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Chapter 11

AREAS OF POLYGONAL REGIONS

11-1. Polygonal Regions.
A triangular region is a figure that consists of a triangle

plus its interior, like this:

A polygonal region is a figure in a plane, like one of these:

\
\

.... \
.......... \

..... \.....
...... \

.......... \
.......... \

.....

...................................

---
that can be "cut up" into triangular regions . To be exact:

Definitions: A triangular region is the union of a triangle
and its interior. A polygonal region is the union of a finite
number of coplanar triangular regions, such that if any two of
these intersect the intersection is either a segment or a point.

The dotted lines in the figures above show how each of the
two figures can be cut up in this way . Here are more examples:

I

.....
<,

-,
..... \
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In the last two examples the figures have "holesll in them. This
possibility is not excluded by the definition, and these figures
are perfectly good polygonal regions.

On the other hand, the region APDFQC cannot be II cut Upll into

c F

A D

regions ABC and DEF even though it is the union of these two
triangular regions. The intersection of the two triangular
regions is the quadrilateral region EPBQ, which is certainly
not a segment or a point. This does not mean that APDFQC is
not a polygonal region, but merely that its description as a
union of triangular regions ABC and DEF is not enough to

[sec. 11-1]

In the last two examples the figures have "holesll in them. This
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show this. APDFQC is in fact a polygonal region, as is shown
below.

c F

A D

The polygonal regions form a rather large class of figures.
Of course, there are simple and important figures that are not
polygonal regions. For example, the figure formed by a circle
together with its interior is not of this type.

If a figure can be cut up into triangular regions, then this
can be done in a great many ways. For example, a parallelogram
plus its interior can be cut up in many ways. Here are three of
these ways.

, , , , ,

In this chapter we will study the areas of polygonal regions,
and learn how to compute them. The sixteen postulates that we have
introduced so far would enable us to do this, but the treatment
would be extremely difficult and quite unsuitable for a beginning
geometry course like this one. Instead we shall introduce measure
of area in much the same way we did for measure of distance and
angle, by means of appropriate postulates .

•
[sec. 11-1]
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Postulate 17. To every polygonal region there
corresponds a unique positive number.

Definition: The area of a polygonal region is the number
assigned to it by Postulate 17.

We designate the area of a region R simply by~ R. In
the following postulates, when we speak of a region, for short, it
would be understood that we mean a polygonal region.

Our intuition tells us that two regions of the same shape and
size should have the same area, regardless of their positions in
space. This fundamental fact is the motivation of the next
postulate.

Postulate 18. If two triangles are congruent,
then the triangular regions have the same area.

If a region is cut into two pieces it is clear that the area
of the region should be the sum of the areas of the pieces. This
is what our next postulate says. Let us state the postulate and

then consider its meaning.

Postulate 19. Suppose that the region R is
the union of two regions Rl and R2• Suppose that
R1 and R2 intersect at most in a finite number of
segments and points. Then the area of R is the
sum of the areas of Rl and R2•

The three figures below show examples of the application of

this Postulate.

•
[sec. 11-1]
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Rz

R,

In each figure the intersection is heavily marked, and consists of
a segment in the first figure, three segments in the second, and
two segments and a point in the third.

On the other hand, the next figure is the union of two tri-

angular regions, Rl and R2, but their intersection is not made
up of a finite number of segments and points. Instead it is the
quadrilateral region in the middle. Thus Postulate 19 cannot be
applied to this case. If we tried to calculate the area of the
whole region by adding the areas of Rl and R2 the area of the
quadrilateral region would be counted twice. It was in anticip­
ation of this situation that we insisted, in the definition of
polygonal region, that the triangles determining the region must

not overlap.
As was the case with distance and angle, the t1un i t of area"

can be specified at will. However, it is convenient and customary
to choose this unit to be closely associated with the unit of

distance. If we are to measure distance in inches, we measure
area in square inches; and in general, whatever unit of distance
we use, we use the corresponding square unit to measure area. One
way to ensure this would be to state as a postulate that the area
of a square is to be the square of the length of an edge.

[sec. 11-1]

angular regions, Rl and R2, but their intersection is not made
UP of a finite number of segments and points. Instead it is the
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e

e

e

e

(By the "a r ea of a square" we mean, of course, the area of the
polygonal region which is the union of the square and its interior.
We will speak in the same way of the area of any quadrilateral,
meaning the area of the corresponding polygonal region.)

The statement A = e2 is, however, a little too special to
be convenient. The difficulty is that if we establish our unit of
area by the postulate A = e2, then we would have the problem of
proving that the corresponding formula holds also for rectangles.
That is, we would have to prove that the area of a rectangle is
the product of the length of its base and the length of its
altitude. Of course, if we know that this holds for rectangles,
then it follows immediately that for squares we have A = e2,

because every square is a rectangle. The converse can also be
proved, but the proof is harder than one might think. The most
convenient thing to do, for the present, is to take as a postulate
the more general formula, that is, the one for rectangles:

Postulate 20. The area of a rectangle is the
product of the length of its base and the length of
its altitude.

b

b
A:: bh

[sec. 11-1]
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Notice that in the previous paragraph and in Postulate 20 we
were very careful to say, "length of its base" and "length of its
altitude". In using Postulate 20 from now on, we will just say,

"The area of a rectangle is the product of its base and its
altitude". This means that we use "base" and "altitude" sometimes
to indicate line segments and sometimes to indicate their lengths.
From now on we will do this fairly generally, trusting in your
ability to tell from the context which meaning of a word we intend.
If we "bisect a side of a triangle" the word "side" will have its
original meaning, as a set of points. If we "square the side of
a triangle" we aI;'e using the word "side" as an abbreviation for
"length of the side". Such abbreviations will be very convenient
in this and later chapters.

On the basis of the four area postulates we can calculate the
areas of triangles, parallelograms, and a variety of other figures .

Problem Set 11-1

1. Show that each of the regions below is polygonal by indicating
how each can be cut into triangular regions such that if two
of them intersect their intersection is a point or segment of
each of them. Try to find the smallest number of triangular
regions in each case.

a. b.

[sec. 11-1]
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c. d. e.

I

I

2. Find the area of a rectangle 50 ft. long and l~ ft. wide.

3. a. If you double the altitude of a rectangle and leave the
base the same, how is the area changed?

b. If both the altitude and the base of a rectangle are
doubled, how is the area changed?

4. How many tiles, each 6 inches square, does it take to cover a
rectangular floor 37 ft. 6 in. by 12 ft.?

1"9
J

Til
9

J

IIr 33

i ~
9

Til..L 9
11511~ -.l

~Il
~

~WI//I/IfIIIJZi
T 18 .1

1.-11" 22" J

The figure shown is a face
of a certain machine part.
In order to compute the cost
of painting a great number
of these parts it is necessary
to know the area of a face.
The shaded regions are not
to be painted. Find the area
to be painted.

5.

[sec. 11-1]
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doubled, how is the area changed?
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*6. Are the following statements true or false? Give a reason for
each answer.

a. A triangle is a polygonal region.

b. Postulate 17 says that for every positive number A
there corresponds some polygonal region R.

c. Every polygonal region has an unique area.

d. If two triangles are congruent, then the triangular
regions have the same area.

e. The union of two polygonal regions has an area equal to
the sum of the areas of each region.

f. Postulate 20 assures us that the area of a square having
side e is A = e2 .

g. The interior of a trapezoid is a polygonal region.

h. A triangular region is a polygonal region.

7. A rectangular region having base 6 and altitude 4 can be
divided up into squares haVing a base 2, as in Figure 1.

Notice that a square with base 2 is the largest square pos ­
sible which will divide the rectangular region into an exact•number of congruent squares.

6

4t------1------1-------I

Figure 1.

[sec. 11-1]
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Similarly, a square
possible which will
base 4 and altitude

with base ~ is the largest
exactly divide a rectangular

112 , as in Figure 2.

4

square
region with

11
21--+--+--+_l--+--+--4~

Figure 2.

Determine the side of the largest square which will exactly
divide rectangular regions having the following measures:

a. b = 4; h = 12. d. b = 1.7; h = 1.414.

b. b = 5; h = ~. e. b = 2.0; h = ../2.

c. b = 3.5; h = 1.7. f. b = ~; h = .n.
What difficulty do you find in parts (e) and (f)? Do you see
that this relates to the discussion of the text preceding
Postulate 201

*8. In the following figure, A, B, C, D, E, F,
called vertices, the segments AB, BC, CD, DE,
EF, FD, FB are called edges, and the polygonal
ABE, FED, BCDF are called faces. The exterior
figure will also be considered as a face.

[sec. 11-1]

G are
EG, GA,

regions

of the

that this relates to the discussion of the text preceding
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Let the number of faces be f, the number of vertices be v,
and the number of edges be e. In a theorem originated by a
famous mathematician, Euler, the following formula occurs:
f - e + v, which refers to figures of which the above figure
is one possibility. Using the figure, let's compute
f ~ e + v. You should see that f = 4, v = 7, e = 9, and
this gives us f - e + v = 2.

Using the two figures below, compute f - e + v. Notice that
the edges are not necessarily segments.

a. b. Suppose this figure to be a
section of a map showing
counties:

c. What pattern do you o0serve in the results of the three
computations?

d. In part (a) take a point in the interior of the quadri­
lateral and draw segments from each of the four vertices
to the point. How does this affect the computation of
f - e + v? Can you explain why?

e. Take a point in the exterior of the figure of part (a)
and connect it to the two nearest vertices. How does
this affect the computation?

f. If you are interes~~d in this problem and would like to
pursue it further, you will find it discussed in liThe
EnjoYment of Mathematics" by Rademacher and Toeplitz and

in "Fundamental Concepts of Geometry" by Meserve.

[sec. 11-1]
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11-2. Areas of Triangles and Quadrilaterals.

Let us now compute some areas, on the' basis of our postulates.

Theorem 11-1. The area of a right triangle is half the pro­
duct of its legs.

1A = 2 abo

Q

CS;~JOo 10

I
R b P

2A = abo

Proof: Given ~ PQR, with a right angle at R. Let A be
the area of ~ PQR. Let R' be the intersection of the parallel to
~ ~

PR through Q and the parallel to QR through P. Then QR' PR

is a rectangle, and ~ PQR ~ ~ QPR'. By Postulate 18, this means

that the area of ~ QPR' is A. By Postulate 19, the area of the
rectangle is A + A, because the two triangles intersect only in

the segment PQ. By Postulate 20, the area of the rectangle is an

Therefore

2A = ab,

and
1 .

A = 2 ab,
which was to be proved.

From this we can get the formula for the area of any triangle.

Once we get this formula, it will include Theorem 11-1 as a

special case.

Theorem 11-2. The area of a triangle is half the product of

any base and the altitude to that base.

[sec. 11-2]

rectangle is A + A, because the two triangles intersect only in
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Proof: Let A be the area of the given triangle. The three
figures show the three cases that need to be considered.

(1) If the foot of the altitude is between the two end-points
then the altitude divides the given triangle into two
right triangles, with bases bl and b2 , as indicated.
By the preceding theorem, these two triangles have areas

~blh and ~b2h' By Postulate 19, we have

1 1
A = '2b l h + ~2h.

Since bl + b2 = b, we have

A = ~(bl + b2)h

1
= ~h,

which was to be proved.

(2) If the foot of the altitude is an end-point of the base,
there is nothing left to prove: we already know by the
preceding theorem that A = ~bh.

(3) In the third figure, we see the given triangle, with area
A, and two right triangles (a big one and a little one.)
We have

~blh + A = ~(bl + b)h.

The student should supply the reason for this step.
1SolVing algebraically for A, we get A = 2bh, which

was to be proved.

[sec. 11-2]
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triangle.

Notice that Theorem 11-2 can be applied to any triangle in
three ways, because any side can be chosen as the base; we then
multiply by the corresponding altitude and divide by 2, to get the
area. The figure below shows the three choices for a single
triangle.

1The three formulas 2blhl'
1 1
2b2h2 and ~3h3 must give
the same answer, because all
three of them give the right
answer for the area of the

<,
h' /

2 '"I

Notice also that once we know how to find the area of a
triangle, there is not much left of the area problem for polygonal
regions: all we need to do is chop up the polygonal regions into
triangular regions (which we know we can do) and then add up the
areas of the triangular regions.

For parallelograms and trapezoids this is fairly trivial.

Theorem 11-3. The area of a parallelogram is the product of
any base and the corresponding altitude.

b

b
p&..---I....---,--__~lJ

A = bh

Proof: Draw diagonal SQ. By Theorem 9-14 SQ divides the
parallelogram into two congruent triangles. Postulate 18 tells us
that congruent triangles have equal area. Now the area of
~PSQ = ~bh. Hence the area of parallelogram PQRS = bh, which
was to be proved.

[sec. 11-2]

For parallelograms and trapezoids this is fairly trivial.
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give the right answer for the
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Notice that Theorem 11-3 can be applied to any parallelogram
in two ways, because any side can be taken as the base, and can
then be multiplied by the corresponding altitude.

....... b I
....... I
~" " /

....... ...;
I

I

In the first case we get A = bh,
A = blh l. These two expressions
same answer, because both of them
area of the parallelogram.

The area of a trapezoid can also be obtained by separating it
into two triangles.

Theorem 11-4. The area of a trapezoid is half the product of

its altitude and the sum of its bases.
b 2

;l-- -- -- -- -- -- -- :;Jh-
b.

A = ~(bl + b2 )

Proof: Let A be the area of the trapezoid. Either diagonal

divides the trapezoid into two triangles, with areas ~lh and
~2h. (The dotted lines on the right indicate why the second
triangle has the same altitude h as the first.) By Postulate 19

1 1
A = 2blh + 2b2h.

Algebraically, this 1s equivalent to the formula

A = ~(bl + b 2)·

[sec. 11-2]

into two triangles.
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The formula for the area of a triangle ~ two useful con­
sequences, both of which are easy to see:

Theorem 11-5. If two triangles have equal altitudes, then
the ratio of their areas is equal to the ratio of their bases.

Ae....---:'----~I D"""----L--.....,..----~F

Given:

Prove:

li ABC and li DEF

Area of
Area of

with equal altitudes.

/). ABC bl
A DEF = 0:.

2

which is true.

This is easy to establish once we have the formula A =~h
1
2blh b l

means that 1:-:- = b'
'ftb2h 2

because it simply

Theorem 11-6. If two triangles have equal altitudes and
equal bases, then they have equal areas.

The proof of this is clear because the formula
the same answer in each case.

1
A = ~h gives

[sec. 11-2]
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Problem Set 11-2

1. In right triangle ABC, with right angle at C, AC = 7,
Be = 24, AB = 25.

a. Find the area of ~ ABC.

b. Find the altitude to the hypotenuse.

c
AB = 8, CD = 9,

= 6, find BC.

If AB = 11, AE = 5,

BC = 15, find CD.

If CD = 14, AE = 10,

BC = 21, find AB.

If AB= c, CD = h,
BC = a, find AE.

c.

b.

d.

In 6. ABC,
~ ~

AE 1 BC.

a. If
AE

The hypotenuse of a right triangle is 30, one leg is 18, and
the area of the triangle is 216. Find the length of the
altitude to the hypotenuse and the length of the altitude to
the given leg.

++ ++
CD 1 AB and3.

2.

c
4. In this figure CQ = QD.

Prove that the
Area ~ ABC = Area tJ. ABD.

[sec. 11-2]

c. If CD = 14, AE = 10,



5. If ABeD is a square, find
the area of the star pictured
here in terms of s and b.
The segments forming the
boundary of the star are
congruent.

s

7. Prove that the diagonals of
a parallelogram divide it
into four triangles which
have equal areas.

[sec. 11-2]

1l.Jj = 1:>, t;hen
AD =

~---------""F

B

Ii -..... " J-
I ' .....
I "
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8. Find the area of trapezoid
ABCD,

a. If AB = 12, DC = 6,
DE = 4.

b. If AB = 9 .- AD = 4,
DC = 5, CF = 3.

c. If AE ''': 4, FB= 6,
DE = 5, DB = 13,
DC = 6.

d. If AB= 27, DE • 7,
AE = 3, EF = FB.

e. If AE = 12, EF = 3,
FB = 9, CF = FE.

9. Find the area of a trapezoid if its altitude has length 7 and
its median has length 14. (Hint: See Problem 10 of Problem
Set 9-6.)

10. A triangle and a parallelogram have equal areas and equal
bases. How are their altitudes related?

11. Compare the areas of

a. Parallelogram ABCD
and triangle BCE.

b. /). BCF and /). BCE.

c. 6 ABF and /). FCD, if
F is the mid-point of
AD.

d. A CFD and A BCE and
parallelogram ABCD,
if F is the mid-point
of AD.

[sec. 11-2]

10. A triangle and a parallelogram have equal areas and equal
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12. In surveying the field shown
here, a surveyor laid off

+-+
north-and-south line NS
through B and then located

~

the east-and-west lines CE,
+-+ ++
DF, AG. He found that
CE = 5 rods, DF = 12 rods,
AG = 10 rods, BG = 6 rods,
BF = 9 rods, FE = 4 rods.
Find the area of the field.

•.,
IN

C I----qE
I
I

-~F

I
I
I
I
I
I
I
I
,B
I,
I
I--------qG

A rs
•

13. Prove the theorem: If 0

quadrilateral ABCD has
perpendicular diagonals, A C
its area equals one-half
the product of the lengths
of the diagonals.

B

14. Write a corollary to the theorem of Problem 13 relating to
the area of a rhombus.

15. The area of a quadrilateral is 126 and the length of one
diagonal is 21. If the diagonals are perpendicular, find
the length of the other diagonal.

16. The diagonals of a rhombus have lengths of 15 and 20. Find
its area. If an altitude of the rhombus is 12, find the
length of one side. C

*17. Would the theorem of Problem
13 still be true if the polY-D
gonal region ABCD was not
convex, as in this figure?

A

[sec. 11-2]

of the diagonals. \J...-./
B
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18. Prove that a median of a triangle divides the triangle into
two triangles each having an area equal to one-half the area
of the original triangle.

19. a. If AD and BE are
two medians of 6 ABC
intersecting at G,
prove that Area 6 AEG =

Area 6 BDG.

b. Determine what part
Area 6 BDG is of
Area 6. ABC. (Hint:
Use other median CF.)

B

A

20. If AB is a fixed segment
in plane E, what other
positions of P in plane E
will let the area of 6. ABP
remain constant? Describe
the location of all possible
positions of P in plane E
which satisfy the condition.
Describe the location of all
possible positions of P in
space which satisfy the
condition.

[sec. 11-2]

positions of P in plane E
will let the area of 6. ABP
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*21. The figure at the right
is formed from four right
triangles and four rect­
angles. Notice that there
is a square hole one unit
on a side.

b. Show that the same
result is obtained
by taking one-half
the product of the
length of the base
and the length of
the altitude to it.

8

A

5 S 5
41/2 C 51/2

R IH
I I

QI K 3

51/2 41/2 3
L F

Pt-----~

2

M
3

Explain why
the results
in (a) and
(b) come out

the same in
spite of the
hole.

Total the areas of
the eight parts.

(Omit the hole.)

a.

c.

*22. A line cuts a rectangular
region into two regions
of equal area. Show that
it passes through the
intersection of the
diagonals of the rect­
angle.

h

A c

b

B

[sec. 11-2]

the results
in (a) and
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11-3. The Pythagorean Theorem.
Now that we know how to work with areas, the Pythagorean

Theorem is actually rather easy to prove.

Theorem 11-7. (The Pythagorean Theorem). In a right triangle,
the square of the hypotenuse is equal to the sum of the squares of
the legs.

Proof: We take a square for which the length of each side 1s
a + b. In this square we draw four right triangles with legs a
and b, like this:

then
(1)

a

Each of the four right triangles is congruent to the
given triangle by the S.A.S. Postulate. Therefore
their hypotenuses have length c, as indicated in the
figure above.

[sec. 11-3]



Therefore

B

a triangle is
sides, then the
opposite the

c

d

[sec. 11-3]

If the square of one side of
the squares of the other two
triangle, with a right angle

C

Given /). ABC, as in the figure with c2 = a2 + b2 •

be a right triangle with legs a and b.
C'

The converse of the Pythagorean Theorem is also true.

(2) The quadrilateral formed by the four hypotenuses is a
square. We can show this in the following way:

L z is a right angle because mL y + mL z + ~ x = 180, and
mL y + mL x = 90. (The acute angles of a right triangle are
complementary). Since all four sides are each equal to c, the
quadrilateral is a square.

(3) The area of the large square is equal to the area of the
small square, plus the areas of the four congruent right
triangles.

Theorem 11-8. If the square of one side of a triangle is
eaual to the sum of the sauares of the other two sides. then the

a 2 + 2ab + b2 = c2 + 2ab,

and finally, a2 + b2 = c2, which was to be proved.

Therefore

Theorem 11-8.
~~.;;..;.,~-

equal to the sum of
triangle is a right
first side.

Proof:
Let /). AlB t Ct



Let d be the hypotenuse of the second triangle. By the
Pythagorean Theorem,

d 2 = a 2 + b 2.

Therefore d2 = c2. Since c and d are both positive, this

means that d = c. By the 8.8.8. Theorem, we have t1 AlBIC' ~t1ABC.

Therefore L C ~ L C'. Therefore L C is a right angle, which
was to be proved.

Problem 8et 11-3a

1. A man walks due north 10 miles and then due east 3 miles.
How far is he from his starting point? (ItAs the crow flies lt

. )

2. A man walks 7 miles due north, 6 miles due east and then 4
miles north. How far is he from hiB starting point?

3. A man travels 5 miles north, 2 miles east, 1 mile north, then
4 miles east. How far is he from his starting point?

4. In the rectangular solid indicated in the diagram, find the
length of AC; of AD.

A 4 B

5. Which of the following sets of numbers could be the lengths of
the Bides of a right triangle?

a. 10, 24, 26. d. 9, 40, 41.

b. 8, 14, 17. e. 1.5, 3.6, 3.9.

7, 24, 25. f. 2 2
~.c. l'!, 2'!,

[sec. 11-3]

4. In the rectangular solid indicated in the diagram, find the



6. a. Show by the converse of the Pythagorean Theorem that
integers which represent lengths of sides of right tri­
angles can be found in the following manner.

Choose

m > n.
of the
be the

any positive integers m and n, where
Then m2 - n2 and 2mn will be the lengths

legs of a right triangle and m2 + n2 will
length of its hypotenuse.

b. Use the method
sides of right
equal to 25.

of part (a) to list integral lengths of
triangles with hypotenuse less than or
There are six such triangles.

7. a. With right angles
lengths as marked
figure, find AY,
and AB.

and
in the

AZ

A x

....................C<....,,,,,,,,,,,,,,,

If you continue the
pattern established in
this figure making
BC = 1 and mL CBA = 90,
what would be the length
of AC? What would be
the length of the next
segment from A? You
should find an interest­
ing pattern developing.

b.

8. In the rectangular
the right AW = 1,

AD = 2. Find AY.

solid at
AB = 2,

BA

wr'-----i-,.....-

[sec. 11-3]

~~ = ~ ana mL ~~A = ~v,

what would be the length \
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*9. In ~ ABC, AB = 14, BC = 15,
AC = 13.

a. Find the length of the
-

altitude, hc' to AB.

b. Find the length of the B-
altitude, ha, to BC.

*10. ~ ABC has obtuse angle L B,
and AB = 6, BC = 14, AC - 18.
Find the length of the altitude,

~

hc ' to AB.

c

11. One angle of a rhombus has a measure of 60 and one side has
length 8. Find the length of each diagonal.

12. In rhombus ABCD, AC = 6
and BD = 4. Find the
length of the perpendicular
from any vertex to either
opposite side.

13. In the figure BC 1 CA,
BC = 5, CA = 12, CD 1 AB.
Find CD.

r-------..,.c

B

[sec. 11-3]

length 8. Find the length of each diagonal.



344

14. The lengths of the legs of
right triangle ABC are 15
and 8. Find the length of
the hypotenuse. Find the
length of the altitude to
the hypotenuse.

c

~
A 0 B

15. If the lengths of the legs
of a right triangle ABC
are a and' b, find the
length of the altitude to
the hypotenuse.

16. l:i ABC is isosceles with
CA = CB. Medians AP and
BQ are perpendicular to
each other at S. If
SP = n, find the length of
each segment and the areas
of polygonal regions ASQ,
ASB, ABC and QSPC in
terms of n. (Do not change
radicals to decimals.)

~
A C D B

Ab

o
10

c

o a E
r-O'---i\
11 0 I \
I I \

bl / \
I /~ \
I I \
1/\
I I \
I I \
II \

\
\
\
\
\
\

a

17. A proof of the Pythagorean Theorem
making use of the following figure
was discovered by General James A.
Garfield several years before he
became President of the United
states. It appeared about 1875 in
the "New England Journal of Education. 1I

Prove that a 2 + b2 = c2 by stating
algebraically that the area of the
trapezoid equals the sum of the areas
of the three triangles. You must in­
clude proof that L EBA is a right
angle.

[sec. 11-3]

ASB, ABC and QSPC in / ~ \



*18. ABCD is a three-dimensional
"pyramid-like" solid.

Note that points A, B, C,

and D are not coplanar .
We are told that BD = BC = BA

= AC = CD = DA = 2.

B

o

a. R and S are mid-
points of BA and CD,
respectively. Prove
-
RS is perpendicular to

- -
both BA and CD.

b. Find the length of RS.
B

c

*19. In 6 ABD, L ABD
angle, AB = BC =
Find AD. Find
mL DAB.

is a right
1, AC = CD.

mL ADC and
A

o

[sec. 11-3]
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The Pythagorean Theorem also gives us information about the
shapes of certain simple triangles. Two very useful relationships
are stated in the following two theorems. We give figures which
suggest their proofs.

Theorem 11-9. (The 30-60 Triangle Theorem.) The hypotenuse
of a right triangle is twice as long as a leg if and only if the
measures of the acute angles are 30 and 60.

\
3Cf 33\

\ C =20
\

\
\

___~........I__ .OO~

o 0

Theorem 11-10. (The Isosceles Right Triangle Theorem.) A
right triangle is isosceles if and only if the hypotenuse is ~
times as long as a leg.

c

C=.J2o

Problem Set 11-3b

1. The lengths of two sides of a triangle are 10 and 14 and the
measure of the angle included between these sides is 30.
What is the length of the altitude to the side l4? What is
the area of the triangle?

2. The measure of the congruent angles of an isosceles triangle
are each 30 and the congruent sides each have length 6. How
long is the base of the triangle?

[sec. 11-3]

~ c=.J2oa/ ~u "0



3. The measure of one acute angle of a right triangle is double
the measure of the other acute angle. If the length of the
longer leg is 5~, what is the length of the hypotenuse?

4. Show that in any 300
- 600 right triangle with hypotenuse s

the length of the side opposite the 600 angle is given by
h = ;./3.

5. In parallelogram ABCD, AB = 2
and AD = 3, mL B = 60. Find
the length of the altitude from

++
A to DC.

6. If an altitude of an eqUilateral triangle is 15 inches long,
how long is one side of the triangle?

7. In a right triangle with acute angles of 300 and 600
, what 1s

the ratio of the shortest side to the hypotenuse? Of the
hypotenuse to the shortest side? Of the shortest side to the
side opposite the 600 angle? Of the side opposite the 600

angle to the shortest side? Of the side opposite the 600

angle to the hypotenuse? Of the hypotenuse to the side
opposite the 600 angle? Are these ratios the same for every
30 0

- 600 right triangle? If you have done this problem
carefully, you should find the results very helpful in many
of the following problems.

8. What 1s the area of the isosceles triangle whose congruent
sides have lengths of 20 inches each and whose base angles
have measures of:

a. 301 b. 45? c. 60?

9. What is the area of the isosceles triangle whose base has a
length of 24 inches and whose base angles each have measures
of:

a. b. 301 c. 60?

[sec. 11-3]
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Of the side opposite the 600
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10. Use the information given in the figures to determine the
numerical values called for below:

a.

c.

b.

30·
3

a = x = a =

2a = y = x =

3a = y =

d.

'"4a = a =

2a = x =

x = y =

y =

[sec. 11-3]



e.

x =

y =

g.

a =
x =

f.

h.

x =

y =

a =

x =

11. In this figure AB 1 plane E.
~ BFH lies in plane E.

HF 1 FE. AB = BH = 6.
mL FHB = 30.

Give the measures of as
many other segments and
angles of the figure as
you can determine.

*12. In ~ ABC, mL A = 30, AC = 4,
AB = 3"J3. Find BC • Is LC

a right angle?

A 3../3

A

c

[sec. 11-3]

x = x =
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*13. In ~ABC as shown in the figure,
find BC. (Hint: Draw the
altitude from C.)

c

14. The base of an isosceles triangle is 20 inches and a leg is
26 inches. Find the area.

15. In this figure FD = FC,
DB = CA, DF 1 FB, and
CF 1 FA. Prove ~ FAB
is isosceles.

o A B C

16. DA and CB both 0 Care

tx1-perpendicular to AB in
this figure. AE = FB

and DF = CEo Prove A E F B
L x ~ L y.

17. Prove the theorem: The area
of an equilateral triangle
with side s is given by

8
2

Area = 4' ../3.

[sec. 11-3]

C

16. DA and CB are both o
r-,
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18. Find the area of an equilateral triangle having the length of
a side equal to:

a.

b.

2.

8.

c. /3.
d. 7.

19. The area of an equilateral triangle is 9 vf:3. Find its side
and its altitude.

20. The area of an equilateral triangle is 16~. Determine its
side and its altitude.

21. A square whose area is 81 has its perimeter of length equal
to the length of the perimeter of an equilateral triangle.
Find the area of the equilateral triangle.

H G

8A

E f----+---.......,I...

22. This figure represents a
cube. The plane determined
by points A, C and F
is shown. If AB is 9
inches, how long is AC?
What is the measure of
L FAC? What is the area
of lJ. FAC?

23. In trapezoid ABCD, base
angles of 600 include a
base of length 12. The
non-parallel side AD has
length 8. Find the area
of the trapezoid.

24. Find the area of the

trapezoid.
5 c

B

[sec. 11-3]



352

*25. In the figure, plane E and
~

plane F intersect in AB,
forming dihedral angle

L F-AB-E. CG 1 plane E,
DG 1 AB, and CD 1 AB. D
is the mid-point of AB.
BC ~ AC. If AB = 4../6,
AG = 6, mL CBG = 45, and
mL CAG = 45, find eG and

mL F-AB-E.

*26. Figure ABCD is a regular
tetrahedron (its faces are
equilateral). Let any edge
be e . NM 1 AB and

NM 1 DC.

a. Show that the length
of a bi-median, that
is, the segment) NM,
joining the mid-points
of opposite edges, is

../2""""2 e.

(Hint: Draw AM.)

c

b. Show that the length of the altitude, AH, of the

tetranedron is '4 e. (Hint: Draw HC and HD.
Does H lie on BM? Recall that the medians of a
triangle are concurrent at a point ~ of the distance
from each vertex.)

[sec. 11-3]

of a bi-median, that



353
x

27 . ABXY is a square. AB = 6.
mL X-AB-E = 60.
Rectangle ABCD is the
projection of square ABXY
on plane E. What is the
area of rectangle ABCD?

A 0

*28. Given any two rectangles anywhere in a plane, how can a
single line be drawn which will separate each rectangular
region into two regions of equal area?

Review Problems

1. If the side of one square is double the side of another
square, then the area of the first square is times
the area of the second square.

2. In ~ ABC, Ct 1 n, n 1 13t, AB = 8, CD = 9 and AE = 6.
Find BC.

c

Review Problems
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3. A man walks 5 miles north, then 2 miles east, then 1 mile
north, then 6 miles east. How far will he be from his
starting point?

4. If the diagonal of a square is 15 feet long, how long is
each side?

5. Find the area of an isosceles triangle in which the base is
12 and each congruent side is 10.

apPQRS is a
~ ++
Q,T 1 SR,

If SV = 7 and PS = 5,
find the area of PQRS •

If SV = 8, Q,T = 4 and
SR = 10, find QR.

b.

a.

In the figure,
parallelogram,

++ ~

and sv 1 QR.
I
I
I
I
I
I
I

~------~--~
....... R T" /

, I
<, I

<, \1 I
....... "!q

In an equilateral triangle the length of the altitude is
6 inches. What is the length of each side?

7.

6.

8. The side of a rhombus is 13 and one of its diagonals is 24.
Find its area.

9. In ~ ABC base AB = 12, median CD = 8, and mL ADC = 30.
The area of ~ ABC is

.........................:::::::::::::::::::::::::::: a............................

10. Derive a formula for the
area of the figure at the
right in terms of the in­
dicated lengths.

I ~~~i
b gH ~

LillI!
k,----- c -----:J

I • _.... _... -'"'1--------- ~-----o-- ---- ----0---

6 inches. What is the length of each side?
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11. Find the area of the shaded
region of the Figure at the
right.

o

r----------~_c

Area of region
area parallelogram X

To prove:
1AECX = 2'

ABCD.

A'-------....,;...------'

13. Given: Parallelogram ABCD
wi th X and E mid­
points of AB and AD

respectively.

12. Diagonal AD of the pentagon
ABCDE shown is 44 and the
perpendiculars from B, C,
and E are 24, 16, and 15
respectively. AB = 25
and CD = 20. What is the
area of the pentagon?

E
14. Prove that the area of an isosceles right triangle is equal

to one fourth the area of a square having the hypotenuse of
the triangle as a side.

*15. An equilateral triangle has one side in a given plane. The
plane of the triangle is inclined to the given plane at an
angle of 60°. What is the ratio of the area of the triangle
to the area of its projection on the plane?
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*16. Explain how to divide a trapezoid into two parts that have
equal areas by a line through a vertex.

*17. Find the length of the diagonal of a cube whose edge is 6
units long.

......- ---,.GH

*18. In this rectangular solid
AE = 5, AB = 10 and E
AD = 10.

a. Find AC.

b. Find AG.

Find BE.
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*21. The figure shows two isosceles right triangles. The first of
these has a horizontal side of length 10 units and the second
has a horizontal hypotenuse of length 14 units.

/
/

/
/ / ,

7 V ,
7 / ,

7 / ~
1/ / ,

/ / ~
7 / ,

a. Draw two such triangles on graph paper.
second one and place it on the first to
their areas are apparently equal.

Cut out the
show that

b. In the first figure count the number of small squares
and the number of small half squares (right isosceles
triangles). Use these numbers to compute the area.

c. Do the same for the second figure.

d. Explain the discrepancy.





Chapter 12

SIMILARITY

12-1. The Idea of ~ Similarity.
Proportionality. Roughly speaking, two geometric figures are

similar if they have exactly the same shape, but not necessarily
the same size. For example, any two circles are similar; any two
squares are similar; any two equilateral triangles are similar;
and any two segments are similar.

o DO ~ D,---.II I

Below are two triangles, with the lengths of the sides as
indicated:

Bl

::8
IAl"---------.-------~C

B

c~
A b::4 C

These figures stand in a very special kind of relation to each
other. One way to describe this relation, speaking very roughly,
is to say that the triangle on the left can be "stretched", or the
one on the right can be "Shrunk", so as to match up with the other
triangle, by the correspondence

ABC~A1B1Cl .

inUlcateu:
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Of course, this correspondence is not a congruence, because each
side of the right-hand triangle is twice as long as the corres­
ponding side of the other. Correspondences of this type are
called similarities. The exact definition of a similarity will be
given later in this chapter.

Notice that the lengths of the sides of our two triangles
form two sequences of positive numbers, a, b, c and a', b',
c', standing in a very special relation: each number in the
second sequence is exactly twice the corresponding number in the

first sequence; or, said another way, each number in the first
sequence is exactly half the corresponding number in the second
sequence. Thus

a l = 2a, a = ~I ,

b' = 2b, or b = lb' ,2
c' = 2c; c = 1 ,

~.

Another way of putting this is to write
a' b l c' abc 1a = b = C = 2, or at" = bT = cr = 2

Sequences of positive numbers which are related in this way are
called proportional.

Definition: Two sequences of numbers, a, b, c,
and p, q, r, ... , none of which is zero, are proportional if

~ = ~ = ~ = ... or i = %= ~ =

The simplest proportionalities are those involving only four
numbers, and these have special properties that are worth noting.
We list some of them for later reference.

[sec. 12-1]

=-c = ~, or



If

Algebraic Properties of ~ Simple Proportion.
a c
[) = a'
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with a, b, c, d all different from zero,

then (1) ad = bc,

( 2) a b
c=d'

(3) a + b c + d
b = d

,

(4 ) a - b c - d
b = d ,

Proof: a cTaking the original equation b = a'

(1)

(2)

Multiply both sides by

Multiply both sides by

bd

b
C

to get ad = bCj

to get ~ = ~j

Subtract

to both sides to get

a - b
b

(3)

( 4)

Add 1

1

a + b
b

from both sides to get

= c + d
d j

= c - d
d

Other relations can be derived, but these are the most useful.

Definition: If a, b, c are positive numbers and E= ~,
then b is the geometric mean between a and c.

From Property (1) above, it follows that the geometric mean

between a and c is ..;ac.

Problem Set 12-1---

l. Complete each statement:

a. If a 3 then 7a"5'='7 =

b. If x 1 then 4x
~=4 =

If 6 4 then 6yc. 5 = y =

[sec. 12-1]
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2. In each of the following proportionalities, find x.
x 3 S xa. 2 = Tf· c. Tf = n·

b. S 4 d. 2 11
- = 1· "! = -.x x

3. Complete each statement:

If 3a 2x, then a and aa. = x =-, 2 =-.

b. If S·3 4m, then 4 and m= '3=-, 3" =-.

If 7b 4a, then a and bc. = 0=--' - =--a

d. If S·9 6x, then x and .2 =_.= S = --, x

4. In each of the following proportionallties, express the

number a in terms of the numbers b, c and d.

a.

b.

2a 4c
3b = 5d·
2b 7c
Sa = m·

c.

d.

3b Sa
4C = '70.

b 6d
2c = Sa·

*S. Complete each statement:

If a 3 then a + b and a - ba. o=T , b =-, b =--.

b. If ~=~ then y + 2 and y - 2, 2 = --, 2 :;::--

If a + c 11 then a and a - c .c. c = r' c = --, c =-.

d. If a S then b + a and b - a
b = "! , =--, = --.a a

6. Here are three sequences of numbers. Are any two pairs of
sequences proportional?

a. 3, 7, 12.

b. 9, 21, 36.

c. S if, 10.2'

[sec. 12-1]
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One can tell at a glance that the sequences a and bare
proportional since each number in b is 3 times the
corresponding number in a. The comparison of a and c
is not such a simple matter. An efficient way to make such
a comparison might be to change each to a new proportional
sequence beginning with 1, that is,

a. 1, 7 4.'!,

b. 1, 7
3'

c . 1, -,
7. In the follOWing list of sequences of numbers, which pairs

of sequences are proportional? Make a complete list of
these pairs of sequences.

