V. Aucoin, and M. J .  Cortex, 
Elementary Contemporary Mathematics (Blaisdell, 
New York, 1964). 

(98) Suppes, P., and S. Hill, First Course in Mathe- 
matea; Logic (Btaisdell, New York, 19641. 

(99) Swain, Robert L., "Logic: For Teacher, For Pupil" 
in Enrichment Mathematics for the Grades. 27th 
Yearbook of the National Council of Teachers of 
Mathematics. 

RESEARCH 

Those interested in on-going research efforts related to 
the kind of educational experiences discussed in Ex- 
piorations may want to read the following, in addition to 
the books and articles listed earlier: 

(100) Arons, A. B., and A. M. Bork, Eds., Science and 
ideas (Prentice Hall, Englewood Cliffs, N.J., 1964). 

( 10 1) Ausu be1 , David P., implications of Preadolescent and 
Earty Adolescent Cognitive Development for Secon- 
dary School Teaching (mimeographed). (Bureau of 
Educational Research, Univ. of Illinois, Urbana, Ill.). 

(102) Barnes, Fred F., Research for the Practitioner in 
Education (Department of Elementary School Prin- 
cipals, N.E.A., Washington, D.C., 1964). 

( 103) Beberman, May!, An Emerging Program of Secondary 
School Mathematics (Harvard Univ. Press, Cam- 
bridge, Mass., 1958). 

(104) Boring, Edwin G.,  History, Psychofogy, and Science, 
Watson and Campbell, Eds. (Wiley, New York, 
1963 1. 

(105) Brown, Roger, Social Psychology (The Free Press. 
Mew York, 1965). 

(106) Callahan, Raymond E., Education and The Cult of 
Efficiency (Univ. of Chicago Press, Chicago, Ill., 
1962). 

(107) Coddington, Earl A,, "Scholastic Aptitude Tests 
in Mathematics," The American Mathematical 
Monthly ( August-September, 19631, pp 7 50-755, 

(108) Combs. Arthur W., et at., Perceiving, Behaving, 
Becoming (Assoc. Supervision and Curriculum De- 
velopment, N.E.A., Washington, D.C.). 

(109) Committee of the College and University Examin- 
ers, Taxonomy of Educational Objectives, 1: Cogni- 
five Domain, Benjamin S. Btoom, Ed. (Longmans, 
Green and Co., New York, 1956). 

(110) Day, Robert C., and Robert L Hambfin, "Some 
Effects of Close and Punitive Styles of Supervi- 
sion,'' American Journal of Sociology, Voi. LXIX, 
No. 5 (March, 1964), pp. 499-510. 

(Ill) de Charms, Richard, Virginia Carpenter, and 
Aharon Kuperman, "The 'Origin-Pawn' Variable in 
Person Perception," Sociometw (to appear). 

(1 12) Dexter, Lewis A., The Tyranny of Schooling (Basic 
Books, New York, 1964). 

(1 13) Erikson, Erik H., "Identity and the Life Cycle," 
Psychological Issues, Vol. I ,  No. 1 (1959), mono- 
graph 1. 

(114) Flavell, John H., The Developmental Psychology of 
Jean Piaget (Van Nostrand, Princeton, N.J., 1963). 

(1 1 5) Gage, N. L.. Handbook of Research on Teaching 
(Rand McNally, Chicago, Ill., 19631. 

(1 16) Gagne, Robert M., The Conditions of Learning 
(Holt, New YO&, 1965). 

(1 17) Gleasan, Andrew, et at., Goals for School Mathe- 
matics, The Report of the Cambridge Conference on 
School Mathematics (Houghton Mifflin, Boston, 
Mass., 1963). 
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(1 18) Goutard, Madeleine. Mathematics and Children 
(Education Explorers Ltd., Reading, England, 
1964). 

(1 19) Hadamard, Jacques, The Psychology of Invention 
in the Mathematical Field (Dover, New York, 1945). 

(120) Hardin, Blanche C., "Math-Not New," The Arith- 
metic Teacher. Vol. 12, No. 4 (April, 19651, p. 252. 

