e Computers and young children

Computers and young children

N:-& R CHAMBERS Edinburgh
JOHN MURRAY London
JOHN WILEY New York

Published for the

Nuffield Foundation by

W & R Chambers, Edinburgh;

John Murray. London; and

John Wiley and Sons Inc., New York

{SBN 0 550 77023 2 (Chambers)
tSBN 0 7195 2653 1 (Murray)
ISBN 0 471 65179-6 (Wiley)

Library of Congress
Catalog Card No: 756-39285

© The Nuffield Foundation 1972

All rights reserved. No part of this publication may be
reproduced. stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying.
recording or otherwise, without the prior permission of the
publishers.

Printed in Great Britain by
Newgate Press Limited
London EC1

ieneral introduction

he aim of the Nuffield Mathematics Project is to devise a
~ontemporary approach for children from 5 t0 13". The
uides do not comprise an entirely new syllabus. The stress
, on how to learn, not on what to teach. Running through
4 [o tha Al thhat t .
et free to make their own discoveries and think for
remselves, and so achieve understanding, instead of
arning off mysterious drills. In this way the whole attitude
y the subject can be changed and ‘Ugh, no, | didn’t like
aths” will be heard no more.

o achieve understanding young children cannot go straight
) abstractions — they need to handle things (‘apparatus’ is
yo grand a word for at least some of the equipment
oncerned — conkers, beads, scales, globes, and so on).

ut ‘setting the children free’ does not mean starting a riot
vith a roomful of junk for ammunition. The changeocver to

e new approach brings its own problems. The guide / do,
nd | understand (which is of a different character from the
thers) faces these problems and attempts to show how they
an be overcome.

he other books fall into three categories: Teachers’ Guides.
Veaving Guides and Check-up Guides. The Teachers’
uides cover three main topics : @ Computation and
tructure, W Shape and Size.] Graphs Leading to Algebra.
y the course of these guides the development of
1athematics is seen as a spiral. The same concept is met
ver and over again and illustrated in a different way at

very stage. The books do not cover years, or indeed any
necific time ; they simply develop themes and therefore
now the teacher how to allow one child to progress at a
ifferent pace from another. They contain direct teaching
uggestions, examples of apparently un-mathematical
ibjects and situations which can be used tc develop a
\athematical sense, examples of children’s work, and
iggestions for class discussions and out-of-school
ctivities. The Weaving Guides are single-concept books
‘hich give detailed instructions or information about a
articular subject.

he third category of books, as the name implies, provides
heck-ups’ on the children’s progress. The traditional tests
e difficult to administer in the new atmosphere of
dividual discovery and so our intention has been to

replace these by individual check-ups for individual children.
These have been prepared by a team from the Institut des
Sciences de I'Education in Geneva under the general
supervision of Piaget. These check-ups, together with more
general commentary, are published in the same format as the
other guides and they form an integral part of the scheme.

While the books are 2 vital part of the Nuffield Mathematics
Project, they should not be looked on as guides to the only
right” way to teach mathematics. We feel very strongly that
development from the work in the guides is more important
than the guides themselves. They were written against the
background of teachers’ centres where ideas put forward in
the books could be discussed, elaborated and modified. We
hope very much that they will continue to be used in this
way. A teacher by himself may find it difficult to use them
without the reassurance and encouragement which come
from discussion with others. Centres for discussion do
already exist and we hope that many more will be set up.

The children’s work that has been reproduced in these books,
like the books themselves, is not supposed to be taken as a
model of perfection. Some of it indeed contains errors. It
should be looked upon as an example of work that children
might produce rather than a model of work that they should
produce.

Foreword to the Nuffield Mathematics Project

The last few years have been exciting ones for teachers of
mathematics ; and for those of us who are amateurs in the
subject but have a taste for it which was not wholly dulled
by the old methods that are so often stigmatised, there

has been abundant interest in seeing the new mathematical
approach develop into one of the finest elements in the
movement towards new curricula.

This is a crucial subject ; and, since a child's first years of
work at it may powerfully affect his attitude to more
advanced mathematics, the age range b to 13 is one which
needs special attention. The Trustees of the Nuffield
Foundation were glad in 1964 to build on the
forward-looking ideas of many people and to set up the
Nuffield Mathematics Project ; they were also fortunate to
secure Professor Geoffrey Matthews and other talented and
imaginative teachers for the development team. The

ideas of this team have helped in the growth of much

lively activity, throughout the country, in new mathematical
teaching for children: the Schools Council, the Local
Education Authority pilot areas, and many individual
teachers and administrators have made a vital contribution
to this work, and the Trustees are very grateful for so much
readiness to co-operate with the Foundation. The fruits of
co-operation are in the books that follow ; and many a
teacher will enter the classroom with a lively enthusiasm
for trying out what is proposed in these pages.

Brian Young
Director of the Nuffield Foundation, 1964 -70

Contents

Why computers? 9

Flow charts 11

A classroom human ‘computer’ 28
Presenting the program to the computer 42
Working with a computer 48

Conclusion 61

Introduction

There is no attempt in this book to give the age for which
each particular part of the work is appropriate. Chapter 2
begins with work that is suitable for children at the lower end
of the primary school : the end of the book deals with work
that is appropriate for pupils at the top end of the primary
school and the first years of the secondary school. It must be
left to individual teachers to decide just when the time is right
to introduce the different stages of the work.

Spreading the activities over a long period and integrating
some of the work with other subjects is probably the best way
of introducing the new ideas. This is likely to be more
satisfactory than a compressed course in which new ideas are
introduced in quick succession. .

Vhy computers?

e computer is probably the most important result of
ientific advancement in recent times. Compared with space
avel and nuclear energy, the computer is less spectacular

it its effects may well be much greater.

any people have acquired a limited idea of the capabilities
a computer in certain fields but few are aware of the likely
nsequences of its full effect on our civilisation.

vart from its effect on the organisation of clerical and
dustrial work, the computer is a very powerful tool which, in
sociation with the general adaptability of the human brain,
s greatly accelerated research, discovery and invention. The
mputer, even in its present state of development, has helped
an to make progress in his work ; part of the resulting
owledge has led to the creation of a more advanced

achine which, in turn, will help man to reach yet further, and
‘create a yet more useful tool. Man and machine together
rm a loop, and from this loop will come the offshoots that

1l lead to developments and inventions at an increasing

te : and no longer will these often remain unused for long

el

MoUs.

ience and technology have led to an ever-increasing degree
specialisation and the accumulation of masses of technical
ta. The computer’s fast capability for storing, handling and
ocessing specialised and complex knowledge will free many
ople from the drudgery of this work and enable them to
velop their full capabilities in a wider field of research,
scovery and creativity.

e effects of computers on our civilisation will be apparent
all levels. The high level policy-makers of industry and
mmerce must rely more and more on information produced
a computer,

ymputer education should not be looked upon as merely
ing vocational training. It is true that many people must be
ly trained to operate and use these machines ; but the
plosively expanding effect of computers on so many

pects of our lives makes it important that ali members of

r interdependent society should have some understanding
their capabilities. An early introduction to the
inciples on which a computer works would prevent
e misconceptions which many people now have. As
irt of his general education, every child should
rcome aware of the capabilities and limitations of
ymputers; and of the effects they will have on our
ciety.

There are two different kinds of computer : the analogue and
the digital.

The analogue computer uses analogies, in the form of
measurements, to carry out computations but the digital
computer works directly with digits. The ordinary clock is an
example of an analogue device : a measurement of the
rotation of the hands being used to indicate the time. The
modern type of clock on which the time appears in figures is

-an example of a digital device. Similarly, 236 = 17 worked

out on a slide rule is an example of analogue computation ;
and an answer achieved by long division, or on an ordinary
desk calculator, is the result of a digital procedure.

The digital type is used in most computer installations
because, for most applications. it can be more accurate ; and
most information can be more satisfactorily processed when it
is in digital form. ’

This book is concerned only with the digital type.
Much of the work done on computers includes calculations of

they would take the cleverest of men years to complete, or of
such complexity that they could never be sorted out by
anybody. Itis important, however, that the computer should
not be thought of as being just a large version of an ordinary
calculating machine. It is basically different from an ordinary
calculator in that it can store, or remember’, data and sets of
instructions, With its great speed, and this capacity for
‘remembering’ sets of instructions {called programs). the
digital computer can carry out a vast quantity of dull,
repetitive work in a very short time.