8.

9.

5, 7, 9. f. 1 2 1.a. '!, '!,

b. 1, 2, 3. g. 27, 21, 51.

c. 9, 7, 17. h. 15, 30, 45.

~,
1 1 14, 18.d. ~, ~. i. 10,

e. 18, 14, 34.

If w v 20 what are the values of w and v?1+0 = 50 = T'

If 3 4 11 4 what are the values of and z?x = y,= z = 'I' x, y

10. Which of the follOWing are correct for all values of the
letters involved assuming that no number in any sequence
shown is zero?

3 4 d. a + b 1a. TI' = R·
a2 + b2 = b·a +

b. ....L _ k e. x y z W
10J - 10k· "2 ="2 = 2 = 2·

x y z W
r s t f. 1 c - dc. ~ = rs = Sf· c + d =

c2 2·- d

[sec. 12-1]
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11. If U~ =~ =~ = ~8, what are the values of p, q and t?

12. The geometric mean of two positive numbers a and c is

b =.;a:c. The arithmetic mean of a and c is d = a "2 c
Find the geometric mean and the arithmetic mean of the follow­
ing pairs:

a.

b.

c.

4 and 9.

6 and 12.

8 and 10.

d.

e.

2 and 24.

2 and 3 .

12-2. Similarities between Triangles.
We can now state the definition of a similarity between two

triangles. Suppose we have given a correspondence

between two triangles
B

b'
of the side opposite

and so on. If

AIAL...-------~C
b

As indicated in the figure, a is the length
A, b is the length of the side opposite B,
corresponding angles are congruent, and

abca' = b
'

= C' ,

then the correspondence ABC~A'B'C' is a similarity, and we
write

l::::. ABC,.., LiA'B' C' .

[sec. 12-2]



Definition: Given a correspondence between the vertices of
two triangles. If corresponding angles are congruent and the
corresponding sides are proportional, then the correspondence is
a similarity, and the triangles are said to be similar.

Notice that thi~ definition requires two things: (1) corres­
ponding angles must be congruent, and (2) corresponding sides must
be proportional. In putting both of these requirements into the
definition, we are making sure that the definition may be applied
to polygonal figures of more than three sides. To see what the
possible troubles might be, if we used only one of our two require­
ments, let us look at the situation for quadrilaterals.

First consider the correspondence ABCD~A1B1C1Dl, between the
two rectangles in the figure. Corresponding angles are congruent,
because all of the angles are right angles, but the two rectangles
don1t have the same shape, by any means.

Now consider a square and a rhombus, with edges of length I
and 2, like th1.s:

tJc
1 1

A , D

AI

Bf

Under the correspondence ABCD~A1BIC1Dl, corresponding sides
are proportional, out the shapes are quite different.

[sec. 12-2]
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We shall see later that for the case of correspondences
between triangles, if either one of our conditions holds, then so
does the other. That is, if corresponding angles are congruent,
then corresponding sides are proportional; and conversely, if
corresponding sides are proportional, then corresponding angles
are congruent. These facts are given in the A.A.A. Similarity
Theorem and the S.S.S. Similarity Theorem, which will be proved
later in this chapter.

Problem Set 12-2-----
1. Given a similarity tl ABC"" tl DEF,

E
8

~ ..

A C

D F

write down the proportionality between corresponding sides,
using the notation AB, AC, and so on. Then:

a. Express AB in terms of AC, DE and DF.

b. Express BC in terms of AB, DE and EF.

c. Express AC in terms of BC, EF and DF.

d. Express AB in terms of BC, DE and EF.

e. Express BC in terms of AC, EF and DF.

f. Express AC in terms of AB, DE and DF.

[sec .. 12-2]
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2. Below are listed five sets of 3 numbers. Point out which
pairs of sets of numbers (not necessarily in the order given)
might be lengths of sides of similar triangles. Write out
the equal ratios in each case. For example, a, b;
3 4 6
0' = B' = 12·

a.

b.

3, 4, 6.

8, 6, 12.

d.

e.

9, 12, 18.

2, ~, 4.

c. 3, 4, 9.

3. Two prints of a negative are made, one a contact print and
one enlarged. In the contact print an object has a length
of 2 inches and a height of 1.6 inches. In the enlarged
print the same object has a length of 7.5 inches. Find its
height in the enlargement.

4. If ~ABC ~6 A'B'C', does it follow that ~ ABC "'~ A'B'C'?
Why or why not?

D

5. Prove: The triangle whose vertices are the mid-points of the
sides of a given triangle is similar to the given triangle.

12-3. The Basic Similarity Theorems.
Consider a triangle ~ ABC. Let D and E be

points on the sides AB and AC, and suppose that
are parallel.

different
~ ~

DE and BC

B~-----------~C

It looks as if the correspondence

ABC~ADE

[sea. 12-3]
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ought to be a similarity, and it is, as we shall presently see.
We prepare the way with a series of theorems.

Theorem 12-1. (The Basic Proportionality Theorem.) If a
line parallel to one side of a triangle intersects the other two
sides in distinct points, then it cuts off segments which are
proportional to these sides.

Restatement: In ~ ABC let D and E be points of AB and
++ ~

AC such that DE II BC. Then

AB = AC
AD" -m.

A

B~------------~C

Proof: (1) In ~ADE and ~ BDE think of AD and BD as
the bases and the altitude from E to 1B as their common
altitude. Then by Theorem 11-5,

area ~ BDE BD
area ~ ADE = 'AI).

think of AE and CE
++AC as their commonthe bases

altitude.

(2) In ~ AED and ~ CED
and the altitude from D to

Then by Theorem 11-5,

area ~ CDE CE
area ~ ADE = n·

as

(3) ~ BDE and ~ CDE have the same base, DE, and
congruent altitudes, since the lines DE and ~ are parallel.
Hence by Theorem 11-6,

area ~ BDE = area 6. CDE.

[sec. 12-3]
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(4) It follows from (1), (2) and (3) that

BD CE
Al5=~

Applying Algebraic Property (3), from Section 12-1,

AB AC
AU = AE·

The converse of Theorem 12-1 is also true (and is easier to
prove). That is, we have:

Theorem 12-2. If a line intersects two sides of a triangle,
and cuts off segments proportional to these two sides, then it is
parallel to the third side.

Let l:i ABC
and let

Restatement:
between A and B,

+-+ ~
then BC and DE are

be a triangle. Let D be a point
E be a point between A and C.

AB AC
Ai) = ~,

B~=------ ~IC'

If

Proof: Let
and intersecting

so that

~

BC' be the line through B, parallel to
++
AE in C'. By Theorem 12-1,

AB AC'
Al5 = m-'

ABAC' = AE • AD.

++
DE,

But the equation given in the hypothesis of the theorem means that
ABAC = AE . AD.

[sec. 12-3]
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Therefore AC' = AC. Therefore C' = C, and tC is parallel to
~

DE, which was to be proved.

Problem Set l2-3a

1. In this figure the lengths
of segments are a, b, x

and y as shown.

a + b
a

a + b
b

=---x

x +=

a
b = -.-.

ax = --.

x=---a + b
x + Y

In this figure if HT II AB,

B

F

~----------::......T

A

TB
FT =

FT
F[=

FH
HA =

FA
'Fir =

FAm=

2.

3. In the figure, R

F= 20,

BF =---
If RH = 5, RF

AF = 18, then
c .

If RH = 4, HF = 7,
BF = 10, then AB =

b. If RH = 6, HF = 10,
AB = 3, then BF = ---

a.

[sec. 12-3]



4. In the figure, DE AB.

371

A B

a. If AC = 12, CD = 4, CE = 8, find BC.

b. If AD = 6, BE = 10, CD = 4, find CEo

c. If BC = 22, EB = 6, CD = 8, find AC.

d. If AD = 5, CD = 7, BC = 18, find BE.

e. If AC = 15, CE = 6, BC = 18, find AD.
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7. If, in the figure, DF H AB,
prove

DA FB
a. C!) = CF'

b.

c .

Hint: Use Theorem 12-1
and subtract 1 from each
fraction.
CA CBme =~.
CA CD
Ci3 = Cl'"

AI---------~8

8. Given the figure, one person
handled the problem of finding
w in this way:

7 19 - w
9' = w

Propose a more convenient
equation. Do you get the
same result?

9. Place conditions upon x such
that DE "AB, given that
CD = x - 3, DA = 3x - 19,
CE = 4, and EB = x - 4.

c

AI---------~B

10. In this figure if EF II AB, FG II BC, and GH II DC, prove
HE II DA. Must the figure be planar?

[sec. 12-3]
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11. Prove: If three or more
parallels are cut by two
transversals, the intercepted
segments on the two transver­
sals are proportional.
Restatement: If the lines
Ll and L2 are transversals

~

of the parallel lines AD,
+-+ +-+
BE, and CF, then
AB DE
Brr = D·

60' 120' 90'

12. Three lots extend from Packard
street to State Street as shown
in this drawing. The side
lines make right angles with
State Street, and the total
frontage on Packard Street is
360'. Find the frontage of
each lot on Packard Street.

I II m

State Street

such that
o and

o~----Ioq--+--4--~-

GiVen:&ABC, XYZ,
+-+ +-+ +-+XA, YB, ZC meet in

tt II X;, Bt "W.
Prove: At" "tt.

13.

[sec. 12-3]
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Theorem 12-3. (The A.A.A. Similarity Theorem.) Given a
correspondence between two triangles. If corresponding angles

•
are congruent, then the correspondence is a similarity.

Restatement: Given a correspondence

ABC~DEF

between two triangles. If LA ~ LD, LB ~ LE and LC ~ LF,
then

l::. ABC '" l::. DEF.

Notice that to prove that the correspondence is a similarity,
we merely need to show that corresponding sides are proportional.
(We don't need to worry about the angles, because corresponding
angles are congruent by hypothesis). The proportionality of the
sides means that

AB AC BC
W = DF = EF'

It will be sufficient to prove that the first of these equations
always holds. (Exactly the same proof could then be repeated to
show that the second equation aiso holds).

[sec. 12-3]
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AB ACThus we need to prove that DE = OF

B C
~ ~

Proof: Let El and Fl be points of AB and AC, such
that AEI = DE and AF' = DF. By the S.A.S. Postulate, we have

~ AEIFl ~ 6 DEF.

Therefore L A ElF' ~ L B. Therefore
or coincide. If they coincide then
I1ABC ~ 6DEF; in this case,

() +-+
EIFI and BC

11 AE 1 F1 = 6 ABC,
are parallel,

and so

AB = DE and AC = DF,
or

AB ACm-=mr=l.
~ ~

If ElF' and BC are parallel, then by Theorem 12-1, we have

AB AC
AE'1 = HI .

But AE' = DE and AFI = DF. Therefore

AB AC
1m' =!5!l'"

which was to be proved.
The theorem just proved allows us to prove a corollary which,

it turns out, we quote oftener than the theorem in showing that
two triangles are similar. Recall from Corollary 9-13-1 that if
two pairs of corresponding angles of two triangles are congruent,
the third pair must be also . Thus from Theorem 12-3 we immediate­
ly get the following corollary:

[sec. 12-3]
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Corollary 12-3-1. (The A.A. Corollary.) Given a correspond­
ence between two triangles. If two pairs of corresponding angles
are congruent, then the correspondence is a similarity.

For example, if LA ~ LD and LB ~ LE, then

/). ABC '" /). DEF .

If LA ~L D and L C ~ LF, then the same conclusion follows.
And similarly for the third case.

We can now justify our statement at the beginning of this
section by proving the following corollary:

Corollary 12-3-2. If a line parallel to one side of a tri­
angle intersects the other two sides in distinct points, then it
cuts off a triangle similar to the given triangle.

A

B

'J"'-------~E

c
+-+ +-+

For if DE II BC then by corresponding angles LADE ~ LBand
L AED ~ L C. Also L A ~ L A. Hence /). ADE '" /). ABC, by
Theorem 12-3 or Corollary 12-3-1.

Theorem 12-4. (The S. A. S. Similarity Theorem.) Given a
correspondence between two triangles. If two pairs of correspond­
ing sides are proportional, and the included angles are congruent,
then the correspondence is a similarity.

[sec. 12-3]
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Restatement: Given ABC~DEF.

If

and

then

LA~LD

AB AC
DE = l5F'

6 ABC '" 6 DEF.

FI

E F

8 C
~ -+

Proof: Let EI and FI be points of AB and AC, such

that AEI = DE and AFI = DF. Then

AC
= AFI .
~ +-+
ElF' and BC are parallel.

a transversal, corresponding
By Theorem 12-2, this means that
When two parallel lines are cut by
angles are congruent. Therefore

and

But we know, by the S. A. S. Postulate, that

6 AE' FI :ii!! 6 DEF.

Therefore Le :::.LE
and cr «:».
Therefore LB~LE

and LC~L F.

We already knew by hypothesis that

L A :::. L D.

Therefore, by the A.A.A. Similarity Theorem, We have

6 ABC '" 6DEF ,
which was to be proved.

[sec. 12-3]
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We have one more basic similarity theorem for triangles.

Theorem 12-5. (The S. S. S. Similarity Theorem.) Given a
correspondence between two triangles. If corresponding sides are
proportional, then the correspondence is a similarity.

If

then

Restatement: Given ABC~DEF.

AB AC BC
15E = l5F = EF'

/). ABC '" a DEF.

D

E F

B C
~

Proof: As before, let EI and FI be points of AB and
~

AC, such that AE' = DE and AF' = DF.

1.

2.

Statements

AB AC
DE = !5F'

AB AC
AEI = AF' .

Reasons

1. Hypothesis.

2. Substitution.

3. ElF' and BC are parallel 3. statement 2 and Theorem 12-2.

4.

5.

6.

7.

8.

L e ~ L Band L f ~ L C.

aABC '" Ii AE' F' .
E'F' AEI
l3C = AB·

E'F' = BC~~' = BC~~.

AB BC DE
DE = Eli' or EF = BCjB.

4. Theorem 9-9.

5. A. A. Corollary.

6. Definition of similar tri­
angles.

7. Statement 6 and substitution.

8. Hypothesis.

Statements

[sec. 12-3]
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9. ElF' = EF. 9. Statements 7 and 8.

10. ~AE'F' ~ ~ DEF. 10. The S.8.S. Theorem.

11. 1.e~LE and 1. f ~ 1. F. 11. Corresponding parts.

12. 1.B~LE and 1.C~1.F. 12. Statements 4 and 11.

13. fj, ABC "" ~DEF. 13. The A.A. Corollary.

Problem Set l2-3b

1. Given a correspondence ABC~DEF between two triangles.
Which of the following cases are sufficient to show that the
correspondence is a similarity?

a.

b.

1. A t;f! 1. D, 1. B £:' 1. E.

AB DE
AC = DF'

c. Corresponding sides are proportional.

d. Both triangles are equilateral.

e. Both triangles are isosceles, and mL A = ~ D.

f. ~ C = m1. F = 90, and AB = DE.

2. Which of these similarity theorems do not have related con­
gruence theorems: S.A.S., 8.S.S., A.A.A., A.A.?

3. Is there any possibility of ~I being similar to ~ II if:

a. two angles of ~ I have measures of 60 and 70 while two
angles of ~ II have measures of 50 and 80?

b. two angles of ~ I have measures of 40 and 60 while two
angles of ~ II have measures of 60 and 80?

c. ~I is a right ~ , while ~ II is isosceles with one
angle of measure ltO?

d. ~ I has sides whose lengths are 5, 6, 7, while ~ II
has a perimeter of 36,000.

[sec. 12-3]
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4. Here are six pairs of triangles. In each case tell whether
the two triangles are similar. If they are, state the theorem
you would quote as proof.

e.

~
4 8

10

O. b.

a. Name an angle which is
congruent to L ACB.

Given the figure shown with
AC 1 BC and cx 1 AB.

5.

b. Name an angle with the
same measure as LB.

c

A"---------:L:-----lB

c. Name a triangle which
is similar to 6 ACB.

6. If the lengths of DX, XE,
and FX are p, q and r
respectively, what length
of XG will assure similar­
ity of the triangles? If
p = 3q, must mL D = 3mL E?

D

[sec. 12-3]
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7. Below is a series of statements giving the lengths of sides
of a number of triangles. Decide for each pair whether the
triangles are similar and then make a statement as follows:

~ is similar to ~ , or

/). is not similar to /).

For each pair that are similar write a statement showing the
proportionality of the sides.

a. AB = 5, AF - 3, FB = 7. QR = 15, QS = 9, RS = 21.

b. MT 2, MW= 5, TW 6. RS 1 IS 9, RL 3.= = = 772' = =

c. AB = 5, BC = 2, AC = 4. XY = ~, XZ = 2, YZ = 3.

d. AB = 6, AC = 7, BC = 8. RS = 40, RT = 35, ST = 30.

e. AB = 1.8, BC = 2.4, AC = 3.
XW = 0.4, XT = 0.5, WT = 0.3.

8. Given: L B ~ L D.
CD = 4AB.

Prove: BD = 5BL.

9.

Fig. a. Fig. b. Fig.c Fig.d

In each figure a segment has been drawn parallel to the base
of a triangle, and the lengths of certain segments have been
indicated.

[sec. 12-3]
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a. Prove that sx=­r (Hint: Write a proportion.)

b.

c.

Prove that x = mp.

Prove that x = k2.

d. Prove: 1
x = t.

e. Part c is a special case of which other part?

f. Part d is a special case of which other part?

g. Do the results depend on the size of the vertex angle?
I

10. Explain how two triangles can have five parts (sides, angles)
of one triangle congruent to five parts of the other triangle,
but not be congruent triangles.

11. Given: In the diagram
++ ( ~

OD II 0lDl·

Prove: OB aD
0lBl = °lDl .

*12. a. If BR, CS' an d iJ.ii are
perpendicular to ~,

name the pairs of R
similar triangles.

b. Which is correct:

~=.E. or z p
? x- =y q y p + q

c. Which is correct:

~=S or z q ?- =x p x p + q B C D
d. Show that III-+-=-X Y z '

[sec. 12-3]



e. The problem, "How long does it take two men to complete
a task which one alone can complete in 6 hours and the
other alone in 3 hours?" can be answered by solving
111o + 3 = n· Solve this equation geometrically. (Hint:

see part (d) and the figure.)

13. Given parallelogram ABRQ
with diagonal QB and
segment AF intersecting
in H as shown.

Prove: QH. HF = HB . AB.
A

r------------,IR

14. In this figure if DB 1 AC
1and DQ = BQ = 2AQ = 2' QC.

Prove: a. /). AQD '" /). DQC.
b. /). BQC '" /). AQD.

c. AD1DC.
Af---+=-------~C

Given: /). ABC, AD the bi­
sector of LA meeting BC
in D.

15. Prove the following theorem:
the bisector of an angle of
a triangle divides the
opposite side into segments
proportional to the adjacent
sides.

BDc"-----------L...----CD CA
1m = A]j.Prove:

(Hint: Make BE II AD.)

[sec. 12-3]
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*16. Given 6 ABC. Let the bisectors of the internal and external
angles at A meet ~ in points D and D' respectively.

CD' CD ( II -Prove that nrB = DB. Hint: Make BF D'A.)

c~-----~---~------------~B D1

*17. If we have an electrical circuit consisting of two wires in
parallel, with resistances Rl and R2, then the resistance
R of the circuit is given by the equation

Rl = ~ +ft
1 2 ----- R ----.....,

R,

R2

The following scheme has been used to find R, given Rl
and R2•

10 B

[sec. 12-3]



Numerical scales are marked off on three rays as in Figure 1.
A straight-edge is placed so as to pass through Rl and R2
on the two outer scales, and R is read off on the third
scale. Using the scales of the figure, select values for
Rl, R2 , find R from the figure and check your result to
see that the equation above is satisfied.

a. Prove that the method really works. See Figure 2.

b. Could the same diagram be used to find R in the

equation ! =! _!?
R Rl R2

18. In this figure WS
and LQ are medians

RW RT WS
and AL = AM = W'

Prove that

6 RWT '" 6. ALM. w

R

T

A

L-_---IL
M

19. Given in

RA 1 AB,
RH 1 AF.

this figure that

FE 1 AB and

Prove tha t 6 HRA '" 6. BAF
and HR'BF = BA·RA.

R

[sec. 12-3]
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20. A method of enlargement.

-

-

etc.; and finally drawing segments

P,

The ·figure AIBICIDI
an arbitrary point

locating A2,
PB2 = 2PBl,
A2D2 etc.

has been enlarged by introducing
~ ~ ~

the rays PAl' PBI' PCI and

and D2 so that PA2 = 2PAI,

a.

b.

c.

Draw a simple object, a block or a table, for example,
and enlarge it by the method shown. Is it necessary

that PAl' PBI' etc. be doubled?

How could the method be modified to draw a figure with
sides half the length of those of AlBlClDI ?

• A~2 PA2Prove: ~ PAIBI '" li PA2B2 and A:1f.:" = }5'jC'".
I I I

d. Prove: li AlBI DI '" li A2B2D2 .

e. Could the enlargement be carried out if P were
selected on or inside the given figure?

[sec. 12-3]
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*21. Given: Quadrilateral
as in the figure with
and 6 Q)CR "V 6 TXS •

Prove: QR = TS.

RSTQ

RSIIQT

Q T

FB
AL------&----...&...-----~M

22. Given: AW 1 MW.
BFRQ is a square with
Q on AW and R on

WM as shown in the

figure.

Prove: AB-WR = QW-BQ,
and AB·FM = RF-BQ_

23. Prove the following theorem:
ponding medians have the same

F

In similar triangles corres­
ratio as corresponding sides.

A~--------~B

Q

24. Prove the following theorem: In similar triangles corres­
ponding altitudes have the same ratio as corresponding sides.

F

x~-~---~w A<---~:-------B

[sec. 12-3]
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25. Prove that if the sides of two triangles are respectively
parallel, the triangles are similar.

Given: AB II HR •

AF'11HVl'.
BF II RW ••

Prove : 6. ABF '" 6. HRW •

.........~"""T"""----.....L..:::.B
<,
R.-..:::::~-r----IH

W

Case I Case IT

E

26. Given: L A ~ LBand AC = BD.

Show ~ II m

A---....&....------""'---....... S

[sec. 12-3]



*27. It is known (see Chapter 5) that if two triangles correspond
so that two sides and the angle opposite one of them in one
triangle are congruent respectively to two sides and the
angle opposite the corresponding side of the other (S. S. A.),
the triangles need not be congruent. (See diagram.)

C'

What true statements con­
cerning similarity and
proportions can be made
concerning

a.

Is the following statement true or false? Explain.

If two triangles correspond such that two sides of one tri­
angle are proportional to two sides of the other, and the
angles opposite a pair of corresponding sides are congruent,
then the triangles are similar.

*28. 8EDF is isosceles with
DE = DF. 8 ABC is such that
E and F lie between A and
C, CB II ED, and A, B, D
are collinear.

I . 8 ABC and Ii ADE?

2 • 8 ABC and Ii ADF?

b. Is the following statement true or false? Explain.

Given liABC with D on segment AB, X on segment
- ABBC +-+ ~AC, such that ATI = nx' then BC and vx must be
parallel.

[sec. 12-3]

*28. 8EDF is isosceles with
DE = DF. A ABC is such that
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*29. A tennis ball is served from a height of 7 feet to clear a
net 3 feet high. If it is served from a line 39 feet behind

the net and travels in a straight path, how far from the net
does it hit the ground?

*30. In the parallelogram ABCD

shown in the figure the line
~ +-+
BF intersects AC at E,
CD at G, and !t at F.
Prove that EB is the C
geometric mean of EG and

EF.

*31. Given £ ABC and XYZ such
~ +-+ +-+

that AX, BY and CZ are
~ ~

parallel and also AC II XZ.
'k! ~

and YX meet in D and
+-+ ~

BC and YZ meet in E.
tc ~ ~Prove: II DE II XZ. B y

E

[sec. 12-3]

cn at G, and AD at F.

Prove that EB is the ~I \~ ,...



*32. The angles in the figure
marked with small squares
are right angles.

BF AD
a. Show that Be = AC·

b. Then show that
BE CD AC AD BC
AB = 1m' • AB + AIT . PJj.

B
391

12-4. Similarities in Right Triangles.
Theorem 12-6. In any right triangle, the altitude to the

hypotenuse separates the triangle into two triangles which are
similar to each other and to the original triangle.

c

de
D

Restatement:
angle at C. Let
AB. Then

Let 8 ABC ~be a right triangle with its right
CD be the altitude from C to the hypotenuse

6. ACD '" 8 ABC '" 8 CBD.

Notice that the restatement is more explicit than the first
statement of the theorem; it tells us exactly how the vertices
should be matched up to give the similarities. Notice also what
the scheme is in matching up the angles: (1) The right angles
match up with each other, as they have to in any similarity of

[sec. 12-4]
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Therefore

Trivially,
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right triangles. (2) Each little triangle has an angle in common
with the big triangle, and so the angle matches itself. (3) The
remaining angles are then matched.

Proof: In the proof, the notation for the angles will be as
shown in the figure.

Since L C is a right angle, we know that L a and Lb
are complementary. That is,

mL a + mL b = 90.

Also, since L d is a right angle,

mL a + mL b ' = 90.

L b :::::: L b l
•

L a ~ L a;

L C ~ L d,

because L d is a right angle. By the A.A.A. Similarity Theorem,
we have

6. ACD '" 6. ABC.

The proof of the other half of the theorem is precisely
analogous, with the point B behaving like the point A.

Corollary 12-6-1. Given a right triangle and the altitude
from the right angle to the hypotenuse:

(1) The altitude is the geometric mean of the segments into
which it separates the hypotenuse.

(2) Either leg is the geometric mean of the hypotenuse and
the segment of the hypotenuse adjacent to the leg.

[sec. 12-4]

6. ACD '" 6. ABC.
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~ABC be a right triangle with its right
D be the foot of the altitude from C to

(1)

(2)

AD CD
CD = Bl).

AD AC
AC = AB and BD BC

BC = BA·
c

A D B

Hence,

Hence,

Proof: ( 1)

( 2)

By Theorem

By Theorem

12-6, 6 ADC '" 6. CDB .
AD CD
CI5=Bi).

12-6, Ll ADC '" Ll ACB .
AD AC
'AC=m o

Also, 6. BDC '" 6. BCA ,
BD BC

and so BC = BA

Problem Set 12-4

1. Given right ~ ABC with
altitude drawn to the
hypotenuse and lengths as
shown, find the unknown
lengths.

2. Follow the directions in.
Problem 1.

[sec. 12-4]

Hence,
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3. In this right triangle with
the altitude drawn to the
hypotenuse it is possible
to find a numerical value
for each segment a, x, y.

Find them.

4. In a right triangle if the altitude to the hypotenuse is 12
and the hypotenuse is 25, find the length of each leg and of
the segments of the hypotenuse.

5. In right 6 ABC, with right
angle at C and altitude CD,

A
a. if AD = 2 and DB = 8,

find AC, CD and CB.

b. if CD = 9 and AD = 3,

find AC, CB and AB.
B

c. If CB = 12 and AD = 10,

what are the lengths of
the other segments?

d. if AC = 8 and DB = 12,
what are the lengths of
the other segments?

[sec. 12-4]

find AC, CB and AB. \Jc
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12-5. Areas of Similar Triangles.
Given a square of side a, and a square of side 2a, it is

easy to see that the area of the second square is 4 times the area
of the first. (This is because (2a)2 = 4a2.) In general, if two
squares have sides a and ka, then the ratio of the areas is
k2, because

(ka62 = k2~2 = k2.
a a

An analogous result holds for similar triangles:

Theorem 12-7. The ratio of the areas of two similar tri­
angles is the square of the ratio of any two corresponding sides.

AL...-......J....--~C

Therefore

Proof : Given {j. ABC '" {j. A' B' C'. Then

a' b ' c 'a = 0 = c·

Let k be the common value of these ratios, so that a'= ka,
+---+b' = kb, c' = kc. Let BD be the altitude from B to AC, and

let BI DI be the alti tude from B' to \, Cr. Since ~ ABD and
{j. AIBI DI are ri·ght triangles, and L A 2! LA', we have

~ ABD '" ~ A• BID' .
h ' c '
h = c = k .

Let Al and A2 be the areas of the two triangles. Then
1

Al = ~h,

and A2 = ~'hl

= ~(kb)(kh)

= k
2

. (~bh).

[sec. 12-5]

Proof : Given fj. ABC '" fj. A' B' C'. Then
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A2 2
r= k

1

which was to be proved.

2
= (~)a

2
= (f-)

2
= (~) ,

c

Problem Set 12-5

1. What is the ratio of the areas of two similar triangles whose
bases are 3 inches and 4 inches? x inches and y inches?

2. A side of one of two similar triangles is 5 times the corres­
ponding side of the other. If the area of the first is 6,
what is the area of the second?

3. In the figure if H is the
F

mid-point of AF and K is
the mid-point of AB, the
area of L). ABF is how many
times as great as the area of

L). AKH? If the area of
~ABF is 15, find the area A K B

of ~AKH.

4. The area of the larger of two similar triangles is 9 times
the area of the smaller. A side of the larger is how many
times the corresponding side of the smaller?

5. The areas of two similar triangles are 225 sq. in. and 36
sq. in. Find the base of the smaller if the base of the
larger is 20 inches.

6. The areas of two similar triangles are 144 and 81. If a side
of the former is 6, what is the corresponding side of the
latter?

7. In ~ ABC, the point D i8 on
CD. Draw DE parallel to AB
compare the areas of triangles

side AC, and AD is twice
intersecting BC at E, and
ABC and DEC.

[sec. 12-5]

~ABF is 15, find the area A K B

" .p II. 1\ Il'U



397

8. The edges of one cube are double those of another.

a. What is the ratio of the sums of their edges?

b. What is the ratio of their total surface areas?

9. How long must a side of an equilateral triangle be in order
that its area shall be twice that of an equilateral triangle
whose side is 10?

x

10.

11.

12.

If similar triangles are drawn on the side and on the altitude
of an equilateral triangle, so that the side and altitude are
corresponding sides of the triangles, prove that their areas
are to each other as 4 is to 3.

Two pieces of wire of equal length are bent to form a square
and an equilateral triangle respectively. What is the ratio
of the areas of the two figures? C

I
1
I
I
I
I. I

~I
-I

I
I
I
I

D
140'

drawn?

13. Prove the theorem: The mid­
point of the hypotenuse of a
right triangle is equidistant
from the vertices.

[sec. 12-5]
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14. Prove Theorem 11-9 by using

the following diagram and
problem 13.

AL..----L.-------~

15. In this triangle
Prove that 6. ABC

triangle.

AR = RC = RB.
is a right

A

C.Jo:;......------~B

C

M H

p

AL----~I......-......I....l--~B

2
= (~)area ~ RST

area A ABCProve:

Prove: The geometric mean of two positive numbers is less

than their arithmetic mean, except when the two numbers are

equal, in which case the geometric mean equals the arith­

metic mean. (Hint: Let the two given numbers be the dis­
tances AH and HB, let HC

be perpendicular to AB,

with HC = .jAH·HB, and let

M be the mid-point of AB.

Prove L ACB is a right
angle and use the preceding

two problems.)

17. Given: P-ABC is a triangular
pyramid with a section RST

parallel to the base ABC. PY

is perpendicular to the plane
of the base, and X is the

intersection of PY with the
plane of ~ RST.

*16.

8

[sec. 12-5]

wi th HC =.j'AH ·HB, and let

M be the mid-point of AB. / 1\ \



li ABC is a
with hypot­

CH is the
C.

*18.
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In the figure,
right triangle,
enuse AB, and
altitude from

Let the areas of 6. ABC,
li ACH, li CBH be K

l,
K

2,
AL.-~-----.l....----~B

K3 respectively.

The following sequence of statements constitutes a different
proof of the Pythagorean Theorem. Give a reason for each of
the following statements:

1.

2.

3. li ACH '" li ABC '" li CBH.
2 2

4. 1 = (AC) + (~) .AB

5. (AB)2= (AC)2 + (BC)2.

Preamble. In the following problems, the lengths of two sides
and the included angle of a triangle are given, and it is required
to find the length of the third side. By the S.A.S. congruence
theorem, the third side is uniquely determined, so there should be
a method of finding it numerically. Another way of giving the

included angle is to give a represehtative right triangle in which
the angle (or its supplement) is one of the acute angles. ActualQ,
only the number k = ~ is needed. For numerical work, this
number, which depends on L R, has been tabulated, and if this
table is readily available the computation of the length of the
third side is quite straightforward. The number k is called the
cosine of L R, abbreviated k = cos L R, and the table is called
a table of cosines. For this reason the formula for a2 that we
find is called the 1!! of cosines. You will meet it again in
trigonometry.

[sec. 12-5]
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*19. In the two triangles shown in
the diagram, L A ~ L H, AC = b,
AB = c , RS = k and L S is a
right angle. Find a in terms
of b, c, and k.

shown in
is the
and AC = b,
L S is a

a in terms

*20.

(Hint: Let D be the foot of
the altitude to AB, and let
x, y, h be as indicated in
the figure. Express a2 in
terms of hand Yj express
hand y in terms of x, b,
and Cj then, from the similar­
i ty fj, ADC '" ~ RST, express
x in terms of band k.)

In the two triangles
the diagram, L BAC
supplement of L H,

AB = c, RS = k and
right angle. Find
of b, c and k.

(Hint: Let D be the foot of
~

the perpendicular to AB from
C. Then fj, ADC '" ~ RST. )

.........-:--...... R

*21. a.

b.

Let rna
~ABC,

be the length of the median to the side BC of
and let BC = a, CA = b, AB = c. Prove that

2 l( 2 2 a 2
rna = ~ b + c - 2' ).

~, mc be the lengths of the medians of

~ ABC, with sides of length a, b, c. Prove that

[sec. 12-5]

right angle. Find
1,.

a in terms T
t\
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Review Problems

i , In the figure HQ II AB.

a. If FA = II, FQ = 4, F
FH = 2, FE = ?

b. If FE= 6, FH = I,
HA = 4, FQ = ? Q

c. If FA = 9, FE = 7,

FH 1 FQ = ?= ~, A B
d. If HA = 6, FE = 12,

FH = 3, QB = ?
A

2. a. Are the two triangles
pictured here, similar
if AB = 4, AF = 9,
QF = 3, and AT = ~?

b. If AB= 5, AT = 3, B
4 what must AFAQ = ll-5'

be to make /j. TAQ '" /j. BAF'?

3. Give the geometric mean and the arithmetic mean for each of
the following:

a. 8 and 10 b. 6h and 3../2.

4. Sketch two figures which are not similar, but which have the
sides of one proportional to the corresponding sides of the
other.

5. In right /j. ABC, if FC is
B

the altitude to the hypotenuse,
AF = 12 and BF = 3, find
AC, FC and BC.

A c

If AB = 5, AT = 3,b.

Ar. ,,4 •.•1..._ .... _ • • _ ....
B~
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6. If CD = x + 3, DA = 3x + 3,

CE = 5 and EB = x + 5,
what must be the value of x

to assure that DE II AB?

c

B

7. Given in this figure,

L B '?t L D, CD = 4AB.
Prove BD = SEE.

A

c

8. A side of one equilateral triangle is congruent to an altitude
of another equilateral triangle. What is the ratio of their
areas?

9. In /). ABC, AC 1 BC,
AB = 20 and FC = 8.
a, b, x, and y.

CF 1 AB,
Find

10. If /::,. ABC '" /). DEF and /). ACB '" /). DEF, show that AB = AC.

11. Given rectangle ABFQ as
shown in the figure with

WX 1 AF.
Q FProve:

a. AF·XW = AW·QA.

b. QF·XW = AX.QA.

c. AF·AX = AW.QF.
W B
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12. The tallest trees in the world are the redwoods along the
coast of northern California. To measure one of these giants
you move some distance from the tree and drive a stake in the
ground. Then you hold a small mirror at ground level and
sight it in, moving away from the stake until the top of the
stake and the top of the tree are in a direot line.
If your stake is 5 feet tall and is 520 feet from the base of
the tree, and if your mirror is 8 feet from the stake when
the top of the stake and the top of the tree are in a straight
line, how tall is the tree?

13. In right ~ ABC with CF A
the altitude to the hypotenuse,
and lengths as indicated in the
figure, find x, y, and w.

c w 8

*14 . Join the vertices of ~ ABC to a point R outside the tri-
-

IIangle. Through any point X of AR draw XY AB meeting
- - II BC

-
BR at Y. Draw YZ meeting RC at Z. Prove

~ XYZ '" b. ABC.

15. When we photograph a triangle, is the picture always similar
to the original triangle? When can we be sure that it is?

*14 . Join the vertices of ~ ABC to a point R outside the tri-
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Chapters 7 to 12

REVIEW EXERCISES

Write (1) if the statement is true and (0) if it is false. Be
able to explain why you mark a statement false.

1. An exterior angle of a triangle is larger than any interior
angle of the triangle.

2. In space there is only one perpendicular to a given line
through a given external point.

3. The angle opposite the longest side of a triangle is always
the largest angle.

4. In LiABC, if mL A < mL B, then AC < BC.

5. If AB 1 BC, then AB < AC.

6. A triangle can be formed with sides of lengths 351, 513, and

135.

7. If an angle of one triangle is larger than an angle of a
second triangle, then the side opposite the angle in the
first is longer than the side opposite the angle in the
second.

8. Two lines in space are parallel if they are both perpendicu­
lar to the same line.

9. Through every point in a plane there is a line parallel to a
given line in the plane.

10. Given two lines and a transversal of them, if one pair of
alternate interior angles are congruent, the other pair are
also congruent.

11. If two lines are cut by a transversal so that one of two
alternate interior angles is 900 larger than the other, the
two lines are perpendicular.

12. If two lines are cut by a transversal, there are exactly four
pairs of corresponding angles.

second triangle, then the side opposite the angle in the
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13. If two intersecting lines are cut by a transversal, no pair
of corresponding angles are congruent.

14. If the alternate interior angles formed by two lines and a
transversal are not congruent, the two lines are perpendicu­
lar.

15. Given two parallel lines and a transversal, two interior
angles on the same side of the transversal are complementary.

16.

17.

If L, M and N are three lines such that L II M and

M II N, then L II N.

If L, M and N are three lines such that LIM and

MIN, then LIN.

18. Since the sum of the measures of the angles of any triangle
is 3 times 60, the sum of the measures of the angles of any
quadrilateral is 4 times 60.