(121) Heath, Robert, Ed., New Curricula (Harper, New 
York, 1964). 

(122) Hilgard, Ernest R., Ed., Theories of Learning and 
Instruction (Univ, of Chicago Press, Chicago. If[., 
19641. 
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vember, 19651, pp. 55 ff. 
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(125) Hunt, J. McV., "Revisiting Montessori," in Mon- 
tessori and Hunt, The Montessori Method (Schoken, 
New York, 19641. 

(126) Inbody, Donald, "Helping Parents Understand New 
Mathematics Programs," The Arithmetic Teacher, 
Vol. 1 1, No, 8 (December, 1964). pp. 530-537. 

(127) Karplus, Robert, "The Science Curriculum tm- 
provernent Study," Journal of Research in Science 
Teaching, Vol. 2, Issue 4 (December, 19641, pp. 
293-303. 

(1281 Krathwohl. David R.. et at.. Taxonomv of Educa- 
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Kay, New York, 1964). 
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Cartwright, Ed. {Harper, Hew York. 1951). 

(130) Manheim, Jerome H., and Sylvia R .  Manheim, "Con- 
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pp. 200-204. 
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matical Education (Committee on Educational Me- 
dia, Mathematical Association of America. 1965). 
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The date was omitted from this printing of the 
Magazine Section, but April 11 appears to be the 
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(Van Nostrand, Princeton, N.J., 1964). 
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(1463 Wittrock, M, C., "The Learning by Discovery Hy- 
pothesis," mimeographed (U.C.L.A., Los Angeles, 
Calif., December, 1964). 
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HEW CURRICULUM PROJECTS 

Teachers usually also want to know about the various 
"new curriculum" projects in mathematics and in sci- 
ence. Many 01 these are temporary (though this does not 
mean they are less valuable), so a definitive listing is 
not feasible. There are, however, excellent sources of 
up-to-date information concerning these various projects, 
and similar matters. Six of the best are: 

(163) The Arithmetic Teacher (National Council of Teach- 
ers of Mathematics, Washington, 0.C.). 

(164) The Commission on Current Curriculum Develop- 
ments of the Association for Supervision and Cur- 
riculum Development (N.E.A., Washington. D.C.). 
Several reports of this Commission have appeared, 
and others presumably wilt in the future. 

(165) Information Clearinghouse on New Science and 
Mathematics Curricula (Science Teaching Center, 
University of Maryland, College Park, Md.). Their 
Third Report, compiled by J. David Lockhard and 
dated March. 1965, has Just been released. Single 
copies are available free of charge. 

(1661 Journal of Research In Science Teaching (National 
Association for Research in Science Teaching, New 
YorM. Despite its t i le, this excellent journal deals 
with both science and with mathematics. 

(167) The Mathematics Teacher (National Council of 
Teachers of Mathematics, Washington, D.C.1. 

(168) Mathematics Teaching (Association of Teachers 
of Mathematics, Kent, England). An important 

group of educators now active in England publish 
through this organization. 

CLASSROOM MATERIALS 

Teachers may also be interested in books and other 
materials that are suitable for use in the classroom, for 
various grade levels from kindergarten to college. 

I shafl not list basic textbooks, for such a fist would be 
far too long. Here, however, are sohe less well-known 
texts that may be useful: 

(169) Churchill, Eileen, Counting and Measuring (Rout+ 
ledge and Kegan Paul, London, England). 

{ 170) Davis, Robert B., Discovery in Mathematics (Addison- 
Wesley, Palo Alto, California, 1964). This book, 
which we have referred to earlier, is a companion 
volume to Explorations. 

(171) Faber, Norman, Phyllis Gross, and Robert tiansen, 
Mathematics and Uwng Things (Schoo! Mathematics 
Study Group, Stanford Univ., Stanford, Calif., 1964). 

(172) Page, David A., Number Unes, Functions, and 
Fyndamentef Topics (Macmillan, New York, 1964). 

Usefui materials are available from the following sources: 

Cuisenaire rods, and other materials, are available from 
the Cuisenaire Company of America, Inc., 9 Elm Ave., Mt. 
Vernon, New York 10550. 