“low charts

'hen it has been decided that a computer can help in the
lution of a particular problem, the first thing to do is to work
it a method of solution and then break this method down

to a series of very simple steps. Drawing flow charts is a
mple way of showing these steps. The completed program
ill be a series of instructions telling the computer how to

Irry out these steps.

e preparation of flow charts is a valuable activity in many
bjects, not just mathematics and computer programming. In
e early stages of such work, as suggested in this book. there
prebably no value in mentioning to the children the
sociation with computer programming.

The flow chart for a computer program must have the steps in
the correct order. Early practice with the idea of an ordered
procedure can be given by activities in which the children
examine the order in which the steps of everyday situations
are carried out. The first work of this kind could be prepared in
the form of sets of cards which must be arranged in order to
give the correct sequence of events.

Further practice in preparation for drawing flow charts can be
provided by having arrangements of pictures on which the
children can pin arrows between the separate pictures to
show the correct sequence of events.

Mlnn m]
Wakes
me u_P

}I | eat my breakfast

| g0 & school
A ke bed g

ore experience in ordering can be given with games using
ord cards.

er the experience of ordering sets of pictures and words,
e children can make their own flow charts with drawings

d pictures but, for a long time, the children will need help in
sciding what the separate steps are to be. Without a great
al of practice in making charts for which the steps are
escribed beforehand, the child should not be expected to
ake up a flow chart by himself ; he will either get bogged
ywn in.a confusion of detail or he will be satisfied with just

e or two steps.

1

JeCoratre Wikh
Currenty and |

ear Qr'my’g

sSun and rawn

At a later stage the children can make flow charts in which
the steps are described in writing.

Cleaning hamster cage

rofcage !

*axe oub harnster

T

N
>]
| 1
[— - |
clean cul caoe |

© 0 onameter hack . cage 1
S : : !

L
\3L\}€.’ U o0r

Many of the subjects which the children may suggest for flow
charts will have more than one possible arrangement for some
of the stages: it is most important to discuss this to see which
stages can be re-arranged. and which ones must be in a
certain order. In later computational programs this will be an
important part of the preparation.

Decision stages After the children have had a considerable
amount of practice with straightforward flow charts, it should
be possible to introduce some examples in which, at some
particular stage, the steps branch off in separate directions.

ftis usual practice for this branching step to be enclosed in a
‘box’ of a different shape =~ a rhombus.

20

Going to play with my friend

: I ac to my friend's JCEJ

N
b knooik at ‘“*% door }

r-
i

‘a she at horrepﬁ No

N

<z v

90
house and ;

o Inher | go back
vy home

with her

L i n%w he ave am van be
. {

7
v

R

HJOO!’S

.
¥

ced

—
H U

_r! !ook my money- box

N

Is there

Yes

bl
‘ ‘30 o —

enough maoney
T inthe box? i

Ny

; -
< (R 4 B3k i N St
3 -‘t,&;’:,efs- (i

Sx me mo“w;\

~

.

i
:

S.J)

’ ™A~ ‘\ A WNYEY T tog h A TON
LI LTS VU E"” Je - Yb\
i \1\. ~ \\ } ,)—_——.«ﬁ . S ""{}
\\‘

any rwnw?

dont have an ize-cre m f

frun Lo w

W

v
bu;, an ace

Lw,.‘_,_,,,

??f%% "]

I e

%U”‘

R

o Ag*" '““10

ol!‘z

_—
!
i
ek

'LMM o

L e

\/

21

Even if a group of children all start off with the same agreed To simplify such examples, and to prepare a chart which will

set of steps, the resulting flow charts for some situations may show the general procedure for crossing a road, it will be
be very different because some of the charts will have repeat necessary to introduce the idea of a loop. The set of steps
stages incorporated in them. For example : making a chart to included in the loop is repeated as often as necessary.

describe one particular crossing of a busy road could result in
a very long piece of work in which many of the steps would
be repetitions of earlier stages.
Crossing the road

j stop at the kerb J stop at kerb
Ava Vi

waib walt K
look s,

C!’OE&SJ

YG%Q ¥ E;’;T:a =

22

important at this stage to discuss the difference between a Even with this small set of steps, there could be a great many

v chart describing one particular occurrence and one that variations of the procedure for different mornings. By

ws the general procedure for all situations. The introducing decision stages and loops it is possible to produce
owing examples show the sequence of events for a child a chart that shows the general procedure followed every

19 to school on three different mornings. morning.

P S N ey
T WO A

e

-+ o o
~ O sChoo

23

Going to school

g S —
Piooks o Ciooe K7
L

T

by
ot

| .t breakfact

o Ry NO ‘
////// ety NO
<,ﬁ ‘/:2 X.JGJr s"%:)k) ‘)ﬂ/,,,‘»mm ‘\’;%’ cilia
T T b]

Later chapters will show flow diagrams being used as a
preliminary stage in the writing of programs. A full program
for a big problem could need thousands of separate steps.
Such a program could take weeks or months to prepare but,
once prepared, it could always be available for instant use
with a new set of data. Results for very complicated and
lengthy computations can then be produced almost instantly.

if the program contains a number of loops, the computer may
go through millions of steps in the course of carrying out the
computation but this will present little difficulty as far as time
is concerned since a modern computer can perform many
miltions of calculations in one second. A convenient unit of
time used in modern computer research and development is
the nanosecond : one thousand million nanoseconds make
one second.

24

// N
LA
N

) s

oo lo Mow o.Cor 13; Nichael St

START

e

P i "\
\

P e et o e - o am e

— No)

Vo ym want k?}ajm% \\}/ -

CZK
et

= .
|

|

S s gt | | Thiokef ooninn o |

N T | todo
4

;-\ 1a auar shek in mtn\)__'"" No =

N

s ST
Switeh kay left +o et
\

— R S —— y \
— Ha ongine._of e car plarlid)= Noo

ﬁ)_]“fl lLth]-F:,o* o cL'N\ aml'?omi
T qae A o it e

Tohe Ut et o dddy and g el

.0«94(... yorw QOxX-

- PP cofi TOOH

T

—Mvgn/ oy} S\ red

1

-0 NMAaonaa uyesonsg

A classroom human ‘computer’

The principles involved in the programming of a computer can
be introduced by a class activity in which the children act as
the different units of the computer.

The accompanying diagram shows the main units of a
computer, and the links between them

Functions of the computer units

The Control unit tells the other units what to do, and when to
do it. In large computers it can control the working of each
unit in such a way that a number of tasks can be performed
simultaneously. Its control of operations ensures that the
computer Is kept as productively occupied as possible

The Input unit accepts the instructions and information from
the operator and converts the separate items into a form
suitable for the control unit (a pattern of electrical impulses in
a real computer). The programs and data will usually be
presented to the input unit in the form of punched cards or
tapes.

control select.s correct store — RE e |
address for instructions and data; /
anaretrieves items for further
processing, or for output

control of input, Lo store

control decides Y
FOP=0R==0r X

NPT

The Output unit presents the required results of computati
to the operator. This is usually done by printing. punching
cards or tape, or by an illuminated display on a screen.

The Arithmetic Unit performs all the calculations incorpora
in the program. It can add. subtract, multiply and divide. It
also compare numbers and decide whether a number is
positive, negative or zero

The Store is the computer’'s ‘'memory’. It can remember’ bc
instructions and numerical data. It is made up of a large
number of individual cells in which the separate items of tt
program and data input can be held. Each cell has a numbe
or store-address. Instructions and data are conveyed to the
store, and held there, as patterns of electrical charges.

Programs and data can also be stored in an External Store,
usually in the form of reels of tape. or cards

e |1SUPUCLIONS (PrOgrar
=== CONLrO/ SIQNAIS
(513

control receives, in th
correct order, the
Instructions that: ma
up the program

control routes the
output from store

| QU

28

e Operator ha
nd Input

the Arithmetic Unit
Controller

> Arithmetic Unit has a

3/

,ﬂm

Output has a simple displa

P

b
‘ o
.
>
>, A

%f

s

/

29

computer principles, the following set of instructions will be
adequate to direct this flow.