19. If two angles of one triangle are congruent to two angles of
another triangle, then the third angles are congruent.

20. If two angles and a side of one triangle are congruent to two
angles and a side of another, the triangles are congruent.

21. The acute angles in a right triangle are complementary.

22. An exterior angle of a triangle is the supplement of one of
the interior angles of the triangle.

23. If a diagonal of a quadrilateral separates it into two con­
gruent triangles, the quadrilateral is a parallelogram.

24. If each two opposite sides of a quadrilateral are congruent
the quadrilateral is a parallelogram.

25. Opposite angles of a parallelogram are congruent.

26. A diagonal of a parallelogram bisects two of its angles.

27. A quadrilateral with three right angles is a rectangle.

28. The perimeter of the triangle formed by joining the midpoints

of the sides of a given triangle is half the perimeter of the
given triangle.

20. If two angles and a side of one triangle are congruent to two
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29.

30.

31.

32.

33.

34.

35.

36.

37.

If the diagonals of a quadrilateral are perpendicular and
congruent, the quadrilateral is a rhombus.

A set of parallel lines intercepts congruent segments on any
transversal.

The area of a right triangle is the product of the hypotenuse
and the altitude to the hypotenuse.

The area of a parallelogram is the product of the lengths of
two of its adjacent sides.

The area of a trapezoid is half the product of its altitude
and the sum of its bases.

If two triangles have equal area and equal bases, then they
have equal altitudes.

If the legs of a right triangle have lengths a and band
the hypotenuse is of length c, then b2 = (c - a)(c + a).

If the lengths of the sides of a triangle are 20, 21 and 31,
it is a right triangle.

Two right triangles are congruent if the hypotenuse and a leg
of one are congruent respectively to the hypotenuse and a leg
of the other.

39.

38. o
If one of the angles of a right triangle contains 30 , then
one leg is twice as long as the other leg.

The length of the diagonal of a square can be found by
multiplying the length of a side by ~

40. If a line intersecting two sides of a triangle cuts off a
triangle similar to the larger one, the line is parallel to
the third side of the triangle.

41. If each of two triangles have angles of 360 and 370
, the two

triangles are similar.

42. If two triangles have an angle of one congruent to an angle
of the other, and two sides of one proportional to two sides
of the other, the triangles are similar.
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43. If the sides of one triangle have lengths 6, 12, and 10, and

the sides of another have lengths 15, 9 and 18, then the tri­
angles are similar.

44. Any altitude of a right triangle separates it into similar
triangles.

45. A triangle whose sides measure 4, 6 and 8 will have an area
more than half the area of a triangle whose sides measure
6, 9 and 12.

46. If A, B, X,
AY = BY, then

and Yare coplanar and if

1£ lW.
AX = BX and

of a plane are each equidistant
~

PQ is perpendicular to the
If three non-collinear points
from points P and Q, then
plane.

48. If a line not contained in a plane is perpendicular to a
line in a plane, then it is perpendicular to the plane.

49. A line perpendicular to each of two lines in a plane is per­
pendicular to the plane.

50. If a plane bisects a segment, every point of the plane is
equidistant from the ends of the segment.

51. If a plane is perpendicular to each of two lines, the two
lines are coplanar.

52. There are infinitely many planes perpendicular to a given
line.

53.

54.

55.

56.

57.

At a point on a line there are infinitely many lines per­
pendicular to the line.

Through a point outside a plane there is exactly one line
perpendicular to the plane.

If a plane intersects two other planes in parallel lines,
then the two planes are parallel.

Two planes perpendicular to the same line are parallel.
~ ++ ++

If plane E is perpendicular to AB and AB II CD, then

E 1mt.

pendicular to the plane.
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58. If each of two planes is parallel to a line, the planes are
parallel to each other.

59. If a plane intersects the faces of a dihedral angle, the
intersection is called a plane angle of the dihedral angle.

60. The projection of a line into a plane is always a line.



Chapter 13

CIRCLES AND SPHERES

13-1. Basic Definitions.
In this chapter we commence the study of point sets not made

up of planes, half-planes, lines, rays and segments. The simplest
such curved figures are the circle and the sphere and portions of
these. As usual in starting to talk about new figures we begin
with some definitions.

Definitions: A sphere is the set of points each of which is
at a given distance from a given point. A circle is the set of
points in a given plane each of which is at a given distance from
a given point of the plane. In each case the given point is called
the center and the given distance the radius of the sphere or
circle. Two or more spheres or circles with the same center are
said to be concentric.

Circle Sphere
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Theorem 13-1. The intersection of a sphere with a plane
through its center is a circle with the same center and radius.

Proof: Since the sphere includes all points at a distance of
the radius from the center, its intersection with a plane through
the center will be the set of all points in the plane at this
distance from the center; that is, the circle in this plane with
the same center and radius.

Definition: The circle of intersection of a sphere with a
plane through the center is called a great circle of the sphere.

There are two types of segments that are associated with
spheres and circles.

Definitions: A chord of a circle or a sphere is a segment
whose end-points are points of the circle or the sphere. The line
containing a chord is a secant. A diameter is a chord containing

the center. A radius is a segment one of whose end-points is the
center and the other one a point of the circle or the sphere.
The latter end-point is called the outer end of the radius.

The use of the word "radius" to mean both a segment and the
length of that segment follows the convention introduced in
Chapter 11. In the same way we use "diameter" to refer also to
the length of a chord through the center as well as to the chord

itself.
We may refer to a circle as circle C, or simply C. (C is

most often used.) In stating problems it is convenient to use the
convention that circle P denotes the circle with center P,
provided there is no ambiguity as to which circle we mean. Similar
remarks apply to spheres.

[sec. 13-1]

The use of the word "radius" to mean both a segment and the
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Problem Set 13-1

1. Study Section l3-l
0to

help you decide whether the following
statements are true or false:

a. There is exactly one great circle of a sphere.

b. Every chord of a circle contains two points of the circle.

c. A radius of a circle is a chord of the circle.

d. The center of a circle bisects only one of the chords of
the circle.

e. A secant of a circle may intersect the circle in only one
point.

f. All radii of a sphere are congruent.

g. A chord of a sphere may be longer than a radius of the
sphere.

h. If a sphere and a circle have the same center and inter­
sect, the intersection is a circle.

2. Using your prevf.ous understanding of circles and spheres as
well as your text, decide whether the following statements
are true or false:

a. If a line intersects a circle in one point, it intersects
the circle in two points.

b. The intersection of a line and a circle may be empty.

c. A line in the plane of a circle and passing through the
center of the circle has two points in common with the
circle.

d. A circle and a line may have three points in common.

e. If a plane intersects a sphere in at least two points,
the intersection is a line.

f. A plane cannot intersect a sphere in one point.

[sec. 13-1]

sect, the intersection is a circle.
Y"'_.J ~ ... ~~._"I .L-_~_..3 ... .L' _J ' ._....::1 __ \ _
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g. If a plane intersects a radius of a sphere at its mid­
point, the intersection of the plane and the sphere is a
circle.

h. If two circles intersect, their intersection is two
points.

3. A city is laid out in square blocks 100 yards on a side.
Neglect the width of the streets in the following problems.

a. Describe the location of the points which are 200 yards
(as the crow flies) from a given street intersection.

b. Describe the location of the points a taxi might reach
by traveling 200 yards from a given street intersection.
(City law prohibits u-turns.)

4. Prove the theorem: A diameter of a circle is its longest
chord.

13-2. Tangent Lines. The Fundamental Theorem for Circles.

Definitions: The interior of a circle is the union of its
center and the set of all points in the plane of the circle whose
distances from the center are less than the radius ..The exterior
of the circle is the set of all points in the plane of the circle
whose distances from the center are greater than the radius.

From these definitions it follows that a point in the plane
of a circle is either in the interior of the circle, on the circle,
or in the exterior of the circle. (We frequently use the more
conunon word "inside" for "in the interior of", etc.)

[sec. 13-2]
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Definitions: A tangent to a circle is a line in the plane of
the circle which intersects the circle in only one point. This
point is called the point of tangency, or point of contact, and
we say that the line and the circle~ tangent at this point.

In the figure, L is tangent to the circle at Q.

L

We now want to find out what the possibilities are for a line
and a circle in the same plane. It looks as if the following
three figures ought to be a complete catalog of the possibilities:

-----+--IF -----IF

In each case, P is the center of the circle, and F is the foot
.2!. the perpendicular from P to the line. We shall soon see that
this point F -- the foot of the perpendicular -- is the key to
the whole situation. If F is outside the circle, as in the first
figure, then all other points of the line are also outside, and
the line and the circle do not intersect at all. If F is on the
circle, then the line is a tangent line, as in the second figure,
and the point of tangency is F. If F is inside the circle, as
in the third figure, then the line is a secant line, and the points
of intersection are equidistant from the point F. To back all of
this up, we need to prove the following theorem:

[sec. 13-2]
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Let
the

Theorem 13-2. Given a line and a circle
P be the center of the circle, and let

perpendicular from P to the line. Then

in the same plane.
F be the foot of
either

(1) Every point of the line is outside the circle, or

(2) F is on the circle, and the line is tangent to the
circle at F, or

(3) F is inside the circle, and the line intersects the
circle in exactly two points, which are equidistant from
F.

This theorem is long, but its length is worthwhile, because
once we have proved it, the hard part is over: all of the elemen­
tary theorems on secants, tangents and chords are corollaries of
it.

Proof: To prove the theorem, we shall show that if F is
outside the circle, then (1) holds; if F is on the circle, then
(2) holds; and if F is inside the circle, then (3) holds.

If F is outside the circle,

Q

~--+----lF

Let r be the radius of the circle. Then PF > r. By Theorem 7-6,
the segment PF is the shortest segment joining P to the line.
If Q is any other point of the line, then PQ > PF. Therefore,
PQ > r, and Q is outside the circle.

[sec. 13-2]
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If F is ~ the circle, then J& holds.

Here we have PF = r. If Q is any other point of the line, then
PQ > r. (Why?) Therefore the line is tangent to the circle, and
the point of tangency is F.

If F is inside the circle, then ill holds.

The proof is as follows.
then ~ PFQ is a right
Pythagorean Theorem,

so that

and

If Q is on both the line and the circle,
triangle with a right angle at F. By the

PF2 + FQ2 = r 2 ,

FQ2 = r 2 _ PF2 ,

FQ =~r2 PF2 .

(The number under the radical is positive, because PF < r.) Thus
any point Q common to the line and the circle must satisfy this
last equation.

Conversely, any point Q lying on the line and satisfying
this equation will be at distance r from P, as can be seen by
going backwards through the algebra above. The equation

FQ =0-2
- PF

2

[sec. 13-2]
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is therefore the characterizing feature of the points Q which are
intersections of the line and the circle.

By the Point Plotting Theorem there are exactly two such points,
one on each of the two rays with end-point F. Obviously, they are
equidistant from F.

This reasoning does not apply when the line passes through P,
but in this case we have P = F, PQ = FQ = r, and there are two
points Q as before.

Now we can proceed to our first basic theorems on tangents and
chords which are all corollaries of Theorem 13-2. In all of these
corollaries, it should be understood that C is a circle in a plane
E, with center at P. To prove them, you merely need to refer to
Theorem 13-2 and see which of the three conditions in the conclusion
of the theorem applies to the case in hand.

Corollary 13-2-1. Every line tangent to C is perpendicular
to the radius drawn to the point of contact.

Here it is Condition (2) that applies; and this means that the
tangent and radius are perpendicular.

Corollary 13-2-2. Any line in E, perpendicular to a radius
at its outer end, is tangent to the circle.

Since the outer end of the radius must be F, Condition (2)
applies, and we have tangency.

Corollary 13-2-3. Any perpendicular from the center of C to
a chord bisects the chord.

Here Condition (3) applies. (In Cases (1) and (2) there is no
chord. )

Corollary 13-2-4. The segment joining the center of C to
the mid-point of a chord is perpendicular to the chord.

Use Corollary 13-2-3 or Condition (3).

Corollary 13-2-5. In the plane of a circle, the perpendicular
bisector of a chord passes through the center of the circle.

Use Corollaries 13-2-4 or 13-2-3, or Condition (3).

[sec. 13-2]
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Corollary 13-2-6. If a line in the plane of a circle inter­
sects the interior of the circle, then it intersects the circle in
exactly two points.

Here also, Condition (3) applies. (In Case (1) and (2), the
line doesn't intersect the interior of the circle.)

Definition: Circles of congruent radii are called congruent.
By the distance from a chord to the center of a circle we mean

the distance between the center and the line containing the chord,
as defined in Section 7-3. The proofs of the following two theorems
are left to you:

Theorem 13-3. In the same circle or in congruent circles,
chords equidistant from the center are congruent.

Theorem 13-4. In the same circle or in congruent circles,
any two congruent chords are equidistant from the center.

The following additional definitions are useful in talking
about circles and lines.

Definitions: Two circles are tangent if they are each tangent
to the same line at the same point. If tangent circles are coplanar
they are internally or externally tangent according as their centers
lie on the same side or on opposite sides of the common tangent
line.

Internally tangent Externally tangent

[sec. 13-2]
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Problem Set 13-2
R

State the number of the theorem
or corollary which Justifies
each conclusion below. (C is
the center of the circle in the
plane figure.)

1.

a.

b.

If TA = TB, then CK 1 AB.
~ - ~

If RS 1 CK, then RS is
tangent to the circle.

F

H

~

c. If T is in the interior of the circle, then KC will
intersect the circle in exactly one point other than
point K.

d. The perpendicular bisector of FR contains C.

e. If AB and FR are equidistant from C, then AB ~ FR.
~ - +-+

f. If RS is tangent to circle C, then CK 1 RS.

g. If CK 1 AB, then AT = TB.

h. If AB ~ FR, then AB and FR are equidistant from C.

2. Prove Corollary 13-2-3: Any perpendicular from the center,
C, of a circle to a chord bisects the chord.

3. Use this figure to prove
Corollary 13-2-5: In the
plane of a circle, ' the
perpendicular bisector of
a chord passes through the
center of the circle.

4. Given a circle, how can its center be located?

[sec. 13-2]
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5. In circle C, KN = 40, and
MN = 24. How far is MN from
the center of· the circle?

6. In a circle whose diameter is 30 inches a chord is drawn per­
pendicular to a radius. The distance from the intersection of
chord and radius to the outer end of the radius is 3 inches.
Find the length of the chord.

7. Given: The figure below, with C the center of the circle
and KT 1 RS. In the ten problems respond as follows:
Write "A" if more numerical information is given than is
needed to solve the problem.
Write "B" if there is insufficient information to solve the

T

K

Rr---....>..+----=~S

problem.
Write "c" if the information is sufficient and there is no
unnecessary information.
Write "D" if the information given is contradictory.
(You do not need to solve the problems.)
a. KP = 4, PC = 1, CT = 6, KT = ?

b. RP = 5, RS = ?

c. CT = 13, CP = 5, RS = ?

d. KP = 18, RS = 48, KC = 25, RK = ?

e. PC = 3.5, RS = 24, RK = ?

f. KT = 40, RP = 16, cs = ?

g. CS = 8, TK = 16, PC = ?

h. RK = 20, RS = 32, KP = 13, KT = ?

i. RS = 6, KC = 5, PT = ?

j. PT = 5, cs = 6, RS = ?

[sec. 13-2]

problem.
,~r_.. ~_ tI"II .az- ~"L...-. .. _D ...... _ _ .1 _ _ . ... .£tD .. .- .. __ .&.. _ _ ~ .&..1- ... _



420

8 . In a circle with center P a chord AB is parallel to a
tangent and intersects the radius to the point of tangency

at its mid-point. If AB = 12, find the radius of the circle.

9. Prove that the tangents to a circle at the ends of the diameter
are parallel.

*10. In circle 0 with center at C

0, AB is a diameter and 0

AC is any other chord from
+-+

A. If CD is the tangent
+-+ ~

at C, and DO II AC,
prove that 1m is tangent

at B.

11. For the concentric circles

of the figure, prove that

all chords of the larger
circle which are tangent to
the smaller circle are

bisected at the point of
contact.
Restatement: In each circle
the center is O. AB, a
chord of the larger circle,

is tangent to the smaller
circle at R.
Prove: AR = BR.

[sec. 13-2]
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12. One arrangement of three
circles so that anyone is
tangent to the other two
is shown here. Make sketches
to show three other arrange­
ments of three circles with
each circle tangent to the
other two.

*13. Prove: The line of centers of two tangent circles contains
the point of tangency. (Hint: Draw the common tangent.)

T

Case I Case II

14. In the figure, A, B and
C are the centers of
the circles. AB= 14,
BC = 10, AC = 18.
Find the radius of
each circle.

[sec. 13-2]
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circles,

is

Prove Theorem 13-3: In the same circle or congruent
chords equidistant from the center are congruent.

C BGiven: In the figure P
the center of the circle,

and mL AEP = mL DEP.
Prove: AB::: CD.

15.

*16.

17. In circle R, RD 1 AB
and RE 1 BC, RD = RE.
Prove that DA = EC.

18. Prove: The mid-points of all congruent chords in any circle
lie on a circle concentric with the original circle and with
a radius equal to the distance of a chord from the center;
and the chords are all tangent to this inner circle.

*19. Given: AB is a diameter
of circle O. ~ 1s
tangent to 0 at T.
++ ~ +-+ ++
AC 1 CD. ED 1 CD.

- -
Prove: CO ~ DO.

l---~----1.B

[sec. 13-2]
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13-3. Tangent Planes. The Fundamental Theorem for Spheres.
Once you have studied and understood the last .section, you

should have very little trouble with this one. We shall see that
spheres and planes in space behave in very much the same way as
circles and lines in a plane, and the analogy between the theorems
of the last section and the theorems of this section 1s very close
indeed.

Definitions: The interior of a sphere is the union of its
center and the set of all points whose distances from the center
are less than the radius. The exterior of the sphere is the set
of all points whose distances from the center are greater than the
radius .

Definitions: A plane that intersects a sphere in exactly one
point is called a tangent plane to the sphere. If the tangent
plane intersects the sphere in the point Q then we say that the
plane is tangent to the sphere at Q. Q is called the point of
tangency, or the point of contact.

The basic theorem relating spheres and planes is the following:

[sec. 13-3]
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Theorem 13-5. Given a plane E and a sphere S with center
P. Let F be the foot of the perpendicular segment from P to
E. Then either

( 1) Every point of E is outside S, or
( 2) F is on S, and E is tangent to S at F, or
(3) F is inside S, and E intersects S in a circle

with center F.

Proof: If F is outside S then ill holds.

The proof follows almost word for word the corresponding
proof for the circle in Theorem 13-2. The only significant change
is the use of Theorem 8-11 (shortest segment from point to plane)
instead of Theorem 7-6.

If F is on S then ~) holds.

Here, again, the proof is almost identical with that of
Theorem 13-2.

[sec. 13-3]
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Let Q be any point which lies on both E and S. Let
r be the radius of S, and let x = PF.

Then L PFQ is a right angle, because every line in E, through
F, is perpendicular tio 1>¥: Therefore

FQ2 + x 2
= r 2,

and

FQ = 0-2 2- x •

Since
then every
constant.

Q is any point of the intersection of E and S,
point Q of the intersection is such that FQ is
Therefore every point of the intersection lies ~ the

circle with center at F and radius ~r2 _ x2.

Although we have shown that every point of the intersection

is on the circle, we have not shown that this set of points is
the circle. That is, there conceivably could be some points of
the circle which are not points of the intersection. We now

prove that this is not possible by showing that if Q lies on

[sec. 13-3]
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x2+ (\!r2 _x2)2pQ2 = = r 2,

PQ = P = r, since r > O.
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the circle, then it must be a point of the intersection.
Suppose that Q lies on the circle with center F and

radius vlr2 _ x2.

so that

Therefore Q lies on the sphere. Therefore every point of the
circle lies in the intersection. Therefore the circle is precise­
ly the intersection, which was to be proved.

Our first basic theorems on tangents to a sphere are all
corollaries of Theorem 13-5. In all of these corollaries, it
should be understood that S is a sphere with center at P.

Corollary 13-5-1. A plane tangent to S is perpendicular
to the radius drawn to the point of contact.

Corollary 13-5-2.
outer end 1s tangent to

A plane perpendicular to a radius at its
S.

Corollary 13-5-3. A perpendicular from P to a chord of S
bisects the chord.

Given: PQ 1 AB.

Prove: AQ = BQ.

Corollary 13-5-4. The segment joining the center of S to
the mid-point of a chord is perpendicular to the chord.

[sec. 13-3]
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Problem Set 13-3

1. Sphere 0 is tangent to
~

plane E at A. FB and
RT are lines of E

through A. What is the
~

relationship of OA to
FE ~

and RT?

2. In a sphere having a radius of 10,
perpendicular to a chord has length
chord?

a segment from the center
6. How long is the

3. In a sphere whose radius is
a circle made by a plane 3

5 inches, what is the radius of
inches from the center?

4. Prove that circles formed on a sphere by planes equidistant
from the center of the sphere are congruent.

*5. In the figure, plane E
intersects the sphere
having center O. A and
B are two points of the
intersection. F lies in

plane E. OF 1 E. AF 1 BF.
If AB = 5 and OF = AF,
find the radius of the
sphere and mL AOB. If G
is the mid-point of AB,
find OG.

*6. Given a sphere and three pOints on it. Explain how to deter­
mine the center and the radius of the circle which the points
determine. Explain how to determine the center and radius of
the sphere.

[sec. 13-3]
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*7. Given that plane E is tangent to a sphere S at point T.
Plane F is any plane other than E which contains T.
Prove (a) that plane F intersects sphere S and plane
E in a circle and a line respectively; and (b) that the
line of intersection is tangent to the circle of intersection.

8. Show that any two great circles of a sphere intersect at the
end-points of a diameter of the sphere.

*9. Two great circles are said to be perpendicular if they lie in
perpendicular planes. Show that, given any two great circles,
there is one other great circle perpendicular to both. If
two great circles on the earth are meridians (through the
poles), what great circle is their common perpendicular?

*10. In the figure, A and B
are the centers of two
intersecting spheres.
Briefly describe the inter­
section.
M and N are points of
the intersection. 0 is a
point in the plane of the
intersection and is collinear
with A and B.
If the radius of sphere A
is 13, the radius of
sphere B is 5./2, and
ME 1 NB, find the distance
between the centers of the
spheres.

[sec. 13-3]
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13-4. Arcs of Circles.--
So far in this chapter we have been able to treat circles

and spheres in similar manners. For the rest of this chapter we
will confine ourselves exclusively to circles. The topics we will
discuss have their corresponding analogies in the theory of spheres
but these are too complicated to consider in a beginning course.

Definition: A central angle of a given circle is an angle
whose vertex is the center of the circle.

Definitions: If A and B are two points of a circle with
center P, not the end-points of a diameter, the union of A, B,
and all the points of the circle in the interior of L APB is a
minor~ of the circle. The union of A, B, and all points of
the circle in the exterior of LAPB is a major~ of the circle.
If AB is a diameter the union of A, B, and all points of the
circle in one of the two half-planes lying in the plane of the

+-+circle with edge AB is a semi-circle. An arc is either a minor
arc, a major arc or a semi-circle. A and B are the end-points
of the arc.

[sec. 13-4]
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An arc with end-points A and B is most easily denoted by--.
AB. This simple notation is always ambiguous, for even on the
same circle there are always two arcs with A and B as end­
points. Sometimes it will be plain from the context which arc
is meant. If not, we will pick another point X somewhere in--- ".-....the arc AB, and denote the arc by AXE.

c

For example, in the
corresponding major
circles.

~ r:»
figure, AXE is a minor arc; AYE is the
arc; and the arcs CAB and ~ are semi-

The reason for the names lImi nor ll and lIma j or ll is apparent when
one draws several arcs of each kind. A major arc is, in an
intuitive sense, IIbigger ll than a minor arc. This relation will be
made more explicit in our next definition.

Definition: The degree measure mA'XB of an arc ~ is
defined in the following way:

(1) If AXE is a minor arc, then mAXB is the measure of
the corresponding central angle.

mAXB =
[sec. 13-4]
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If AXE is a semi-circle, then mAXB = 180.
,...-..... ,...-.....

If AXE is a major arc, and AYB is the corresponding
,-... ,,-...

minor arc, then mAXE = 360 - mAYB.

x B

In the figure, mL APB is approximately 60. Therefore
~ is approximately 60, and mAXB is approximately 300.

Hereafter, mA:xB will be called simply the measure of the
~

arc AXE. Note that an arc is minor or major according as its
measure is less than or greater than 180.

The following theorem is simple and reasonable, but its proof
is surprisingly tedious. We will state it without proof, and
regard it, for practical purposes, as a postulate:

Theorem 13-6. If AS and Be are arcs of the same circle
having only the point B in common, and if their union is an arc
W, then mAB + mBa = mAa.

B

A

m.@-+ mBYC = mABC.
[sec. 13-4]
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~

Notice that for the case in which AC is a minor arc, the
theorem follows from the Angle Addition Postulate. The proof in
the general case 1s more troublesome.

In each of the figures below, the angle x is said to be
inscribed in the arc ABC.

B

C
Definition: An angle is inscribed in an arc if (1) the two

end-points of the arc lie on the two sides of the angle and (2)
the vertex of the angle is a point, but not an end-point, of the
arc. More concisely, LABC is inscribed in ABC.

In the first figure, the angle is inscribed in a major arc,

and in the second figure the angle is inscribed in a semi-circle.
In each of the figures below, the angle shown is said to

intercept PQR.

R

[sec. 13-4]
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In the first case, the angle is inscribed; in the second case, the
vertex is outside the circle; in the third case, the angle is a
central angle; and in the last case, one side of the angle is
tangent to the circle. In the second case, the angle shown
intercepts not only the arc PQR but also the arc ABC.

These figures give the general idea. We will now give the
definition of what it means to say that an angle intercepts an
arc. You should check very carefully to make sure that the
definition really takes care of all four of the above cases.

Definition: An angle intercepts an arc if (1) the end-points
of the arc lie on the angle, (2) each side of the angle contains
at least one end-point of the arc and (3) except for its end­
points, the arc lies in the interior of the angle.

The reason why we talk about the arcs intercepted by angles
is that under certain conditions there is a simple relation between
the measure of the angle and the measure of the arc.

[sec. 13-4]
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In the figure above we see three inscribed angles, L x, L y,
L z, all of which intercept the same arc Be. It looks as if
these three angles are congruent. Indeed, it is a fact that this
is what always happens. This fact is a corollary of the following
theorem:

Theorem 13-7. The measure of an inscribed angle is half the
measure of its intercepted arc.

Restatement: Let LA be inscribed in an arc of a circle,
intercepting the arc Be. Then

mL A = ~ mBa.

In order to prove this from our previous theorems we first

consider an angle inscribed in a special way.

[sec. 13-4]
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Proof: Case 1. Suppose that one side of LA contains a
diameter of the circle, like this:

f------.....L..----:L------1C

Let Lx and Ly be as in the figure. Then

mL A + mL x = mL y,

by Corollary 9-13-3. PA = PB, because A and B lie on the
circle. Since the base angles of an isosceles triangle are
congruent, we have mL A = mL x.
Therefore 2(mL A) = mL y,

and mL A = ~(mL y) = ~(mBC),

which was to be proved.

Now we know that the theorem always holds in Case 1. Using
this fact, we show that the theorem holds in every case.

Case 2. Suppose that B and C are on opposite sides of

the diameter through A, like this:

A 0

[sec. 13-4]
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Then mL A = mL v + mL w,

and mBa = mBi:) + m@.

(Why, in each case?) By Case 1, we know that

m,Lv=~mBD

and mL w = ~ mDC.
Putting these equations together, we get

m,LA =~rnBb+~mDC

= ~ mBC.
which was to be proved.

Case 3. Suppose that Band C are on the same side of the
diameter through A, like this:

B

A1lI=--~L.--_~-----iD

The proof here is very much like that for Case 2, and we state it
in condensed form:

mL BAC = mL t = mL s - mL u
1 ~ 1 ~

= ~ mBJJ - ~ mOD

= ~(mBb - men)

= ~ mBC.
You should check carefully to make sure that you see why each of
these equations is correct.

[sec. 13-4]
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From this theorem we get two very important corollaries:

Corollary 13-7-1. An angle inscribed in a semi-circle is a
right angle.

This is so because such an angle intercepts a semi-circle,
which has measure 180.

Corollary 13-7-2. Angles inscribed in the same arc are
congruent.

The proof of this is fairly obvious because all such angles
intercept the same arc.

Problem Set 13-4a

The center of an arc is the------
center of the circle of

1.

which the
How would
center of

arc is a part.
you find the

AB?

A~8

Given: P is the center of

W, mL C = 45.

Prove: BP 1 AP.

2.

3. In the figure, mAE = -mBF.

A ~:--__

c

a. Prove 6 ARK '" 6 BHF.

b. What other triangle
is similar to 6 BHF?

[sec. 13-4]
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4. The two circles in this figure
are tangent at A and the
smaller circle passes through
0, the center of the larger
circle. Prove that any chord
of the larger circle with end­
point A is bisected by the
smaller circle.

*5. Prove: Any three non-collinear
points lie on a circle.

Restatement: A, B, and C
are non-collinear. Prove
that there is a circle contain­
ing A, B, and C.
(Hint: Draw AB and BC.
Can you find the center of
the circle?)

6. An inscribed quadrilateral is
a quadrilateral having all of
its vertices on a circle.
Prove the theorem: The
opposite angles of an
inscribed quadrilateral

are supplementary.

In circle P, let ~ R = 85,
mRS = 40, m~ = 90. Find
the measures of the other
arcs and angles in the figure.

[sec. 13-4]
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8. XY is the common chord of two
intersecting circles. AB and
DC are two segments cutting
the circles as shown in the
figure and containing X and
Y respectively.

Prove: AD II BC.
(Hint: See Problem 6.)

A

8

9. Prove: A diameter perpendic­
ular to a chord of a circle
bisects both arcs determined
by the chord.

10. In the figure, @ is a
semi-circle and CD 1 AB.

Prove that CD is the
geometric mean of AD and
BD.

A 0 B

11. Prove the following converse
of Corollary 13-7-1: If an
angle inscribed in a circular B

arc is a right angle, then
the arc is a semi-circle.

o

[sec. 13-4]
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*12. If a pair of opposite angles
of a quadrilateral are
supplementary, the quadri­
lateral can be inscribed in
a circle.
(Hint: Use Problems 5 and 6
in an indirect proof.)

*13. In this figure, AB is a
diameter of the smaller of
two concentric circles,
both with center 0, and
AC and BD are tangent
to the smaller circle.
CO and DO are radii of
the larger circle.
Prove thaI; CD is a diameter
of the larger circle.
(Hint: Drnw AD and CB.)

[sec. 13-4]



441

Definition: In the same circle, or in congruent circles,
two arcs are called congruent if they have the same measure.

Just as in the definition of congruent segments, angles,
triangles or circles, the intuitive idea is that one arc can
be moved so as to coincide with the other.

Theorem 13-8. In the same circle or in congruent circles,
if two chords are congruent, then so also are the corresponding
minor arcs.

I
- I

i
I,

8
1

Proof: We need to show, in the above figure, that if
AB = A'BI, then Aff ~!TR'. By the S.S.S. Theorem, we have

A APB ~ 6 AIB'P' .

Therefore. L P liIi ~P I .~ince n@ = m.L P and mA~ = mL pi,

this means that AS liIi A'B', which was to be proved.

The converse is also true, and the proof is very similar:

Theorem 13-9. In the same circle or in congruent circles,
if two arcs are congruent, then so are the corresponding chords.

That is, in the figure above, if AB = ~', then AB = AlB'.
And if it is the major arcs that are known to be congruent, then
the same conclusion holds.

[sec. 13-4]
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Theorem 13-10. Given an angle with vertex on the circle
formed by a secant ray and a tangent ray. The measure of the
angle is half the measure of the intercepted arc.

s

Proof: By the angle formed by a secant ray and tangent ray
we mean the angle as illustrated in the figure above. We prove
the theorem for the case in which the angle is acute, as in the
figure. We use the notation of the figure for the measures of
the various angles. In A PQR, L Rand L Q have the same
measure y, as indicated, because A PQR is isosceles. Since
mQR = mL QPR, what we need to prove is that x = ~z.

By Corollary 13-2-1, L PQS is a right angle. Therefore

x = 90 - y.

By Theorem 9-13, z + y + Y = 180, so that

z = 180 - 2y.

Therefore 1x = 2'z, which was to be proved.

[sec. 13-4]
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Problem Set 13-4b

FHProve: a. AH ~ FE.
b • 6 AMH ~ 6 BMF.

1. Prove Theorem 13-9: In the same circle or in congruent
circles, if two arcs are congruent, then so are the corre­
sponding chords.

2. In the figure AF - BH.

Prove that AE and BE
trisect LDEC.

3. ABCD
E is
shown

is an inscribed square.
any point of 2, as
in this figure.

4. In the figure, A, B, C, D
oE-+

are on the circle and EF
is tangent to the circle at
A. Complete the following
statements: C

a. LBDC Si'

b. L ADC ~

c. L ACB QI
,...-

d. LEAD is supplementary to

e. LDAB 1s supplementary to

f. L ABC is supplementary to

[sec. 13-4]
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g. LDAE '" ~=-

h. LDBA is supplementary to

i. L ADB is supplementary to

j . L DAC ~

~ +-+
5. In the figure CP and AQ

-are tangents, PQ is a
diameter of the circle. If
mPB = 120 and the radius
of the circle is 3, find
the length of AP.

*6. Two circles are tangent, either internally or externally, at
a point H. Letu be any line through H meeting the
circles again at M and N. Prove that the tangents at
M and N are parallel.

is equidistant
+-+

and PRo

*7. Given: Tangent
+-+

secant PRo ·B
point of ~.

Prove: B
+-+

from PT

+-+
PT and

is the mid-

[sec. 13-4]
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8. Prove the theorem: The
measure of an angle formed
by two secants of a circle
intersecting in the interior
of a circle is one-half the
sum of the measures of the
arcs intercepted by the angle
and its vertical angle.
Given: A circle with... .......
secants AB and CD
intersecting at E.

l( ~ ,.........,.)Prove: mL DEB = ~ mDB + mAC .

(Hint: Draw Be.)

E

9. Prove the theorem: The
measure of an angle formed
by two secants of a circle
meeting in the exterior of
the circle is one-half the
difference of the measures
of the intercepted arcs.
(Hint: See Problem 8.)

10. Verify that the theorem of Problem 9 holds if the words "two
secants" are replaced by "a secant and a tangent" or by "two
tangents."

11. In the figure, let mAE = 70,
mAE = 80, mrn = 150, and K
mL BFC = 55.
Find mBC, ~ mL K,meD,

mL E, mL BAD, mL AGE,
mL DGE, mL ADK.

[sec. 13-4]
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E
12. In the figure, EF is tangent

to the circle at D and AC
bisects LBCD. If mAE = 88
and mCD = 62, find the
measure of each arc and each
angle of the figure.

F£-~---~:------~

b • AP· PC = PD . PB.

13. Given inscribed quadrilateral
ABCD with diagonals inter­
secting at P.

Prove: a. ~ APD ~ ~ BPC.

~ ABD ~ a CAD.
2BD • CD = AD .b.

a.Prove:

14. Given AD tangent to the
circle at A and secant
+-+
ED intersecting the circle
at B and C.

[sec. 13-4]



p

*15. In the figure, quadrilateral ABCD is inscribed in the
~ ~ ~

circle; lines AD and BC intersect in P, lines AB
~ ~ ~
DC intersect in Q; PV and ~ are the bisectors of
LAPB and LAQD respectively.

~ <E--+
Prove: PV 1 QS.

447

and

4--f1--T-~rr----T--==:::3:=;-Q

(Hint: Show mL PRQ = mL QRV. Use theorems developed in
this Problem Set.)

*16. Prove the theorem: If two parallel lines intersect a circle,
they intercept congruent arcs.

Case I
(One tangent ­

one secant)

Case II
(Two secants)

[sec. 13-4]
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13-5. Lengths of Tangent and Secant Segments.

Definition:
then the segment

If the line Qt is tangent to a circle at R,
QR is a tangent segment from Q to the circle.

Theorem 13-11. The two tangent segments to a circle from an
external point are congruent, and form congruent angles with the
line Joining the external point to the center of the circle.

Restatement: If QR

and QS is tangent to C

L PQR ~ L PQS.

c

is tangent to the circle C
- -at S , then QR ~ QS, and

~--+-----~IQ

at R,

Proof: By Corollary 13-2-1, ~ PQR and ~ PQS are right
triangles, with right angles at Rand S. Obviously PQ = PQ
and PR = PS because Rand S are points of the circle. By
the Hypotenuse-Leg Theorem (Theorem 7-3), this means that

6. PQR ~ ~ PQS.

Therefore QR ~ QS, and L PQR ~ L PQS, which was to be proved.

[sec. 13-5]
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The statement of the following theorem is easier to under­
stand if we look at a figure first:

c

\
\
\
\
\ ­.)r .....,,-- \

............ \,," \_...... \

-" \-- \ \
\

The theorem says that given any two secant lines through Q, as
in the figure, we have

QR • QS = QU • QT.

Theorem 13-12. Given a circle C and an external point Q,
let Ll be a secant line through Q, intersecting C in points
R and S; and let L2 be another secant line through Q,
intersecting C in points T and U. Then QR • QS = QU • QT .

Proof: Consider the triangles ~ SQU and A TQR. These

triangles have L Q in common. And L S ~L T, as indicated
in the figure, because both of these angles are inscribed in the
major arc RU. By the A.A. Corollary (Corollary 12-3-1), this
means that

A SQU '" ~ TQR.

Therefore corresponding sides are proportional. Hence

QS QU
~ ="Qir'

and
QR • QS = QU • QT,

which was to be proved.

[sec. 13-5]
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Notice that this theorem means that the product QR. QS is
determined merely by the given circle and the given external
point, and is independent of the choice of the secant line.
(The theorem tells us that any other secant line gives the same
product.) This constant product is called the power of the point
with respect to the circle.

The following theorem is going to say that in the figure
2be low, QR. QS = QT .

Theorem 13-13. Given
and a secant line through
Rand S. Then

T Q

a tangent segment QT to a circle,
Q, intersecting the circle in poin~

2QR.QS=QT.

The main steps in the proof are as follows. You should find
the reasons in each case.

(1)

(2)

(3)

(4 )

( 5)

( 6)

mL S = ~ mTH.
1 ..-...mL RTQ = 2' mTR.

L S ~ L RTQ.

/). QRT '" /). QTS.
QR QT
QT =~.

QR . QS = QT2.

[sec. 13-5]
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The following theorem is a further variation on the preceding
two; the difference is that now we are going to draw two lines
through a point in the interior of the circle. The theorem says
that in the figure below, we always have

QR.QS = QU· QT.