Games and puzzles (such as the Tower of Hanoi), many of 
which pose interesting mathematical questions, are avail- 
able from World Wide Games, R.R. 1, Radnor Rd., Qela- 
ware, Ohio 430 15. 

2. P. Dienes, of the University of Sherbrooke, Canada, has 
many interesting pieces of physical apparatus for use in 
the classroom. 

Some unusually important books have just appeared or 
just come to my attention. Probably the best explanation 
of how to operate an elementary school mathematics pro- 
gram on the basis of student activity, using physical ma- 
terials, is given in the various new publications of the Nuf- 
fieid Mathematics Project. These bear titles such as / Do - 
And I Understand (which accompanies a film with this 
same title), Desk Calculators. Beginnings. Computation and 
Structure, Shape and Size, and Pictorial Representation. 
These books are available from the Nuff ield Foundation 
Mathematics Teaching Project, 12 Upper Belgrade Street, 
London, S.W. 1, England. 

In addition, for those who are curious and confused about 
"what's going on," it may be valuable to see the present 
curriculum revision movement in an appropriate historical 
perspective by reading the highly relevant book The Trans- 
formation of the School, by Lawrence A, Cremin (Random 
House, 1961). 



Appendix B 

Madison Project Films Relevant to 

Some of these films are readily available; others soon 
will be. Running times are only approximate. For informa- 
tion, write to: 

The Madison Project 
Webster College 

St. Louis, Missouri 63 1 19 

Notice that nearly all Madison Project films show actual 
classroom tessons. They are intended to be viewed by teach- 
ers, not by children. They attempt to aid the teacher in plan- 
ning her next lesson. 

Classroom Social Organization (Small groups vs. large 
groups, individualizing instruction, etc.) 

Some of the films listed under this 
heading are controversial, for several 
different reasons. ?tease do not judge 
them all on the basis of viewing only one 
or two. They are by no means all alike. 

Large group instruction: "Graphing a 
Parabola" (6th graders; running time 
22 minutes); "Open Sentences and the 
Number Line" (2nd graders; 9 minutes); 
"Guessing Functions" (6th and 7th 
graders; 16 minutes); "Experience with 
Fractions, Lesson 2" (2nd graders; 30 
minutes). 

Small groupand individualized instmc- 
tion: "Using Geoboards with Second 
Graders" (2nd graders; 26 minutes); 
'Small-group Instruction in Mathe- 
matics" (6th graders; 27 minutes); 
"Small-group Instruction: Signed Num- 
bers, Rational Approximations, and 
Motion Geometry" (6th graders; 46 
minutes); "Small-group Instruction: 
Committee Report on Signed Numbers" 
(6th graders; 13 minutes); "Small-group 
Instruction; Committee Report on Ra- 
tional Approximations" (6th graders; 
22 minutes); "Creative Learning Expe- 
riences" (last section, with 8th graders). 

Chapter 1 'First Lesson" (studentsfmm grades 3-7; 
running time 1 hour) 

"A More Formal Approach to Variables" 
(4th graders; 30 minutes) 

Chapter 2 

Chapter 3 

Chapter 4 

Chapters 5-6 

Chapter 7 

Chapter 8 

Chapter 10 

Explorations 

"A Lesson with Second Graders1'* (2nd 
graders; about 30 minutes) 

"First Lesson" 
"A Lesson with Second Graders1'* 
"Second Lesson" (grades 3-7: 1 hour) 
"Experience with Linear Graphing" 

(grade 4; 25 minutes) 
"First Lesson" 
"A Lesson with Second Graders" 
"introduction to Postman Stories" 

(grades 4-6; 13 minutes) 
"Small-Group Instruction: Signed Num- 

bers, Rational Approximations, and Mo- 
tion Geometry" (grade 6; 46 minutes) 

"Small-Group Instruction: Committee 
Report on Signed Numbers" (grade 6; 
13 minutes) 

"Postman Stories" (grade 7; 33 minutes) 
"Three Approaches to Signed Numbers" 