Set of instructions
Copy the information from the card waiting at Input, take it to
Store, and putitincell

Take a copy of the contents of Store cell and putitin the
Arithmetic Unit.

Take a copy of the contents of the Arithmetic Unit and put it
in Storecell

Take a copy of the contents of Store cell Add this to the
contents of the Arithmetic Unit, leaving only the answer in the
Arithmetic Unit.

Take a copy of the contents of Store cell Subtract this
from the contents of the Arithmetic Unit, leaving only the
answer in the A.U.

Take a copy of the contents of Store cell Multiply the
contents of the Arithmetic Unit by this number, leaving only
the answer in the A.U.

Take a copy of the contents of Store cell Divide the
contents of the Arithmetic Unit by this number, leaving oniy
the answer in the A.U.

Do not continue with the instructions in the next cell, but
instead go straight to Storecell and obey the
instruction there, After that, continue obeying the instructions
in order from that point.

Look at the contents of the Arithmetic Unit. If it is greater than
zero, go straight to Storecell and obey the instruction
there. After that, continue obeying the instructions in order
from that point.

Copy the contents of Store cell and take it to Output
who displays it.

Stop all activity and wait for further instructions.

After the flow chart stage, all programs will be written as an
arrangement of these instructions.

30

Before any calculations are performed by the computer, each
instruction must be stored in a separate Store cell. For this to
be done the computer needs a directive at the beginning of
the program telling it to store the instructions and data that
follow the directive.

During this first stage of storing the program, no calculations
are performed. The process is simply one of copying the
program from Input and putting the items in separate store
cells,

When the program has been stored the computer will be reac
for the directive to start running the program. Not until this
directive is received will the computer start on the actual
computing process. When the directive is received the .
computer will jJump to the beginning of the program and ther
obey the instructions in the correct sequence until it reaches
the instruction to stop, or an improper instruction that it does
not understand or cannot perform.

For all computers the instructions of the program must be
written in accordance with a strictly observed set of rules,
otherwise the computer would not be able to ‘understand’
what it was expected to do. Even a very small mistake can
upset a whole program.

At first the children should use the longhand version of the s
of instructions as used in this book. After some practice with
this lengthy procedure they could be led to suggest that a
shorter form of writing would be gladly accepted. The
abbreviated form will be their first introduction to the idea of
computer programming language.

The abbreviations in this book are only a suggested
means for understanding basic principles. They are n
suitable for input to any existing computer.

There are many different computer languages in current use:
none of these is suitable for all computer installations. These
languages have been designed for the convenience of peop!
who, use computers in their work : they are not designed to 3
understanding of computer principles, and are unsuitable for
work with young pupils.

Those pupils who progress to more advanced work and are
able to make use of a large computer will, of course, need to
learn the strict rules and rigid procedure for one or more of
these languages. They should find the task much easier if the

ave had previous experience in making up programs with a Store(20) must be taken from the contents of the arithmetic

mple set of instructions based on first principles such as that unit, and at no time can this instruction be used for the
sed in this book. reverse operation.
hortened form for ‘Set of Instructions’ Mnemonic Program for finding the total cost of any given
Abbreviation number of bars of chocolate at any given price
ead next card, copy, and STore incell RST() This first example of a program for the class ‘computer’ is a
very simple one in which there are no branching instructions
NTer copy of contents of cell in and no loops. The procedure for finding the answer to the
ithmetic unit ENT() problem may well appear to be in the 'using a sledge-hammer
to crack a nut’ class but, aside from its value as a simple
Tore copy of contents of Arithmetic unit in introduction to programming. it will serve to show that, for a
| I . STA() computer, even the simplest problem must be programmed
properly.
DD copy of contents of cell to
ontents of arithmetic unit ADD() A procedure for ordinary arithmetic could be shown as
follows :
UBtract copy of contents of cell from
ontents of arithmetic unit SUB())
ﬁa,ke the cost, of ore bar
luLTiply contents of arithmetic unit by copy K}7
“contents of cell MLT()

IVide contents of arithmetic unit by copy of
ntents of celfl ., ... DIV() Yb

teke the number of tars |

smp UNconditionally tocell JUN() \b i
imptocell. if contents of arithmetic \f\z‘r'{?.x@ [t dO\Nﬂ
Jit equal to or GReater than 1. If not, go on D , |
‘next instruction JGR() <7
! C
| .
ke copy of contents of ceflto OUTput OUT() l m}”“f’_‘yﬁ
TOP all activity STOP

write down answer

) to first instruction of programincell

d RUN through programme RUN() This, however, is not sufficient for the class ‘computer’. The

cemputer cannot think what 'it” means ; it cannot go looking
for ‘the cost of one bar'. The instructions must tell the
ginning atcell STORE() computer precisely where the information can be found.

FORE copies of following items sequentially,

ome children may have wanted to use their own abbreviated
rms of the long instructions. The necessity for standardising
e abbreviations should then be discussed. Since every
struction must have a precise meaning, and can in no
ssible way be ambiguous, this is most important. For
ample : the instruction Sub(20) means that the contents of

31

Knowing the capabilities and limits of the ‘computer’, as
shown in the diagram and as described in the "Set of
Instructions’, it is possible to prepare a suitable set of
instructions.

Mnemonic
Abbreviations

read] n@x’(; card (cost of 1 bar), f
copy, and Lstorf’ n cell,
en +9 L/Q ;\/ of Ccon nt;@].ﬁ:}S !
of cell....in AU J
read next card (number of bdrs,g
copy, ahd etore in cell ..
' '€7m - ;Z;L;!
multiply corien s of Al by
| copy of content of cell..

ST el
I store copy of cohfﬂéﬁggﬁbﬁ\ﬁ“

in ceH
take copy of contents of |
cell....to output |

ENTI

RST(

l
]

This is the general program. To use it for a particular purchase,

the data must be entered. For this example it can be 24 bars
costing 5p. each. These two numbers are variables i.e. they
can be changed for different purchases. The rest of the
program will be unchanged for any purchase.

Each of the instructions must be written on a separate card.

The two data cards (containing 5 and 24) will follow at the

end of the program. They will be written on cards of a different

colour to show that they are not part of the general program.
After the general program has been stored the data cards will
be waiting at Input for the Controller to ‘read’ them.

32

RST()

MLT()

STA()

ouUT()

Each instruction and item of data can now be allocated a
storage-address.

STORE() thisis adirective to the Controlter; it is not part
of the stored program

RST()} cangoin Store(1)
ENT() cangoin Store(2)
RST()} cango in Store(3)
MLT() cangoin Store(4)
STA() cangoin Store(5)
QUT() cangoin Store(6)
STOP can go in Store(7)

RUN() thisis adirective;itis not part of the stored
program

cost of 1 bar (5 in this example) can go in Store(8)
number of bars (24 in this example) can go in Store(9)

Now that the addresses of the instructions and data are
known, it is possible to fill in the brackets in the instructions,
and write the complete program,

STORE(1)
RST(8)
ENT(8)
RST(9)
MLT(9)
STA(10) the next available storage cell
ouUT(10)
STOP
RUN(1)

5
24

In later work it will be more convenient if a generous
allocation of storage cells is reserved for program instruction
The next address can then be specified as the point at which
the storage of data begins.

o,
,

' H
4 3

STORE copies

of following ifems,

be‘yinm'ng at
cell ™1

ney| card,
g:yd it and puf
e copy m shre
cell €

enter copy
confenls of c:?fele
n PRITHMETIC
UNIT

croem;l negj't:arﬁ,

) a “

/'Ec-pny fsfore
cell 9

mulbiply contents
of ARITHMETIC

i, ol 9

shre copy of
confents of ARITH.
UNIT /n cell /0

toke
cgnfenhcﬁf cell
10 OV TP\ uT

STOP al/
ach 'n'/’y

ge

Notes for operation of class ‘computer’
The number of a storage cell (its store-address) must not be
confused with the number in a cell (its contents).

Putting anything into a store automatically destroys the
previous contents of the store.

Copying something from a store does not destroy its contents.

The arithmetic unit retains only the answer after each
calculation.

The whole of the general program must be stored before any
computation is done. '

Directives (on red cards) are not stored in the computer.