The main steps in the proof are as follows: You should find the
reason in each case:

(1)

( 2)

(3)

(4)

( 5)

L S ~ L T.

L SQU QE L TQR.

/:). SQU '" /:). TQR.
QS QU
QT = 'QR.

QR • QS = QU • QT.

For purposes of reference, let us call this Theorem 13-14.
Write a complete statement of the theorem. That is, write a
statement that can stand alone, without a figure.

[sec. 13-5]
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Problem Set 13-5

~~ ~

1. AC, CE and EH are

tangent to circle 0 at
B, D, and F respectively.

Prove: CB + EF = CEo

cr----"""""""~oo::::-----. E

~ ~

2. Secants CA and CE
intersect the circle at

C
A, B, and D, E, as

given in this figure.
If the lengths of the

segments are as shown,

find x.

.+--+
3. In this figure AB is

tangent to the circle at
B~

A and secant BW inter-
sects the circle at K
and W. If AB= 6 and

WK = 5, how long is BK?

[sec. 13-5]
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5. AB and BC are tangent to
circle 0 at A and C,
respectively, and ~ ABC = 120.
Prove that AB + BC = OB.

4. Given a circle with inter­
secting chords as shown and

with x < w, if AB = 19,
find x and w.

453

6. Given: The sides of quadri­
lateral CDRS are tangent
to a circle at L, M, N,
P as in the figure.
Prove: SR + CD = SC + RD.

7. In a circle a chord of
center of the circle.
of the circle.

c

o
length 12 is 8 inches from the
Using Theorem 13-14, find the radius

8. Secants and segments are
as indicated. Find the
length of AB.

A

[sec. 13-5]
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9. In the figure, CD is a
tangent segment to the circle
at D and AC is a segment
of a secant which contains
the center of the circle.
If CD = 12 and CB = 4,
find the radius of the circle.

10. If two tangent segments to a circle form an equilateral tri­
angle with the chord having the points of tangency as its
end-points, find the measure of each arc of the chord.

11. Show that it is not possible
for the lengths of the segments
of two intersecting chords to
be four consecutive integers.

*12. Prove that if two circles
intersect, the common
secant bisects either
common tangent segment.

13. If a common tangent of two circles meets the line of centers
at a point between the centers it is called a common internal
tangent. If it does not meet the line of centers at a point
between the centers it is called a common external tangent.

[sec. 13-5]

*l?



455

~ ~

In the figure AB is a common internal tangent and CD is
a common external tangent.

a. In the figure above, how many common tangents are
possible? Specify how many of each kind.

b.

c.

d.

e.

If the circles were externally tangent, how many tangents
of each kind?

If the circles were intersecting at two points.

If the circles were internally tangent?

If the circles were concentric?

*14. Prove: The common internal
tangents of two circles
meet the line of centers
at the same point.
(Hint: Use an indirect
proof. )

*15. Prove that the common tangent segments of common internal
tangents are congruent. Use figure of Problem 14.

[sec. 13-5]
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16. The radii of two circles
have lengths 22 and 8
respectively and the
distance between their
centers is 50. Find the
length of the common
external tangent segment.
(Hint: Draw a perpendicu­

lar through Q to AP.)

17. Two circles have a common external tangent segment 36
inches long. Their radii are 6 inches and 21 inches
respectively. Find the distance between their centers.

18. The distance between the
centers of two circles
having radii of 7 and 9
is 20. Find the length
of the common internal
tangent segment.

I
I
I
I
I
I
I
I
I•

Standing on the bridge of
a large ship on the ocean,
the captain asked a new
young officer to determine
the distance to the horizon.
The young officer took a
pencil and paper and in a
few moments came up with an
answer. On the paper he had written the formula d =~~
miles. Show that this formula is correct approximately
where h is the height in feet of the observer above the
water and d is the distance in miles to the horizon.
(Assume the diameter of the earth to be 8000 miles.)

*19.

[sec. 13-5]
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Review Problems

1. For circle 0,

a. BC is a

b. AD is a
+--+

c. AC is a

d. OA is a
+--+

e. AX is a

f. ITa is a X

g. ADO is a

h. L BCA is an
A

i. L COD is a

2. Given: In the figure,
circle 0 has diameter

AF II - mL A = 55.AB. OH,
Find mBH and mAF.

B

is a diameter
----+C. XY bisects

3. Given: AB
of circle

L AXB .

Prove: Cy 1 AB.

(Hint: Find mL AXY.)
AtJ-----\------t.......----~IB

y



4. Indicate whether each of the following statements is true
or false.

a. If a point is the mid-point of two chords of a circle,
then ~he point is the center of the circle.

b. If the measure of one arc of a circle is twice the
measure of a second arc, then the chord of the second
arc is less than twice as long as the chord of the first
arc.

c. A line which bisects two chords of a circle is
perpendicular to each of the chords.

d. If the vertices of a quadrilateral are on a circle,
then each two of its opposite angles are supplementary.

e. If each of two circles is tangent to a third circle,
then the two circles are tangent to each other.

f. A circle cannot contain three collinear points.

g. If a line bisects a chord of a circle, then it bisects
the minor arc of that chord.

If PR
point

LpQR

h. is a diameter
in the interior
is obtuse.

of circle
of circle

o
o

and Q

not on
is any
PR, then

i. A tangent to a circle at the mid-point of an arc is
parallel to the chord of that arc.

j. It is possible for two tangents to the same circle to
be perpendicular to each other.

+--+
5. Given: In the figure BX

is tangent to circle 0
at B. AB = AC. mCB = 100.
Find mL C and mL ABX. A
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F------iE

6. Given: Circle C with- ~ ~ +-+ p
EC 1 PQ, HN II PQ, and
----+
HR tangent to circle C
at H.

Prove: mHE = mL RHN.
(Note: The circle may
be considered to represent
the earth, with PQ the

earth's axis, L RHN the
angle of elevation of the
North star, and rnHE the
latitude of a point H.)

7. A hole 40 inches in diameter is cut in a sheet of plywood,
and a sphere 50 inches in diameter is set in this hole.
How far below the surface of the board will the globe sink?

c

8. A wheel is broken so that only a portion of the rim remains.
In order to find the diameter of the wheel the following
measurements ~re made: three points C, A, and Bare

- -
taken on the rim so that chord AB ~ chord AC. The chords
AB and AC are each 15 inches long, and the chord BC
is 24 inches long . Find the diameter of the wheel.

9. Diameter AD of circle C contains a point B which lies
between A and C. Prove that BA is the shortest segment
joining B to the circle and BD is the longest .

*10. Assume that the earth is a
sphere of radius 4,000
miles. A straight tunnel
AB 200 miles long connects
two points A and B on
the surface, and a ventilation
shaft CD is constructed at
the center of the tunnel.
What is the length (in miles)
of this shaft?

measurements ~re made: three points C, A, and Bare
~_ , .. ,,-,- __..t .... 'L... _ .... _'- __...:I 1\ "1"") ~ _'-.- ...... ...:1 "" ",..""",. _ -'- - _ ...::1 -
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11. Given: Circles C and D

internally tangent at P
~

with common tangent AP.
~

AX is tangent to circle C
~

at X and AY is tangent

to circle D at Y.

Prove: AY = AX.

p

~

*12. In the figure, AP is

tangent to the circle at

A. AP = PX = XY. If

PQ = 1 and QZ = 8
find AX.

*13. Given: P:B, 'OC and a y

are 1200 arcs on a circle

and P is a point on fi. p

Prove: PA + PB = PC.

(Hint: Consider a parallel
-

to PB through A inter-

secting PC in R and the

circle in Q. )



Chapter 14

CHARACTERIZATION OF SETS. CONSTRUCTIONS.

14-1. Characterization of Sets.--
In Chapter 6 we showed how a certain figure, the perpendicu-

lar bisector of a segment, could be specified in terms of a
characteristic property of its points, namely, that each of them
is equidistant from the end-points of the segment.

In Chapter 13 a circle (and a sphere) was defined in terms
of a characteristic property of its points, namely, that each of
them is at a given distance from the center.

Such characterizations or descriptions of a point set
(geometric figure) in terms of a cornmon property of its points
are often very useful, and we shall spend some time discussing
them.

What do we mean when we say that a set is characterized by
a condition, or a set of conditions, imposed on its points? In
the first place, we certainly mean that every point of the set
satisfies the conditions. But this is not enough, as we cah
readily see from an example. Suppose the condition is "in plane
E ,at distance 4 from point Q in E". A semi-circle in E
with center Q and radius 4 has all its points satisfying
this condition. So does any other suitable arc.

Every point in AB
units distant from
not every point 4
d1stant from Q 1s

1s 4
Q, but
un1ts,....
1n AB.

8
\

\
J

/
A......... /-_/
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The obvious trouble with such examples is that they leave
out some points that satisfy the conditions. We want the whole
circle, not just a part of it. In general, we want our set to
contain all points that satisfy the conditions. Another way of
saying this is that every point that satisfies the conditions is
a point of the set. This is the second part of the meaning of
characterization.

Let us put the two parts together for future reference:

(1) Every point of the set satisfies the conditions,
(2) Every point which satisfies the conditions is a point

of the set.
If you refer to Theorem 6-2, you will see that the restate­

ment of this theorem is worded in exactly this form.

Problem Set 14-1

These problems are proposed for discussion. No proofs are
expected. In some of the problems in this set we speak of the
distance from a point to a figure. This is defined as the
shortest distance from the point to any point of the figure.

Illustrative example: Describe and sketch the set of points
which are one inch from a given line.

a. In a plane.
b. In space.

(.j----f)

t •
I in, Given line •
lin

* .,

The set consists of
two lines, each one ••------
inch from the given
line and parallel to •.------
it.
The set consists of
all points of a cylin­
drical surface with
one inch radius and
the given line as axis.

b.

a.

Answer:

[sec. 14-1]
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is characterized by the condition
where C is a given point?

in a given plane E is characterized
CP = 3 inches, where C is a given

1.

2.

3.

What set of points P
that CP = 3 inches,

What set of points P
by the condition that
point of E?

Describe and sketch the set of points in a plane E
are equidistant from each of two parallel lines in

which
E.

4. E is a plane and C is a fixed point 3 inches from the
plane. What is the set of points in E whose distance from

C is

a. 5 inches? c. 2 inches?

b. 3 inches?

5. E is a plane. L and M are two intersecting lines in E.

a.

b.

How many points of E are 2 inches from L and 2

inches from M?

Sketch the set of points of E whose distances from

L and M are each at most one inch.

6. E is a plane. A and B are two points in E which are
4 feet apart. What is the set of points of E which are

a. 4 feet from A and 4 feet from B?

b. At most 4 feet from A and at most 4 feet from B?

c. 2 feet from A and 2 feet from B?

d. 1 foot from A and 1 foot from B?

7. AB is a segment of length 3 inches in a plane E.
Describe and sketch the set of those points of E which are
one inch from AB.

[sec. 14-1]
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14-2. Basic Characterizations. Concurrence Theorems.
For convenience in reference we restate here some of the

characterizations we have already met. Some of these are
definitions and some are theorems.

1. A sphere is the set of points at a given distance from
a given point.

2. A circle is the set of points in a given plane at a
given distance from a given point of the plane.

3. The perpendicular bisecting plane of a given segment
is the set of points equidistant from the end-points
of the segment.

4. The perpendicular bisector, in a given plane, of a
given segment in the plane, is the set of points in
the plane equidistant from the end-points of the segment.

Problem Set 14-2a

1. Describe the set of points at a given distance from

a. a given point.

b. a given line.

c . a given plane.

d. each of two intersecting planes.

e. each of two given points.

f. a segment.

2. Describe the set of points in a plane equidistant from

a. two points.

b. two parallel lines.

c. two intersecting lines.

d. three non-collinear points.

[sec. 14-2]
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3. Describe the set of points equidistant from

a. two given points.

b. two parallel lines.

c. two parallel planes.

d. two intersecting planes.

e. a plane and a line perpendicular to it.

4. Indicate whether each statement is true or false.

a. Given a line u and a plane E there is always a plane

1. containing u and perpendicular to E.

2. containing u and parallel to E.

b. Given two non-intersecting lines in space, there is
always a plane containing one and

1. parallel to the other.

2. perpendicular to the other.

•
A

•
s5. The Smiths, the AlIens and

the Browns live in homes
represented by these three
points. They plan to erect
a flagpole at a point which
will be equidistant from
their back doors. Tell how
to find the point where
they should place the pole.

6. Describe the set which consists of the vertices of all
isosceles triangles haVing AB as base.

[sec. 14-2]
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7. Find a point in the plane equally distant from three non­
collinear points. Why must the points be non-collinear?

8. What is the set of points which are equidistant from two
given points and at the same time equidistant from two
given parallel planes? (Hint: Consider the intersection
of the set of points representing the separate conditions.
There may be more than one solution depending on the positions
of the given elements.)

*9. What is the set of points in a plane which are within four
centimeters of one or the other of two points in a plane
which are four centimeters apart?

10. Let L and M be any two intersecting lines. Choose any
two coordinate systems on these lines (not necessarily with
o at the point of intersection). Draw a number of lines
through corresponding points; that is, points with the same
coordinates. For example, see Figure A.
If you put in enough lines, the figure should appear to
include a nearly smooth curve. Experiment With this con­
struction, trying different pairs of lines and different
coordinate systems.
The construction is quite general, but some choices of co­
ordinate systems on the two lines will lead to more satis­
fying results on your paper than others.

L

Figure A.
[sec. 14-2]



467

a given distance
Consider the three

11. What is the set of points in a plane at
from a square of side 2 in the plane?
cases d > 1, d = 1, d < 1.

*12. F and G are two points in a plane E. FG = 4. Sketch
the set of those points P of E, such that PF + PG = 5.

Another characterization you can include in the above list
is the following theorem:

Theorem 14-1. The bisector of an angle, minus its end-point,
is the set of points in the interior of the angle equidistant from
the sides of the angle.

Restatement: Let AD bisect L BAC.
~

(1) If P is on AD but P I A, then P is in the
interior of L BAC and the distance from P to
~ +-+
AB equals the distance from P to AC.

(2) If P is in the interior of LBAC and the
~

• distance from P to AB equals the distance
from P to At, then P lies on Jill and
pIA.

A~-----------"""--""'----+
C N

[sec. 14-2]
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(1 )
----+ - +-+ - +-+

Given: P is on AD, P I A, PM 1 AB, PN 1 AC.

To prove: P is in the interior of L BAC; PM = PN.

1. P is in the interior
of L BAC.

2. AP ~ AP.

3. L PAM se L PAN.
4 • L PMA ~ L PNA.
5. Ii PMA ~ Ii PNA.
6. PM = PN.

1.

2.

3.
4.
5.
6.

~

P is on AD, P I A, and
definition of ,bi sect or of
an angle.
Segment is congruent to
itself.
Definition of bisector.
Right angles are congruent.
S.A.A. Theorem.
Corresponding parts.

\
\

-- ---1
P

---- I__----- I
~

A~~----------..--.....--.
C N

is in the interior of LBAC,
PM = PN.

(2) Given: P
- ~

PN 1 AC,

To prove: P I A;
~

P lies on AD.

- ~

PM 1 AB,

1. piA. 1. Definition of interior of
an angle.

2. PM ~ PN. 2. Definition of congruent
segments.

3. PA S; PA. 3. Segment is congruent to
itself.

4. L PMA and L PNA are 4. Given.
right angles.

5. Ii PMA ~ Ii PNA. 5. Hypotenuse-Leg Theorem.
6. L PAM ~ L PAN. 6. Corresponding parts.
7. P lies on P$. 7. Definition of bisector of

an angle.

[sec. 14-2]
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As a first application of set characterization we will prove
three concurrence theorems analogous to Theorem 9-27 on con­
currence of medians.

Theorem 14-2. The perpendicular bisectors of the sides of a

triangle are concurrent in a point equidistant from the three
vertices of the triangle.

Proof: Let Ll, L2 and L3 be the perpendicular bisectors

of the three sides AB, AC and BC. rf Ll and L2 were
+-+ itparallel then AB and would be parallel. (Why?) Therefore,

Ll and L2 intersect in a point P.

Ll. And AP = CP,
By Theorem 6-2,
is on all three of

which was to be

AP = BP, because P is on
L2. Therefore BP = CPo

P is on L3• Therefore P
bisectors and AP = BP = CP,

By Theorem 6..2,
because P is on
this means that
the perpendicular
proved.

[sec. 14-2]
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Corollary 14-2-1. Tbere is one and only one circle through
three non-collinear points.

Corollary 14-2-2. Two distinct circles can intersect in at
most two points.

Suggestion for proof: If two circles could intersect in
three points, the three points could be either collinear or non­
collinear. Use Theorem 13-2 and Corollary 14-2-1 to show that
this is impossible in each case.

Theorem 14-3.
current.

The three altitudes of a triangle are con-

Up to now, we have been using the word altitude mainly in
two senses: It means (1) the perpendicular segment from a vertex
of a triangle to the line containing the opposite side or (2) the
length of this perpendicular segment. In Theorem 14-3, we are
using the word altitude in a third sense: It means the line that
contains the perpendicular segment.

Theorem 14-3 is easy to prove - if you go about it in exactly
the right way.

o A L,
~-----+---- ------it- ----7 E

, I /

" I /, I /
~" I X

, I //
, I /

I /
1 /

"* I x
'I /" /+"V/

F

[sec. 14-2]
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Given Ii ABC, we draw through each vertex a line parallel to the
opposite side. These three lines determine a triangle Ii .DEF.
Opposite sides of a parallelogram are congruent. ' Therefore
BC = AE and BC = DA. Therefore DA = AE. Therefore the altitude
from A, in ~ ABC, is the perpendicular bisector of DE. (ThiS
is Ll in the figure.) For the same reasons, the other two
altitudes of Ii ABC are the perpendicular bisectors of the sides
of Ii DEF. Since the perpendicular bisectors are concurrent, so
also are the three altitudes.

Theorem 14-4. The angle bisectors of a triangle are con­
current in a point equidistant from the three sides.

B

Proof: Let P be the intersection of the bisectors JUt
~ ~ ~

and BE. By Theorem 14-1, P is equidistant from AB and AC,
because P is on the bisector of L A. And P is equidistant

+-+ - ~
from BA and BC, because P is on the bisector of L B.

~ +-+
Therefore P is equidistant from AC and BC. Therefore, by
Theorem 14-1, P is on the bisector of L C. Therefore, the
three bisectors have the point P in common and P is equidistant
~ +-+ +-+

from AB, AC and BC, which was to be proved.

[sec. 14-2]
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Problem Set 14-2b

o

A line intersects the sides of LABC in P and Q. Find
~

a point of PQ which is equally distant from the sides of

the angle.

2. Imagine this figure as a
city park. The park
commission plans to place
a drinking fountain at a
point which shall be A

~

equidistant from AS and
~

BC and also equidistant
from D and C. Explain
how to find this point.

1.

--.--,
/

/------------A~--------------.;¥---- ..

Prove the following theorem:
Given LDAE and B, C

~ ~

points on AD, AE, between
A and D and A and E
respectively, then the
bisectors of the angles
BAC, DBC, BCE, are
concurrent.

3.

c E

4. Given the three lines determined by the sides of a triangle,
show that there are exactly four points each of which is
equidistant from all three lines.

[sec. 14-2]

Given LDAE and B, C
~ ~
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5. Mark points M and N 2 inches apart and draw circles with
radii ~ inch, 1 inch, 2 inches and 3 inches using
both M and N as centers each time.
Note that some of the circles with center at M intersect
circles with center at N, but that there are two kinds of
situations in which they do not. Describe these two
situations.

6. Sketch several different quadrilaterals, and in each sketch
the bisectors of each of the four angles. From your sketches
does it appear that these angle bisectors are always con­
current? Can you think of any special type of quadrilateral
whose angle bisectors are concurrent? Can you think of a
general way of describing those quadrilaterals whose angle
bisectors are concurrent? (Hint: If the angle bisectors
are concurrent, the point of concurrency is equidistant from
all four sides.)

7. A quadrilateral is cyclic if its four vertices lie on a
circle. Prove that the perpendicular bisectors of the four
sides and the two diagonals of a cyclic quadrilateral are
concurrent.

8. What is the set of points which are the vertices of right
triangles haVing a given segment AB as hypotenuse?

14-2. Intersection of Sets.--
Consider the following problem:

many points are there which are at a
given point A of E and which are
given points Band C of E?

Such a point P is required to satisfy two conditions;

(1) AP = r, (2) BP = CPo

Consider these conditions one at a time. If P satisfies (1)
then P can be anywhere on the circle with center A and radius
r. In other words, the set of points satisfying (1) is this circle.

[sec. 14-3]

circle. Prove that the perpendicular bisectors of the four
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Similarly, by Theorem 6-2, the set of points satisfying (2) is a
line, the perpendicular bisector of BC. If P is to satisfy
both conditions it must lie on both sets; that is, P must be a
point of the intersection of the two sets. Since the intersection
of a line and a circle can be two points, one point, or no points,
the answer to our problem is two, one, or none, depending on the
relative positions of A, Band C and the value of r. The
method illustrated here is a very useful one, since it enables us
to consider a complicated pr0blem a piece at a time and then put
the pieces together as a final step. If you refer to the proofs
of Theorems 14-2 and 14-4 you will see that this was the basic
method of the proof. In Theorem 14-2, for example, we found the
point P as the intersection of the set Ll defined by PA = PB
and the setr L2 defined by PA = PC.

Mos; of the constructions which are to be discussed in the
next sections are based on the method of intersection of sets.

Problem Set 14-3

1

1
1

1
I

i

is a segment 6 inches long
location of points P in E,

inches from B.

1. AB

the

5

in a plane E. Describe
4 inches from A, and

2. AB

are
CD
are

is a segment 4 inches long in a
points of E such that D is on
is 3 inches long. Describe the
equidistant from A and B, and

plane E. C and D

AB, CD 1 AB and
set of points P which

5 inches from C.

*3. On a circular lake there are
three docks, A, B, C.
Draw a diagram indicating
those 'points on the lake
which are closer to A
than to B or C.

[sec. 14-3]
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4. Are there any points in a plane that satisfy the following
conditions? If there are, tell how many such points and how
each is determined. Make a sketch to illustrate your answer.

Given BC = 6 inches.

a. 4 inches from B and 3 inches from C.

b. 10 inches from B and 10 inches from C.

c. 10 inches from B and equidistant from C and B.

d. 2 inches from B and 4 inches from C.

14-4. Constructions~ Straight-edge and Compass.
A practical problem of some importance is that of drawing a

figure with accuracy. This is the job of a draftsman, and he uses
many instruments to facilitate his work, such as rulers, compasses,
dividers, triangles, T-squares, and a host of other devices.

The corresponding geometric process is generally called
"constructing" rather than "drawing", but the idea is the same.
We allow ourselves the use of certain instruments, and the basic

problem is to show how, with these instruments, we can construct
various figures.

Of course our constructions will depend on the instruments
we use. Thus far in our text we have been considering the ruler
and the protractor as our fundamental instruments, although we
would have had to introduce a compass in Chapter 13 to construct
circles. Various other combinations of instruments have been
considered, but the most interesting is still the combination
used by the ancient Greeks, the straight-edge and compass. We
shall devote the rest of this chapter to constructions with these
instruments.

A straight-edge is simply a device to draw lines. It has no
marks on its edge and so we cannot measure distances with it.
With a compass we can draw a circle with a given center and a
given radius. We have no means of measuring angles.

[sec. 14-4]
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Most of our constructions will depend on the intersection
properties of two lines, of a line and a circle, or of two circles.
The first of these three cases has been considered in such places
as Theorem 3-1, the Plane Separation Postulate and the Parallel
Postulate. The case of a line and circle was taken care of by
Theorem 13-2. But we still have the case of two circles to
consider. As might be expected this is the most complicated of
the lot, both to state and to prove. In fa~t, the proof is so
complicated that we do not give it here at all, but put it in
Appendix IX. Here is the theorem:

Theorem 14-5. (The Two Circle Theorem.) If two circles have
radii a and b, and if c is the distance between their centers,
then the circles intersect in two points, one on each side of the
line of centers, provided each one of a, b, c is less than
the sum of the other two.

Some of the situations in which the inequalities stated in
the theorem are all satisfied and the circles intersect are
illustrated below:

[sec. 14-4]
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That the inequality condition imposed on a, b, c is important
is shown by these cases in which one of the inequalities stated
in the theorem is not satisfied and the circles do not intersect:

c > a + b b > a + c a > b + c.

14-5. Elementary Constructions.
In this section we show how to do various simple constructions

which will be needed as steps in the more difficult ones. All
these constructions will be in a given plane. Constructions will
be numbered in the same way as theorems.

Construction 14-6. To copy a given triangle.

Suppose we have given Ii ABC. We want to construct a tri­
angle Ii. DEF, congruent to Ii ABC, with the side DF lying on
a given ray with D as end-point.

0"·----------+

[sec. 14-5]
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Step 1.
D and radius
and DF = AC.
circle.

With the compass, construct a circle with center at
AC. This intersects the given ray in a point F,
In the figure, we show only a short arc of the

•o I
I

/
I

Step 2. With the compass, construct a circle with center
at D and radius AB.

Step 3. Construct a circle with center at F and radius
BC.

[sec. 14-5]
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These two circles seem to tntersect; and by the Two Circle
Theorem they must intersect, because each of the numbers AC, AB,
and BC is less than the sum of the other two, by Theorem 7-7.

Either of the points E, E' will do as the third vertex of
our triangle. We draw the sides with our straight-edge, and we
know by the S.S.S. Theorem that 6 DEF ~ ~ ABC.

You may remember that in proving the S.S.S. Theorem we had
the problem of copying a triangle. It is worth while to review
the old method and compare it with the new one. (In the proof
of the S.S.S. Theorem we copied the triangle with ruler and
protractor, using the S.A.S. Postulate to verify that the con­
struction really worked.)

Oonstruction 14-7. To copy a given angle.

F
D~""""'---~---·

cA

Here we hav~ given an angle with vertex at A, and we have
given a ray with end-point at D. We want to construct the two
angles, having the given ray as a side, congruent to the given
angle.

With A as center, we construct an arc of a circle inter­
secting the sides of the angle in points Band C. With D as
center construct a sufficiently large arc of a circle of the same
radiUS, intersecting the given ray in F. With F as center and
BC as radius construct arcs of a circle, intersecting the circle

---+ ....-..+
with center D in E and E'. Construct ray DE and ray DE'.
By S.S.S. Theorem ~ DEF '" 6 ABC, and hence L EDF ~ L BAC.
Similarly, L E' DF ~. L BAC.

[sec. 14-5]
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Problem Set l4-sa

1. For your convenience, we give AB 9 cm. long.

A....1 --'---'--......L.-_........_ ........_...L...._...L...._..J....----l1 B

Construct a triangle with sides of the following lengths:

a. 5 cm. , 6 cm. , 8 cm.

b. 7 cm, , 5 cm. , 3 cm.

c. 3 cm. , 3 cm. , 3 cm.

d. 4 cm. , 7 cm. , 3 cm.

2. Make a triangle ABC on your paper and construct ~ABIC

congruent to ~ ABC using AC as a side in each and the
A.S.A. Theorem as your method.

as vertex construct

aboutMH

L Q.HM ~ L B.

ABC and a segment
as vertex constructMWith

Draw on your paper a triangle
-twice as long as AB.

L HMQ ~ LA. With H

L Q ~ AB_ =
- MH - --- ----

3.

4. a. Prove that it is always possible to construct an
equilateral triangle having a given segment as one of
its sides.

b. Under what conditions is it possible to construct an
isosceles triangle having one given segment as its side
and another given segment as its base?

5. a. Construct an equilateral
triangle with x as the
length of one side. • x •

b. Construct an isosceles
triangle with y as
the length of the base
and x as the length

of one of the congruent sides.

•
y

•

[sec. 14-5]

L HMQ ~ L A. With H as vertex construct L Q.HM ~ L B.
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To construct the perpendicular bisector

(Question:
the circles will
particular value
one value of r

of a given srgment.

Given a segment AB.

A~--+---~B

Step 1. Using an appropriate radius r., construct a circle
with center at A and a circle with center at B. If r is
chosen in a suitable way, these two circles will intersect in
two points P and Q, lying on opposite sides of AB.

What condition should r satisfy, to ensure that
intersect in this way? Can you think of a
of r that is sure to work? Of course, only
is needed for the construction.)

~ ~

Step 2. Construct the line PQ, intersecting AB at R.
We need to show that this line is the perpendicular bisector of
AB. By Theorem 6-2, Rand S, being each equidistant from A
and B lie on the perpendicular bisector of AB. Since two

~

points determine a line, PQ is the perpendicular bisector.

Corollary 14-8-1. To bisect a given segment.

[sec. 14-5]
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Construction 14-9. To construct a perpendicular to a given
line through a given point.

Step 1.
Draw a circle
than PQ. L
(namely, Q)
two points R

Given P and L. Let Q be any point of L.
with center P and radius r, where r is greater
then contains a point of the interior of the circle
and by Corollary 13-2-6 intersects the circle in

and S.

p

....-+- -..-----1------. L+--w::;__--+--~f---_.L

R Q p

T

s

Step 2. With R as center and radius greater than ~ RS
construct a suitable arc of a circle. With S as a center and
the same radius,
in T. Then, as
equidistant from

construct an arc of a circle intersecting this
in Construction 14-8, P and T are each

~ +-+
Rand S, and hence, PT 1 RS.

[sec. 14-5]
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Problem Set 14-5b

1. Construct an isosceles right triangle.

2.

3.

4.

5.

Construct a square in which
a diagonal is congruent to
AC.

Construct a rhombus whose
diagonals are congruent
to AB and CD.

Construct a triangle given
any altitude h and the
segments d and e of
the side it intersects.

Construct a parallelogram
whose diagonals are con­
gruent to AB and CD
and which determine a 600

angle.

A 11----------11 C

C 1-1--------110

A11-------------118

h

d

e

AII-------------lIB

CII-----------tl 0

6. Construct a segment whose length is
- -
AB and CD in Problem 5. (Hint:
Problem Set 13-4a.)

[sec. 14-5]
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Refer to Problem 10 of

",r-.-----------,ID
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Construction 14-10. To construct a parallel to a given line,

through a given external point.

p.

Step 1. Take any point Q of the line, and join P to Q
by a line.

+----
S

R

step 2. Now construct L QPS, congruent to L PQR, with
Sand R on opposite sides of ~. Step 2 is an example of

~ ~

Construction 14-7. Then PS is parallel to QR, as desired.

Construction 14-11. To divide a segment into a given number

of congruent segments.

/
/ .;<

/ /
/ /

/ /
/ /

/ /
A 18 :°5

[sec. 14-5]
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Given AB, we want to divide AB into n congruent segments.

(In the figure, we show the case n = 5.)
~

Draw any ray starting at A, not on the line AB.

A, layoff n congruent segments API' PlP2, ... ,

end to end, on the ray. (The length does not matter,

Step 1.

Starting at

as long as they have the same length; we simply choose PI at

random, and then use the compass to layoff PlP2 ~ API' and so

on. )

Step 2. Join Pn to B by a line. Through the other

~ - 1·

congruentn

... ,Q2'

intoABdivideQI ' Q2 ' .•. , ~ - 1

(See Corollary 9-26-1.)segments.

The points

points PI' P2, •.. , P construct lines parallel ton - 1
(This can be done; it is Construction 14-10.)

~

These lines intersect AB in points Ql'

Problem Set 14-5c

1. Construct a parallelogram

with two sides and included

angle congruent to AB, FH,

and LQ.

AIt-------------;I B

F 11---------11 H

[sec. 14-5]
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2. This drawing shows how Bob
Langford used a sheet of
ruled paper to divide a
segment AD in 9 parts
of equal length.. Explain
how he could have divided
it into other numbers of
congruent parts. (Assume
that the lines of paper
are evenly spaced.)

3. This figure illustrates
still another method for
dividing a segment into
any number of congruent

~

parts. Here AC is any
convenient line, and
~

BD is drawn parallel to
~

AC. The same number of
congruent segments is
marked off on each, and
the corresponding points
are joined. Prove that
the method is correct.

A 0
I /
\ /
\ /
\ /
\ /
\. /
'\. /

"- /
'vi
B"""-... --

B~-~T------''''---~--~A

c

4. If the length of AB is
the perimeter of an
equilateral triangle,
construct the triangle.

AII-----------~IB

[sec. 14-5]
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5. Given AB, construct an
isosceles triangle in which
AB is the perimeter and
in which the length of
one of the congruent
sides is twice the length
of the base.

AI..-------------;IB

6. This figure illustrates
another method of making
one line parallel to
another which is useful
in outdoor work. Explain
the method and Show that
it is correct.

b

To construct: 6 ABC so
that AB = C J AC = b,
median AT = m.

7. Divide a given line segment-AB into two segments whose a
ratio is that of two given b
segments of lengths a and
b. (Hint: Use a construction AI 18

similar to that of Construction
14-11.)

*8. Construct a triangle ABC,
given the lengths of AB,
AC, and the median from B

--
A to BC.

Given: Lengths c, b, m.

[sec. 14-5]
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*9. Given x as the median to
one of the congruent sides
of an isosceles triangle in
which the medians to these
sides are perpendicular to
each other. Construct the
triangle.

*10. Given a circle C tangent

to a line m at K.
Construct a circle tangent
to C and also tangent to
m at a given point M.
(Hint: Analyze the diagram
below in which P is the
center of the required
circle, N the point of

+-+
tangency and LN the
common tangent at N.)

x

K

m

M

-~R

m

K L M

[sec. 14-5]
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*11. Construct a common external tangent to two given circles.

*12. Given a triangle ABC in which each angle has measure less
than 120, construct a point P in the plane of the triangle

such that mL APB = ~ BPC = ~ APC.

*13. The figure shows how a segment can be bisected using a line
parallel to it, by means of a straight-edge only. That is,-. ~
given line m II BC, take Q as any point not on BC or m,
and draw QB and QC meeting mat A and D. Then draw
1m and At: which meet at P. Then QP bisects ~ at
M. Prove this.

m

(Hint:
ME ND
MC = NA'

*14.

The proof will include these three proportions:

ME MC ME MC)
NA = ND and MC = M'B'

Given two parallel lines m and n, at a distance d from

each other, find the set of all points P such that the

distance from P to m is k times the distance from P

to n, where k is a given positive number.

[sec. 14-5]
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14-6. Inscribed and Circumscribed Circles.

Definitions: A circle is inscribed in ~ triangle, or the

triangle is circumscribed about the circle, if each side of the- , ' .

triangle is tangent to the circle. A circle is circumscribed
about ~ triangle, or the triangle is inscribed in the circle if
each vertex of the triangle lies on the circle .

•

A iL---:::::::-...:::::..-----~

In this figure 6 ABC is inscribed in C2 and circumscribed

about Cl. Cl is inscribed in 6 ABC and C2 is circumscribed
about 6 ABC.

In this section we will learn how to construct with straight­
edge and compass the inscribed circle and the circumscribed
circle, for any triangle.

[sec. 14-6]
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Construction 14-12. To circumscribe a circle about a given
triangle.

A

Step 1. Construct the perpendicular bisectors of two sides
of the triangle. This can be done by two applications of
Construction 14-8. The two lines meet at a point P. By
Theorem 14-2, P also lies on the perpendicular bisector of the
third side. By Theorem 6-2, this means that P 1s equidistant
from the three vertices A, B, and C, that is, AP = BP = CPo
Construct the circle with center at P, passing through A.
Then the circle also passes through Band C.

Construction 14-13. To bisect a given angle.

A"*=----------t'::~-----·

Step 1. Construct any circle with center at
the sides of the given angle in points Band C.

[sec. 14-6]

A, intersecting
Then AB = AC.

Construction 14-8. The two lines meet at a point P. By



92

A.

B and at C,
By the Two-Circle

one on each side of

Step 2. Construct circles with centers at
and with the same radius r, where r > ~ BC.
Theorem these circles intersect in two points,
~

BC. Let P be the point on the side opposite to
~

Step 3. Construct the ray AP. By the S.S.S. Theorem,
6 BAP ~ 6 CAP. Therefore L BAP ~ L CAP, as des ired.

Construction 14-14. To inscribe a circle in a given triangle.

A

B c

be the point
P also lies

LB, and let P
By Theorem 14-4,

Step 1. Bisect LA and
where the bisectors intersect.
on the bisector of L C.

Step 2. Construct a perpendicular PD, from P to BC.
Construct a circle with center at P, passing through D. We
need to show that the circle is tangent to all three sides of

6 ABC.

(1) The circle is tangent to BC, because BC is per­
pendicular to the radius PD. (See Corollary 13-2-2.)

[sec. 14-6]



is equidistant from AB and BC.
the point E which is the foot of

AB. Therefore the circle is

(2) By Theorem 14-1, P
Therefore the circle contains
the perpendicular from P to
tangent to AB.

The proof of tangency for the third side is exactly the same.

Notice that if all you want is a fairly convincing drawing
you can merely construct the two bisectors, put the point of the
compass at P, and then adjust the compass so that its pencil­
point will barely reach BC. You have to drop the perpendicular
PD, however, to get a construction which is theoretically exact.

14-7. The Impossible Construction Problems of Antiquity.
The ancient Greeks disrovered all of the straight-edge-and­

compass constructions that you have studied so far, together with
a large number of more difficult ones. There were some con­
struction problems, however, which they tried long and hard to
solve, with no success whatever.

(1) The angle-trisection problem.

cA'-:::;;~--------------·

~

Given an angle L BAC, we want to construct two rays AD
~

and AE (with points D and E in the interior of LBAC)

which trisect LBAC. That ls, we want LBAD ~ L DAE ~ LEAC.

[sec. 14-7)
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Nobody has found a ~ay to do this with straight-edge and
compass. The first thing that most people try is to take AB = AC,
draw BC, and then trisect Be with points D and E.

A c

But this doesn't work;
works.

in fact, nothing has been found that

(2) The duplication of~ cube. A cube of edge a has

volume a 3 •

a

3
V = a .

Suppose we have given a segment of length a. We want to con­
struct a segment of length b, such that a cube of edge b has
exactly twice the volume of a cube of edge a.
(Algebraically, of course, this means that b3 = 2a3 , or ~ = ~.

This problem was attacked, over a long period, by the best
mathematicians in Greece, who were very brilliant men indeed, but
none of them had any success with this problem.