(grade 9; 65 minutes) 
"Education Report: The New Math" 
(30 minutes) 

"Postman Stories" 
"Circles and Parabofas" (grade 6; 

41 minutes) 
"Second Lesson" 
"Graphing an Ellipse" (grade 7; 

2 1 rninutes) 
"First Lesson" 
"Second Lesson" 

Chapters 11-14 (Some films now in preparation.) 
Chapter 15 "Introduction to Truth Tables and Infer- 

ence Schemes" (grade 7; 40 minutes) 
Chapter 16 "Clues" (grade 6; 20 minutes) 
Chapter 17 "Average and Variance" (grade 6; 

40 minutes) 
Chapter 18 "Second Lesson" 

"Introduction to Identities" (grades 3-7; 
19 minutes) 

'Accumulating a List of Identities" 
(grade 6; 2 1 minutes) 

- - 
'The Tic Toe Toe yam* played In the film "A Leston with Sacand 

Gmdari" uses the un~rihfoftofy rule that "5 marks  in a straight 
l i n e  co~* t t$ur$  a victory"; as p-?ed in Chapter 2 in >he p"1" 

em beak, the gome uses a mow lotitfactory role; using a 5-by-5 
board, the rule is thot "4 marks in on uninteniiptod stmight line 
constitutes a victory.'' 
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Chapter 19 Tape recording D - l  (grade 5) 
"Making up Identities" (grade 5; 

33 minutes) 
Chapter 20 "Making up Identities" 

"Axioms and Theorems" (grade 6; 1 hour) 
Chapter 22 "Second Lesson'' 
Chapter 23 (Various films of ninth-graders at Nerinx 

High School, Webster Groves, Missouri; 
for information write to the Madison 
Project.) 

Chapter 24 (Some films by David Page may be avail- 
able from Educational Services, Sncor- 
porated, Watertown, Massachusetts 
02172.) 

Chapter 25 "Guessing Functions" (grade 7; 22 
minutes) 

Chapter 27 "A Week of Mathematical Exploration - 
Parts 2 through 5" (grades 4 4 ;  Tues- 
day, 33 minutes; Wednesday, 35 
minutes; Thursday, 29 minutes; Friday, 
36 minutes) 

"The Study of Functions- Linear, Qua- 
dratic, and Exponential" (grades 4-61 

Chapters 33-34 "Derivation of the Quadratic Formula - 
First Beginnings" (grades 5-6; 20 
minutes) 

"Derivation of the Quadratic Formula - 
Final Summary" (grade 7; 20 minutes) 

"Quadratic Equations" (grade 9; 49 
minutes) 

Chapters 37-39 "Matrices" (grades 5-6; 35 minutes) 
"Soiving Equations with Matrices" 

(grade 6; 36 minutes) 
"Complex Numbers via Matrices" 

(grade 7; 33 minutes) 
"Introduction to the Complex Plane" 

(grade 9; 54 minutes) 
Chapters 44-45 "Complex Numbers via Matrices" 

"Solving Equations with Matrices" 
Other fi  tms of interest: 

"Graphing a Parabola" (grade 6; 
22 minutes) 

"Graphs and Truth Sets" (grade 2; 
30 minutes) 

"Weights and Springs" (grade 6; 
30 minutes) 



Appendix C 

Some Special Symbols and Concepts 

Used in Explorations 

This brief review of concepts and notations is intended 
to help you recall or locate ideas in Explorations. A "brief" 
use of language necessarily opens the door to considerable 
ambiguity, and may suggest the unhappy device of tetfing 
the students instead of allowing them to learn. If you use 
this appendix a t  a!!, please be careful to try to avoid these 
errors. 

A more suitable way to learn these ideas has been pre- 
sented -we hope - in the main body of this book. 

Variables. Any of the symbols D, A, v, n, 17, A, B, x ,  
y, a ,  18 may be used to indicate the places in a formula 
where we may insert numbers or algebraic expressions. 
When used in this way. any of these symbols would be said 
to indicate a variable. 