Data cards (green) wait at Input until they are needed in the
program.

After a program has been run once, itis only necessary to
enter new data and a Run() directive for a repeat
computation.

The computer does not think (it merely follows a series of
instructions). The thinking is done by the program writer and
the computer designer. A computer will obey mistakes in a
program just as carefully as it will follow a correct program.
As an example of this unthinking obedience, a computer can
go on and on repeating the steps of an incorrectly
programmed loop, producing meaningless results, and never
stopping until the operator intervenes.

Procedure for operation of class ‘computer’
Operator collects program (complete set of cards) from
External Store and presents it to Input. He then switches on
‘computer’ i.e. he alerts the Controller.

Controller sends messenger to Input for copy of first card.

Input copies card and gives copy to messenger who takes it
to Controller.

Input puts the copied card to one side.
Controller keeps the directive — Store (1). He must now store
whatever follows in a sequence of store cells, beginning at

Store (1). He will do this until he receives another directive.

34

Controller sends messenger to Input for copy of next card an
directs him to put it in Store(1).

The next instruction — Stop - is not obeyed but is put into
the next store cell in the same way as the previous
_instructions. The Controller is still ‘remembering’ the first
directive telling him to store whatever follows.

When Controller receives the copy of the next card — the
directive Run(1) — he destroys his previous directive. He
must now obey the stored instructions, in sequence, starting
with the one in Store(1). He sends his messenger to
Store(1) for a copy of the contents.

Controller reads the copy of the instruction — RST(8) — and
directs his messenger to take a copy of the next card from
Input and put it in Store(8). He destroys the copy of the
instruction.

Controller sends messenger for copy of next instruction —
ENT(8). He tells messenger to copy the contents of
Store(8) and take it to the Arithmetic Unit, who keeps it.

Controller sends messenger for copy of contents of next stor
cell. He tells messenger to go to Input for a copy of the next
card and put it in Store(9).

Controller sends messenger for copy of next instruction —

MLT(9). Copy of contents of Store(9) is taken to Arithmetic
Unit, together with a multiplication sign.

Arithmetic Unit multiplies his previous number by this new
number, keeping only the answer.

Controller sends messenger for topy of next instruction —
STA(10). Copy of contents of Arithmetic Unit is putin
Store(10), ready to be taken to Qutput.

Controller sends messenger for copy of next instruction —
Out(10). Copy of contents of Store(10) is taken to Output,
who displays it.

ntroller sends messenger for copy of next instruction —
op. On receiving it Controller destroys his previous
ective and waits for further orders.

he program is not going to be repeated with another set
data, the Operator collects the set of program cards from
out and returns it to External Store. He then directs

ntroller to ‘switch off” all units. On this instruction all units,
cept Output, destroy their contents.

he ‘computer’ is not ‘switched off’, it can be used for a
veat run. For this, it is only necessary to enter different data
ds (preceded by a Run(1) directive) at the Input.

e results from the previous program will have been

played at Output in pence. For some purchases the total

st might well be more than £1, in which case the results are
st displayed in £ and p. To do this, it is only necessary to
ride by 100, but this must not be done if the total cost is less
in 100p. To extend the previous program in such a way

at this decision is built-in, it is necessary to include a
inching instruction.

Lake cost o? Ol = ‘-r:ie:
L 1;<e nun ier Q - mcfesa
R 1

l mu !’uuy

N
[St Uc reeuitJ

d:vnde b,/ O)

S .._.i : -

Ves /Aeswt

—<_equaltoor greater o

Written in more detail for the ‘computer’ the flow chart

| T~ T |
<7 ~ 7
rite resutt write
previous
result

7
stop

would be:
read and Store cost of 1article [RST()
<
read and store number of articles RsT()
v
load Al with cost of Tarticle | ENT()
R
multiply by number of articles | MLT()
store result STAL)
v
divide bym'o_} DIV()
15 result
———(greater than zero”? JGR()
Ly replace pievious result
with new result STAC)
w

output resulb k—————-0UT()

35

If the first 20 storage addresses are reserved for program
storage. then cells 21 onwards can be used for working
stores. The constant 100 is needed in the general program so
it can be stored with the instructions.

Address | Conterts

RST (21
RST (22)
ENT (2N
MLT (22)
STA (23)
DIV (12)
JGR (9)
JUN (10)
STA (23)
- 0UT (23)
11 STOP

12 100

PN WL o

This set of instructions will be preceded. as before, by the
directive Store(1) and followed by the directive Run{1), and
the data.

A further extension of the program could be the inclusion of
instructions telling the computer to find, from a list of
purchases, the total cost of the first. items, each
consistingof articlesat..... p. each.

For example : to find the total cost of
14 bottles of crangeade at 8p. each
15 boxes of chocolates at 7p. each

6 bars of chocolate at 2p. each

For this form of the problem it will be necessary to include a
loop in the program because some of the instructions must be
repeated a number of times, according to how many different
items there are. In the above example, for instance, there are
three different items so the computer must be told to keep a
running total until it has computed the total cost of all three
items. To do this, it starts with the number three in store as a
counter, reducing it by one each time it computes the cost of
an item. No results are sent to the output until this counter
reaches zero.

36

read rumber of different; items |
and pub in f‘ounter store i RST(
H v |
reat ana store pnoe
of 1 article - RsT(
read and store number;
of ar tzf‘}es RST(
muitiply number of articles } ENTT
by price IRRULER
7
[Stmrmr ummgtotal {2%?\((
-
reduce counter by 1 | ENTS
- /v STA(
o countert oy,
No - orore%ertnam?‘? 2L geR

Rva

bring runn'iﬁg totalto AU] ENT(
S e
' divide by 100 Div (
~result oqual ™
Y?%/ bo orgreater "‘\‘,@97 JGR(
| ~ than19 |
H !
Lv4 o] N
store N place of | CJUD TJUN(
Lunning total {“”‘%'““JSFA(

N v
stop | STOF

e constants needed in the program are 100 (for bringing p.
£) and 1 (for reducing the counter store as each stage of
> computation is carried out).

he first 25 cells are reserved for program storage, then 26
wards can be used for working stores.

s hot usually necessary to check that the store cells are

pty before a program is stored and run because the entry of
item into a store cell automatically destroys the previous
ntents. However, in this particular program it is necessary to
rt off with a nil total cost. For a first run it is likely that the
res will be empty so there will be no trouble but if the

bgram is run again without ‘switching off” (which would
stroy all contents) the previous final total will still be in the
re and will be added to the next total. To avoid this it will
necessary to include, in the program, instructions which

I ensure that the contents of the running total store will be
0 at the beginning of a program run. Real computers have
ple ways in which this can be done but this ‘computer’ will
ed a set of instructions. Using cell (26) as the running total
re, the set of instructions ENT(26), SUB(26) and STA(26)
Il effectively clear it.

e full program will then be :

store address program
P STORE (1
[1 ENT (20

3 STA (26)
4 ROT (27)
- 54 RST (28)
o RST (29
7 ENT (28)
8 MLT (29)
g ADD (26)
10 STA (26)
M ENT (27)
general < 12 3UB (23)
program) 13 STA (27)
14— JGR (5)
15 ENT (26)
16 BV (22)
17 —1IGR (19)
18— JUN (20)
19<—STA (26)
20— ouT (26)
21 STOP
22 100

23 1
\ RUN (1)

Each item of the program will be written on a separate card.
The set of program cards will be followed by the data cards.

/ (hurnber of

... .. different tems)
(cost of 1article

c.. L indstoitem)

inst. item)
variables (cost of 1article

i 2nd. ikern)

c.. N 2nd, item)
(cost of 1article

.. In3rd. ittem)

\ L A I

in 3red itemn)

2 SUR (26) toclearcell (26)

(number of articdes
" (nuripber of articles

(number of articles

37

In this example the program from page 27 is being run
through the ‘computer’. The instruction in (13) has just been
carried out.

From this stage the controller will move on to (14). The
instruction in this cell tells the controlier to go back to (5) if
the number in the A U, is greater than zero. At this pointin the
run, the number in the A.U. is 2 so the controller will jump
back to (5) for his next instruction. Having obeyed this
instruction he will then continue with the instructions from (6)
onwards,

Having achieved some basic understanding of computer
principles by taking part in the class computer activity it is
likely that there will be a need for an individual approach in
further work. At first, this can be met by encouraging the
more capable pupils to write their own programs for testing
with the class ‘computer’.