[sec. 1,4-7]
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There is a curious myth in connection with this problem.
A plague threatened the population of a certain Greek town,

-"
and the inhabitants consulted the oracle at Delphi to find out
which god was angry and why. The answer they got from the oracle
was that Apollo was angry. There was an altar to Apollo, in the
town, consisting of a cube of solid gold, and Apollo wanted his
altar to be exactly twice as big. The people went home from
Delphi and built a new altar, twice as long along an edge as the
old one. The plague then got worse instead of better. The people
thought again, and realized that the new altar was eight times as
big as the old one, that is, it had eight times as much volume.
This raised the problem of the duplication of the cube, but the
local mathematicians were unable to solve the problem. Thus the
first attempt to apply mathematics to public health was a total
failure.

(3) Squaring the cir~le. Suppose we have given a circle.
We want to construct a square whose area is exactly the same as

that of the circle.

P --~---l

2A = 'Ira

Algebraically, this means that b = aft.

b

[sec. 14-7]
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These three problems occupied many people for more than two
thousand years. Various attempts were made to solve them with
straight-edge and compass constructions. Finally it was dis­
covered, in modern times, that all three of these problems are
impossible. Impossibility in mathematics does not mean the same
thing as "impossibility" in every day life, and so it calls for
some explanation.

Ordinarily, when we say that something is "impossible," we
mean merely that it is extremely difficult,.or that we don't
happen to see how it can be done, or that nobody has found a way
to do it -- so far. Thus people used to say that it was
"impossible" to build a flying machine, and people didn't stop
this until the first airplane was built. It is supposed to be
"impossible" to find a needle in a haystack, and so on.

Mathematical impossibility is not like this. In mathematics,
there are some things that really can't be done, and it is­
possible to prove that they can't be done.

(1) A very simple example is this: No matter how clever
and persistent you may be, you can't find a whole
number between 2 and 3, because there isn't any
such whole number.

(2) If the above example seems too trivial to take seriously,
consider the following situation. We start With the
integers, positive, negative and O. We are allowed to
perform additions, subtractions, mUltiplications, and
divisions. A number is called constructible if we can
get to it, starting from the integers, by a finite
number of such steps. For example, the following number
is constructible:

1 + 3
"7 "5

+ 9 37
IQ-1i7

To get to it requires 15 steps.

[sec. 14-7]
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Now suppose that the problem before us is to construct the
number ~ This problem is impossible of solution just as the
old Greek problems are. The point is, the numbers that can be
constructed according to the rules that we have agreed to are all
rational numbers. And ~ just isn't this kind of a number.
There is no use in hunting for it among the constructible numbers,
because that isn't where it is.

Problems of constructibility with straight-edge and compass
are closely analogous to this second illustration. Starting with
the integers, there are certain numbers that we can IIconstructll by
elementary arithmetic, but these numbers do not happen to include
W-

Starting with a segment, AB, there are certain figures that
we can construct with straight-edge and compass, but these figures
do not happen to include any segment CD for which CD3 = 2 ·AB3.

This is what we mean when we say that the duplication of the cube
with straight-edge and compass is impossible of solution.

The angle-trisection problem deserves some further discussion.

(1) Some angles can be trisected with straight-edge and
compass. For example, a right angle can be so trisected.
When we say that the angle-trisection problem is impossi­
ble of solution, we mean that there are~ angles for
which no trisecting rays can be constructed.

(2) The angle-trisection problem becomes solvable if we
change the construction rules very slightly, £[ allowing
ourselves to make two marks on the straight-edge. Once
the two marks are made, we proceed as follows:

[sec. 14-7]
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A

--_ r-......UO ------ ~-
p

Given an angle with vertex B, we draw a circle with center at
B and radius r equal to the distance between the two marks on
the straight-edge. The circle intersects the sides of the given
angle in points A and C. We want to construct an angle whose
measure is %(mL ABC).

Place the straight-edge so that (1) it passes through C.
Now manipulate the straight-edge by sliding and rotating it about
C so that (2) one marked point Q lies on the circle and (3)

~

the other marked point P lies on the ray opposite to BA. We
will show that ~ BPC = %(mL ABC). In terms of the angle­
measures indicated in the figure, the main steps in the proof are
as follows; you should find the reasons in each case:

(1) v = u.
( 2) w = u + v = 2 u.
(3) x = w = 2 u.
(4 ) z = x + u = 3 u.
Equation (4) is, of course, what we wanted to prove. Once we

have L BPC, it is easy to draw the trisecting rays in the
interior of L ABC, by two applications of Construction 14-7.

[sec. 14-7]
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Problem Set 14-7

1. Find the set of points which are the intersections of the
bisectors of the base angles of parallelograms that have a
fixed segment as base.

2. Explain how to construct an angle of

a. 450 ; e. 1200 ;

b. 300 ; f. 750 ;
0

c. 2~ ; g. 1050 ;

d. 1350; 10
h. 67~ .

Mention three other angles you could construct.

3. In dealing with triangles it is helpful to be able to
designate the parts by brief symbols. A notation frequently
used is as follows:

A, B, C, for the three vertices;
a, b, c, for the lengths of the 0f~osite sides;

~ ~

ha, hb, h for the altitudes to BC, CA, AB;c
t A, t B, t c for bisectors of angles A, B, C;

~ +-+ ~
rna' ~, mc for medians to sides BC, CA, AB.

In each of the following problems, we wish to construct a
triangle satisfying certain conditions. For example, we
might give two segments RS and TQ and an angle, say LX,

and require that a triangle ABC be constructed
- - - -so that AB 5!£ RS, BC ~ TQ, and L B ~ L x.

R J.....-----~IS

T 1-1-------.,1Q

A

~
c b

8~C

[sec. 14-7]
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For brevity, we shall state such a problem in the form,
"Construct a triangle given two sides and the included angle"

or "Construct 11 ABC, given c , a, and L B." The student
should do several problems of this type, rephrasing them in
the more exact language used above, until he is sure that he
understands the meaning of the shorter statement.

Construct 6 ABC having given:

a. a, rna' L B. e. rna' ha, L B.

b. a, b, and LX f . ha, L B, L C.
such that

mL A + rnL B = rnL X.
g. L c, hc' t c'

c. a, b, hb· h. L A, b, t c'

d. c, L A, tAo

(Suggestion: Each time begin by sketching a figure showing
the relationship of the given parts to help you in your
analysis of the problem.)

4. Given a square ABCD with
M and N the mid-points of ' B C- - -BC and CD. If AM and-
AN meet the diagonal BD
at P and Q, prove that
p and Q trisect BD, 0
but that mL BAM " ~ . 90.

[sec. 14-:7]
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by construction, so the circle
radius AB is intersected by
points. This is impossible.

AD is both the angle­
bisector and the median
from A in a BAE.
The triangle is then
isosceles and AB = AE
(Why?). But AB = AC
with center at A and

~

the line BC in three

5. Show that the angle-trisection method mentioned in the text
on page 504 never works, by using one of the following methods:

a. Suppose that for some
angle it did work. Then
in the diagram,

A-----~-~

let the circle with
center A and radius
AB intersect rays
~ ~

AD and AE in R
and S. Then D and E will be inside the circle.
(Why?) Now RS " BC. (Consider the bisector of
L HAS.) Also RS > DE (Why?) Triangles ABD, ADE,
and AEC all have the same area. (Why?) Now compare
the areas of BDR, DRSE, and SEC to arrive at a
contradiction.

b. Suppose it did work.
Then in the diagram,

[sec. 14-7]
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6. We hereby define a geometer's square as an instrument, made
of a flat piece of cardboard or similar material, of the
following shape.

E A

( ~F------,°U
C B

The angles are all right angles and 1
EF = CD = ~ AB.

To trisect angle PQR with a geometer's square one first
uses the long side to

A
~7"---+---------.T

;I&--~7"'----------""p

~ ----+
construct ST II QP at distance EF. Then place the
geometer's square so that Dit passes through Q, A lies
~ ~ I

on ST, and B lies on Q,R. Then mL PQA = "!(mL. PQR) .
Prove this.

[sec. 14-7]



503

Review Problems

1. For what integral values of x is there a triangle whose
sides have lengths 4, 6, x?

2. Construct a rhombus in which the perimeter has a given
length AB and one angle has measure 45.

At-I----------------------11 B

3. a. Given AB, construct the set of points P in the plane
such that mL APB = 90.

b. Prove that the set you have constructed fulfills the
conditions.

in plane E. Describe the
a given distance d from L

P.

4. Given line L and point P
of points in E which are
a given distance r from

,
set

and

5. Sketch several quadrilaterals and, in each, sketch the
perpendicular bisectors of the four sides. In general,
you will find that these do not appear to be concurrent.
If you can think of any special quadrilaterals whose per­
pendicular bisectors are concurrent, list them. Think of
some general way of describing the set of quadrilaterals
with this property.

6. By construction find the center

of the circle of which ~ is
an arc.

B

7. Given a segment representing the difference between the
diagonal and side of a square. Construct the square.

5. Sketch several quadrilaterals and. in each. sketch the
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8. Let A be the center of a circle of radius a, and B the
center of a circle of radius b. If a + b > AB, do circles
A and B always intersect?

9. ABCD is a parallelogram in a plane
which is equidistant from A, B, C,
parallelogram is a rectangle.

E. P is a point of E
and D. Prove that the

n?
n,

and
transversal
from).., m

ABCD is a trapezoid with AB II CD. Under what circumstances
will there be a point P, in the plane of the trapezoid,
equidistant from A, B, C, D? Can there ever be more than
one such point?

Given two parallel lines ~ and m and a
are there any points which are equidistant
Prove that your answer is correct.

10.

*11.

'I



Chapter 15

AREAS OF CIRCLES AND SECTORS

15-1. Polygons.
A polygon is a figure like this:

But not like this:

The idea of a polygon can be defined more precisely as follows:
Suppose that we have given a sequence

of distinct points in a plane . We Join each point to the next one
by a segment, and finally we Join Pn to Pl.

I I~ I I
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...

Pn- I

In the figure, the dots indicate other possible points and
segments; because we don't know how large n is. Notice that
the point just before Pn is Pn _ l' as it should be.

nbePn - l' Pn
n segments

properties:

... ,
Let the

have the
distinct points in a plane (n > 3).

PIP2' P2,P3, ... , Pn - lPn' PnPl

(1) No two segments intersect except at their end-points,
as specified;

(2) No two segments with a common end-point are collinear.

Then the union of the
The n given points

segments are sides of the
a common vertex determine
the polygon.

n segments is a polygon.
are vertices of the polygon, the n
polygon. By (2), any two segments with
an angle, which is called an angle of

[sec. 15-1]
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Notice that triangles are polygons of 3 vertices and 3
sides, and quadrilaterals are polygons of 4 vertices and 4
sides. Polygons of n vertices and n sides are sometimes
called n-gons. Thus a triangle is a 3-gon and a quadrilateral
is a 4-gon (although the terms 3-gon and 4-gon are almost
never used.) 5-gons are called pentagons, 6-gons are hexagons.
8-gons are octagons, and 10-gons are decagons. The other
n-gons, for reasonably small numbers n, also have special names
taken from the Greek, but the rest of these special names are not
very commonly used.

Each side of a polygon lies in a line, which separates the
plane into two half-planes. If, for each side, the rest of the
polygon lies entirely in one of the half-planes haVing that side
on its edge, then the polygon is called a convex polygon.

Below is a convex polygon, with the lines drawn in to indicate
why it is convex:

PI",- .', P2..-----~--------'- - -- -.
it

I
I

I P.
, 3,, ,,-

.. - - - _'-- .......1 ...

FS'" /F4
- I•

[sec. 15-1]
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This is a natural term to use, because if a polygon is convex, it
turns out that the polygon plus its interior forms a convex set
in the sense that we defined long ago in Chapter 3. Just before
the definition of a polygon, there are five examples of polygons.
You should check that the first, second and fourth of these
examples are convex polygons, but the third and fifth are not.
You should check also that in the first, second and fourth cases,
the polygon plus its interior forms a convex set, but that in the
third and fifth cases this is not so.

In this chapter we shall use polygons in the study of circles,
to learn to calculate circumferences and areas. In the next
chapter we shall calculate the volumes of prisms, pyramids, cones,
and spheres. The basic procedure consists in approximating
lengths and areas of curved figures with lengths and areas of
polygonal figures, and seeing what happens as the approximations
become better and better. A complete treatment of this last
stage of the process is well beyond the subject matter of this
course, but we will explain the logic of the situation as clearly
as we can, and as completely as seems practical.

Problem Set 15-1

1. In the figure at the right,
no three end-points are
collinear and no two segments
intersect except at their
end-points. Nevertheless
the figure is not a polygon.
Why not?

[sec. 15-1]
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2. Is the figure at the right
a polygon? How many sides
has it? How many vertices?
What can you say about the
relative lengths of the sides?
About the measures of the
angles?

*3. a. State a definition of the interior of a convex polygon.
(Hint: Consider the definition of the interior of a
triangle.)

B

b. Make a sketch to illustrate that the union of a convex
polygon and its interior is a polygonal region. (See

definition of polygonal region in Chapter 11.)

4. A segment connecting two vertices of a polygon which are not
end-points of the same side is a diagonal of the polygon.

a. How many diagonals has a polygon with 3 sides?
4 sides? 5 sides? 6 sides? 103 sides? n sides?

b. Sketch a pentagon for which only two of the diagonals
pass through its interior.

5. Use the figure at the right
to show that the surn of the
measures of the angles of a
convex polygon of n sides
is S = (n - 2)180.

6. Verify the statement in the
preceding problem, using this
figure.

[sec. 15-1]
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15-2. Regular Polygons.
Suppose we start with a circle, with center Q and radius

r, and divide the circle into n congruent arcs, end to end.
The figure shows the case n = 8.

P3

I
I
I

, I ,
" rl ,

, I '"
, I ~'r , I ,

" I '
'I 'r ",'Q r

--------~--------- P
, I' I

'" I ', ,
r> I , r
'" I ~, ,

, I r '
/ I "

I
I
I

For each little arc, we draw the corresponding chord. This gives
a polygon with vertices PI' P2, ... , Pn. The arcs are
congruent, and so the chords (which are the sides of the polygon)
are also congruent. If we draw segments from Q to each vertex
of the polygon, we get a set of n isosceles triangles. In each

triangle, ~ Q = 3~0, because 3~0 is the measure of the

intercepted arc in each case. Therefore all of the isosceles
triangles are congruent. It follows that all of the angles of
the polygon are congruent; the measure of an angle of the polygon
is twice the measure of any base angle of anyone of the isosceles
triangles.

Thus the polygon has all of its sides congruent and all of
its angles congruent.

[sec. 15-2]
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Definitions: A convex polygon is regular if all its sides
are congruent and all its angles are congruent. A polygon is
inscribed in a circle if all of its vertices lie on the circle.

It is a fact that every regular polygon can be inscribed in
a circle, but we will not stop to prove this, because we will not
need it. We will be using regular polygons only in the study of
circles, and all of the regular polygons that we will be talking
about will be inscribed in circles by the method we have Just
described.

If PI' P2, .•• , Pn is a regular polygon inscribed in a
circle, then the triangles Ii PIQ.P2' 6. P2QP3' ... , are all
congruent and they have the same base e and the same altitude
a. These are shown, in the figure below, for Ii P3QP4 '

e

The area of each triangle is

of the regular n-gon is

12ae, and therefore the total area

A = n • ke 1:."Y>en c- =~..

[sec. 15-2]
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Definition: The number a is called the apothem of the
polygon. The sum of the lengths of the sides is called the
perimeter.

We denote the perimeter by p. Thus, for a regular polygon,
we have

p = n > e.
In this notation, the area formula becomes

1
An = ~ a • p ,

Problem Set 15-2

1. What is the ratio of the apothem of a square to its perimeter?

2. a. What size angle would be determined by drawing radii to
the end-points of a side of a regular inscribed octagon?

b. Use protractor and ruler to construct a regular octagon.

c. Use compass and straight-edge to construct a regular
octagon.

3. Use protractor and ruler to construct a regular pentagon.

4. A formula for the sum of the measures of the angles of any
convex polygon of n sides 1s (n - 2)180. (See Problem 5
of Problem Set 15-1.) What would be a formula for the measure
of each angle of a regular n-gon?

5. Is the polygon of Problem 2 in Problem Set 15-1 a regular
l2-gon? Justify your answer.

[sec. 15-2]

c. Use compass and straight-edge to construct a regular
octagon.



513

6. The figure represents part of a regular polygon of which
- --
AB and BC are sides, and R is the center of the circle
in which the polygon is inscribed. Copy and complete the
table:

mLARB mLABR
number or or

of sides mLBRC mLCBR mLABC

3

4
5
6

45
9 40 70 140

144
12
15
18
20
24

7. A plane can be covered by
congruent square regions
placed four at a vertex
as shown.

a. How many equilateral
triangles must be
placed at a vertex to
cover a plane?

b. What other class of regular polygonal regions can be
used to cover a plane? How many would be needed at
a vertex?

[sec. 15-2]
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= 3602 . 135 + 90

Two regular octagons and one
square will completely cover
the part of a plane around a
point without any overlappings,
as shown. What other combi­
nations of three regular poly­
gons (two of which are alike)
will do this?
(Hint: Consider possible
angle measures such as those
listed in the last column of
your table for Problem 6.
Find solutions of the equation 2x + Y = 360 where x
and yare angle measures for regular polygons having
different numbers of sides. In the illustration

x = 135 and y = 90.)

c.

d. Investigate the possibility of other coverings of a
plane around a point by regular polygons.

8. Show that the sum of the
measures of the exterior
angles of any convex
polygon is 360.
(Hint: Count the supplements
of the interior angles.)

*9. a. A convex polygon of n sides
integer greater than 3) can
many quadrilateral regions by
given vertex?

(n is a positive even
be separated into how
drawing diagonals from a

b. Derive a formula for the sum of the measures of the
angles of a convex polygon from your answer to part (a).

[sec. 15-2]
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8. Show that the sum of the
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10. Let S be the sum of the measures of the angles of a polygon
with n sides. If the polygon is convex, then
S = (n - 2)180. In the following three figures, which are
not convex, show that the formula is still correct if we
regard S as the sum of the measures of the angles of the
triangles into which each can be divided, assuming that no
new vertices are introduced.

(a) (b) (c)

o•cB

11. Show that in any polygon if an
lIa r t i f i c i a l vertex" is inserted
on one of the sides as shown so
that the number of "sides" is
increased by one, the formula
for the angle sum still holds.

12. The sides of a regular hexagon are each 2 units long. If
it is inscribed in a circle, find the radius of the circle
and the apothem of the hexagon.

*13. A regular octagon with sides 1 unit long is inscribed in a
circle. Find the radius of the circle.

[sec. 15-2]



516

15-3. The Circumference of a Circle. The Number 1r.

In this section and the next one we shall consider regular
n-gons for various values of n. As usual, we denote the side,
apothem, perimeter, etc. of a regular n-gon inscribed in a
circle of radius r bye, a, p, etc.

Let C be the circumference of the circle that we have been
discussing. It seems reasonable to suppose that if you want to
measure C approximately, you can do it by inscribing a regular
polygon with a large number of sides and then measuring the
perimeter of the polygon. That is, the perimeter p ought to be
a good approximation of C when n is large. Putting it another
way, if we decide how close we want p to be to C, we ought to
be able to get p to be this close to C merely by making n
large enough. We describe this situation in sYmbols by writing

p~C,

and we say that p approaches C as a limit.
We cannot prove this, however; and the reason why we cannot

prove it is rather unexpected. The reason is that so far, we have
no mathematical definition of what is meant by the circumference
of a circle. (We can't get the circumference merely by adding the
lengths of certain segments, the way we did to get the perimeter
of a polygon, because a circle doesn't contain any segments.
Every arc of a circle, no matter how short you take the arc, is
curved at least slightly.) But the remedy is easy: we take the
statement

p----+C
as our definition of C, thus:

Definition: The circumference of a circle is the limit of
c

the perimeters of the inscribed regular polygons.

[sec. 15-3]
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We would now like to go on, in the usual way, to define the
number ~ as the ratio of the circumference of a circle to its
diameter. But to make sure that this definition makes good sense,
we first need to know that the ratio 2~ is the same for all
circles, regardless of their size. Thus we need to prove the
following.

CTheorem 15-1. The ratio 2r' of the circumference to the
diameter, is the same for all circles.

The proof is by similar triangles. Given a circle with
center Q and radius r, and another circle, with center QI
and radius r', we inscribe a regular n-gon in each of them.
(The same value of n must be used in each circle.)

In the figure we show only one side of each n-gon, with the
associated isosceles triangle~ Now L AQB ~L AIQ'B', because
each of these angles has measure 3~O. Therefore, since the
adjacent sides are proportional,

a AQB ~ a A'Q'B'
by the S.A.S. Similarity Theorem. Therefore,

e e'
r = rt'

and so

.E. = pi
r rr

,[sec. 15-3]
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pi is

be
n-gon, and

C and C'
p~C, by

Therefore

where p is the perimeter ne of the first
the perimeter nel of the second n-gon. Let
the circumferences of the two circles. Then
definition, and p'----+ CI, by definition.

C C'r = r l

and
C C'
2r = 2r' ,

which was to be proved.
The number gr' which is the same for all circles, is

designated by v. We can therefore express the conclusion of

Theorem 15-1 in the well-known form,
C = 2vr.

v is an irrational number and cannot be represented exactly
in fractional form. It can however, be approximated as closely
as we please by rational numbers. Some rational approximations
to v are

22 4 6 3553, 3.14, jr' 3.1 1 , ~, 3.14159265358979.

Problem Set 15-3

1. A regular polygon is inscribed in a circle, then another with
one more side than the first is inscribed, and so on endless-
ly, each time increasing the number of sides by one.

a. What is the limit of the length of the apothem?

b. What is the limit of the length of a side?

c. What is the limit of the measure of an angle?

d. What is the limit of the perimeter of the polygon?

2. A certain tall person takes steps a yard long. He walks
around a circular pond close to the edge taking 628 steps.
What 1s the approximate radius of the pond? (Use 3.14
for v.)

[sec. 15-3]
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3. Which is the closer approximation to v, 3.14 or ~2?

4. The moon is about 240,000 miles from the earth, and its
path around the earth is nearly circular. Find the cir­
cumference of the circle which the moon describes every month.

5. The earth is about 93,000,000 miles from the sun . The path
of the earth around the sun is nearly circular. Find how far
we travel every year "in orbit". What is our speed in this
orbit in miles per hour.

*7. In the figure, square XYZW
is inscribed in circle 0,

12 inches. What is the circumference
Of its circumscribed

o

The side of a square is
of its inscribed circle?

and square ABCD is cir­
cumscribed about the circle.
The diagonals of both squares
lie in At and Bt. Given
that a square PQRS is
formed when the mid-points Q_ _ B~

P, Q, Rand S of AX, BY, CZ, and DW are joined, is
the perimeter of this square equal to, greater than, or less
than the circumference of circle O? Let OX = 1 and
justify your answer by computation.

6.

8. The radius of a circle is 10 feet. By how much is its
circumference changed if its radius is increased by 1 foot?
If the radius were originally 1000 feet, what would be the
change in the circumference when the radius is increased by
1 foot?

[sec. 15-3]

that a square PQRS is
formed when the mid-points
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15-4. Area of ~ Circle.
In Chapter 11 we considered areas of polygonal regions,

defined in terms of a basia region, the triangular region, which
is the union of a triangle and its interior. In talking about
areas associated with a circle we make a similar basic definition.

Definition: A circular region is the union of a circle and
its interior.

In speaking of "the area of a triangular region" we found
it convenient to abbreviate this phrase to "the area of a triangle".
Similarly, we shall usually say "the area of a circle" as an
abbreviation of "the area of a circular region ll

•

We shall now get a formula for the area of a circle. We
already have a formula for the area of an inscribed regular
n-gon; this is

An = ~ ap

where a is the apothem and p is the perimeter.

[sec. 15-4]
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In this situation there are three quantities involved, each
depending on n. These are p, a and An. To get our formula
for the area of a circle, we need to find out what limits these
quantities approach as n becomes very large.

(1) What happens to An. ~ is always slightly less than

the area A of the circle, because there are always some points
that lie inside the circle but outside the regular n-gon. But
the difference between An and A is very small when n is
very large, because when n is very large the polygon almost
fills up the interior of the circle. Thus, we expect that

An~A.

But just as in the case of the circumference of the circle, this
•can never be proved, since we have not yet given any definition

of the area of a circle. Here also, the way out is easy:

Definition: The area of a circle is the limit of the areas
----~,;;;...;.,~

of the inscribed regular polygons.

Thus, An~A by defini tion.

(2) What happens to !.. The ·apothem a is always slightly
less than r, because either leg of a right triangle is shorter
than the hypotenuse. But the difference between a and r is
very small when n is very large. Thus,

a~r.

(3) What happens to ~. By definition of C, we have
p~C.

Fitting together the results in (2) and (3), we get

~p~~rc.

1
An~~rC.

An.~A. Therefore
1

A = ~rC.

[sec. 15-4]

Thus, A ~A by definition.n
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Combining this with the formula C = 2rrr gives
2A=1rI'.

Thus the formula that you have known for years finally
becomes a theorem:

Theorem 15-2. The area of a circle of radius

Problem Set 15-4

r is 2
'1rI' •

1. Find the circumference and area of a circle with radius

a. 5. b. 10.

2. Find the circumference and area of a circle with radius

a. n.
•

b. IOn.

b. Would the area be changed
if the two circles were
not concentric?

3. a. Find the area of one face
of this iron washer if its
diameter is 4 centimeters
and the diameter of the
hole is 2 centimeters.

4. The radius of the larger of two circles is three times the
radius of the smaller. Compare the area of the first to
that of the second.

5. The circumference of a circle and the perimeter of a square
are each equal to 20 inches. Which has the greater area?
How much greater is it?

6. Given a square whose side is 10 inches, what is the area
between its circumscribed and inscribed circles?

[sec. 15-4]
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4

4

in a circle. If the
what is the radius of
area?

cross.

The cross inside the circle
is divisible into 5 squares.
Find the area which is inside
the circle and outside the

An equilateral triangle is inscribed
side of the triangle is 12 inches,
the circle? The circumference? The

7.

8.

9. Given: Two concentric circles
with center P, AC is a
chord of the larger and is
tangent to the smaller at B.
Prove: The area of the ring
(annulus) is vBC2.

A c

.p

10. In a sphere whose radius is
10 inches, sections are made
by planes 3 inches and 5
inches from the center. Which
section· will be the larger?
Prove that your answer is
correct.

0 C
*11. In the figure, ABCD is a

square in which E, F, G
are mid-points of AD, AC,

- -and CB, respectively. AF
and Fe are circular

E Garcs
with centers E and G
respectively. If the side
of the square is 5, find

the area of the shaded portion. A .8

[sec. 15-4]
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*12. In the figure, semi-circles
are drawn with each side of
right triangle ABC as
diameter. Areas of each
region in the figure are
indicated by lower case
letters.
Prove: r + s = t.

*13. ,A special archery target,
with which an amateur can
be expected to hit the
bulls-eye as often as any
ring, is constructed in
the following way. Rays
~ ~

OM and PN are parallel.
A circle with center 0
and radius r equal to the
distance between the rays,

~

is drawn intersecting OM
- ~

at Q. QA 1 QM. Then a
circle with center 0 and
radius DA, or r l is drawn. This process is repeated by
draWing perpendiculars at R and at 5, and circles with
radii DB and DC. Note that we arbitrarily stop at four
concentric circles.

a. Find r l, r 2, r 3 in terms of r.

b. Show that the areas of the inner circle and the three
"rings", represented by a, b, c, and d, are equal.

14. An isosceles trapezoid whose bases are
inches is circumscribed about a circle.
the portion of the trapezoid which lies

[sec. 15-4]

2 inches and 6
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outside the circle.
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is drawn intersecting cwr
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15-5. Lengths of Arcs. Areas of Sectors.
Just as we define the circumference of a circle as the limit

of the perimeters of inscribed regular polygons, so we can define
the length of a circular arc as a suitable limit.

If AB is an arc of a circle with center Q, we take points

PI' P2, Pn - 1 on AB so that each of the n angles LAQPl,

L PIQP2' ... , L Pn - lQB has measure l·mABn .

Definition:

API + PIP2 + ...
The length of~ ~

+ Pn _ IE as we take
is the limit of

n larger and larger.

It is convenient, in discussing lengths of arcs, to consider
an entire circle as an arc of measure 360. Any point of the
circle can be considered as the coincident end-points of the arc.
The circumference of a circle can then be considered to be simply
the length of an arc of measure 360.

The basic theorem on arc length is the following:

[sec. 15-5]

L P1QP2' ..• , LPn _ 1QB has measure ;.!nAB.
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Theorem 15-3. If two arcs have equal radii, then their
lengths are proportional to their measures.

B

Q

A

length AS length A7B,
= '"'mA:B mA'B'

The proof of this theorem is very hard, and qUite unsuitable
for a beginning geometry course. We make no attempt to prove it
here, but, like Theorem 13-6 (to which it is closely related),
treat it as if it were a new postulate.

Theorems 15-1 and 15-3 can be combined to give a general
formula for the length of an arc.

Theorem 15-4. An arc of measure q and radius r has
1flength ~r.

Proof: If C is the circumference of a circle of radius r
we have, by Theorem 15-3,

By Theorem 15-1,
and solving for

C = 2vr.
L gives

L C
q = 350·
Substituting this value of

.".
L = I8QQr.

[sec. 15-5]
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A sector of a circle is a region bounded by two radii and
an arc, like this: B

Q

A

More precisely:
---.

Definitions: If AB is an arc of a circle with center Q
and radius r, then the union of all segments QP, where P is

.......... "........
any point of AB, is a sector. AB is the ~ of the sector
and r is the radius of the sector.

The following theorem is proved just like Theorem 15-2.

Theorem 15-5. The area of a sector is half the product of
its radius by the length of its arc.

Combined with Theorem 15-4, we get

Theorem 15-6. The area of a sector of radius r and arc
measure q is ~ qr2

Problem Set 15-5

1. The radius of a circle is 15
of an arc of 600 1 of 900

?

What is the length
of 36°?

2. The radius of a circle is 6. What is the area of a sector
with an arc of 900? of 10?

3. If the length of a
radius of the arc.
the arc.

600 arc is one centimeter, find the
Also find the length of the chord of

[sec. 15-5]
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4. In a circle of radius 2, a sector has area T. What is
the measure of its arc?

10.26.

then

p ......--..::IIIIB

A segment of ~ circle is the
region bounded by a chord
and an arc of the circle.
The area of a segment is found
by subtracting the area of the
triangle formed by the chord
and the radii to its end-points
from the area of the sector.
In the figure, mL APB = 90. If PB = 6,

1 2Area of sector PAB = 4'"" . 6 = 9T.

Area of triangle PAB = ~ . 62 = 18.

Area of segment = 9T - 18 or approx.
Find the area of the segment if:

5.

a . mL APB = 60; r = 12.

b. mL APB = 120; r = 6.

c. mL APB = 45; r = 8.

6. If a wheel of radius 10 inches rotates through an angle of
360

,

a. how many inches does a point on the rim of the wheel
move?

b. how many inches does a point on the wheel 5 inches
from the center move?

[sec. 15-5]
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7. A continuous belt runs around two wheels of radius 6 inches
and 30 inches. The centers of the wheels are 48 inches
apart. Find the length of the belt.

8. In this figure ABCD is a
square whose side is 8
inches. With the mid-points
of the sides of the square
as centers, arcs are drawn
tangent to the diagonals.
Find the area enclosed by
the four arcs.

[sec. 15-5]
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8. In this figure ABCD is a
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Review Problems

1. Which of the figures below are polygons? Which ones are
convex polygons?

2. Does every regular polygon have

a. each side congruent to every other side?

b. each angle congruent to every other angle?

c. at least two sides parallel?

3. What is the measure of an angle of a regular

a.

. b.

pentagon?

hexagon?

c.

d.

octagon?

decagon?

4. If the measure of an angle of a regular polygon is 150,
how many vertices does the polygon have?

5. a. If both a square and a regular octagon are inscribed in
the same circle, which has the greater apothem?
the greater perimeter?

b. Answer the same questions for circumscribed figures.

6. From what formula relating to regular polygons is the formula
for the area of a circle derived?

7. If C is the circumference of a circle and r is its radius,
what is the value of ;?

3. What is the measure of an angle of a regular
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8. If the circumference of a circle is 12 inches, the length
of its radius will lie between what two consecutive integers?

9. Find the measure of an exterior angle of

a. a regular pentagon. b. a regular n-gon.

10. What is the radius of a circle if its circumference is equal
to its area?

11. If the radius of one circle is 10 times the radius of
another, give the ratio of

a. their diameters. c . their areas.

b. their circumferences.

12. If a regular hexagon is inscribed in a circle of radius 5,
what is the length of each side? What is the length of the
arc of each side?

13. Show that the area of a circle is give~ by the formula
A = ~~d2, where d is the diameter of the circle.

14. A wheel has a 20 inch diameter. How far will it roll if
it turns 270 01

15. The angle of a sector is 100 and its radius is 12 inches.
Find the area of the sector and the length of its arc.

16. Prove that the area of an equilateral triangle circumscribed
about a circle is four times the area of an equilateral
triangle inscribed in the circle.

*17. This problem came up in a college zoology course: Two
woodchucks dig burrows at a distance r from each other,
and each of them is the nearest neighbor of the other. If
a third woodchuck moves into the region, how large is the
area in which he can settle so that he will become the
nearest neighbor of each of the original woodchucks?

18. One regular 7-sided polygon has area 8 and another
regular 7-sided polygon has area 18. What is the ratio
of a side of the smaller to a side of the larger?

14. A wheel has a 20 inch diameter. How far will it roll if
..... ..L .L _





Chapter 16

VOLUMES OF SOLIDS

16-1. Prisms •
Here are some pictures of prisms:

I
I

..J--
./

/
~­_...........

A prism can be thought of as the solid swept out in moving a
polygonal region parallel to itself from one position to another.
In this process each point of the region describes a line segment,
and these segments are all parallel to one another. The prism
itself can be thought of as just the set of all such line segments,
as if it were made up of a bundle of parallel wires.

These considerations lead us to the following precise
definition.
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Definitions. Let El and E2 be two parallel planes, L

a transversal, and K a polygonal region in EI which does not

intersect L. For each point P of K let ppt be a segment

parallel to L with pt in E2. The union of all such segments

is called a prism.

• L

h

I
B

I ~ I
A,~C
I~' " "

" I / "I I , ,
I , , ,

I I ,

",
""", ,

~-J:"-_-"';'- - - r - -~---------+-----, ,
I ,

I , •

.I'~B ,
" ' ,, '~

'I' K W',

[sec. 16-1]
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Definitions. The polygonal region K is called
base, or just the base, of the prism. The set of all
pI, that is, the part of the prism that lies in E2,
the upper base. The distance h between El and E2
altitude of the prism. If L is perpendicular to El
the prism is called a right prism.

Prisms are classified according to their bases: a triangular
prism is one whose base is a triangular region, a rectangular
prism is one whose base is a rectangular region, and so on.

Definition. A cross-section of a prism is its intersection
with a plane parallel to its base, prOVided this intersection is
not empty.

Theorem 16-1. All cross-sections of a triangular prism are
congruent to the base.

L

Proof: Let the triangular region ABC be the base of a
prism, and let a cross-section plane intersect AAI, BBI, CCI

in D, E and F. AD II BE by definition of a prism, and
AB II DE by Theorem 10-1. Hence, ABED is a parallelogram,
and so DE = AB, because opposite sides of a parallelogram are
congruent. Similarly, DF = AC and EF = BC. By the S.S.S.
Theorem, l:>. DEF ~ l:>. ABC.

[sec. 16-1]
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Corollary 16-1-1. The upper and lower bases of a triangular
prism are congruent.

Theorem 16-2. (Prism Cross-Section Theorem.) All cross­
sections of a prism have the same area.

Proof: By definition of a polygonal region, the base can be
cut up into triangular regions. Thus the prism is cut up into
triangular prisms whose bases are the triangular regions.

By Theorem 16-1, each triangle in the base is congruent to
the corresponding triangle in the cross-section. (Thus, in the
figure, 6. PAB;ae l:!. P'A'B', ~ PBC S£ l:!. P'B'C', and so on.) The
area of the base is the sum of the areas of the triangular
regions in the base; and the area of the cross-section is the sum
of the areas of the corresponding triangular regions in the cross­
section. Since congruent triangles have the same area, the
theorem follows.

[sec. 16-1]

Proof: By definition of a polygonal region, the base can be
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Corollary 16-2-1. The two bases of a prism have equal areas.

(Note: Since we have not defined congruence for figures more
complicated than triangles, Theorem 16-2, while intuitively clear,
must be proved using our available definitions. However, it is
evident that with any reasonable general definition of congruence
between geometric figures the theorem should hold for any prism.
In Appendix VIII such a definition of congruence is given, and
then the proof of Theorem 16-1 needs only a slight modification
to prove that a cross-section of any prism is congruent to the
base. )

Ordinarily we are concerned only with convex prisms, that is,
prisms whose bases are convex polygonal regions. We can therefore
speak of a "side" or a "vertex" of the base.

In the following definitions the notation is the same as that
for the original definition of a prism.

Definitions: A lateral edge of a prism is a segment AA',
where A is a vertex of the base of the prism. A lateral face
is the union of all segments PP' for which P is a point in a
given side of the base. The lateral surface of a prism is the
union of its lateral faces. The total surface of a prism is the
union of its lateral surface and its bases.

Theorem 16-3. The lateral faces of a prism are parallelogram
regions, and the lateral faces of a right prism are rectangular
regions.

A formal proof involves a discussion of separation properties
and is rather long and tedious. While you may want to work out a
formal proof, you can convince yourself of the correctness of the
theorem by applying the definitions of prism and lateral face to
the diagram for Theorem 16-1 or 16-2.

[sec. 16-1]

is the union of all segments PP' for which P is a point in a
Q'ivpn Rinp of' t:hp h::lRP_ 'l'hP lAt:Pl"::ll Rlll"f'::lnp of' A nl"iRm iR t:hp



538

Definitions: A parallelepiped is a prism whose base is a
parallelogram region. A rectangular parallelepiped is a right
rectangular prism.

I
I
"L-----

",
",

\
\

\r----
/

Parallelepiped Rectangular Parallelepiped

Note: While in the preceding theorem and definitions we
have been careful to refer to the base and the cross-section of a
prism as regions, we will often use base and cross-section to mean
the polygon which bounds the region and conversely, the context
will make clear the intended use.

Problem Set 16-1

1. Prove that two non-adjacent
lateral edges of a prism are

coplanar, and that the inter­
section of their plane and
the prism is a parallelogram.
(Hint: For the figure shown,
prove ABFH is a parallelo­
gram. )

F

A

[sec. 16-1]
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2. Find the area of the lateral surface of a right prism whose
altitude is 10 if the sides of the pentagonal base are
3, 4, 5, 7, 2.