Examples: 3 + = 5 

Inserting 7 into the Q yields the false state- 
merit 3 + 7 = 5. 

Inserting 2 into the yields the true state- 
ment 3 + 2 = 5. 

Inserting A 4 into the !J yields A + 3 = A  +S. 

The use of variables is governed by several important con- 
ventions, particularly the rule for substituting, the idea of 
replacement set. and the notation UV, which are explained 
below. 

Open sentence. A sentence that involvesa ranable iscalled 
an open sentence. 

Examples: 3 + = 5 

+ = 2 x (Note that in this example there 
is only one variable - namely, 0- although this 
variable occurs three times.) 

+ A = A + (This example involves two 
variables-[Ã‘ and /\-each of which occurs 
twice.) 

XI - ax + i8 = T (involves four variables- 
x ,  a ,  @ ,  and Y ; in ordinary use, in this form, 
a, 8 , and Y would be "parameters" or "con- 
slants," and x would be an "unknown!') 

Replacement set For each variable - for example, Q- 
we must agree upon a definite replacement set, that is. 
upon a set of mathematical objects (or names of mathe- 
matical objects) that may be written into the "formula" tor 
"sentence") at the points indicated by that variable. 

Example: In Q x 0 = 0 we might agree that we would 
write names of positive integers in the place in- 
dicated by n. With this agreement, the replace- 
ment set for the variable E would be 

and the replacements 

would be "legal," whereas the replacements 

would not be. 

Rule far substituting (one variable). if the same letter (or 
the same "shape," such as 0) occurs several times in the 
same open sentence, you may legally use any element of 
the replacement set as a replacement for the first occur- 
rence but you must then use this same number as a replace- 
ment for all other occurrences of in that open sentence. 

Example: If = {o, 1,2,3,4, . . . } and the open sentence 
i ~ ( ~ x ~ ) - ( 5 ~ ~ ) + 6 = 0 , ~ o u r n a y u s e 9 -  
or any other element of Rn-as a replacement 
for the first occurrence of 0, 

provided that you use this same number as a 
replacement for ail other occurrences 01 Q, 
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Rule for substituting (several variables). If several vari- 
ables occur in the same open sentence, the rule for sub- 
stituting applies to each one independently. In particular, 
it is legal to put the same number in different shapes, af- 
though it would not be legal to put different numbers into 
the same shape. 

Examples: Legal substitutions 

Notice that the "legality" of a replacement for a variable 
does not depend upon whether the resulting statement is 
true or false. 

Examples: Illegal substitutions 

Open names as replacements for variables. If 3 is an ete- 
ment of Rn, then using 3 as a replacement for is legal. 

Example: + 0 = 

3 - + 0  
3 + 0 = 3  

We call this a "numerical replacement'' for the variable 0. 
It is also legal to take an open name (which itself involves 
variables) and use this as a replacement for a variable. 

Example: [Ã‘ + 0 = r") 
A + S - - + n  

( A + B ) + O = A + B  

Of course, A + fl must then be used to name an element of 
Rc (but this IS not usually something you will need to worry 
about). For example, i1 Rg= {I ,  2,3,4,. . .},then wecould 
agree t o t a k ~ ~ = { 1 , 2 , 3 , 4  , , . .  } andfty={1,2,3,  . . . I ,  
since this set is closed under addition, and- no matter 
which element of RA and Rn we choose-the expression 
A + 8 wilt turn out to be the name for some element of Ra. 

UV, The notation UV (use of variables) IS employed when- 
ever we want to show how we have carried out a replace- 
ment for some variable. This is particularly the case in 
writing derivations. Our usual method for writing UV IS 

uv; 3 -  ̂0. 

Example: 

A piece of a derivation: Reason: 

(ii l (A + B )  + 0 =  A + 6 W:A + &  -[Ã‘] 
in line (i) 

Troth set In most open sentences it is possible to carry 
out a replacement for the variable (or variables) so as to 
get a true statement as a result, or else to use a different 
replacement that wilt yield a false statement as a result. 
Those elements of the replacement set which yield true 
statements are said to form, collectively, the truth set for 
the open sentence. 