After this stage pupils will be ready to write and test their own
programs by themselves. For the testing part it will still be
advisable to have some practical means —a simple storage
system — by which the programs can be run through the
computer processes.

There are many ways in which a battery of storage cells can
be provided for this purpose but, with simplicity and
cheapness in mind, an arrangement of egg boxes can be
quite satisfactory. Alternatives could be plastic ice-cube
trays, matchboxes, or small storage drawers.

The photograph shows an arrangement of boxes that will
provide 30 storage addresses, an input section, an arithmetic
unit and an output section. The pupil will be programmer,
operator and controller.

38

Notes on operation of desk top, egg box ‘computer’
The program pack is entered on one side of the Input tray.
After each card has been read, copied and stored, or obeyed
it is a directive, it is placed on the other side of the tray. This
simple procedure will ensure that the green data cards are
each exposed for reading, in their correct order, at the prope!
time.

The Arithmetic Unit must never contain more than one
number after each operation.

The previous content of a store is destroyed when it is
replaced by another item. This means that with new data anc
a Run() directive a stored program can be used more than
once without taking the previous data slips out of the stores
before each run.

After the program has been stored. and the computation part
of the process has been reached. it is helpful to have a
flip-over counter (see photograph) to show which storage-
address has been reached.

If there is enough storage space, it is possible for the
‘computer’ to have more than one program stored at any
given time. The Store{() and Run() directives wil! tell th
computer the address of the first instruction in the particular
program being used.

39

M I,I,Z,S,S; 8}’3) L

Liro
Wnﬂm.,.w...

M
@
@

Q

:maem

[RST (Y

O
<
-4
~
<

A
wv

T (W)
T(W
%)

s
<

~f

1 >][™]
< <
o
L= [Em=
&,

A(13

9

o
<
~
=
>

.

ADD ()Y

e

sTA (&)

ouT ()

(»

9

W

JuN (&)

"

)

<

4

>
[~

wo po
iy,

e ™ @ Tw® e @

RST(®) out() RsT(W) 0ur(e) £ar(i) ADD(Y) sT8(Y) ouT() ADD(K) STAGK)
@ e 0 O wn & D s en @
oor(w) aww(® 2 2
@ QO QL @ @0 & @ @ao @) &
RsT(as) ENT(9) miT(3e) Div(e) STARW) ouT@a) STOP 2

Stori ng two Progf‘ams

(<]

® ®

Area.

ISy

RST(2e)

IN

§ 3
%—cgs
N

5

fas
nalfuction

N RS

AV

ouT

;

2

b |

N
|=

z .
™

~

o

wn

=
N
2/

s
S~

o
n
~
[y
&,

|2
<
)
2,

>

n

= A
<

-~

RUN G

>
>

o
~
=% >
| | =
&) <L,

ok

<

EJ
*x

base

@

@)

o

2

@)

ving prepared and run a number of successful programs
th apparatus, the pupils can progress to a stage of testing
ir programs by recording the steps on a chart.

ample : find the total cost of the first two items on page 36.

working store

Lore consiams o IS
Sdrezs | program AU. 22 |23 26 27 28 . 29 ouiput
SO lENT(oe) | 9 400 1 77 0 i
2 SUB (26) o i & h "
3 OTA (26 | v, o N 19} ‘ . \ A
4 RST (27) " o B i ? i 55 |
5 RET (28 v ! i 3 "
6 ROT (22 " 3 L 14
7 ENT (28 8 i ' LS o
g M1 29 12 Ho 0 " L N
9 ADD (e . 112 e oo ! l o
10 STA @) - I R VA H " " .
"mo_EBENT @ 2 W ot ! "
12 suB@H 1 I R 3]
13 STA (27 i u] b 1 "
14 1 I6rR(5Y T R B o
5 RST (29) " W 7w
6 RST (29) X h] ") I 15 _
7 ENT (28) 7] ! ! : ! i
8 MLT (29 105 1 N [! "]
9 ADD (26) 217 ! o . o
10 STA (26) t I i 217 " o v
11 ENT (27) 1 n 0 n i i
T2 se@3y E ' | |
B s @ o« o " el " o]
4 R (5) ¢ w f b " " ! o o
15 ENT (26) 217 AN N S T S i]
10 Div (22) .17 i " P \ 1 Y i
A7 J6R(19) H I H _fi - T " -
’39 STA (26) i I H] 2-’?7 “,) w!s H o
20 ouT (26) ; " ! o ! ! 017
21 STOP i i " 0 T w I : |

e operator interprets the output. £2 17p.

Al

Presenting the program to the computer

Punched cards are a very convenient way of storing
information in a form suitable for mechanical processing.

A set of such cards can contain a vast amount of information,

all represented by punched holes, but much simpler cards

should be used for introducing the idea of storing information

in this way.

A set of seven large cards (say 7 inches by b inches), each
having three finger-sized holes, can be used to show how a
simple mechanical process can sort a number of cards into
their correct numerical order.

After the cards have been shuffled, hold them upright on a
flat surface and push one finger through the right hand holes
of the pack. Those cards which can be lifted from the others
are put at the back of the pack. When this process has been
repeated with the second and third holes, the cards will be in
their correct numerical order.

The children’s attention should be drawn to the importance of
having one corner cut off so that it will be obvious if a card in

the pack has been reversed. For a similar reason, commercial
cards must not be square.

By taking note of the black marks over the uncut holes, the
children can prepare a table in which the figure 1 represents

O O

uncut holes and a O represents those that have been cut av

001
010
011
100
101
110
11

~N OO s W N =

This will provide a possible introduction to the binary numt
system.

When they have had adequate experience with this small se
they can experiment with a four-hole set of cards to see ho
an extra hole can increase the range of numbers which can
represented by this method.

Cards with a greater number of holes can be used for storin:
information based on the children’s own interests.

For success in the use of these cards it is essential that the
holes are accurately positioned. Because of the possible
practical difficulties of doing this, it is often preferable to bu:
pre-punched cards. Six-hole cards are obtainable from:
Allen-Glenold Ltd., East Farndon, Market Harborough,
Leicestershire, at 76p. per 1,000 plus postage.

oUo \|oo

ouUU™
C

42

All the information to be stored on the cards must be in binary
form, i.e. the question used for preparing the information
must be worded in such a way that YES or NO will be
sufficient for the answer.

The set of cards which have the answer YES to any particular
guestion can be extracted by pushing a long needle through
the holes corresponding to the question, and lifting them from
the rest.

Children sometimes get confused over whether they should
cut away the hole for YES or for NO.

There is no definite rule about this — indeed you will find that
in Shape and Size ¥ itis suggested that a cut hole means
"Yes” and an uncut one means ‘No’. However, we feel that the
more logical convention is 1o be able to lift the ones with the
word "Yes’ and this is the practice we follow in the Guide.

For punched cards, punched tape and magnetic tape storage,
all information is converted into a form in which it can be
recorded in a two-state system (punched or not punched ; on
or off; positive or negative). This system of storage and
presentation is very convenient for computers because it can
simplify design problems. A machine designed to store and
manipulate decimal digits requires devices capable-of dealing
with ten different figures in each column : the typical
mechanical calculating machine is an example of this. Such a
system would be 100 large and too slow for a computer. The
speed needed in a modern computer requives the use of
electronic systems. In such a system it is very convenient to
represent each digit by a device which is ON or OFF. Much of
the circuitry of an electronic computer consists of devices
that can ‘hold’ or ‘lose’ a charge of electricity. These charges
can be ‘read’ by the computer and easily transferred from one
location to another in the course of running a program.

Limited activities in working with binary numbers can help
children to understand this part of the working of a computer.
This work (combined wvith experience in using other number
bases) will also help them to understand the principles on
which our denary system is based, but an excessive amount of
conversion is unhelpful.

44

Itis not necessary for a computer operator, or programmer,
be competent in binary computation. The computer is
designed to translate the input notation ta its own before
starting work on it; and it can perform the reverse operatior
before it presents the results at the output.