3. Find the area of the total surface of a right

prism if the base is an equilateral triangle
on a side and the height of the prism is 10

triangular

8 inches
inches.

4. Prove that the lateral area (area of the lateral surface)
of a right prism is the product of the perimeter of its base
and the length of a lateral edge.

and whose----,

If the sides of a cross-section of a triangular prism are
3, 6, and 3~, then any other cross-section will be a
triangle whose sides are, and
whose angles measure ,
area is

5.

6. The length of a lateral
and its lateral area is
perimeter of its base?

edge of a right prism is 10 inches
52 square inches. What is the

[sec. 16-1]
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16-2. Pyramids.
Pyramids are quite similar to prisms in some respects. In

particular many of the terms carry over, and we shall use some of
them without formal definition.

Definitions: Let K be a polygonal region in a plane E,
and V a point not in E. For each point P in K there is a
segment PV. The union of all such segments is called a pyramid
with base K and vertex V. The distance h from V to E is
the altitude of the pyramid.

v

The next two theorems are analogous to Theorems 16-1 and
16-2.

Theorem 16-4. A cross-section of a triangular pyramid, by a
plane between the vertex and the base, is a triangular region
similar to the base. If the distance from the vertex to the
cross-section plane is k and the altitude is h, then the
ratio of the area of the cross-section to the area of the base

k 2
is (11) •

Restatement: Let ~ ABC be in plane E and point V a
distance h from E. Let plane EI, parallel to E and at

- -distance k from V, intersect VA, VB, VC in A' • B! , Ct.

Then ~ AlBIC' "'~ ABC, and .
area ~ A' Bt CI

area ~ ABC

/ A

[sec. 16-2]
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v

A

Then

Proof:

h = VP,

Let VP 1 E and

k = VP' •

B
let VP intersect E' in P' .

and

(1) AP II A' P' by Theorem 10-1.

~ VA' p' ~ ~ VAP by Corollary 12-3-2.

VA' VP' kvr- =~ = h by definition of similar triangles.

(2) AiBi II AB by Theorem 10-1.

~ VA'B' ~ ~ VAB by Corollary 12-3-2.

A'B' VA' k )
~ = vr- = h by (1 and definition.

(3) Similarly,

B'C' k C'A' k-m- = n' CA = n·
(4) From (2) and (3)

A'B' B'C' C'A' k-m- =~ = --m;:- = Ii·

Therefore ~ A'B'C' ~ ~ ABC by the S.S.S. Similarity Theorem,
area ~ A'B'C' , . (k)2
area ~ ABC = Ii by Theorem 12-7.

[sec. 16-2]
~ VA' p' ~ ~ VAP by Corollary 12-3-2.
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Theorem 16-5. In any pyramid, the ratio ~f the area of a
cross-section and the area of the base is (*), where' h is
the altitude of the pyramid and k is the distance from the
vertex to the plane of the cross-section.

h

Proof: Let us cut up the base into triangular regions with
areas AI' A2 , ••• , An. (In the figure, n = 4.) Let
All, ~I, ••• , An' be the areas of the corresponding triangular
regions in the cross-section. Let A be the area of the base,
and let A' be the area of the cross-section. Then

and

By the result

we know that

I

A = Al + ~ + ... + An '

AI = All + ~t + ..• + Ani.

which we have just proved for triangular pyramids,
k 2 k 2

All = (li) AI' A2 1 = (E) ~, and so on. Therefore

k 2
A' = (li) (AI + ~ + ... + ~)

k 2
= (E) A.

[sec. 16-2]
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Theorem 16-5 has the following consequence.

Theorem 16-6. (The Pyramid Cross-Section Theorem.) Given
two pyramids with the same altitude. If the bases have the same
area, then cross-sections equidistant from the bases also have
the same area;

In the figure, for the sake of simplicity, we show triangular
pyramids, but the proof does not depend on the shape of the base.

Let A be the area of each of the bases, and let Al and
A2 be the areas of the cross-sections. Leth be the altitude
of each of the pyramids, and let d be the distance between each
cross-section and the corresponding base. Then the vertices of
the two pyramids are at the same distance k = h - d from the
planes of the cross-sections. Therefore

by the previous theorem.
right are equal, so also
which was to be proved.

Since the denominators on the left and
are the numerators. Therefore, A1 = A2,

[sec. 16-2]

pyramids, but the proof does not depend on the shape of the base.
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Problem Set 16-2

1. If the base of a pyramid is a square, each cross-section will
be a If the base of a pyramid is an equilateral
triangle whose side is 9, each cross-section will be
______________ and the length of a side of the cross-section

one-third of the distance from the vertex to the base will
be

2. Given two pyramids, one triangular, one hexagonal, with equal
base areas. In each the altitude is 6 inches. The area
of a cross-section of the triangular pyramid, 2 inches from
the base, is 25 square inches. What is the area of a
cross-section 2 inches from the base of the hexagonal
pyramid?

3. A regular pyramid is a pyramid whose base is a regular
polygonal region having for its center the foot of the
perpendicular from the vertex to the base.
Prove that the lateral faces of a regular pyramid are
bounded by congruent isosceles triangles.

*4. Given a triangular pyramid with vertex V and base ABC,
find a plane whose intersection with the pyramid is a
parallelogram.

5. Show that the lateral area of a regular pyramid is given by

A = ~ ap in which p is the perimeter of the base and a

is the altitude of a lateral face.

[sec. 16-2]
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6. FGHJK is parallel to base
ABCDE in the pyramid shown
here, with altitude VS = 7
inches and altitude VR = 4
inches. If the area of
ABCDE is 336 square
inches, what is the area
of FGHJK?

v

B

7. A regular pyramid has a square base, 10 inches on a side,
and is one foot tall. Find the lateral area of the pyramid
and the area of the cross-section 3 inches above the base.

*8. Prove: In any pyramid, the
ratio of the area of a

cross-section to the area
a 2

of the base is (0)'

where a is the length of
a lateral edge of the
smaller pyramid and b is
the corresponding lateral
edge of the larger pyramid.
(Hint: Drawaltitude PS.)

A

B

p

5),,,
,"

[sec. 16-2]
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16-3. Volumes of Prisms and Pyramids, Cavalieri's Principle.
A vigorous treatment of volumes requires a careful definition

of something analogous to polygonal regions in a plane (polyhedral
regions is the name) and the introduction of postulates similar
to the four area postulates. We will not give such a treatment,
but instead will rely on your intuition to a considerable extent,
particularly when it comes to cutting up solids or fitting them
together. However, we will state explicitly the two numerical
postulates we need. One of them is the analog of Postulate 20,

which gave the area of a rectangle.

Postulate 21. The volume of a rectangular
parallelepiped is the product of the altitude and the

area of the base.

To understand what is going
first think of a physical model.
of a square pyramid by forming a
proper size, like this:

on in our next postulate, let us
We can make an approximate model

stack of thin cards, cut to the

The figure on the left represents the exact pyramid, and the
figure on the right is the approximate model made from cards.

[sec. 16-3]
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of a square pyramid by forming a stack of thin cards, cut to the



Now suppose we drill a narrow hole in the model, from the top
to some point of the base, and insert a thin rod so that it goes
through every card in the model. We can then tilt the rod in any
way we want, keeping its bottom end fixed on the base. The shape
of the model then changes, but its volume does not change. The
reason is that its volume is simply the total volume of the cards;
and this total volume does not change as the cards slide along
each other.

The same principle applies more generally. Suppose we have
two solids with bases in a plane which we shall think of as
horizontal. If all horizontal cross-sections of the two solids
at the same level have the same area then the two solids have the
same volwne.

A = AI

The reason is that if we make a card-model of each of the solids,
then each card in the first model has exactly the same volume as
the corresponding card in the second model. Therefore the volumes
of the two models are exactly the same. The approximation given
by the models is as close as we please, if only the cards are thin
enough. Therefore the volumes of the two solids that we started
with are the same.

[sec. 16-3]
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The principle involved here is called Cavalieri's Principle.
We haven't proved it; we have merely been explaining why it is
reasonable. Let us therefore state it in the form of a postulate:

Postulate 22. (Cavalieri's Principle.) Given
two solids and a plane. If for every plane which
intersects the solids and is parallel to the given
plane the two intersections have equal areas, then
the two solids have the same volume.

Cavalieri's Principle is the key to the calculation of
volumes, as we shall soon see.

Theorem 16-7. The volume of any prism is the product of
the altitude and the area of the base.

h

[sec. 16-3]
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Proof: Let h and A be the altitude and the base area of
the given prism. Consider a rectangular parallelepiped with the
same altitude h and the base area A, and with its base in the
same plane as the base of the given prism. We know by the Prism

Cross-Section Theorem that all cross-sections, for both prisms,
have the same area A. By Cavalieri's Principle, this means that
they have the same volume. Since the volume of the rectangular
parallelepiped is Ah by Postulate 21, the theorem follows.

Theorem 16-8. If two pyramids have the same altitude and the
same base area, then they have the same volume.

Proof: By the Pyramid Cross-Section Theorem, corresponding
cross-sections of the two pyramids have the same area. By
Cavalieri's Principle, this means that the volumes are the
same.

[sec. 16-3]
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Theorem 16-9. The volume of a triangular pyramid is one­
third the product of its altitude and its base area.

s

Proof: Given a triangular
S, we take a triangular prism
altitude, like this:

_------:~u

Q

p

pyramid with base PQR and vertex
PQRTSU with the same base and

Rp

We next cut the prism into three triangular pyramids, one of
them being the original one, like this:

u

Q

s

R

p
Think of pyramids I and II as having bases PTU and PRU,

and common vertex S . The two triangles 6 PTU and A PRU lie
in the same plane and are congruent, since they are the two
triangles into which the parallelogram PTUR is separated by the
diagonal UP. Hence pyramids I and II have the same base area
and the same altitude (the distance from S to plane PTUR),

[sec. 16-3]
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and so by Theorem 16-8 they have the same volume. In the same
way, thinking of pyramids II and III as having bases SUR and
SQR and common vertex P, we see that II and III have the same
volume. Therefore the volume of all three pyramids is the same
number, V, and the volume of the prism is 3V. If
area ~ PQR = A and the altitude of SPQR = h, then

3V = Ah,
1whence V = ~ Ah which was to be proved.

The same result holds for pyramids in general:

Theorem 16-10. The volume of a pyramid is one-third the
product of its altitude and its base area.

1
V = ~ Ah.

Proof: Given a pyramid of altitude h and base area A.
Take a triangular pyramid of the same altitude and base area, with
its base in the same plane. By the Pyramid Cross-Section Theorem,
cross-sections at the same level have the same area. Therefore,
by Cavalieri's Principle, the two pyramids have the same volume.
Therefore the volume of each of them is ~ Ah, which was to be
proved.

[sec. 16-3]
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Problem Set 16-3

1. A rectangular tank 5' x 4' is filled with water to a depth
of 9". How many cubic feet of water are in the tank? How
many gallons? (1 gallon = 231 cubic inches.)

2. A lump of metal submerged in a rectangular tank of water 20
inches long and 8 inches wide raises the level of the water
4.6 inches. What is the volume of the metal?

3. If one fish requires a gallon of water for good health, how
many fish can be kept in an aquarium 2 feet long, l~

feet wide, and l~ feet deep? C

4. If one edge of the base of a
regular hexagonal pyramid is
12 inches and the altitude
of the pyramid is 9 inches,
what is the lateral area?
What is the volume?

B

base is 1836
feet, find the

solids above and below the
plane?

5. The volume of a pyramidal tent with a square
cubic feet. If the side of the base is 18
height of the tent.

6. A plane bisects the altitude
of a pyramid and is parallel
to its base. What is the
ratio of the volumes of the

[sec. 16-3]
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*7. A monument has the shape of an
obelisk -- a square pyramid cut
off at a certain height and
capped with a second square
pyramid. The vertex of the
small pyramid is 2 feet
above its base and 32 feet
above the ground. If the base
pyramid had been continued to
its vertex it would have been
60 feet tall. Find the volume
of the obelisk if each side of
the base, at the ground, is 4
feet long.

*8. State and illustrate a principle, corresponding to Cavalieri's
Principle, having the conclusion that two plane regions have
equal areas.

16-4. Cylinders and Cones.
Note that in the definition of a prism, and of associated

terms in Section l6-~ it is not necessary to restrict K to be a
polygonal region. K could in fact be any point set in El.
Such tremendous generality 1s not needed, but we certainly can
consider the case in which K is a circular region, the union
of a circle and its interior. In this case we call the resulting
solid a circular cylinder. You should write out a definition of
a circular cylinder for yourself. You can use the following
figure to help you.

[sec. 16-4]
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h

We can have cylinders with other kinds of bases, such as
elliptic cylinders, but the circular cylinder is by far the most
common and the only one considered in elementary geometry.

Just as the definition of a circular cylinder is analogous
to that of a prism, the definition of a circular~ is analogous
to the definition of a pyramid. Check your understanding of this
by writing out a definition of a circular cone. You can use the
notation of the following figure to help you.

[sec. 16-4]
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circular cone.
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If the center of the base circle is the foot of
from V to E, the cone is called a right

The following analogs of the theorems on prisms and pyramids
are provable by the same general methods. We omit the details.

Theorem 16-11. A cross-section of a circular cylinder is a
circular region congruent to the base.

L

Idea of proof: Let C be the center and r the radius of
the base. Then, by parallelograms, PICl = PC = r.

Theorem 16-12. The area of a cross-section of a circular
cylinder is equal to the area of the base.

Theorem 16-13. A cross-section of a cone of altitude h,
made by a plane at a distance k from the vertex, is a circular
region whose area has a ratio to the area of the base of <*)2.

[sec. 16-4]
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v

Idea of proof: Let VU = h.

(1) Ii VQT '" Ii VPU.

VQ ' k
'W = F:

( 2) Ii VQR '" Ii VPw.

QR k
PW == h·

(3) k
QR = h PW.

Since PW has a constant value, regardless of the
position of W, then QR has a constant value. Thus, all
points R lie on a circle. The corresponding circular
region is the cross-section.

(4) area of circle with center Q == (~)2 .
area of circle with center P n

[sec. 16-4]
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We can now use Cavalieri's Principle to find the volumes of
cylinders and cones.

Theorem 16-14. The volume of a circular cylinder is the
product of the altitude and the area of the base.

Proof like that of Theorem 16-7.

Theorem 16-15. The volume of a circular cone is one-third
the product of the altitude and the area of the base.

Proof like that of Theorem 16-10.

Problem Set 16-4

1. Find the volume of th~s right
circular cone.

2. Find the number of gallons of water which a conical tank will
hold if it is 30 inches deep and the radius of the circular
top is 14 inches. (There are 231 cubic inches in a
gallon. Use ¥ as an approximation of 1T. Why is ¥
a more 'conveni ent approximation than 3.14 in problems
containing the number 23l?)

3. A drainage tile is a cylindrical shell 16 inches long.
The inside and outside diameters are 5 inches, and 5.6
inches. Find the volume of clay necessary to make the tile.

4. A certain cone has a volume of
27 cubic inches. Its height
is 5 inches. A second cone is
cut from the first by a plane
parallel to the base and two
inches below the vertex. Find
the volume of the second cone.

[sec. 16-4]
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5. On a shelf in the supermarket stand two cans of imported
olives. The first is twice as tall as the second, but the
second has a diameter twice that of the first. If the second
costs twice as much as the first, which is the better buy?

6. In this figure we are looking
down upon a pyramid, whose base
is a square, inscribed in a
right circular cone. If the
altitude of the cone or
pyramid is 36 and a base
edge of the pyramid is 20,
find the volume of each.

7. Figure 1 represents a cone
in a cylinder and Figure 2,

two congruent cones in a
cylinder. If the cylinders
are the same size, compare
the volume of the cone in
Figure 1 with the volume of
the two cones in Figure 2.

Would your conclusion be
changed if the cones in
Figure 2 were not congruent?

Fig. 1. Fig. 2.

8. A right cir~ular cone stands inside a right circular cylinder
of same base and height . Write a formula for the volume of
the space between the cylinder and the cone.

[sec. 16-4]
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*9. If a plane parallel to the base
of a cone (or pyramid) cuts
off another cone (or pyramid)
then the solid between the
parallel plane and the base
is called a frustum.
A frustum of a cone has a
lower radius of 6 inches,
an upper radius of 4
inches and a height of 8
inches. Find its volume.

16-5. Spheres; Volume ~nd Area.
By the volume of ~ sphere we mean the volume of the solid

which is the union of the sphere and its interior.

Theorem 16-16. The vo~ume of a sphere of radius r is

Proof: Given a sphere of radius r, let E be a tangent
plane. In E take a circle of radius r and consider a right
cylinder with this circle as base, altitude 2r, and lying on
the same side of E as the sphere.

h=2r

[sec. 16-5]
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Finally, consider two cones, with the two bases of the cylinder as
their bases, and their common vertex V at the mid-point of the
axis of the cylinder.

Take a cross-section of each solid by a plane parallel to E
and at a distance s from V. The cross-sections will look like
this:

~ne area of the section of the sphere is

Al = ~t2 = ~(r2 _ s2)

by the Pythagorean Theorem. We wish to compare this with the
section of the solid lying between the cones and the cylinder,
that is, outside the cones, but inside the cylinder. This section
is a circular ring, whose outer radius is r and whose inner
radius is s. (Why?) Hence, its area is

A
2

= ~r2 _ ~2 = ~(r2 _ s2).

Thus, Al = A2, and by Cavalieri's Principle the volume of the

sphere is equal to the volume between the cones and the cylinder.
Therefore the volume of the sphere is the difference of the
volume of the cylinder and twice the volume of one cone, that is,

2 I 2 4 3
1TI' • 2r - 2 •~ • r = ~ •

[sec. 16-5]
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Using the formula for the volume of a sphere, we can get a
formula for the area of the surface of a sphere. Given a sphere
of radius r, form a slightly larger sphere, of radius r + h.
The solid lying between the two spherical surfaces is called a
spherical shell, and looks like this:

h

Let the surface area of the inner sphere be S. The volume V of
the shell is then approximately hS. Thus, approximately, S = t.
As the shell gets thinner, the approximation gets better and
better. Thus, as h gets smaller and smaller, we have

and see what it approaches
This will tell us what S

of the volumes of. the two

But
when h
is. The
spheres.

v
Fi'--+S.

we can calculate ~ exactly,
becomes smaller and smaller.
volume V is the difference
Therefore:

V = ~(r + h)3 _ ~3

= ~[(r + h)3 _ r 3]

= ~[r3 + 3r2h + 3rh2 + h3 _ r 3]

= ~[3r2h + 3rh2 + h3].

(You should check, by multiplication, that (r + h)3
= r 3 + 3r3h + 3rh2 + h3.)

Therefore *= ~[3r2 + 3rh + h2]

= 41Tr2 + h] 47rI' + ~h].

Here the entire second term approaches zero, because h~ O.

Therefore *~ 47rI'2, and so S = 47rI'2. Thus we have the theorem:

[sec. 16-5]
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Theorem 16-17. The surface area of a sphere of radius r is
2S = 47TI' .

interesting fact that the
is 47TI'2. Have you noticed

times as great as the area

Thus we end this chapter with the
surface area of a sphere of radius r
that the surface area is exactly 4
of a great circle of the sphere?

Problem Set 16-5

1. Compute the surface area and the volume of a sphere having
diameter 8.

2. The radius of one sphere is twice as great as the radius of a
second sphere. State a ratio expressing a comparison of their
surface areas; their volumes. If the radius of one sphere is
three times as great as the radius of another sphere, compare
their surface areas; their volumes.

3. A spherical storage tank has a radius of 7 feet. How many
gallons will it hold? (Use ~ = ~.)

'"
4. A large storage shed is in the

shape of a hemisphere. The
shed is to be painted. If the
floor of the shed required 17
gallons of paint, how much
paint will be needed to cover
the exterior of the shed?

5. It was shown by Archimedes (287-212 B.C.) that the volume of
2a sphere is ~ that of the smallest right circular cylinder

which can contain it. Verify this.

6. An ice cream cone 5 inches deep and 2 inches in top
diameter has placed on top of it two hemispherical scoops of
ice cream also of 2 inch diameter. If the ice cream melts
into the cone, will it overflow?

[sec. 16-5]

,j. A Bpner~caJ. Bvorage varu<: naB a raa~uB OIl Ieeli. l10W many
22gallons will it hold? (Use ~ = ~.)



7. a.

563

Show that if the length of a side of one cube is four
times that of another cube the ratio of their volumes
is 64 to 1.

8. In the figure, the sphere, with
radius r, is inscribed in the
cone. The measure of the angles
between the altitude and the
radii to points of tangency are
as shown. Find the volume of
the cone in terms of r.

b. The moon has a diameter about
How do their volumes compare?

1 that of the earth.1f

*9. The city engineer who was six feet tall walked up to inspect
the new spherical water tank. When he had walked to a place
18 feet from the point where the tank rested on the ground
he bumped his head on the tank. Knowing that the city used
10,000 gallons of water per hour, he immediately figured
how many hours one tank full would last. How did he do it
and what was his result?

*10. Half the air is let out of a rubber balloon. If it continues
to be spherical in shape how does the resulting radius
compare with the original radius?

*11. Use the method by which Theorem
16-17 was derived to show that
the lateral area of a right
circular cylinder is 2vra
where a is its altitude and
r the radius of its base.

[sec. 16-5]
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Review Problems

1. If the base of a pyramid is a region whose boundary is a
rhombus with side 16 and an angle whose measure is 120,
then

a. any cross-section is a region whose boundary is a ---
and whose angles measure and

b. the length of a side of a cross-section midway between
the vertex and the base is

c. the area of a cross-section midway between the vertex
and the base is ----

2. A spherical ball of diameter · 5 has a bollow center of
diameter 2. Find the approximate volume of the shell.

3. Find the altitude of a cone whose radius is 5 and whose
volume is 500.

4. A pyramid has an altitude of 12 inches and volume of 432
cubic inches. What is the area of a cross-section 4 inches
above the base?

5. Given two cones such that the altitude of the first is twice
the altitude of the second and the radius of the base of the
first is half the radius of the base of the second. How do
the volumes compare?

6. A cylindrical can with radius 12 and height 20 is full of
water. If a sphere of radius 10 is lowered into the can
and then removed, what volume of water will remain in the
can?

7. A sphere is inscribed in a right circular cylinder, so that
it is tangent to both bases. What is the ratio of the volume
of the sphere to the volume of the cylinder?



*8. The altitude of a right circular
cone is 15 and the radius of
its base is 8. A cylindrical
hole of diameter 6 is drilled
through the cone with the center
of the drill following the axis
of the cone, leaving a solid as
shown in the figure. What is
the volume of this solid?

9. Prove: If the base of a pyramid is a parallelogram region,
the plane determined by the vertex of the pyramid and a
diagonal of the base divides the pyramid into two pyramids
of equal volume.

*10. Prove that a sphere can be circumscribed about a rectangular
parallelepiped.





Chapter 17

PLANE COORDINATE GEOMETRY

17-1. Introduction.
Mathematics is the only science in which practically nothing

ever has to be thrown away. Of course, mathematicians are people,
and being people, they make mistakes. But these mistakes usually
get caught pretty quickly. Therefore, when one generation has
learned something about mathematics, the next generation can go on
to learn some more, without having to stop to correct serious
errors in the work that was supposed to have been done already.

One symptom of this situation is the fact that nearly every­
thing that you have been learning about geometry, so far in this
course, was known to the ancient Greeks, over two thousand years
ago.

The first really big step forward in geometry, after the
Greeks, was in the seventeenth century. This was the discovery
of a new method, called coordinate geometry, by Rene Descartes
(1596-1650). In this chapter we will give a short introduction
to coordinate geometry -- Just about enough to give you an idea
of what it is like and how it works.

17-2. Coordinate Systems in ~ Plane.
In Chapter 2 we learned how to set up coordinate systems on

a line.

I
-I

I
o

p

I
X

I
2

Once we have set up a coordinate system, every number describes
a point, and every point P is determined when its coordinate x
is named.

or a new metnoc , ca i rec coora1na~e geome~ry, oy xene uescar-ces
(1596-1650). In this chapter we will give a short introduction
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In coordinate geometry, we do the same sort of thing in a
plane, except that in a plane a point is described not by a single
number, but by a pair of numbers. The scheme works like this:

2

y

-2 -I o

-I

-2

2

First we take a line X in the plane, and set up a coordinate
system on X. This line will be cal~ed the x-axis. In a figure

>

we usually use an arrow-head to emphasize the positive direction
on the x-axis.

Next we let Y be the perpendicular to the x-axis through
the point 0 whose coordinate is zero, and we set up a coordinate
system on Y. By the Ruler Placement Postulate this can be done
so that point 0 also has coordinate zero on Y. Y will be
called the y-axis. As before, we indicate the positive direction
by an arrow-head. The intersection 0 of the two axes is called
the origin.

We can now describe any point in the plane by a pair of
numbers. The scheme is this. Given a point P, we drop a
perpendicular to the x-axis, ending at a point M, with co­
ordinate x. We drop a perpendicular to the y-axis, ending at
a point N, with coordinate y. (In accord with Section 10-3
we can call M and N the projections of P into X and Y.)

[sec. 17-2]



In the figure x = l~ and y =~. The point P therefore

has coordinates l~ and ~. We write these coordinates in the

form (l~,~), giving the x-coordinate first. To indicate

that point P has these coordinates we write P(1~,2~) or

P:(l~,~).

[sec. 17-2]
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yare called the
x-coordinate and y

N P(x,Y)----..,
I
I
I
I
I
I
I
I
I
I
1M
x 2 3

x and
is the

y

-3

-I

-2

-3 -2 -I

Definitions: The numbers
coordinates of the point Pj x
is the y-eoordinate.
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Let us look at some more examples.
y

4

x

2 ---l~
I
I
I

---~---'fP-I I I
I I
I I

-2 -I 12 3 '4 5I
I

-I I
I,
I

-2 -------.1Ps

P_
3t--­

I 3,
I
I,
I

P-r-------i---4, I I
I I
, I

-5 -4 -3

p .-------
5 -3

-4 --------------4p7

We read off the coordinates of the points by following the dotted
lines. Thus the coordinates, in each case, are as follows:

Pl(2,1)

P2(1,2)
P3(-1,3)
P4( - 3 , 1)

P5(-2,-3)
P6(2,-2)

P7(4,-4)

[sec. 17-2]
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y

•

r
I
~'
~

~
~ Notice that the order in which the coordinates are written
~

f; makes a difference. The point with coordinates (2,1) is not theI same as point (1,2) . Thus, the coordinates of a point are really
an ordered pair of real numbers, and you can't tell where the
point is unless you know the order i~ which the coordinates are
given. The convent+on of having the first number of the ordered
pair be the x-coordinate, and the second the y-coordinate, is
highly important.

Just as a single line separates the plane into two parts

t.: (called half-planes) so the two axes separate the plane into four
~ parts, called quadrants. The quadrants are identified by number,
~ like this:
r

IT I

-------+--------~ X

ill

We have shown that any point of our plane determines an
ordered pair of numbers. Can we reverse the process? That is,
given a pair of numbers (a,b) can we find a point whose coordin­
ates are (a,b)? The answer is easily seep to be "yes". In fact,
there is exactly one such point, obtained as the intersection of
the line perpendicular to the x-axis at the point whose coordinate
is a and the line perpendicular to the y-axis at the point whose
coordinate is b.

Thus, we have a one-to-one correspondence between points in
the plane and ordered pairs of numbers . Such a correspondence is
called a coordinate system in the plane. A coordinate system is
specified by choosing a measure of distance, an x-axis, a y-axis
perpendicular to it and a positive direction on each. As long as

[sec. 17-2]
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we stick to a specific coordinate system, which will be the case
in all our problems in this book, each point P is associated
with exactly one number pair (a,b), and each number pair with
exactly one point. Hence, it will cause no confusion if we say
the number pair is the point, thus enabling us to use such con­
venient phrases as lithe point (2,3)" or lip = (a,b)".

17-3. How to Plot Points .2!!. Graph Paper.
As a matter of convenience, we ordinarily use printed graph

paper for drawing figures in coordinate geometry. The horizontal
and vertical lines are printed; we have to draw everything else
for ourselves.

y

r--r--r-,--'--'--.-- --r-,--.--,--.--.--.
I I I I I I I I I I I I I I
I I I I I I I 3 I I I I I I I
~--+--;--~---~--~--r- --~--~--4--i--~--~--~
I I I I I I I I I I I I I I
I I I I I I I 2 , I I 1 I I I
L__ ~ __~__~__~__~__ ~__ --+--~--~--r--~--~--~

I I 1 I I I I I I I I I II I I I I I I I I I I I I I I

r-~--i--+--t--t--t-- --r--f--~--r-4--~--~I I I II I I I I I I I I I I,
I I I I

I I I I -31 -21 -'I 0 I' 12 13 I I 1 I
I I I I I I I I I I I I I
~--4--T--+--T-_L--+-- --r--L-~--~--i--~--~I I I I I I I -I I 'I I I I I I
, I I I I I I I I I I I I
r--~--r-~--'--T--~-- -~--~--~--~--4--1--~
I I I I I I I -2 I I 1 I I I I
I I I I I I I I I I I I I I
r--~-~--~--+--r--L-- _~__ J __~__~__~__, __~
I I I I I I : -3 I I : I II I I
I I I I I I I I I I I
~--~--4--~--4--+--r-- __+__~--L--+--L--+-_~
I I I I I I I I I I I I I I
I I t I I I I I I I I I I IL __~__~__L __L __L __ L ~__~__~ __~__~ __~__~

In the figure above, the dotted lines represent the lines that are
already printed on the paper. The x-axis and the y-axis should be
drawn with a pen or a pencil. Notice that the x-axis is labeled
x rather than Xj this is customary. Here the symbol x is not
the name of anything, but merely a reminder that the coordinates
on this axis are going to be denoted by the letter x . . Similarly,

[sec. 17-3]
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for the y-axis. Next, the points with coordinates (1,0) and
(0,1) must be labeled in order to indicate the unit to be used.

This is the usual way of preparing graph paper for plotting
points. We could have indicated a little less or a lot more.
For your own convenience, it is a good idea to show more than this.
But if you show less, then your work may be actually unintelligible.

Note that we could draw the axes in any of the following
positions:

y

X4--;---

---+---'Y

x

---+---+Y

x
x Y x

and so on. There is nothing logically wrong with any of these
ways of drawing the axes. People find it easier to read each
other's graphs, however, if they agree at the outset that the
x-axis is to be horizontal, with coordinates increasing from
left to right, and the y-axis is to be vertical, with coordinates
increasing from bottom to top.

[sec. 17-3]
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Problem Set 17-3

1. Suggest why the kind of coordinate system used in this chapter
is sometimes called "Cartesian".

2.

3.

4.

What are the coordinates of the origin?

What is the y-coordinate of the point (7,-3)?

Name the point which is the projection of (0,-4)
x-axis.

into the

5. Which pair of points are closer together, (2,1) and (1,2)
or (2,1) and (2,0)?

6. In which quadrant is each of the following points?

a.

b.

(5,-3) .

(-5,3).

c.

d.

(5,3) .

(-5,-3).

7. What are the coordinates of a point which does not lie in
any quadrant?

8. The following points are projected into the x-axis.
them in such an order that their projections will be
order from left to right.

Write
in

A: (6,-3). B:(-2,5). C: (0,-4). D:(-5,0).

9. If the points in the previous problem are projected into the
y-axis arrange them so their projections will be in order
from bottom to top.

10. If s is a negative number and r a positive number, in
what quadrant will each of the following points lie?

a. (s,r). e. (r,s) .

b. (-s,r) . f. (r, -s ) .

c. (-s,-r). g. (-r,-s).

d. (s , -r) . h. (-r,s) .

[sec. 17-3]
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11. Set up a coordinate system on graph paper. Using segments
draw some simple picture on the paper. On a separate paper
list in pairs the coordinates of the end points of the
segments in your picture. Exchange your list of coordinates
with another student, and reproduce the picture suggested
by his list of coordinates.

0,0,0)

/
/

/
/

/

z

(0,0))

y

A three dimensional coordinate system can be formed by
considering three mutually perpendicular axes as shown. The
y-axis, while drawn on this paper, represents a line per­
pendicular to the plane of the paper.
The negative portions of the
x, y and z axes extend to
the left, to the rear, and
down respectively. Taken in
pairs the three axes determine
three planes called the yz­
plane, the xz-plane, and the
xy-plane. A point (x,y,z)
is located by its three co­
ordinates: the x-coordinate
is the coordinate of its projection into the x-axis; the
y and z coordinates are defined in a corresponding manner.

*12.

a. On which axis will each of these points lie?
(0,5,0); (-1,0,0); (0,0,8).

b. On which plane will each of these points lie?

(2,0,3); (0,5,-7); (1,1,0).

c. What is the distance of the point (3,-2,4) from the
xy-plane? from the xz-plane? from the yz-plane?

[sec. 17-3]
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17-4. The Slope of !. Non-Vertical Line.
The x-axis, and all lines parallel to it, are called

horizontal. The y-axis, and all lines parallel to it, are called
vertical. Notice that these terms are defined in terms of the
coordinate system that we have set up.

y

b

o .
I a

.• x

On the horizontal line Ll, all points have the same y-coordinate
b, because the point (O,b) on the y-axis is the foot of all the
perpendiculars from points of LI• For the same sort of reason,
all points of the vertical line L2 have the same x-coordinate
a. Of course, a segment is horizontal (or vertical) if the line
containing it is horizontal (or vertical).

Consider now a segment PIP2, where PI = (xI'YI) and

P2 = (x2'Y2)' and suppose that PlP2 is not vertical.

y

o

[sec. 17-4]
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Definition: The slope of is the number

= 2, P2 = P, x2 = 1, Y2 = 3,

2 1
-:;---";-4 = - '!.

Y2 = 2, giving slope of

or PI = Q, Xl = 4, Yl

giving slope of PQ = 3
1 -

This really is a number: since the segment is not vertical,
PI and P2 have different x-coordinates, and so the denominator
is not zero. Some things about the slope are easy to see.

(1) It is important that the order of n~ing the coordinates
is the same in the numerator as in the denominator. Thus, if we
wish to find the slope of PQ, where P = (1,3) and Q = (4,2)
we can either choose PI = P, Xl = 1, Yl = 3, P2 = Q, x2 = 4,

2 - 3 1
PQ = 4 - 1 =- '!;

What we cannot say is

slope of PQ 3 - 2
= 4 - 1 or 2 - 3

1 - 4 0

Notice that if the points are named in reverse order, the
slope is the same as before. Algebraically,

Yl - Y2 _ Y2 - Yl
Xl - x2 - x 2 - Xl·

(Algebraical­
and this means

Thus the value of m depends only on the segment, not on the order
in which the end-points are named.

(2) If m = 0, then the segment is horizontal.
ly, a fraction is zero only if its numerator is zero,

that y2 = Y1 0 )

(3) If the segment slopes upward from left to right, as in
the left hand figure on page 578, then m > 0, because the numerator
and denominator are both positive (or both negative, if we reverse
the order of the end-points.)

[sec. 17-4]
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(4) If the segment slopes upward from right to left as in
the right hand figure below, then m < o. This is because m
can be written as a fraction with a positive numerator Y2 - Yl
and a negative denominator x2 - xl (or equivalently, a negative
numerator Yl - Y2 and a positive denominator xl - X2) .

y
y

--.."d-------+x

~'Y21

P1( xI' YI)

------1------""'" Xo

(5) We do not try to write the slope of a vertical segment,
because the denominator would be zero, and so the fraction would
be meaningless.

In either of the two figures above, we can complete a right
triangle 6 PIP2R, by drawing horizontal and vertical lines

through PI and P2, like this:

y

y. -----ZJ-P2 I 2

Y 3 ------!R
I I I

I I
I I
I I

--+-----+------1---" X

y

Y2 ----R
Y
1

B~__-~P,
I I
I I
I I

----1----+----+----'X
X2
m <0

Since opposite sides of a rectangle are congruent, it is easy to
see that

[sec. 17-4]
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(1) if m> 0, then m
RP2

and= P:R
1

(2) if m < 0, then
RP2

m = -P R·
1

Once we know this much about slopes, it is easy to get our
first basic theorem.

Theorem 17-1. On a non-vertical line, all segments have the
same slope.

Proof: There are three cases to be considered.

Case (1): If the line is horizontal all segments on it have
slope zero.

y y

p'
I

-+-----------------+x

Case (2)

--t-----------~-..x

Case (3)

In either of the other cases illustrated above, L a ~ L at ,
and since the triangles are right triangles, this means that

A PIP2R '" A PltP2'R'.

Therefore, in either case,

[sec. 17-4]
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In Case (3), the

and are therefore
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In Case (2), these fractions are the slopes of
and therefore the segments have the same slope.
slopes are the negatives of the same fractions,
equal.

Theorem 17-1 means that we can talk not only about the slopes
of segments but also about the slopes of lines: the slope of a
non-vertical line is the number m which is the slope of every
segment of the line.

Problem Set 17-4

1. Replace the II?II in such a way that the line through the two
points will be horizontal .

•
a. (5,7) and (-3,1).

b. (0,-1) and (4,?).

c. (xl'Yl) and (x2, ?) ·

2. Replace the II?" in such a way that the line through the two
points will be vertical.

a. (?,2) and (6, -4) .

b. (-3,-1) and (?,O).

c. (xl'Yl) and (?'Y2)·

3. By visualizing the points on a coordinate system in parts (a),
(b), and (c), give the distance between:

a. ( 5,0) and (7,0).

b. (5,1) and (7,1).

c. (-3,-4) and (-6,-4).

d. What is alike about parts (aL (b) and (c)?

[sec. 17-4]
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e. State a rule giving an easy method for finding the
distance between such pairs of points.

f. Does your rule apply to the distance between (6,5) and
(3,-5)?

4. By visualizing the points named in parts (a), (b), (c) and
(d) on a coordinate system, give the distance between the
points in each part.

a. (7,-3) and (7,0).

b. (-3,1) and (-3,-1).

c. (6,8) and (6,4).

d. (xl'Yl) and (Xl ' Y2) '

e. What is alike about parts (a), (b), (c) and (d)?

f. State a rule giving an easy method for finding the
distance between such pairs of points.

5. With perpendiculars drawn as shown below, what are the co­
ordinates of A, B and C?

Q(3,2)

I
I

I---T--Ie

6. Determine the distances from P and Q to points A, B
and C in Problem 5.

7. Compute the slope of PQ for each figure in Problem 5.

8. A road goes up 2 feet for every 30 feet of horizontal
distance. What is its slope?

[sec. 17-4]
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9. Determine the slope of the segment joining each of the follow­
ing point pairs.

a. (0,0) and (6,2).

b. (0,0) and (2,-6) .

c. (3,5) and (7,12).

d. (0,0) and (-4,-3).

e. (-5,7) and (3,-8).