Example: If 3<Q<6, f in= { I ,  2, 3,4,  5,6,7,. . .} ,then 
the truth set T is given by T = {4, s } .  Similarly, 
one defines the false set F, so that, in theexample 
a b o v e , F = 1 , 2 , 3 , 6 ,  7,8,9 , . . .  1. 

Set Roughly, any collection of things is a set. Thus, one 
can speak of "the set of positive integers," or "the set of 
2-by-2 matrices," and so forth. Now, actually, matters are 
more complicated than this, as the work of Bertrand Russell, 
Kurt Code!, and others has shown. Considerable nicety and 
precision is required in defining sets if we want to be able 
to deal with them in a precise and abstract way. This prob- 
ably need not concern us here, but we should not be under 
the illusion that the "sets" we are taking about are actually 
the same things as the "super-refined" sets that are dis- 
cussed by Russell and other modern logicians. [ ~ n ~ o n e  
interested in expending the large amount of time and effort 
that is required to study modem logic may wish to consult 
Appendix A, Curry (8911. 

That precise reasoning with sets involves pitfalls and haz- 
ards should be suggested by the following, which is attrib- 
utable to Beitrand Russell: Some sets are elements (or 
"members") of other sets- i.e., some "collections" are 
in fact "collections of collections." Thus, if John and I both 
bring our stamp collections over to Billy's house, then we 
have, assembled in one spot, a collection of three collec- 
tions (or a "set of three sets." a "set whose elements are 
themselves sets," and so on). in some sets, on the other 
hand, the elements are not themselves sets- for example, 
in the set {2, 3) the "elements" or "members" are the 
numbers 2 and 3, 

Can a set ever be an element of itself? Theanswer is that. 
in our present unsophisticated use of language, a set surely 
may be an element of itself. For example, the set of "all the 
sets in the world" is itself a set, and so it must be a member 
of the set of all the sets in the world-i.e., i t  is a member 
of itself. 

All right, let us now divide all the sets in the world into 
two categories. We shall put them in Category A if they are 
a member of themselves, and into Category 0 if they are 
not. Now, Category B is, itself, a collection-that is  to say. 
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it is  (in our rough language) a set. Is Categoiy B a member 
of itself, or not? Well, i f  it is a member of itself,then it should 
have been put into Category A, and not into Categofy B. 
Hence, if Category B is a member of itself, it should not be. 

On the other hand, if Category B is nota member of itself, 
then it should have been assigned to Category 8, and hence 
would be a member of itself. That is, if Category B is not 
a member of itself, then i t  should be. 

Into which category, then, ought you to put Category B? 
1 mention this hind of difficulty only to temper the fads 

of the times. If we seize upon "sets" as the essential ingre- 
dient of "new mathematics," we are opening Pandora's 
box. instead, I suggest we use the word only in a cornmon- 
place "colloquial" sense, to mean "a collection," and 1 sug- 
gest we use it only when i t  is natural to be speaking of a col- 
lection of things-as, for example, when we wish to speak 
of the collection of numbers that will make 

become a true statement when we write one of the numbers 
En the a, using UV. 

A common notation for sets is {2, 4, f1, 2, 3, 4, . . .I ,  
and so forth. 

The terminal three dots. When a list "trails off" and ends 
in three dots, we are thereby trying to indicate that the list 
"truly" goes on and on forever, and never stops. 

Example: The "counting numbers'' are 1, 2, 3, . . . (or, 
depending upon which book you are reading, 
perhaps they are 0, 1, 2, 3, . , .I. 

Subset The set A is called a subset of set 8 if every ele- 
ment of A is also an element of B. Thus, i f  A = (2, 3, 7} 
a n d B =  {I, 2. 3.4,  5 , 6 , 7 , 8 } , t h e n ~ i s a s u b s e t o f S ,  
and we write A C B. 

E l m  versus subset The individual "things" that make 
up a set we call its "elements." This can -hopefully -be 
made clearer by some examples. 