Putting a program on punched cards

Cards for real computers are not pre-punched with holes
which are cut away to represent information like the simple
examples for children’s activities at the beginning of this
chapter. Itis normal practice for holes to be punched only
where they are needed to represent information.

When the children have had sufficient experience with the
first type of card. and have written programs for the class
‘computer’, they can progress to making cards that are base
on similar principles to those used in actual computer pract

O
O
and feed O
part O
O

%.
[y (]
£ o
7_-.35 ?‘:g = = § = ;f
gx §g §2 3£z 8 3&
2 83 8% 8%% & &E
KEY FOR CARDS ON BIRDS

coolUolS

OWL

 illustration on page 46 shows a suggested design for a
‘which can be used to decide the position of the holes in
cards. and to interpret the cards when they are used as
ut to the class ‘computer’.

» accurate positioning of the holes is made much
pler if 3 inch squared paper is used as the material for the
ds.

> holes are made with a 1 inch punch and hammer. For
tresults the punching should be done on a firm base of
d wood or soft metal (lead is the best material of all).

 row of abbreviations along the top of the key card
ludes the full “Set of Instructions’ as detailed on page 31.
t" and ‘Data’ are added to make it clear whether the
rmation on the card is an instruction or a number. The
ires in blue (on the left) are for storage-addresses. The

000000

3

§) £ 2,
5 ‘c:gg F 2 S
19. Eue +~ ‘T_>" ;.S_Z ®

s (-] @D © o
g B 2 & 8% &
r G £ o Sa 8
KEY FOR CARDS ON LIVING CREATURES

figures in green (on the right) are used to record numbers,
either as constants or as the data for a program.

Using this method, a complete set of cards for a program can
be made quite easily. When the program is run through the
‘computer’, Input has the task of interpreting the information
before passing it to the Controller. The cards can be ‘read’
easily by simply placing each in turn over the key card and
reading whatever can be seen through the holes. This
interpretive procedure is similar to actual computer practice
when a computer must have, as part of its equipment, the
means whereby the particular language being used on the
tape or cards can be changed into its own machine language.

It was pointed out in chapter 3 that there is no single
standardised form in which programs can be written for
running on all computers. This applies also to punched cards
and tape. A set of cards punched for one computer

- N I
58 § § & 5
§3 ¢ = § 8g %
$2 s § = 3§ 28
S g > Eo < o
e e 23 ¥ 32
56 8 & 53 ¢2 §
8 4 @0 a3 o
KEY FOR CARDS ON MATERIALS

>UoUUUN

PANDA

UUoUolUN

SUGAR LUMP

45

K E

INST RST ENT STA ADD SUS MLT

INS

R PATA

DIV JUN JGR OUT STop

© 0 ©

=}

0O 0o 0o o 00

o

ﬂZ

+ 444

4 4 4 4 4 4

v

6 6 €6 6
:

5 6 6 6 6 6

6

7

7

8

8

8 8 8 8

9 9 9 9

MLT(28)

DATA

what’s this one?

291D/

allation is not always suitable for running on a different
yputer. The cards in this chapter are suggested as a simple
ins by which the children can be introduced to the idea of
inched card input system. The format of the cards does
follow the pattern of any existing computer system.

ard input system such as is actually used in computing will
~ell within the understanding of children who have

ked with the simple cards shown in this chapter. It will be
2asy step for them to move on to using real cards and the
ociated punching equipment when they have the chance
un programs on a real computer.

wched tape in‘put is used in some computer installations but
is not a satisfactory system for most schools because the
ipment is too expensive ; and itis a very inconvenient

tem when there is a need to alter or correct a program.

en a program. or a collection of data. has been punched on
is it is easy to make changes by removing, replacing or
ing individua! cards, but with a punched tape system it is
ally necessary to change the whole tape. This is a most
ortant point in computer education where the main
ohasis is on the preparation of programs rather than the
lity with which they can be used again and again. Even in
early stages, however, the children can be made aware of
use of tape as a form of input. They may enjoy writing
ssages in one of the punching codes (by dots on strips of
ared paper). This activity will help to make them see that
at appears to be nothing more than a confusing array of
es can, in fact, be meaningful.

Fadios vl

2 Q

oM

47

Working with a computer

Children who have worked on the ideas of the first sections
of this book will have achieved some understanding of the
nature of computers and they will be aware of some of the
consequent effects that are likely to be caused by the
widespread introduction of a computer system.

This work will have been valuable in itself, but as the children
progress it is only to be expected that they will want to have
direct experience with a real computer. As a first step the
children may benefit from a visit to a computer installation. It
should be seen, however, that such a visit is of little or no
value as an introduction to computing for young children. The
main interest in a planned visit to a computer installation will
lie in the input and cutput facilities, and the speed with which
the working is carried out. The rest of the computer will be
seen as nothing more than one or more uninteresting metal
boxes.

The opportunities for pupils to make use of a real computer in
their work are depressingly limited at the present time but
there are various ways in which persistent pioneers have
managed to overcome these difficulties. This section will
include a brief outline of some of these approaches.

Qnly a small proportion of the pupils who are fortunate
enough to benefit from direct experience with a computer
will progress to the stage where they are using the computer
as a necessary tool. beyond the extent for which a calculating
machine would be adequate. Such a stage will be reached
only by some pupils in the top forms of the secondary school.
For those children who do not reach this level, the value of
running programs through a computer will lie in the increased
understanding of computer principles and the benefits to be
derived from practice in logical thinking. Most children will
not need the full facilities of a large computer since their
overall attainment will set limits on the kind of problem that
they will be capable of tackling. Indeed. many of the younger
children will deliberately restrict their first programs to a level
where they can check, by ordinary arithmetic, ‘to see if the
computer is right’,

Long time lags between the writing and running of the
programs tend to kill interest at all levels but such delays are
particularly detrimental with young children. Postal/courier
services to a distant computer are comparatively inexpensive,
and useful to older pupils, but the interest of beginners is best
maintained by a system which provides quick results. The
ideal situation in these early years is therefore one in which
the computer can be used in the classroom.

48

This classroom computing facility must be capable of being
programmed in a very simple way. It is pointless if children
have to devote excessive time to learning a complex
language or if they become bogged down with technical
difficulties.

Two ways of providing this facility have been found to be
successful with children. The first of these uses a small
desk-top computer (which may be no more than a
programmable calculator) and the second a terminal
connected by telephone line to a distant computer.

Much successful work has been done with desk-top
computers or calculators but all need to be programmed in a
low-level language and some of these do not fulfil the
criteria set out above. These machines do not usually allow
for the solution of non-numeric problems, which may be
desirable for some children, and have very limited storage sc
that even the simplest data processing problems are
impossible. However, these machines have the advantage
that they can be used at any time and can easily be
transported from classroom to classroom or even from
school to school.

The Olivetti Programma 101 is one such machine that has
been widely used with children and has been found most
successful. Many other programmable calculators (from
Hewlett Packard, Munroe, IME and a multitude of excellent
Japanese manufacturers} will probably serve equally well.
It would be necessary to compare the facilities offered by a
number of them before choosing which one a school shouid
buy.

The remote terminal provides a facility very suitable for use
by children. It has the disadvantage that the time available
for use may be limited for financial reasons. This could

well be outweighed by the great advantage of a very simple
language and the ability to tackle non-numeric and data
processing problems. A simple subset of a language like
BASIC is very easy for children to learn and the diagnostic
assistance given by the computer if the programme contains
errors is very helpful. The ability to edit a problem by a simpls
command is particularly valuable for use with young

“children. There is no reason why this type of facility should

not be shared between schools.

hen choosing the facility to be used it is important to
member that pupil-time is as important as computer-time.
ne must also consider the objectives of the work and the
velopment of this later on in school and beyond. The
ecise way in which the earlier work with the egg-box
ymputer is arranged will depend on the follow-up with the
al machine. It is not at all difficult. for example, to arrange
at exactly the same language is used.

any important points are raised in the sections above and
would be wise to discuss these with experienced teachers
jor to making any decision on equipment. Computing in
hools is the concern of the Schools Branch of the

ational Computing Centre and also of the School
smmittee of the British Computer Society. Both will be

ly too pleased to help and can be contacted by writing to
e Secretary, BCS Schools Committee, National

omputing Centre Ltd, Quay House, Quay Street,
anchester M3 3HH.