1 1) and (1 1f. (2''! 4' 5) .

g. (-2.8,3.1) and (2.2,-1.9).

h. (2ko'0) and (O,~) .

1

I

10. Replace the "?" by a number so that the line through the two
points will have the slope given. (Hint: Substitute in the
slope formula.)

a.

b.

(5,2)

(-3,1)

and (?,6).

and (4,?).

m = 4.
1

m = '2.

12. a.

~ ~ ~~

*11. PA and PB are non-vertical lines. Prove that PA = PB
if and only if they have the same slope; and consequently

+-+ +--+if PA and PB have different slopes, then P, A and B,
cannot be collinear.

Is the point B(4,13) on the line joining A(l,l) to
C(5,17)? (Hint: is the slope of AB the same as that
of acs)

b. Is the point (2,-1) on the segment joining (-5,4)
to (6, -8)?

[sec. 17-4]
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13. Determine the slope of a segment joining:

a.

b.

(O,n) and

(2d,-2d)

(n,O).

and (o;e),

c . (a + b , a) and (a - b, b) .

14. Given A:(lOl,102),
whether or not lines

B:(5,6),
~

AB and
C:(-95,-94),
~

BC coincide.
determine

Given A:(lOl,102), B:(5,6),
Are tB and CD parallel?

15. C:(202,203), D:(203,204).
Could they possibly coincide?

16. Draw the part of the first quadrant of a coordinate system
having coordinates less than or equal to 5. Draw a segment
through the origin which, if extended, would pass through
p(80000000,60000000).

17-5. Parallel and Perpendicular Lines.
It is easy to see the algebraic condition for two non-vertical

lines to be parallel.

y

p R

If the lines are parallel, then 6. PQR '" 6. pI QI R' ,
as in the proof of the preceding theorem, that they
slope.

[sec. 17-5]
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Conversely, if two different lines have the same slope, then
they are parallel. ,We prove this ~y the method of contradiction.

y

---'''T------+-------t----......'x

Assume as in the figure above that LI and L2
If as shown in the figure PI is their point of
and P2 and P3 have the same x-coordinate x 2 ,

Y2 - YI
Ll is ml = x

2
_ Xl' and the slope of L2 is

are not parallel.
intersection,

the slope of

Y3 - Yl
m2 =

x 2 - Xl'

LI
of the
L2 must

Since Y3 I Y2, the fractions cannot be equal, and hence

ml I m2· Thus our initial assumption that the two lines

and L2 were not parallel has led us to a contradiction
hypothesis that ml = m2" Hence the two lines Ll and
be parallel.

Thus we have the theorem:

Theorem 17-2. Two non-vertical lines are parallel if and
only if they have the same slope.

[sec. 17-5]



Now turning to the condition for two lines to be perpendicular,
let us suppose that we have given two perpendicular lines, neither
of which is vertical.

y

0 1

I
I
I
I I
[1 _

R'

-----+---.f-----------:::l~-------_+x

Let P be their point of intersection. As in the figure, let Q
be a point of one of the lines, lying above and to the right of
P. And let Q' be a point of the other line, lying above and to

the left of P, such that PQI = PQ. We complete the right
triangles 6.PQR and 6 QI PRI as indicated in the figure. Then

6 PQR ~ 6 QI PR I • (Why?)

Therefore Q'R' = PR and RiP = RQ.

and hence

Let m be the slope of

Then

and

Therefore

Q'RI PR
Hi P =~.

~

PQ, and let mI

RQ
m = PR'

QI R' PR
ml = - Ri P = - 'RQ.

1
m! =--.m

~

be the slope of PQI.

That is, the slopes of perpendicular lines are the negative
reciprocals of each other.

[sec. 17-5]
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Suppose, conversely, that we know that m' =- ;. We then
construct 6 PQR as before, and we construct the right triangle
6 Q'PR' making RIP = RQ. We can then prove that Q'R' = PRj
this gives the same congruence, 6 PQR ~ 6 Ql PRI, as before, and

~~

it follows that L QlPQ is a right angle and hence PQ 1 PQ' .
These two facts are stated together in the following theorem:

Theorem 17-3. Two non-vertical lines are perpendicular if
and only if their slopes are the negative reciprocals of each
other.

Notice that while Theorems 17-2 and 17-3 tell us nothing
about vertical lines, they donlt really need to, because the whole
problem of parallelism and perpendicularity is trivial when one
of the lines is vertical. If L is vertical, then LI is parallel
to L if and only if Ll is also vertical (and different from L.)
And if L is vertical, then LI is perpendicular to L if and
only if Ll is horizontal.

Problem Set 17-5

1. Four points taken in pairs determine six segments. Which
pairs of segments determined by the following four points
are parallel? A(3,6)j B(5,9)j C(8,2)j D(6,-1). (Caution:
Two segments are not necessarily parallel if they have the
same slope!)

2. Show by considering slopes that a parallelogram is formed by
drawing segments joining in order A(-1,5), B(5,1), C(6,-2)
and D(O,2).

3. 2 1Lines Ll, L2, L3 and L4 have slopes ~, -4, -12
and ~ respectively. Which pairs of lines are perpendicular?

[sec. 17-5]



4. It is asserted that both of the quadrilaterals whose vertices
are given below are parallelograms. Without plotting the
points, determine whether or not this is true.

(1) A:(-5,-2), B:(-4,2}, C:(4,6}, D:(3,1).

(2) P:(-2,-2}, Q:(4,2), R:(9,1), S: (3,-3).

5. The vertices of a triangle are A(16,O), B(9,2) and
C(O,O).

a. What are the slopes of its sides?

b. What are the slopes of its altitudes?

6. Show that the quadrilateral joining A(-2,2), B(2,-2),
C(4,2}, and D(2,4) is a trapezoid with perpendicular
diagonals.

7. Show that a line through (3n,O) and (O,n) is parallel to
a line through (6n,O) and (0,2n).

8. Show that a line through (0,0) and (a,b) is perpendicular
to a line through (0,0) and (-b,a).

*9. Show that if a triangle has vertices X(r,s), Y(na+r,nb+s)
and Z(-mb+r,ma+s) it will have a right angle at X.

10.

11.

Given the points P(1,2), Q(5,-6) and R(b,b); determine
the value of b so that LPQR is a right angle.

P = (a,l), Q = (3,2), R = (b,l), S = (4,2). Prove that
~~ - II

-
PQ I RS, and that if PQ RS then a = b - 1.

[sec. 17-5]
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17-6. The Distance Formula.
If we know the coordinates of two points PI and P2 then

we know where the points are, and so the distance Pl P2 is
determined. Let us now find out how the distance can be calculated.
What we want is a formula that gives PlP2 in terms of the co­

ordinates xl' x2' Yl and Y2·

Y

P2
I
I
I
I
I
I
I
I
I

N1 Y1 I
PI ----------~R

I I
I I
I I

Mil 1M2
xI 0 x2

Let the projections Ml , M2, Nl and N2 be as in the
By the Pythagorean Theorem, (PIP2)2 = (PIR) 2 + (RP2)2.
also PIR = MlM2 and RP2 ~ NlN2,

because opposite sides of a rectangle are congruent.

Therefore (PlP2)2 = (MlM2
)2 + (N lN2

)2 .

But we know that MlM2 = IX2 - xII

and NlN2 = IY2 - yll.

Therefore (PlP2) 2 = IX2 - xl12 + IY2 - Yl 12.

Of course, the square of the absolute value of a number is the
same as the square of the number itself.

[sec. 17-6]



Therefore (PlP2)2 = (x2 - xl)2 + (Y2 - Yl)2,

and since P1P2 > 0, this means that

PlP2 = y!(x2 - xl )2 + (Y2 - yl )2.

This is the formula that we are looking for. Thus we have the
theorem:

Theorem 17-4. (The Distance Formula.) The distance between
the points (xl,yl ) and (x2'Y2) is equal to

~(X2 - x1 ) 2 + (Y2 - Yl)2 •

For example, take PI = (-1,-3) and P2 = (2,4).

By formula, PlP2 = ~(2 + 1)2 + (4 + 3)2

= .j 9 + 49
= .rsa:

y

4

3

2

-I
I

I
1

-/2
I

I
I

I
~--

p -3
I

AP2
1

I
1

I
I

I
I

I
1

I
I

1
I

I 7
1

I

I I
I I

I I
I
I
I
I
I
I
I

3 I______ ...J

R

[sec. 17-6]
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Of course, if we plot the points, as
same answer directly from the Pythagorean
the right triangle 6 P1RP2 have lengths

..'

above, we can get the
Theorem; the legs of

3 and 7, so that

PI P2 =J 32 + 72, as before. If we find the distance this way,

we are of course simply repeating the derivation of the distance
formula in a specific case.

Problem Set 17-6

1. a. Without using the distance formula state the distance
between each pair of the points: A(0,3), B(1,3),
C(-3,3) and D(4.5,3).

a.2.

b. Without using the distance formula state the distance
between each pair of the points: A(2,0), B(2,1),
C(2,-3) and D(2,4.5).

Write a simple formula for the distance between (xl,k)
and (x2,k) . (Hint: The points would lie on a
horizontal line.)

b. Write a simple formula for the distance between (k'Yl)

and (k'Y2).

3. Use the distance formula to find the distance between:

a.

b.

c .

d.

(0,0)

(0,0)

(1,2)

(8,11)

and (3,4).

and (3,-4).

and (6,14).

and (15,35).

e.

f.

g .

h.

(3,8)

(-?,3)

(10,1)

(-6,3)

and (-5,-7).

and (-1,4).

and (49,81).

and (4,-2).

4. a. Write a formula for the square of the distance between

the points (Xl'Yl) and (X2'Y2).

b. Using coordinates write and simplify the statement:
The square of the distance between (0,0) and (x,y)
is 25.

[sec. 17-6]

. J.' •

and (x2,k). (Hint: The points would lie on a
\



591

5. Show that the triangle with vertices R(O,O), S(3,4) and
T(-l,l) is isosceles by computing the lengths of its sides.

6. Using the converse of the Pythagorean Theorem show that the

triangle joining D(l,l), E(3,0) and F(4,7) is a right
triangle with a right angle at D.

7. Given the points A(-1,6), B(1,4)
without plotting the points, that

and C(7,-2).
B is between

Prove,
A and c.

8. Suppose the streets in a city form congruent square blocks
with avenues running east-west and streets north-south.

a. If you follow the sidewalks, how far would you have to

walk from the corner of 4th avenue and 8th street to

the corner of 7th avenue and 12th street? (Use the
length of 1 block as your unit of length.)

b. What would be the distance lias the crow flies" between

the same two corners?

Z

(O,b)
9. Vertices

(0,0),

W,
(a, 0)

X and

and

of rectangle WXYZ

respectively.
have coordinates

a.*10.

a. What are the coordinates of Y?

b. Prove, using coordinates, that WY = XZ.

Using 3-dimensiona1 coordinates (see Problem 12 of
Problem Set 17-3), compute the distance between (0,0,0)
and ( 2, 3 , 6). .

b. Write a formula for the distance between (0,0,0) and

(x,y,z).

c. Write a formula for the distance between Pl(xl'Yl,zl)

and P2(X2'Y2,z2).

[sec. 17-6]
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17-7. The Mid-Point Formula.
In Section 17-8 we will be proving geometric theorems by the

use of coordinate systems. In some of these proofs, we will need
to find the coordinates of the mid-point of a segment PIP2 in
terms of the coordinates of PI and P2 .

First let us take the case where PI and P2 are on the
x-axis, with Xl < x2 ' like this:

o
~
I

P
I
x

x. Since
x2 - X.

2X =or

and P is the mid-point, with coordinate
we know that PIP = x - Xl and PP2 =

Since P is the mid-point, this gives

x - Xl = x2 - x,

Xl + x 2

In the same way, on the y-axis,
YI + Y2

y = 2

Now we can handle the general case easily:

•

P2

I
I
I
I

I I
I I

______~R------Js
I I I
I I I
I I I
I I I
I I

I

I I I
t I I

TI U V
XI x x2

[sec. 17-7]
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Since P is the mid-point of PlP2,~ follows by similar tri­
angles that R is the mid-point of PIS. Since opposite sides
of a rectangle are congruent, U is the mid-point of TV.
Therefore

In the same way, projecting into the y-axis, we can show that

Yl + Y2
y = 2 •

Thus we have proved:

Theorem 17-5. (The Mid-Point Formula.)

and let P2 = (x2' Y2) . Then the mid-point of

P = (Xl; X2, Y1; Y2).

Problem Set 17-7
• -+- -------

Let PI = (xl'Yl)

PlP2 is the point

1. Visualize the points whose coordinates are listed below and
compute mentally the coordinates of the mid-point of the
segment joining them.

a. (0,0) and (0,12).

b. (0,0) and (-5,0).

c. (1,0) and (3,0).

d. (0,-7) and (0,7).

e. (4,4) and (-4,-4).

2. Use the mid-point formula to compute the coordinates of the
mid-point of tbe segments joining points with the following
coordinates.

a. (5,7) and (11,17).

b. (-9,3) and (-2,-6).

c. (~, ~) and (~,~) .
[sec. 17-7]
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d. (2.51,-1.33) and (0.65,3.55).

e. (a,O) and (b,c).

f. (r + s , r - s ) and (-r, s) .

3. a. One end-point of a segment is (4,0);
is (4,1). Visualize the location of
state, without applying formulas, the
the other end-point.

the mid-point
these points and
coordinates of

b. One
is
the

end-point of a segment
(-9,30). Compute the
other end-point by the

is (13,19). The mid-point
x and y coordinates of
appropriate formulas.

4. A quadrilateral is a square if its diagonals are congruent,
perpendicular, and bisect each other. Show this to be the

case for the quadrilateral having vertices, A(2,1), B(7,4),
c(4,9), and D(-1,6).

and

C(1,8)
joining

joining A(3,-2), B(-3,4),
the quadrilateral formed by
is a parallelogram. Y

0,30

If the vertices of a triangle are A(5,-1), B(1,5)
C(-3,1), what are the lengths of its medians?

Given the quadrilateral
and D(7,4), show that
its mid-points in order

Using coordinates, prove that
two or the medians of the tri­
angle with vertices (a,O),
(-a,O) and (0,3a) are per­
pendicular to each other.

5.

6.

7.

......I<.----i--.Jl--.x
-0,0 0)0

8 . Relocate point P in the figure preceding Theorem 17-5, so
1that PPI = ~PlP2 and find formulas for the coordinates of

P in terms of the coordinates of PI and P2. (p is

between PI and P2, and x2 > xl·)

[sec. 17-7]

6. Given the quadrilateral joining A(3,-2), B(-3,4), c(1,8)



*9. a. Prove:
and if

If PI = (Xl'Yl)'
P is between PI
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P2 = (x2'Y2) and P = (x,y)
and P2 such that

b.

PPI r then x
rX2 + sXl and

ry2+ sYl
"P'P2 = 5' = Y =r + s r + s

Use the result of part (a) to find a point P on the
segment joining Pl(5,11) and P2(25,36) such that

17-8. Proofs of Geometric Theorems.
Let us now put our coordinate systems to work in proving a

few geometric theorems. We start with a theorem that we have
already proved by other methods.

Theorem A. The segment between the mid-points of two sides
of a triangle is parallel to the third side and half as long.

AB

Restatement:
and AC. Then

In ~ ABC

DE II BC

let
and

A

D and E
1DE = ~C.

be the mid-points of

'/-------~.......IE

BL...------------~C

Proof: The first step in using coordinates to prove a
theorem like this is to introduce a ~uitable coordinate system.
That is, we must decide which line is to be the x-axis, which the
y-axis, and which pirection to take as positive along each axis.
We have many choices, and sometimes a clever choice can greatly
simplify our work. In the present case it seems reasonably

+-+ ~

simple to take Be as our x-axis, with BC as the positive
. ~

direction. The y-axis we take to pass through A, with OA as
the positive direction, like this:

[sec. 17-8]

Res~a~emen~: In ~ AMC le~

AB and AC • Then DE II BC and
1) ana E

DE = ~C.
oe ~he mia-points or
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E

---"-:......-----4-----·------'~....x
B

The next step is to determine the coordinates of the various
points of the figure. The x-coordinate of A is zero; the
y-coordinate could be any positive number, so we write A = (O,p),
with the only restriction on p being p > O. Similarly,
B = (q,O) and C = (r,O), with r > q. (Note that we might
have any of the cases q < r < 0, q < r = 0, q < 0 < r,
o = q < r, 0 < q < r. Our figure illustrates the third case.)
The coordinates of D and E can now be found by the mid-point
formula. We get

-Therefore the slope of DE is

~-~ 0
~ _ ~ = y = 0,

(since q I r the denominator is not zero).
Likewise, the slope of BC is

0-0 = 0;
~-~

and BO DE II BC. Finally, by the distance formula,

DE =~ (~ _ ~)2 + (~ _ ~)2 =y,
and :BC =~ (r - q) 2 + (0 _ 0) 2 = r - q,

so that DE = ~C.

[sec. 17-8]
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to assume earlier theorems about
that ABCD is a parallelogram if
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(The coordinates (p + q,r)
inspection if one is willing
parallelograms, for example,
AB II CD and AB = CD.)

Now we finally put in the
the distance formula, we get

condition that AC = BD. Using

~ (p + q _ 0)2 + (r _ 0)2 =~(q _ p)2 + (r - 0)2.

Squaring gives
(p + q)2 + r 2 = (q - p)2 + r2,

p2 + 2pq + q2 + r 2 q2 2pq + p2 + 2= r ,

or 4pq = O.

Now 4! 0 and P! 0;
on the y-axis, so that
rectangle.

hence, q = O. This means that D lies
L BAD is a right angle and ABCD is a

Problem Set 17-8

A (0,0)

The mid-point of the
equidistant from its

2.

Prove the following theorems using coordinate geometry:

1. The diagonals of a rectangle have equal lengths.
(Hint: Place the axes as shown.)

y
o(0,b)k:::--------~

3. Every point on the perpendicular bisector of a segment is
equidistant from the ends of the segment. (Hint: Select
the axis in a position which will make the algebraic com­
putation as simple as possible.)

[sec. 17-8]
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4. Every point equidistant from the ends of a segment lies on
the perpendicular bisector of the segment.

F
5. The diagonals of a parallelo­

gram bisect each other. (Hint:
Give the vertices of parallelo­
gram ABeD the coordinates
shown in the diagram. Show
that both diagonals have the
same mid-point.)

C(o+b,C)

x

6. The line segment joining the mid-points of the diagonals of
a trapezoid is parallel to the bases and equal in length to
half the difference of their lengths.
In the figure R and S are mid-points of the diagonals
- -AC and BD of trapezoid ABeD.

F

---F--------------------.x

7.

A(O,O)

The segments joining mid­
points of opposite sides
of any quadrilateral bisect
each other. (The 4ts in
the diagram are suggested
by the fact the mid-points
of segments joining mid­
points must be found.)

B (0,0)

A (0,0) R

C(4d,4e)

[sec. 17-8]



..
600

y

8.

9.

10.

The area of Ii. ABC is
aCt -s) +bCr - t) +c(s - r)

2 '
where A = (a,r), B = (b,s)
and C = (c,t). (Hint:
Find three trapezoids in
the figure.)

Given: In Ii. XYZ, L X is
acute and ZR is an altitude.

Prove: Zy2 = Xz 2 + xy2 - 2XY • XR.

B(b,s)

x y

y

C(C,t)

I
I
I
I
I

z x

11. In Ii. ABC, CM is a median to side AB.

Prove: AC 2 + BC2
=~ + 2MC2•

17-9. The Graph 5!!!. Condition.
By a graph we mean s imply a figure in the plane, that is, a

set of points. For example, triangles, rays, lines and half­
planes are graphs. We can describe a graph by stating a condition
which is satisfied by all points of the graph, and by no other
points. Here are some examples showing a condition, a description
of the graph, and the figure for each:

[sec. 17-9]
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Condition Graph

1. Both of the coordinates 1. The first quadrant.
of the point P are
positive.

2. The distance OP is 2. 2. The circle with center at
the origin, and radius 2.

3. OP < 1. 3. The interior of the circle
with center at the origin
and radius 1.

4. x = o. 4. The y-axis.

5. y = o. 5. The x-axis.

6. 6.
---+

x~O and y = O. The ray OA, where
A = (1,0).

~

7. x = 0 and y ~ o. 7. The ray OB, where
B = (0,-1).

The seven graphs look like this:

y

z

1.

[sec. 17-9]
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graph of a simple
condition which

L, with slope m.

(x1 ' Y1) ·
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7. x > 3 and y < -1.

8. a. x is a positive integer.

b. y 1s a positive integer.

c. Both x and y are positive integers.

9. x > 0, y > 0, and y > x ,

10. 15. x<3 and 1 5. y < 5.

*11. [x] < 4 and Iyl < 4.

*12. [x] < 4 and Iyl = 4.

*13. Y = [x] .

*14. [x] = IYI.

*15. [x] + Iyl = 5.

17-10. How to Describe .! Line EI. ~ Equation.
We are going to show that any line is the

type of equation. We start by considering the
characterizes the line.

Consider a non-vertical line
be a point of L, with coordinates

y
L

----,oiC-----,..,I---...&...-----------......... x

[sec. 17-10]

Let P



597

The algebra in this proof can be made even easier by a simple
device. Instead of setting A = (O,p), B = (q,O), C = (r,O) we
could just as well have put A = (O,2p), B = (2q,0), C = (2r,0);
that is, take p, q and r as half the coordinates of the points
A, Band C. If we do it this way, then no fractiohs arise when
we divide by 2 in the mid-point formula. This sort of thing
happens fairly often; foresight at the beginning can take the place
of patience later on.

Theorem B. If the diagonals of a parallelogram are congruent,
the parallelogram is a rectangle.

Restatement: Let ABCD be a parallelogram, and let AC = BD.
Then ABCD is a rectangle.

y

--f'7---------~~-.....x

Proof: Let us take the axes as shown in the figure. Then
A = (0,0), and B = (p,O) with P > O. If we assume nothing
about the figure except that ABCD is a parallelogram D could
be anywhere in the upper half-plane, so that D = (q,r) with
r > 0, but no other restriction on q or r. However, C is
now determined by the fact that ABCD is a parallelogram. It
is fairly obvious (see the preceding proof for details) that for
DC to be parallel to AB we must have C = (s,r). s can be
determined by the condition BC II AD, like this:

slope of BC = slope of AD,

r - 0 r - 0 r r= 0' or = -,s - p q - s - p q

rq = r(s - p),

q = s - p, (since rIO)

s = p + q.

[sec. 17-8]
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-I

-I

3.

1 x

y

4.

y
y

0
x A

0 I x

i.
...'

5. 6.

-I 8

7.

[sec. 17-9]
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You should check carefully, in each of these cases, that the graph
is really accurately described by the condition in the left-hand
column above. Notice that we use diagonal cross-hatching to
indicate a region.

If a graph is described by a certain condition, then the
graph is called the graph of that condition. For example, the
first quadrant is the graph of the condition x > 0 and y > 0;
the circle in Figure 2 is the graph of the condition OP = 2; the
y-axis is the graph of the condition x = 0; the x-axis is the
graph of the condition y = 0; and so on.

Very often the condition describing a graph will be stated in

the form of an equation. In these cases we naturally speak of the
graph of the given equation.

If you remember Chapter 14, you have probably noticed that
we are doing the same thing here that we did in Sections 14-1 and
14-2, namely, characterizing a set by a property of its points.
The fact that here we use the word "graph" instead of "set" is
not important; it is simply customary to use the word "graph"
when working with coordinate systems.

Problem Set 17-9

Sketch and describe the graphs of the conditions stated below:

L

1.

2.

a. x = 5.

b. [x] = 5.

a. y > 3.

b. Iyl < 3.

3. 0 < x < 2.

4. -1 5. x 5. 5.

5. -2 < y < 2.

6. x < a and y > O.

[sec. 17-9]
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with coordinates
PQ must be m,

condition

that Q is some oth~r point of L,
Since PQ lies in L the slope of
coordinates of Q must satisfy the

Y - YI
~---:~ = m.
x - Xl

Notice that this equation is not satisfied by the coordinates of
the point P, because when x = xl and Y = Yl' the left-hand
side of the equation becomes the nonsensical expression ~,

which is not equal to m (or to anything else, for that matter).
If we multiply both sides of this equation by x - xl with

x I Xl' we get Y - Yl = m(x - Xl)·

Suppose
(x,y) .
and the

This equation is still satisfied for every point on the line
different from P. And it is also satisfied for the point P
itself, because when x = Xl and Y = Yl' the equation takes
the form 0 = 0, which is a true statement.

This is summarized in the follOWing theorem:

L be
of L,
of L,

Theorem 17-6. Let
and let P be a point
every point Q = (x,y)
is satisfied.

a non-vertical line with slope m,
with coordinates (XI'Yl). For
the equation y - Yl = m(x - Xl)

You might think at first that we have proved that the line
L is the graph of the equation Y - YI = m(x - Xl). But to know
that the latter is true we need to know that (compare with
Section 14-1):

(1) Every point on L satisfies the equation;
(2) Every point that satisfies the equation is on L.

We have only shown (1), so we have still to show (2). We shall
do this indirectly, by showing that if a point is not on L
then it does not satisfy the equation.

[sec. 17-10]
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Suppose that
point Q' = (x,y')

Q = (x,y) is not on L. Then there is a
which is on L, with y' I y, like this:

L

Y -------------,Q:(x,y)
I
I

y' ------------ 0' :(x,y')

o

By Theorem 17-1,
s' - Y____1 = m;
x - Xl

hence

Since y' I y, this means that

y I Yl + m(x - Xl)·

Therefore

Therefore the equation is satisfied only by points of the line.

We have now proved the very important theorem:

Theorem ll=1.. The graph of the equation

y - Yl = m(x - Xl)

is the line that passes through the point (xl'Yl) and has
slope m.

[sec. 17-10]
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The equation given in Theorem 17-7 is called the point-slope
form of the equation of the line. Let us take an example:

y

----+~-+---+--+-~I-----...x

= (1,2)

(1)

Using P

Here we have a line that passes through the points P = (1,2)
and Q = (4,6). The slope is

6 - 2 4m = 4 _ 1 = '!.

as the fixed point, we get the equation

y - 2 = t(X - 1).
4(Here Yl = 2, xl = 1, and m = ~.) In an equivalent form,

this becomes (2) 3y - 6 = 4x - 4, (How?)
or (3) 4x - 3y = -2.
Notice, however, that while Equation (3) is simpler to look at
if all we want to do is look at it, the Equation (1) is easier to
interpret geometrically. Theorem 17-7 tells us that the graph of
the Equation (1) is the line that passes through the point

4P = (1,2) and has slope ~.

The student can readily verify that we will get the same or
an equivalent equation if we had used Q as the fixed point
instead of P.

[sec. 17-10]
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and
Therefore,
the graph:

Given an equation in the point-slope form, it is easy to see
what the line is. For example, suppose that we have given the
equation y - 2 = 3{x - 4).
The line contains the point (4,2), and has slope m = 3. To
draw a line on graph paper, we merely need to know the coordinates
of one more point. If x = 0, then

y - 2 = -12,
Y = -10.

the point (0,-10) is on the line, and we can complete

y

6 8 10o
2

----~......j_+.f-..-+--+----+--. X

6

4

2

I

Logically speaking, this is all that we need. As a practical
matter, it is a very good idea to check the coordinates of one
more point. This point can be selected anywhere along the line,
but to serve as a good check it should not be too near the other
two points. If we take x = 2, we get

y - 2 = -6, or y = -4.
As well as we can judge from the figure, the point (2,-4) lies
on the line.

[sec. 17-10]
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At the beginning of this section we promised to show that
any line is the graph of a simple type of equation. We have
shown this for any non-vertical line, but we must still consider .
a vertical line. Suppose a vertical line crosses the x-axis at
the point with coordinates (a,O), as in the figure.

v

(0 0)

Since the vertical line is perpendicular to the x-axis, every
point of the line has its x-coordinate equal to a. Furthermore,
any point not on the line will have its x-coordinate not equal
to a. Hence, the condition which characterizes the vertical
line is x = a, certainly a very simple type of equation.

[sec. 17-10]

~~nce ~ne ve~~ca~ ~~ne ~s perpena~cu~ar ~o ~ne x-ax~s, every
point of the line has its x-coordinate equal to a. Furthermore,

a



610

Problem Set 17-10

In each of the following problems, we have given the co­
ordinates of a point P and the value of the slope m. Write
the point-slope form of the equation of the corresponding line,
and draw the graph. Check your work by checking the coordinates
of at least one point that was not used in plotting the line.
It is all right to draw several of these graphs on the same set
of axes, as long as the figures do not become too crowded.

1. P = (-1,2), m = 4.

2. P = (1,-1), m = -1.

3. P (0,5), 1= m = -'!.

4. p = (-1, -4), m = ~.

5. P = (3,-2), m= o.
By changing to a point-slope form where necessary,

the graph of each of the following equations is a line.
draw the graph and check, as in the preceding problems.

6. y - 1 = 2(x - 4).

7. y = 2x - 7.

8. 2x - Y - 7 = o.
9. y + 5 = t(x + 3).

10. x - 3y = 12.

11. Y = x.

12. y = 2x.

13. y = 2x - 6.

14. y = 2x + 5.

15. x = 4.

16. x = o.

17. y = o.

[sec. 17-10]

draw the graph and check, as in the preceding problems.

show that
Then
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18. Thinking in three-dimensional coordinates, describe in words
the set of points represented by the following equations.
For example, y = 0 is the equation of the xz-plane, that
is, the plane determined by the , x and z- axes. (Refer
to Problem 12 of Problem Set 17-3 .)

a.

b.

x = o.
z = o.

c.

d.

x = 1.

y = 2.

17-11. Various Forms of the Equation of' ~ Line.
We already know how to write an equation for a non-vertical

line if we know the slope m and the coordinates (x1'Y1) of
one point of the line. In this case we know that the line is the
graph of the equation

y - Yl = m(x - Xl)'
in the point-slope form.

Definition: The point where the line crosses the y-axis is
called the y-intercept. If this is the point (O,bt, then the
point-slope equation takes the form

y - b = m(x - O),
Y = mx + b.

This is called the slope-intercept form. The number b is also
called the y-intercept of the line. (When we see the phrase
y-intercept, we will have to tell from the context whether the
number b or the point (O,b) is meant.) Thus we have the
following theorem:

Theorem 17-8. The graph of the equation
y=mx+b

is the line with slope m and y-intercept b.

/

[sec. 17-11]
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If we have an equation given in this form, then it is easy to
draw the graph. All we need to do is to give x any value other
than 0, and find the corresponding value of y. We then have
the coordinates of two points on the line, and can draw the line.
For example, suppose that we have given

y = 3x - 4.
the point (0,-4) is on the graph. Setting x = 2,

Y = 6 - 4 = 2.
(2,2) is on the line, and the line therefore

Obviously
we get
Therefore the point
looks like this:

---+--t--1'----+--t----+----+x
3 4

As a check, we "f i nd that for x = 1,
Y = 3 - 4 = -1,

and the point (1,-1) lies on the graph, as well as we can judge.

[sec. 17-11]
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Notice that once we have Theorem 17-8, we can prove that
certain equations represent lines, by converting them to the
slope-intercept form. For example, suppose we have given

(1) 3x + 2y + 4 = o.
This is algebraically equivalent to the equation

2y = -3x - 4,
3or (2) y = -~ - 2.

Being equivalent, Equations (1) and (2) have the same graph. The
graph of (2) is a line, namely, the line With slope m = -~ and
y-intercept b = -2. The graph of (1) is the same line.

17-12. The General Form of the Equation of !. Line.
Theorem 17-8, of course, applies only to non-vertical lines,

because these are the ones that have slopes. Vertical lines are
very simple objects, algebraically speaking, because they are the
graphs of simple equations, of the form

x = a.
Thus we have two kinds of equations (y = mx + b and x = a) for
non-vertical and vertical lines respectively. We can tie all this
together, including both cases, in the following way.

Definition: By a linear equation in ~ and ¥.. we mean an

equation of the form
Ax + By + C = 0,

where A and B are not both zero.

The following 'two theorems describe the relation between
geometry and algebra, as far as lines are concerned:

Theorem 17-9.
linear equation in

Every line in the plane is the graph of a
x and y.

Theorem 17-10. The graph of a linear equation in x and y
is always a line.

Now that we have got this far, both of these theorems are
very easy to prove.

[sec. 17-12]

Thus we have two kinds of equations (y = mx + b and x = a) for
non-vertical and vertical lines resoectivelv. We can tie all this
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Proof of Theorem 17-9: Let L be a line in the plane. If
L is vertical, then L is the graph of an equation

or
x = a,

x - a = o.
This has the form Ax + By + C = 0, where A = 1, B = 0, C = -a.

A and B are not both zero, because A = 1, and so the equation
is linear.

If L is not vertical, then L has a slope m and crosses
the y-axis at some point (O,b). Therefore L is the graph of
the equation y = mx + b,
or mx-y+b = O.
This has the form Ax + By + C = 0, where A = m, B = -1, C = b.

A and B are not both zero, because B = -1. Therefore the
equation is linear. (Notice that it can easily happen that m = 0;

" .,
this holds true for all horizontal lines. Notice also that the
equation is not unique: e.g. 2Ax + 2By + 2C = 0 has the same
graph as Ax + By + C = 0.)

Proof of Theorem 17-10: Given the equation Ax + By + C = 0
with A and B not both zero.

Case 1. If B = 0, then the equation has the form

Ax = -C.

Since B = 0,

A, getting
The graph of

Case 2.
getting

or
The graph of

Am = -lj and

we know that A I O. Therefore we can divide by
C

x = A.

this equation is a vertical line.

Suppose that B I O. Then we can divide by B,
A C
~x + y + ~ = 0,

A C
Y = - BOC - ~.

this equation is a line, namely, the line with slope
Cy-intercept b = - ~.

To make sure that you understand what has been proved, in
Theorems 17-9 and 17-10, you should notice carefully a certain
thing that has not been proved. We have not proved that if a

[sec. 17-12]

Proof of Theorem 17-10: Given the equation Ax + By + C = 0
with A and B not both zero.
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given equation has a line as its graph, then the equation is
linear. And in fact this latter statement is not true. For
example, consider the equation

2x = o.
Now the only number whose square is zero is the number zero itself.
Therefore the equation x2 = 0 says the same thing as the equation
x = o. Therefore the graph of the equation x2 = 0 is the y-axis,
which is of course a line. Similarly, the graph of the equation

y17 = 0

is the x-axis.
The same sort of thing can happen in cases where it is not so

easy to see what is going on. For example, take the equation

x2 + y2 = 2xy.

This can be written in the form

x 2 _ 2xy + y2 = 0,

or (x - y)2 = O.

The graph is the same as the graph of the equation
x - y = 0,

y = x.
The graph is a line. •

Notice that the proof of Theorem 17-10 gives us a practical
procedure for getting information about the line from the general
equation. If B = 0, then we have the vertical line given by

Cthe equation x = - X.
Otherwise, we solve for y, getting

A C
Y = -Ex - B'

Awhere the s lope is m = - B
Cand the y-intercept is b = - B.

[sec. 17-12]
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Problem Set 17-12

Sketch the graphs of the following equations:

2x+ 5Y = 7.
1 2x + 3 O.2;Y - =

x + 4 = O.

1.

2.

.-3.

4. y + 4 = o.

Describe the graphs of the following equations:

5.

6.

7.

8.

o . x + 0 • Y = O.

0.x+O.y=2.

x2 + y2 = o.
2x = -1.

•

Sketch the graphs of the following conditions:

x ~ o.

5 ~ y < 10.

9. 3x + 4y = 0 and

10. 5X-2y=0 and

11. (x + y)2 = O.

12. (y _ 1)54 = O.

Find linear equations (Ax + By + C = 0) of which the
following lines are the graphs. State the values for A,
B, C in your answer.

13. The line through (1,2) with slope 3.

14. The line through (1,0) and (0,1).

15. The line with slope 2 and y-intercept -4.

16. The x-axis.

17. The y-axis.

18. The horizontal line through (-5,-3).

19. The vertical line through (-5,-3).

20. The line through

with end-points

the origin and the mid-point of the segment

(3,2) and (7,0).
[sec. 17-12]



or
Substituting 1 for x

The values x = 1, Y = 2

617

17-13. Intersections of Lines.
Suppose that we have given the equations of two lines, like

this:
Ll: 2x + Y = 4,

L2: x - y = -1.

These lines are not parallel, because the slope of the first is
ml = -2, and the slope of the second is m2 = 1. Therefore,
they intersect in some point P = (x,y). The pair of numbers
(x,y) must satisfy both equations. Therefore the geometric
problem of finding the point P is equivalent to the algebraic
problem of solving .§: system of two linear equations in two unknowns.

To solve the system is easy. Adding the two equations, we
get 3x = 3,

x = 1.

in the second equation, we get y = 2.
will also satisfy the first equation.

Do they?
Therefore P = (1,2). The graph makes this look plausible:

y

---.il'--+--+-----:l----+-----+x

[sec. 17-13]
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This method always gives the answer to our problem, whenever
our problem has an answer, that is, whenever the graphs of the two
equations intersect. If the lines are parallel, then the corre­
sponding system of equations will be inconsistent, that is, the
solution of the system will be the empty set. This will be plain
enough when we try to solve the system.

Problem Set 17-13

1. Find the common solution of the following pairs of equations
and draw their graphs.

a.

b.

y = 2x

y = 2x

and x + y = 7.

and y-2x=3 •.

a.2.

c • x + Y = 3 and 2y = 6 - zx,

The graphs of which pairs of the equations listed below
would be parallel lines?

b. Intersecting but not coincident lines?

c. Coincident lines?

The equations are

(1) Y = 3x + 1.

(2) y = 4x + 1.

(3) 2y= 6x + 2.

(4) y - 3x = 2.

3. Suppose the unit in our coordinate system 1s
many miles from the origin is the point where

1y = looo~ - 4 crosses the x-axis?

[sec. 17-13]
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4. Find the intersection of the
graphs of the following pairs
of conditions: y

y = 2x and y = 4.

y = 2x and y > 4.

y < 2x and y > 4.

b.

c.

d. What pair of conditions
will determine the
interior of the angle
shown in the figure?

Sketch the intersection of the graphs of all three
conditions x + y > 3, y < 4, x < 2. y

a.

a.5.

(3,0)

perpendicular bisector of the
(3,4) and (5,8).

y

b. State the three conditions
which would determine the
interior of the triangle
shown.