Examples: A = {l, 2,  3, 4} 
Then 1 is  an element of A, 2 is an element of 
A, 3 is an element of A ,  4 is an element of A. 

p = {{l. 2H2,3}) 
This requires caution! The number 1 is not an 
element of P. The number 2 is not an element 
of P. The number 3 is not an element of P. In 
fact, the set P has two elements: The set f 1,2} 
is an element of P, The set {2,3} isan element 
of P. 

i n  case it helps any, consider these somewhat analogous 
examples: 

Examples: The Mid-city library may be a member of the 
National Inter-library Loan Association, and 

Webster's dictionary may be in the collection 
of the Mid-city Library. However, Webster's dic- 
tionary IS not a member of the National Inter- 
library Loan Association. 

The United States holds membership in the 
United Nations, and you may be a member of 
the United States. This does not imply that you 
hold membership in the United Nations. 

Notice that elements and subsets are quite different, 
For the set W = {2, 4, 6} we have: 

Elements; The number 2 is an element of W. The number 
4 is an element of W. The number 6 is an el@- 
ment of W. 

Subsets: The set (2,4,6} is a subset of W.   he set {2,4} 

is a subset of W. The set {2,6\ isa subset of W. 

The set (4, 61 is a subset of W. The set {2) is a 

subset of W (but [2}+ 2). The set {4} is a sub- 

set of W. The set {6} is a subset of W. Theset # 

is a subset of W (where "d" denotes the "empty 

set"). 

The symbol is used to mean "is an element of"; thus 
2 E W. The symbol C is used to mean "is a subset of"; 
thus {2, 41 C {2, 4, 61, {6} C W, and so on. 

The empty set  The symbol 0 denotes a set which is empty. 
If you think carefully about the truth table for the state- 
ment P Ã‘ Q, you will see that every statement which be- 
gins. "if x is an element of the empty set 0, then . . ." must 
be true, no matter how the statement ends. For this reason, 
the empty set is always a subset of any set J, no matter 
what set J is. 

Notice that there is a difference between ifr and (01. 
The Cartesiwi product of two sets, A x 8. See Chapter 2. 

Function and functional notation. A function may be writ- 
ten as fh): 

f(l) = 3 
f(2) = 5 
f(3) = 7 

Or it may be written as a "mapping": 

f:l - 3 
f :2 - 5 
f :3 Ã‘Ã 7 

Notice that the arrow symbol used to indicate a mapping 
is longer than the arrow symbol used in connection with 
uv. 
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Tmtfi value. A "statement" may be either true or false. 
The assessment "true," when appropriate, is called the 
"truth value" of the statement; similarly, the assessment 
"false," if appropriate, is called the "truth value" of the 
statement. 

Examples: Statement Truth Value 
St. Louis is a city. T 
Missouri is  a large city in 
eastern Massachusetts. F 

We usually write truth values merely as T or as F. 
When we make up an abstract system where these are 

the only truth values allowed, we say we have made up a 
"two-valued" logic. When (as children often choose to do. 
and adult mathematicians sometimes do also) we make up 
a system where more than two truth values are allowed (for 
example, "true," "false," and "sort of"), we say we have 
made up a "many-valued logic." 

PH. Standing for the "principle of names," PN means 
that if, in any statement, you "erase" a name for some- 
thing and put in another name for that same thing, you will 
not change the t ruth value of the statement. If it was false 
before, it still is. If it was true before, it still is. 

Example: Suppose 

Eileen = Miss Godfrey. 

Then, in the statement 

Eileen is ten feet tail, 

we could erase "Etleen," and put in "Miss God- 

frey," and get 

Miss Godfrey is ten feet tall. 

Presumably, both statements are false. 

Opposite or additive inverse. We have occasionally used 
the word opposite, as is common in recent books. However, 
do not let yourself be confused by the everyday meaning of 
the word. which is quite different from its mathematical 
meaning. In its mathematical meaning, opposite for perhaps 
better, additive inverse) 04 a number A means: the number 
you must add to A in order to get zero. 

Exampie: '3 + = 0 
t 

3 is the additive inverse ot '3. 