49

The following eight pages reproduce a Primary child's
account of work done with a desk-top computer, the Olivetti
Programma 101.

The references, e.g. (See A), are to the print-out from the
computer which we have not reproduced as it seemed
repetitive and not particularly interesting.

50

yWwogvyam

R |

4
{
1

OOL

n account from three schools in Cambridgeshire

e Olivetti Programma 1071 was used for a period of six
ceks. During this time the computer was shared by three
hools. Although this necessitated a great deal of carrying
out, the machine gave no trouble and proved to be robust
d reliable.

uxford Primary School

e children were shown the simplest operations of the
mputer as an electronic calculator and were quickly able to
e this aspect of the machine to full advantage.

iter they were introduced to the stmple whys and hows of
ogramming and they programmed A + B,A — B, A x B
dA + B.Thisledto (A + B) x Candthento (A+ B) X C
here C is a constant. By now the children were programming
ithout any assistance whatsoever, and using the operations
+. ~. X, and + in combination. The next stage was to

ing in decisions i.e. if the answer is positive print 999, if
2gative print 666, and looping techniques. This was quickly
asped and presented little difficulty. Finally each child
(plained the fundamentals of the machine to a friend and a
art was made by them in using the machine for simple
ogramming.

onclusion: No piece of equipment has motivated more
gument and discussion than the Olivetti Programma 101,

e logical arguments and reascning of the group were
irprisingly profound — they quickly realised the need for a
gical step-by-step program if correct results were to be
und and this really set them thinking, often aloud. and
ynstructively criticising another child’s argument.

nese young children can master all the techniques built into
e machine, Their use of these techniques is only confined by
eir lack of mathematical knowledge.

he machine proved to be a painless — indeed pleasurable —
troduction to algebra. They were working on sound
athematical lines without resort to numbers in order to
rogram the machine. Then they fed numbers into the algebra
) generate arithmetic.

he glimpse into the computer age in which they will live as
Jults had a marked effect on the group. They could easily
resee the age of instant information.

Cottenham Village College

Three maths sets were involved and an attempt was made to
assess the possibilities of using the 107 in a class situation as
opposed to small group work.

It was decided to treat the experiment fairly formaily and each
of the sets followed roughly the same approach as detalled
below :

Stage 1 Introduction to computer. A look at the five
operations. Practice in working these operations (4, —, X, =,
4/) in decimals, using pencil. paper and hand calculators.

Stage 2 Usecf the Programma 101 as an electronic calculator.

Stage 3 Learning to write simple programs to carry out

. . b+ c
straightforward calculations such as a % a® — b?

‘

(a + b)2 + ¢, etc.

Stage 4 Running these simple programs on the 101 and also
working the calculations on hand calculators,

Stageb Learning to write programs with unconditional jumps.
Here the youngsters were left to work on their own or in small
groups. The emphasis here was to produce series of numbers
e.g.y =kxy=xiy=x%

Fibonacciseries, y+ s+ 4+ 2. etc.

Stage 6 Running these programs. Correcting program faults.
Attempting to improve and shorten successful programs.

Stage 7 Introduction to conditional jJumps. At this stage all
the work was on an individual or small group basis.

Here are extracts from a few of the pieces of writing produced
by pupils at the end of the experiment.

Angela | pictured the computer as a great huge thing with
flashing lights and a voice coming from somewhere inside
At first | found programs hard to understand but | now feel
able to write one without having to worry about it. If | had
another chance to work on a computer | would quickly take it.

Dianne Dianne wrote a program to give this series

1,2,6.24,120 1124000727777607680000,
‘and it got that big after only 22 terms’.

59

David | thought that the computer that was coming would
be in the back of a lorry and that there would be hundreds of
knobs and levers, but when it did come it was about 3 ft. by
3t and 1 ft. and it was much smaller than | expected. You
could work out any of the tables you did not know and it
would go on writing it out until you press a button to stop it. |
worked out the 677 times table and we let it give us twenty
answers.

John John wrote a program to printout 1,11, 111, 1111,
11111, etc. He also wrote the following :

With a gentle purr and a clickety click,

We put the program in.

The computer got to finish its work

Before the clock struck ten.

But Oh dear! What's gone wrong ?

The little red light comes flashing on.

(The red light appears when the stores are overloaded or-when
the machine is asked to do the impossible e.g. divide by zero.)

Geraldine The best part of working with the computer was
when we wrote our own programs. It was good putting the
programs into the computer and it was amazing how fast the
computer worked out the problems. When the computer
could not take any more numbers it went red.

We are certain that there is a real place for computer work in
school, and we are certain that a computer like the 101 is the
type of machine best suited to our needs ; we are not certain
that we made the best use of it during this short experiment.
There is one other uncertainty with far-reaching implications —
what effect will the machine have on what we do and when
we do 1t ? There is little doubt that algebraic methods are
implicit in using the machine, and that geometry need no
longer be the branch of mathematics where logic is used.

The Grammar School for Boys

Programs, in which pupils have taken a lively interest, were
made for a wide and varied list of computations. Very little
time was given to using the machine as a calculator, our
principal atm being to use it as a computer (i.e. with a
program stored).

There was an attempt to get elegance into our programs.

Competitions were held to see which student could solve a
problem using the smallest number of instructions.

60

The following list of programs gives some indication of the
kind of ideas which interested the pupils.

Square roots, reciprocals with division, solving general
quadratics by formula and by iteration. evaluation of series fol
the exponential, circular and hyperbolic functions to a
required degree of accuracy, solution of cubics, quartics, etc.
by various methods, graph plotting. solution of differential
equation, evaluation of highest common factor, Fibonacci

r

sequence with ratio of

. triangular numbers, Eudoxus’
r+41
numbers leading to an evaluation of 4/2 (written by a 13-year

old boy).

The machine was taught to play ‘Nim’ by writing a program
for the game, and programs were written 1o solve engineering
problems and to write out prime numbers and cancel
fractions. Problems invaolving calculations in astronomy were
solved and numbers were sorted in order of magnitude. An
interesting program was to feed in three numbers and ask the
machine to determine whether or not a triangle can be drawn
and, if 50, to state whether it was acute, obtuse, or right
angled.

Pupils were successful in producing programs to convert
numbers from one base to any other base and £ 5. d. to any
foreign currency.

Before passing on to details of other approaches to computer
practice in schoois it should be said that the programs for the
Olivetti Programma 101 mentioned in this section do not in
any way show the full capabilities of the machine. Although
its storage capacity is very limited in comparison with a large
installation. there are probably few examples of problems
likely to appear in schoo! work where the capacity of the
machine would be inadequate.

In many instances the limited storage witl be an advantage in
that the student will be obliged to plan his program with great
care so as not to exceed the capacity of the machine. By so
doing he will be writing programs: with the maximum
elegance and simplicity.

Conclusion

t seems likely that for some time to come computer education
n schools will be the responsibility of the mathematics
eachers but it is to be hoped that. as progress is made, it will
;00N cease to be a subjectin itself, and will be integrated

vith many of the other subjects.

Already. in Universities, the gomputer is used by scientists,
ongineers, economists and sociologists, more than it is by the
nathematicians. There are, in fact, few disciplines in which
use is not being made of the computer. The very name —
“omputer — is perhaps inappropriate since the greater part of
he work done on computers today is some kind of information
rocessing in which the mathematical content is small.

A\t the level of this book it may readily be seen that the
oreparation of flow charts can form a valuable stage in many
fhifferent subjects. The formation of these ordered sequences
of explicit instructions demands both imaginative and logical
hinking. A high level of understanding is also required. and
iny deficiencies will often be quickly seen.

2ublicity is often given to ‘'mistakes by computers’, and these
ire held up as examples of their fallibility. The truth is, in nearly
[l cases, that the erroris due to a fault in the instructions to
he machine: itis a human error. The computer must have
Jrecise instructions on every detail of its assignment. A
~omputer programmed to print accounts will quite happily
send out a bill for £0-00 (and reminders about non-
yayment) unless it is specifically instructed not to do so.

t should be remembered that this book is concerned with
computer understanding for pupils of a wide range of

shilitv_notiust.asmall selected set.at the tonand of the e

secondary school stage, Many pupils may not have the
ypportunity to progress beyond the level of this book but
>ven then they should have some understanding of what a
computer can do, or perhaps more important, what it can not
Jo. It should be clear to them that the computer is nothing
nore than an instrument in the hands of man, totally
jependent on human intelligence.

n the future, 1t is likely that computers will be used more and
nore to gain access to knowledge ; to organise and abstract
nformation; and to control routine mechanical procedures.
This does not, however, point the way to a mechanical age in
~vhich the computer "takes over’. The results produced by a
“omputer will always be dependent on the instructions of
yeople.

e e e ey

61

The following publications of the Nuffield Mathematics
Project have appeared in 1967-72;

Introductory Guide

| do, and | understand @V (1967)

This Guide explains the intentions of the Project, gives
detailed descriptions of the ways in which a changeover
from conventional teaching can be made and faces many of
the problems that will be met.

Teachers’ Guides

Pictorial Representation [l (1967)

Designed to help teachers of children between the ages of 5
and 10, this Guide deals with graphical representation in its
many aspects.

Beginnings W (1967)

This Guide deals with the early awareness of both the
meaning of number and the relationships which can emerge
from everyday experiences of measuring length, capacity.
area, time, etc.

Mathematics Begins @ (1967)

A parallel Guide to Beginnings Y. but more concerned with
‘counting numbers’ than with measurement. [t contains a
considerable amount of background information for the
teacher.

Shape and Size ¥ (1967)

The first Guide concerned principally with geometrical ideas.

It shows how geometrical concepts can be developed from
the play stage in Beginnings Y to a clearer idea of what
volume, area, horizontal and symmetrical really mean.

Computation and Structure @ (1967)

Here the concept of number is further developed. A section
on the history of natural numbers and weights and measures
leads on to the operation of addition, place value, different
number bases, odd and even numbers, the application of
number strips and number squares.

Shape and Size ¥ (1968)

Continues the geometrical work of ¥. Examination of two-
dimensional shapes leads on to angles, symmetry and
patterns, and finks up with the more arithmetical work of @

62

Computation and Structure € (1968)

Suggests an abundance of ways of introducing children to
multiplication so that they will understand what they are
doing rather than simply follow rules.

Graphs Leading to Algebra B (1969)

This Guide develops the use of co-ordinates and introduces
open sentences and truth-sets. It goes on to deal with the
graphical aspect of these mathematical statements,
introducing graphs of inequalities, intersection of two
graphs and graphs using integers.

Computation and Structure @ (1969)

The main concern here is with the introduction of the integers
{...73,-2,71,0,%1,%2,*3, }. This Guide builds up
the idea of the integers in terms of ordered pairs of numbers
before introeducing the number line and other applications :
this lays a sound foundation for operations on integers. It
ends with a short section on large numbers and indices.

Shape and Size §¥ (1971)

This Guide introduces the idea of a vector, not as something
purely abstract, but as a simple and effective aid to developing
geometrical insigﬁt in young children. The concept of
addition of vectors is built up very slowly, being abstracted
(in the tradition of the Project) from a variety of practical
experiences. The link is shown between vectors and
translations.

Weaving Guides

Desk Calculators () N/(1967)

Points out a number of ways in which calculators can be
used constructively in teaching children number patterns,
place value and multiplication and divisicn in terms of
repeated addition and subtraction.

How to Build a Pond ({ \/(1967)
A facsimile reproduction of a class project.

Environmental Geometry (] \/ (1969)

This Guide concentrates on making children more critically
aware of shapes in their environment and the interrelationship
of them. Itis intended mainly for Infants and lower Juniors.

>robability and Statistics (N (1969)

Designed to build up, in a very practical way, a critical
ipproach to statistical information and assertions of
robability. It demonstrates the many ways in which data
an be collected and organised. Probability is introduced
argely through games, but ways of predicting probable
utcomes are investigated in-detail.

Computers and Young Children (. N/ (1972)
Fhis is an introduction to the thinking behind computers

rather than to the mechanics of them. It covers flow diagrams,

sunched cards and games in which children simulate a
somputer and ends with a description of work done in a few
schools with an actual computer. It includes work for
Juniors and lower Secondary children and is intended to be
used from time to time rather than as a concentrated course.

Check-up Guides

Checking up 1 (1970)

This book has been prepared in co-operation with Piaget’s
institut des Sciences de I'Education in Geneva. [t deals with
he various concepts leading towards the idea of number
~hich are covered in the Teachers” Guide Mathematics
Begins @. 1t explains the relevance of these concepts and
jives the teacher guidance on how to check up on whether
51 not a child has acquired each concept.

Dther publications

The Story So Far (1969)

The booklet is an outline of, and index to, the ground
~overed by the first nine Teachers' Guides of the Project. Its
burpose is twofold : to provide easy reference to topics in
these Guides for those using them day by day (making a
straight index proved an impossible task) ; and to save
teachers of older children from having to read through all
the early Guides to find out 'what had happened previously'.

Into Secondary School (1970)

This booklet is intended for teachers of children from 11
upwards, whether in Secondary or Middle schools.
lHlustrated with stills from the film of the same name, it
describes the aims of the Nuffield Mathematics Project as it
affects these children, and so is complementary to the
Introductory Guide / do, and / understand, which explains
the philosophy of the Project with special reference to
Primary schools.

Problems — Green Set (1969)
This publication consists of a Teachers’ Book accompanied
by a set of fifty-two cards for distribution to the children.

The set of Problems is intended for use with young
Secondary pupils. The problems on the cards are reprinted
in the Teachers’ Book, with solutions and a considerable
amount of background material and suggestions for follow-
up work. All the topics covered by these cards are included
in the Teachers” Guides already published. but they are
presented in such a way that children who have not
followed a ‘Nuffield-type’ course can do the problems and
enjoy them.

Problems — Purple Set (1971)

These problems, like the Green Set and the Red Set, are
intended for use with young Secondary children. Although
this is the third Set to be published, in mathematical
sophistication it should rightly come between the Green Set
and the Red Set. As in the other two Sets, the problems have
been printed on cards. Commentary on the problems and
suggestions for follow-up work are included in the
Teachers' Book.

Problems — Red Set (1970)

This second set of problems is designed for lower
Secondary children. Like the Green Set it consists of a pack
of cards for the pupits and a Teachers” Book in which the
cards are reproduced. The mathematics covered by the Red
Set is rather more sophisticated than that in the Green Set,
and many of the cards could well be used with older
children.

The Teachers” Book contains the solutions to the praoblems.

Maths with Everything (1971)

This booklet has the same title as a film made for the
Nuffield Mathematics Project about children aged 5 to 7.
The purpose of the booklet, and of the film, is well summed
up in the commentary : ‘It's a question of knowing where to
look’, and what to look for. The teacher who can be aware
of the many opportunities for mathematical experiences and
can make the most of those within her reach, will be doing
her very best for the children ; and ‘'maths with everything’
will help them forward in their development as active and
thoughtful people.

63

Chairman

1964 — 1966

1967 -1968

1969 - 1970

Consultative committee
Professor W H Cockcroft

J W G Boucher

R C Lyness

Miss B M Mogferd (1964-1966)
H S Mullaly (from 1966)

R Openshaw

N Payne (from 1967)

D R F Roseveare

J Shanks (from 1966)

A G Sillitto (died 1966)

P F Surman

Dr D R Taunt

Mrs D E Whittaker (from 1967)
F Woolaghan

Professor.J Wrigley

Organiser
Professor G. Matthews

Team members

J W G Boucher 1966 -1967 D R Brighton

G B Corston Miss | Campbell

H Fletcher H Fletcher

Miss B A Jackson D E Mansfield

D E Mansfield J H D Parker

Miss B M Mogford Miss R K Tobias
A G Vosper

E A Albany 1968 - 1969 E A Albany

D R Brighton D R Brighton

Miss | Campbeli A G Vosper

Miss R K Tobias

A G Vosper

E A Albany

D E Jones

J H D Parker

A G Vosper

Designers

Dodd & Dodd

0 550 77023 2 (Chambers)
0 7195 2653 1 (Murray)
0471 65179-6 (Wiley)