Find an equation for the
•
segment with end-points

Find equations for the
perpendicular bisectors
of the sides of
fj. (3,4)(5,8)(-1,10),

and show that they inter­
sect in a point.

6.

7.

------.,!--------+x

[sec. 17-13]
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*8. The following instructions were found on an ancient document.
"Start from the crossing of King's Road and Queen's Road.
Proceeding north on King's Road, find first a pine tree,
then a maple. Return to the crossing. West on Queen's Road
there is an elm and east on Queen's Road there is a spruce.
One magical point is where the elm-pine line meets the
maple-spruce line. The other magical point is where the
spruce-pine line meets the elm-maple line. The line joining
the two magical points meets Queen's Road where the treasure
is buried."

A search party found the elm 4 miles from the crossing,
the spruce 2 miles from the crossing, and the pine 3 miles
from the crossing, but there was no trace of the maple.
Nevertheless they were able to find the treasure from the
instructions. Show how this was done.

One man in the party remarked on how fortunate they
were to have found the pine still standing. The leader
laUghed and said, "We didn't need the pine tree either."
Show that he was right.

*9. One of the altitudes of the A ABC, where A = (-4,0),
B = (7,0), C = (0,8), is the y-axis. Why? Prove, using
coordinate methods, that the altitudes from A and B
meet on that axis. (Hint: Find the intersections of those
altitudes with the y-axis.)
Do the same for the triangle with vertices (a,O), (b,O),
(O,c).

A<-4,O)

y C(O,8)

K

[sec. 17-13]
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*10. The centroid of a triangle is defined as the intersection of
the three medians. Prove that the coordinates of the
centroid are just the averages of the coordinates of the
vertices.

*11. Find the distance from the point (1,2) to the line
x + 3y + 1 = O.

*12. Find the distance from the point (a,b) to the line y = x.

*13. In the general case of the triangle of Problem 9, let H be
the point of concurrence of the altitudes, M the point of
concurrence of the medians, and D the point of concurrence
of the perpendicular bisectors of the sides. Prove, using
Problems 9 and 10 that these three points are collinear,
and that M divides DH in the ratio two to one (refer to
Problem 8 of Problem Set 17-7).

17-14. Circles.
Consider the circle with center at the origin and radius r.

y

(-r 0) (r 0)
x

This figure is defined by the condition

OP = 1!.

[sec. 17-14]
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Algebraically, in terms of the distance formula, -this says that

or

vI(x - 0)2 + (y _ 0)2

x 2 + y2 = r2.

= r,

or

That is, if p(x,y) is a point of the circle then x2 + y2 = r 2.

We still have to show that if x2 + y2 = r 2 then p(x,y) is a
point of the circle. This we do by reversing the algebraic steps:

If x2 + y2 = r 2

then vi (x - 0) 2 + (y _ 0) 2 = r,
since r is a positive number. This equation says that OP = r,
and so P is a point of the circle.

Consider, more generally, the circle with center at the point
Q = (a,b) and radius r.

y

----t---------------------...x
This is defined by the condition QP = r,

vi (x - a)2 + (y - b)2 = r,

or

In this case, also, the algebraic steps can be reversed, and so
we can say that

is the equation of the circle.

[sec. 17-14]
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form of the equation of the circle, with
r. For future reference, let us state

Theorem 17-11. The graph of the equation

(x _ a)2 + (y _ b)2 = r 2

is the circle with center at (a,b) and radius r.

If an equation is given in this form, we can read off
immediately the radius and the coordinates of the center. For
example, suppose that we have given the equation

(x - 2)2 + (y + 3)2 = 4.
The center is the point (2,~3), the radius is 2, and the
circle looks like this:

y

--+---+--.......---+---------~ x
2 3

-I

-2

-3

So far, this is easy enough. But suppose that the standard
form of the equation has fallen into the hands of someone who
likes to "simplify" formulas algebraically. He would have
"simplified" the equation like this:

x2 _ 4x + 4 + y2 + 6y + 9 = 4

x 2 + y2 _ 4x + 6y + 9 = o.

[sec. 17-14]
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From his final form, it is not at all easy to see what the graph
is. Sometimes we will find equations given in forms like this.
Therefore we need to know how to "unsimplify" these forms so as
to get back the standard form

(x _ a)2 + (y _ b)2 = r 2•

The procedure is this. First we group the terms in x together,
and the terms in y together, and write the equation with the
constant term on the right, like this:

x2 _ 4x + y2 + 6y = -9.
Then we see what constant should be added to the first two terms
to complete a perfect square. Recall that to find this constant
take half of the coefficient of x, and square the result. Here
we get 4. The sarne process, applied to the third and fourth
terms, shows that we should add 9 in order to make a perfect
square. Thus we are going to add a total of 13 to the left­
hand side of the equation . Therefore we must add 13 to the
right-hand side. Now our equation takes the equivalent form

x2 _ 4x + 4 + y2 + 6y + 9 = -9 + 13,

or (x - 2)2 + (y + 3)2 = 4,
as before.

If we multiply out and simplify in the standard form, we get

x2 + y2 _ 2ax _ 2by + a2 + b2 _ r 2 = o.
This has the form

x 2 + y2 + Ax + By + C = o.
Thus we have the theorem:

Theorem 17-12. Every circle is the graph of an equation of
the form

x2 + y2 + Ax + By + C = o.
It might seem reasonable to suppose that the converse is also

true. That is, we might think that every equation of the form
that we have been discussing has a circle as its graph. But this
is not true by any means. For example, consider the equation

x2 + y2 = o.

[sec. 17-14]
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Here A, B and C are all zero. If x and y satisfy this
equation, then x and yare both zero. That is, the graph of
the equation is a single point, namely, the origin.

Consider next the equation

x 2 + y2 + 1 = O.
Here A = B = 0 and C = 1. This equation is not satisfied by
the coordinates of any point whatsoever. (Since ' X

2 ) 0 and
y2 L 0 and 1 > 0, it follows that x + y + 1 > 0 for every
pair of real numbers x and y.) For this equation, the graph
has ~ points at all, and is therefore the empty set.

In fact, the only possibilities are the circle that we would
normally expect, plus the two unexpected possibilities that we
have Just noted.

Theorem 17-13. Given the equation

x2 + y2 + Ax + By + C = O.

The graph of this equation is (I) a circle, (2) a point or
(3) the empty set.

Proof: Let us complete the square for the terms in x, and
complete the square for the terms in y, Just as we did in the
particular case that we worked out above. This gives

2 A2 2 B2 A2 B2
x + Ax + 'If"'" + Y + By + r = -C + r + r'

or {x + ~)2 + {y + ~)2 = A
2

+ ~2 - 4C

If the fraction on the right is positive, equal to r 2 with

r > 0, then the graph is a circle with center at (-~,-~) and
radius r. If the fraction on the right is zero, then the graph
is the single point (-~,-~). If the fraction on the right is
negative, then the equation is never satisfied, and the graph
contains no points at all.

[sec. 17-14]
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Problem Set 17-14
y

1. The circle shown has a
radius of 5 units. Find
the value of:

a.

b.

c.

d.

e.

2 2
xl + Yl

2 2x 2 + Y2 •

2 2x3 + Y3 .

2 2
x4 + Y4

2 2
x 5 + Y5 •

2. a. Which of the following eight equations have graphs which
are circles?

b. Which of the circles would have centers at the origin?

c. Which would have centers on an axis, but not at the
origin?

(1)

(2)

(3)

(4)

2 )2x + (y - 1 = 9.
2y = x •

2 2
x +Y =7.

2 2
1 - x = y •

( 5)

( 6)

(7)

(8)

(x - 2)2 - (y - 9)2 = 16.

(x - 2)2 + (y _ 3)2 = 16.
2 23x + Y = 4.

x2 + y2 = o.

(x - 4)2 + (y - 3)2 = 36.

(x + 1)2 + (y + 5)2 = 49.

x2 _ 2x + 1 + y2 = 25.

x2 _ 2x + y2 = 24.

x2 + 6x + y2 _ 4y = 12.

i.

j.

g.

h.

f.

Determine the center and radius of each of the following
circles.

a. x2 + y.2 = 32.

b. x 2 + y 2 = 100.

c. (x - 1)2 + y2 = 16.
2 2

d. x + y = 7.
2 2e. y = 4 - x .

3.

[sec. 17-14]
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4. A circle has the equation: x2 - lOx + y2 = 0.

a. Show algebraically that the points (0,0), (1,3) and
(2,4) all lie on the circle.

b. Find the center and radius of the circle.

c. Show that if (1,3) is joined to the ends of the
diameter on the x-axis, a right angle is formed with
vertex at (1,3).

5. a. Find the points where the circle (x _ 3)2 + y2 = 25
is intersected by the x- and y-axes.

b. Considering portions of the x- and y-axes as chords
of the circle in part a., prove (as you should of course,
expect from Theorem 13-14) that the products of the
lengths of the parts into which each chord is divided
by the other, are equal.

6. Draw the four circles obtained by choosing the various
possible sign combinations in

(x ± 1)2 + (y ± 1)2 = 1.
Then write the equations of the circle tangent to all four
and containing them. Is there another circle tangent to all
four. What is its radius?

7. Draw the 4 circles given by

x2 + y2 = +lOx, x2 + y2 = +IOy
and write the equation of a circle tangent to all of them.

8. Given the circle x2 + y2 = 16 and the point K(-7,0).

a. Find the e~uation (in point-slope form) of the line Lm
with slope m passing through the point K.

b. Find the points (or point) of intersection of Lm and
the circle.

c. For what values of m is there exactly one point of
intersection? Interpret this result geometrically.

[sec. 17-14]
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9. Find an equation for a circle tangent externally to the circle

x2 + y2 _ lax - 6y + 30 = a
and also tangent to the x- and y-axes.

REVIEW PROBLEMS

1.

2.

What are the coordinates of the projection into the x-axis
of the point (5,2)?

Three of the vertices of a rectangle are (-1,-1), (3,-1)
and (3,5). What is the fourth vertex?

(0,0), (4a,0) and
median from the origin?

3. An isosceles triangle has vertices
(2a,2b). What is the slope of the
of the median from (2a,2b)?

4. In Problem 3 what is the slope of the altitude which contains
the origin?

5. What is the length of each of the medians of the triangle in
Problem 3?

6. What is the slope of a line that is parallel to a line which
passes through the origin and through (-2,3).

7. The vertices of a quadrilateral are (0,0), (5,5), (7,1)
and (1,7). What are the lengths of its "diagonals?

8. What are the coordinates of the mid-points of segments joining
the pairs of points in Problem 7?

9. The vertices of a square are labeled consecutively, P, Q,
R and S. T is the mid-point of QR and U is the mid-

- -point of RS. PT intersects QU at v.
a. Prove that PT a QU.

b. Prove that PT 1 QU.

*c. Prove that VS = PQ.

(Hint: Let P = (0,0) and Q = (2a,0).)

Problem 3?
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10. Use coordinate geometry to prove the theorem: The median of
a trapezoid bisects a diagonal.

11. What is the equation whose graph is the y-axis?

12. A rhombus
positive
quadrant.

ABCD has A at the origin and AB in the
x-axis. ~ A = 45. AB = 6. C is in the first

What is the equation of tB? Ba1 ~~

13. The coordinates of the vertices of a trapezoid are, con­
secutively, (0,0), (a,O), (b,c) and (d,c). Find the
area of the trapezoid in terms of these coordinates.

14. 1The graphs of the equations y = ~x and y = -2x + 5 are
perpendicular to each other at what point?

15. Name the set of points such that the sum of the squares of
the distances of each point from the two axes is 4.

16. Write the equation of the circle which has

a. its radius 7 and center at the origin.

b. its radius k and center at the origin.

c. its radius 3 and center at (1,2).

*17. Prove that the line x + y = 2 is tangent to the circle
x2 + y2 = 2.

b. its radius k and center at the origin.
~ .... ..:11 .. "" __ ..:II ..L. .I- /..,,...,.\
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Chapters 13 to 17

REVIEW EXERCISES

Write (1) if the statement is true and (0) if it is false.
Be able to explain why you mark a statement false.

1. If a line through the center of a circle is perpendicular to
a chord of that circle, it bisects the chord.

2. If AB is a radius of a circle and ct is tangent to the
circre , then AB 1"8:t

3. A line which bisects two chords of a circle is perpendicular
to both of them.

4. The intersection of the interiors of two circles may be the
interior of a circle.

5. Every point in the interior of a circle is the mid-point of
exactly one chord of the circle.

6. The longer an arc is, the longer its chord is.

7. If a line intersects a circle, the intersection consists of
two points.

8. If a plane and a sphere intersect, and if the intersection
is not a circle, it is a point.

9. If a plane is tangent to a sphere, a line perpendicular to
the plane at the point of tangency contains the center of
the sphere.

,--... ~ .c:::.-
Ia. ana given circle, mXY + mYZ = ~.

11. A 900 inscribed angle will always intercept a 450 arc.

12. Two angles which intercept the same arc are congruent.

13. Congruent chords drawn in each of two concentric circles
have congruent arcs.
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14. If a triangle inscribed in a circle has no side intersecting
a given diameter then the triangle contains an obtuse angle.

15. If two chords in a circle intersect, the ratio of the segments
of one chord is equal to the ratio of the segments of the
other chord.

~

If AB is tangent to a circle at B and if AC intersects
the circle at C and D, then AB2 = AC • AD.

17. In a plane, the set of points equidistant from the ends of a
segment is the perpendicular bisector of the segment.

18. The set of points one inch from a given line is a line
parallel to the given line.

19. Any point in the interior of an angle which is not equidistant
from the sides of the angle does not lie on the bisector of
the angle.

20.

21.

22.

23.

24.

25.

26.

The three altitudes of any right triangle are concurrent.

Two circles intersect if the distance between their centers
is less than the sum of their radii.

The three angle bisectors of a triangle are concurrent at a
point eqUidistant from the vertices of the triangle.

The perpendicular bisectors of two sides of a triangle may
intersect outside the triangle.

Using straight-edge and compass, it is possible to trisect
a segment.

In bisecting a given angle by the method shown in the text,
it is necessary to draw at least four arcs.

The ratio of radius to circumference is the same for all
circles.

A plane section of a triangular prism may be a parallelogram.

A plane section of a triangular pyramid may be a parallelogram.

27.

28.

29.

The area of a circle of diameter d is
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30. The volume of a triangular prism 1s half the product of the
area of its base and its altitude.

31. In any pyramid
altitude and is
the base.

a section made by a plane which bisects the
parallel to the base has half the area of

32. Two pyramids with the same volume and the same base area
have congruent altitudes.

33. The volume of a pyramid with a square base is equal to one­
third of its altitude multiplied by the square of a base
edge.

34. The area of the base of a cone can be found by dividing
three times the volume by the altitude.

35. The radius of the base of a circular cylinder is given the

formula "vI:h, where V is the volume of the cylinder and
h its altitude.

36. The volume of a sphere is given by the formula %Vd3 where
d is its diameter.

37. The slope of a segment depends on the quadrant or quadrants
in which the segment lies.

38. If two segments have the same slope they are parallel.

39. If the slopes of two lines are -2 and .5 the lines are
perpendicular.

40. If the coordinates of two points are (a,b) and (c,d), the
distance between them is (d - b) + (c - a).

41. If a segment joins (r,s) to (-r,-s), then its mid-point
is the origin.

42. The point (-2,-1) lies on the graph of xy - 2x-y+2 = o.
43. The distance between (3,0) and (4,0) is 5.

44. If two vertices of a right triangle have coordinates (0,10)
and (8,0) the third vertex is at the origin .
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45. If three vertices of a rectangle have coordinates (a,m),
(r,O) and (r,m) the fourth vertex is at the origin.

46. The equation of a line with slope 2 and containing (3,4)
is 4y + 3x = 2.

47. The x-intercept of the graph of y = 3x + 9 is -3.

48. The intersection of the graphs of y = 3x + 2 and y = 3x + 1
is a single point.

49. The graph of x 2 + y2 - 4 = a is a circle.

50. The graph of every condition is either a line or a curve.





Appendix VII

HOW ERATOSTHENES MEASURED THE EARTH

The circumference of the earth, at the equator, is about
40,000 kilometers, or about 24,900 miles. Christopher Columbus
appears to have thought that the earth was much smaller than this.
At any rate, the West Indies got their name, because when Columbus
reached them, he thOUght that he was already in India. His margin
of error, therefore, was somewhat greater than the width of the
Pacific Ocean.

In the third century B.C., however, the circumference of the
earth was measured, by a Greek mathematician, with an error of
only one or two per cent. The man was Eratosthenes, and his
method was as follows:

C ""-----''"---------~t--- ~--

Assuan
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It was observed that at Assuan on the Nile, at noon on the
Summer Solstice, the sun was exactly overhead. That is, at noon
of this particular day, a vertical pole cast no shadow at all,
and the bottom of a deep well was completely lit up.

In the figure, C is the center of the earth. At noon on
the Summer Solstice, in Alexandria, Eratosthenes measured the
angle marked a on the figure, that is, the angle between a
vertical pole and the line of its shadow. He found that this

o 1angle was about 7 12', or about 50 of a complete circumference.
Now the sun's rays, observed on earth, are very close to

being parallel. Assuming that they are actually parallel, it
follows when the lines Ll and L2 in the figure are cut by
a transversal, alternate interior angles are congruent. Therefore,
L a ~ L b. Therefore, the distance from Assuan to Alexandria must
be about 510 of the circumference of the earth.

The distance from Assuan to Alexandria was known to be about
5,000 Greek stadia. (A stadium was an ancient unit of distance.)
Eratosthenes concluded that the circumference of the earth must be
about 250,000 stadia. Converting to miles, according to what
ancient sources tell us about what Eratosthenes meant by a stadium,
we get 24,662 miles.

Thus Eratosthenes' error was well under two percent. Later,
he changed his estimate to an even closer one, 252,000 stadia,
but nobody seems to know on what basis he made the change. On
the basis of the eVidence, some historians believe that he was
not only very clever and very careful, but also very lucky.

[A-VII]



Appendix VIII

RIGID MOTION

VIII-I. The General Idea of ~ Rigid Motion.
In Chapters 5 and 13 we have defined congruence in a number

of different ways, dealing with various kinds of figures. The
complete list looks like this:

(1) AB ~ CD if the two segments have the same length, that
is, if AB = CD.

(2) L A ~L B if the two angles have the same measure,
that is, if mL A = mL B.

(3) 6. ABC al 6. DEF if, under the correspondence ABC+---+DEF,
every two corresponding sides are congruent and every two corre­
sponding angles are congruent.

(4) Two circles are congruent if they have the same radius.
~ ~

(5) Two circular arcs AB and CD are congruent if the
circles that contain them are congruent and the two arcs have the
same degree measure.

The intuitive idea of congruence is the same in all five of
these cases. In each case, rOUghly speaking, two figures are
congruent if one of them can be moved so as to coincide with the
other; and in the case of triangles, a congruence is a way of
moving the first figure so as to make it coincide with the second.

At the beginning of our study of congruence, the scheme used
in Chapters 5 and 13 is the easiest and probably the best. It is
a pity, however, to have five different special ways of describ­
ing the same basic idea in five special cases. And, in a way, it
is a pity for this basic idea to be limited to these five special
cases. For example, as a matter of common sense it is plain that
two squares, each of edge 1, must be congruent in some valid

..., .... B 1 1 c'sense: ...

'-------......D

- - - - - - - - - - - - - - - - - - - - - - -
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definition of a rigid motion, let
Consider two opposite sides of

A

The same ought to be true for parallelograms, if corresponding
sides and angles are congruent, like this:

b 8' b
'r----........;;;'---------i~

b A b
It is plain, however, that none of our five special definitions of
congruence applies to either of these cases.

In this appendix, we shall explain the idea of a rigid motion.
This idea is defined in exactly the same way, regardless of the
type of figure to which we happen to be applying it. We shall
show that for segments, angles, triangles, circles and arcs it
means exactly the same thing as congruence. Finally, we will
show that the squares and parallelograms in the figures above can
be made to coincide by rigid motion. Thus, first, the idea of
congruence will be unified, and second, the range of its appli­
cation will be extended.

Before we give the general
us look at some simple examples.
a rectangle, like this:

P Q
• • • •
I I I

I I I
I I I
I I I
I I I
I I I
• • •

pi QI

The vertical sides are dotted, because we will not be especially
concerned with them. For each point P, Q, and so on, of
the top edge let us drop a perpendicular to the bottom edge; and
let the foot of the perpendicular be P', Q' and so on.

[A-VIII]
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Under this procedure, to each point of the top edge there corre­
sponds exactly one point of the bottom edge. And conversely, to
each point of the bottom edge there corresponds exactly one point
of the top edge. We can't write down all of the matching pairs
P~P', Q+-+Q', and so on, because there are infinitely
many of them. We can, however, give a general rule, explaining
what is to correspond to what; and in fact, this is what we have
done. Usually we will write down a typical pair

P+--+P' ,
and explain the rule by which the pairs are to be formed.

Notice that the idea of a one-to-one correspondence is
exactly the same in this case as it was when we were using it for
triangles in Chapter 5. The only difference is that if we are
matching up the vertices of tW0 triangles, we can write down all
of the matching pairs, because there are only three of them.
(ABC+--+DEF means that A~D, B +-+E and C~F.) At
present we are talking about exactiy the same sort of things,
only there are too many of them to write down.

It is very easy to check that if P and Q are any two
points of the top edge, and P' and QI are the corresponding
points of the bottom edge, then

PQ = pI Q' .
This is true because the segments PQ and PIQ' are opposite
sides of a rectangle. We express this fact by saying that the
correspondence P~P' preserves distances.

The correspondence that we have just set up is our first and
simplest example of ~ rigid motion. To be exact:

F and F', a rigid motion
correspondence

Given two figures
F' is a one-to-one

P +--+pl

between the points of F and the points of F', preserving dis­
tances.

Definition:
between F and

[A-VIII]
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If the correspondence P~ P' is a rigid motion between
F and F', then we shall write

F ~ F'.

This notation is like the notation /),. ABC GIl /),. A'B' CI for con­
gruences between triangles. We can read F ~ F' as "F is
isometric to F'." ("Isometric" means "equal measure. lf

)

Problem Set VIII-1

1. Consider triangles 6 ABC and A A'B'C', and suppose that
A ABC ~ Ii A' B' C' •

Let F be the set consisting of the vertices of the first
triangle, and let F' be the set consisting of the vertices
of the second triangle. Show that there is a rigid motion

F ~ F' •

of the vertices of a square of
set consisting of the vertices

as in the figure at the
Show that there is a rigid

consisting
F' be the

of edge 1,
Appendix.

Let F be the set
edge 1, and let
of another square
beginning of this
motion

2.

F ~ F' •

(First you have to explain what corresponds to what, and
second you have to verify that distances are preserved.)

3. Do the same for the vertices of the two parallelograms in the
figure at the start of this Appendix.

4. Show that if F consists of three collinear points, and F'
consists of three non-collinear points, then there is no
rigid motion between F and F'. (What you will have to do
is to assume that such a rigid motion eXists, and then show
that this assumption leads to a contradiction.)

5. Show that there is never a rigid motion between two segments
of different lengths.

6. Show that there is never a rigid motion between a line and
an angle. (Hint: Apply Problem 4.)

[A-VIII]
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7. Show that given any two rays, there is a rigid motion between
them. (Hint: Use the Ruler Placement Postulate.)

8. Show that there is never a rigid motion between two circles
of different radius.

VIII-2. Rigid Motion of Segments.
Theorem VIII-I. If AB = CD, then there is a rigid motion

AB ~ CD.

Proof:
between AB
preserved.

First we need to set up a correspondence P~P'

and CD. Then we need to check that distances are

~

By the Ruler Postulate, the points of the line AB can be
given coordinates in such a way that the distance between any two
points is the absolute value of the difference of the coordinates.
And by the Ruler Placement Postulate, this can be done in such a
way that A has coordinate zero and B the positive coordinate
AB. ~

o
p.
x

Q B
• •
Y AS

In the figure, we have shown typical points P, Q with their
coordinates x and y.

~

In the same way~ the points of CD can be given coordinates:

c•o

I
P
•x

I
Q
•
Y

D
•

AS ..
Notice that D has the coordinate AB, because CD = AB.

It is now plain what rule we should use to set up the corre­
spondence

P +--+P'

[A-VIII]
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between the points of AB and the points of CD. The rule is that
p corresponds to P' if P and P' have the same coordinate.
(In particular, A~C because A and C have coordinate zero,
and B~D because Band D have coordinate AB.)

It is easy to see that this correspondence is a rigid motion.
If p ~P' and Q+-+Q', and the coordinates are x and y,

as in the figure, then PQ = P'Q', because

PQ = Iy - xl = P'Q' .
We therefore have a rigid motion

AB ~ CD,
and the theorem is proved.

Notice that this rigid motion between the two segments is
completely described if we explain how the end-points are to be
matched up. ~e therefore will call it the rigid motion induced
~ the correspondence

Theorem VIII-2. If there is a rigid motion AB ~ CD between
two segments, then AB = CD.

The proof is easy. (This theorem was Problem 5 in the pre­
vious Problem Set.)

Problem Set VIII-2

1. Show that there is another rigid motion between the congruent
segments AB and CD, induced by the correspondence

A~D

B~C.

2. Show that there are two rigid motions between a segment and
itself. (One of these, of course, is the identity corre­
spondence P +-+ P', under which every point corresponds to
itself; this is a rigid motion because PQ = PQ for every
P and Q.)

[A-VIII]
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VIII-3. Rigid Motion
Theorem VIII-3.

a rigid motion

of Rays, Angles and Triangles.
Given any two rays AB and CD~

---+",~
AB '" CD.

there is

The proof of this theorem is quite similar to that of
Theorem VIII-I, and the details are left to the reader.

Theorem VIII-4. If LABC ~ LDEF, then there is a rigid
motion

L ABC ~ L DEF
between these two angles.

Proof: We know that there are rigid motions
---+ ---+BA ~ ED

and
---+ ----+
BC ~ EF

between the rays which form the sides of the two angles.

cB"--------~

are
andL ABC

and Q

Let us agree that two points P and P' (or Q and Qt) are
to correspond to one another if they correspond under one of these
two rigid motions. This gives us a one-to-one correspondence

between the two angles. What we need to show is that this corre­
spondence preserves distances.

Suppose that we have given two points P, Q of
the corresponding points pt, Qt of L DEF. If P
on the same side of L ABC, then obviously

ptQt = PQ,

[A-VIII]
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because distances are preserved on each of the rays that form
L ABC. Suppose, then, that P and Q are on different sides of
L ABC, so that P' and' Q' are on different sides of L DEF,
like this:

B'-------+~ EL.------4_+

By the S.A.S. Postulate, we have
Ii PBQ SS Ii P' EQ' .

Therefore PQ = P'Q', which was to be proved.
Next, we need to prove the analogous theorem for triangles:

Theorem VIII-5. If
Ii ABC ~ Ii A'B'C',

then there is a rigid motion
Ii ABC ~ Ii A'B'C' ,

under which A, Band C correspond to A', B' and C'.

Proof: First we shall set up a one-to-one correspondence
between the points of Ii ABC and the points of Ii A'B'C'. We
have given a one-to-one correspondence

ABC+----+ A'BI C'
for the vertices. By Theorem VIII-l this gives us the induced
rigid motions

AB ~ A'B',
- --AC ~ A'C'

and
BC ~ B'C'

between the sides of the triangles. These three rigid motions,
taken together, give us a one-to-one correspondence P~P'

between the points of the two triangles. We need to show that
this correspondence preserves distances.

[A-VIII]
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If P and Q are on the same side of the triangle, then
we know already that

P' Q' = PQ.
Suppose, then, that P and Q are on different sides, say, AB

-and AC, like this:

B

A"---------~-~C

We know that

8'

A"'----------~~~ICI

because AB ~ AlB'

and L A ~ L A',
Postulate,

Therefore,

AP = A'P',
is a rigid motion. For the same reason,

AQ = A' Q' ,
because 6 ABC ~ /). A'BIC'. By the S.A.S.

6 PAQ ~ 6 P'A'Q'.

PQ - P' Q' ,
which was to be proved.

Notice that while the figure does not show the case P = B,

the proof takes care of this case. The proof is more important
than the figure, anyway.

Problem Set VIII-3

1. Let
ABC ~A'B'CI

be a rigid motion, and suppose that A, Band Care
collinear. Show that if B is between A and C, then
B' is between A' and C'.

[A-VIII]
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2. Given a rigid motion

F ~ F' •

Let A and B be points
contains the segment AB.
segment A'B'.

3. Given a rigid motion

of F, and suppose that F
Show that F' contains the

F ~ F' .

Show that if F is convex, then so also is F'.

4. Given a rigid motion
F ~ F' .

Show that if F is a segment, then so also is F'.

5. Given a rigid motion F ~ F'. Show that if F is a ray,
then so also is F'.

6. Show that there is no rigid motion between a segment and a
circular arc (no matter how short both of them may be).

VIII-4. Rigid Motion of Circles and Arcs.
Theorem VIII-6. Let C and C' be circles of the same

radius r. Then there is a rigid motion

C ~ C'
between C and C'.

A~---~r----+----1B ~ 1-------..:....'-----+----181

[A-VIII]
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Proof: Let the centers of the circles be P and P'. Let
AB be a diameter of the first circle, and let A'B' be a diameter
of the second. Let HI and H2 be the half-planes determined by

~

the line AB; and~ H'l and H' 2 be the half-planes deter-
mined by the line A'B'.

We can now set up our one-to-one correspondence Q+--+Q' , in
the following way: (1) Let A' and B' correspond to A and
B, respectively. (2) If Ql is a point of C, lying in HI'
let Q' be the point of C' , lying in H'l' such that1

~ ~----,l-""""~-------4BI

LQ'lP'B' ~ L QlPB.

~ is a point of C, lying in H2, let Q'2 be the
C2, lying in H'2' such that

L Q'2P'B' ~ L Q2PB.

We need to check that this correspondence preserves distances.
Q Q'

~
/

. /
/

/
/

At------+-~-----1B

(3) If
point of

Thus, for every two points Q, R of C, we must have
Q'R' = QR.

If Q and R are the end-points of a diameter, then so are Q'
and R', and Q'R' = QR = 2r. Otherwise, we always have
~ QPR ~ ~ Q'P'R', so that Q'R' = QR. (Proof? There are two
cases to consider, according as B is in the interior or the
exterior of LQPR.)

You should prove the following two theorems for yourself.
They are not hard, once we have gone this far.

[A-VIII]
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Theorem VIII-7. Let 0
radius, as in Theorem VIII-6.
congruent central angles of 0

'--------1!B

circles with the same
and L X'P'B' be

respectively.

''--- - - - --4S1

Then a rigid motion 0 ~ ~ c~be chosen in such a way that
B ~B', X~X', and BX ~ B'X' •

Theorem VIII-8. Given any two congruent arcs, there is a
rigid motion between them. The proof is left to the reader.

VIII-5. Reflections.
The definition of rigid motion given in Section VIII-l is a

perfectly good mathematical definition, but we might claim that
from an intuitive viewpoint it does not convey any idea cf "motion ll

•

We will devote this section to showing how a plane figure can be
"moved" into coincidence with any isometric figure in the same
plane.

Throughout this section all figures will be considered as
lying in a fixed plane.

[A-VIII]
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Definitions. A one-to-one correspondence between two figures
isa reflection if there is a line L, such that for any pair of
corresponding points P and P', either (1) P = P' and lies
on L or (2) L is the perpendicular bisector of PP'. L is
called the~ of reflection, and each figure is said to be the
reflection, or the image, of the other figure in L.

In the pictures below are shown some examples of reflections
of simple figures.

P B

c

L

Theorem VIII-9. A reflection is a rigid motion.

Proof: We must show that if
and P' and Q' their images in
There are four cases to consider.

P and
a line

Q are any two points,
L, then PQ = P'Q' .

p A

o B

L

Case (1)

pi p

L

Case (2)

p

L

Case (3)

pi P pi

o 0'

L

Case (4)

[A-VIII]
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Case 1. P and Q are on the same side of
intersect L at A and QQ' intersect L at
definition of reflection pp' 1 L and PA = P'A,
and QB = Q'B. Hence ~ PAB a b. P' AB, and PB =
L PBA ~ L P'BA. By subtraction, L PBQ &Il L PBQ' .
(by S. A.S .) b. PBQ ~ ~ P' BQI, and so PQ = pI QI .

Case 2. The proof is the same, except that in proving
LPBQ ~ L PBQ' we add angle measures instead of subtracting.

Case 3. Q is on L. Then Q = QI and PQ = PIQI since
Q is on the perpendicular bisector of PPI. The case P on L

and Q not on L is just the same.

and Q both on
PQ = P' Q' .

Case 4. P
we certainly have

L. Since P = pI and Q = Q'

Starting with a figure F we can reflect it in some line to
get a figure Fl, Fl can be reflected in some line to get a
figure F2 , and so on. If we end up with a figure FI after
n such steps we shall say that F has been carried into F'
by a chain of n reflections.

Corollary VIII-9-1. A chain of reflections carrying F into
F' determines a rigid motion between F and F'.

Coming back to our opening discussion in this section, a
reflection can be thOUght of as a physical motion, obtained Iy
rotating the whole plane through 1800 about the axis of re­
flection. The above corollary says that a certain type of rigid
motion, namely, those obtainable as a chain of reflections, can
be given a physical interpretation. What we shall now show is
that every rigid motion is of this type.

The proof will be given in two stages, the first stage in­
volVing only a very simple figure. For convenience we will use
the notation F I F' if F and F' are reflections of each
other in some axis.

[A-VIII]



Theorem VIII-IO.
such that AB = A'B',
chain of at most three

A', B', C'.

Proof:
Step 1.

A-45

Let A, B, C, A', B', C' be six points
AC = A'C', BC = B'C'. Then there is a
reflections that carries A, B, C into

c

B

Let L2 be the perpendicular bisector of AA',
C2 be the reflections of B' and C' in L2.
A' ,B' ,C' •

and let B2 and

Then A, B2,C2 I

Step 2.

c,

Let Ll be the perpendicular bisector of

and since by Theorem VIII-9, A'B' = AB2 ,
AB = AB2. Therefore A lies on Ll and
reflection in L. Thus, the image of A,
A, B, Cl.

[A-VIII]
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Step 3.
c

C.
By arguments similar to the one above we see that AC = AC I and
BC = BCl. Hence, tt is the perpendicular bisector of CCl,
and the image A, B, Cl in ~ is A, B, C.

We thus have,
A,B,C A,B,Cl I A,B2,C 2 I Al,B' ,C',

as was desired.
Anyone or two of the three steps may be unnecessary if the

pair of points we are working on (A in step 1, B in step 2,
C in step 3) happen to coincide.

We are now ready for the final stage of the proof.

Theorem VIII-II. Any rigid motion is the result of a chain
of at most three reflections.

Proof: We are given a rigid motion F ~ F'. Let A, B, C
be three non-collinear points in F, and AI, Bl, C' the corre­
sponding points in F'.

(If all points of F are collinear a separate, but simpler,
proof is needed. The details of this are left to the student.)

By Theorem VIII-IO we can pass from A', B', Cl to A, B, C
by a chain of at most three reflections. By Corollary VIII-9-1
this chain determines a rigid motion F' ~ F", and by the .con­
struction of the reflections we have A" = A, B" = B and
C', = C. Schematically the situation is something like this:

[A-VIII]
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F ' ~ F"
+- ~

Constructed

= P.P' ,we haveF

F, and that the given
the one determined by the

any point P of F, its corre­
determined by the rigid motion
in FI' determined from P' by

We recall that A" = A, BII = B,

We shall show that for every point P of
This will show that F" coincides with
rigid motion F ~ F' is identical with
chain of reflections.

Let us consider, then,
sponding point P' in F'
F ~ FI, and the point pi'
the chain of reflections.
C" = C.

c

I.
/

/
I

/

Pf-
, B,

A

Since all our relationships are rigid motions we have
AP" = A'P' = AP. Similarly, BP" = BP and CpII = CPo From
the first two of these, and AB = AB, we get that
~ ABP ~ ~ ABP' I, and so L BAP = L BAP' '. If P and pI I are

+-+
on the same side of AB then by the Angle Construction Postulate
At = APtt, and since AP = APII it follows from the Point
Plotting Theorem that P = pll, which is what we wanted to prove.

[A-VIII]
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lie on opposite sides ofSuppose then that P and

I
I

A " ..... I
.J ..p

Since PA = PIIA and PB = P"B it follows that A and B lie
on the perpendicular bisector of PP'I. Since PC ~ P"C, C
also lies on this line, contrary to the choice of A, B and C
as non-collinear. Hence, this case does not arise, and we are
left with P = pI', thus proving the theorem.

Problem Set VIII-5

1. In each of the following construct, with any instruments
you find convenient, the image of the given figure in the
line L.

a.

L

C B

[7
A

b.

A~--I--_

c

c.

~----'-'~L

2. Find a chain of three or fewer reflections that will carry
ABCD into AIBICIDI.

B

A

0
1

o
[A-VIII]
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Carry Ii ABC through the chain of four reflections in

the axes Ll, L2, L3, L4.

c

A

B
La

b. Find a shorter chain that will give the same rigid
motion.

Definitions: A figure is symmetric if it is its own image in
some axis. Such an axis is called an axis of symmetry of the
figure.

4. Show that an isosceles triangle is synunetric. What is the
axis?

5. A figure may have more than one axis of symmetry. How many
do each of the following figures have?

a . A rhombus.

b. A rectangle.

c. A square.

d. An equilateral triangle.

e. A circle.

6. The rigid motion defined by a chain of two reflections in
parallel axes has the property that if p~p' then pp'
has a fixed length (twice the distance between the axes)
and direction (perpendicular to the axes). Prove this.
Such a motion is called a translation.

[A-VIII]
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7. The rigid motion defined by a chain of two reflections in
axes which intersect at Q has the property that if P~P'

then LPQP' has a fixed measure (twice the measure of the
acute angle between the axes). Prove this.
Such a motion is called a rotation about Q.

8. Show how by using the results of Problems 6 and 7 the
FUndamental Theorem VIII-II can be restated in the following
form:
Any rigid motion in a plane is either a reflection, a trans­
lation, a rotation, a translation followed by a reflection,
or a rotation followed by a reflection.

[A-VIII]



AB = c. Our problem is
and AC = b, like

Appendix IX

PROOF OF THE TWO-CIRCLE THEOREM

The validity of the Two Circle Theorem, stated in Chapter 14,
rests on the existence of a certain triangle, and the proof is
easier to follow if we establish this first.

Triangle Existence Theorem. If a, b, c are positive
numbers, each of which is less than the sum of the other two,
then there is a triangle whose sides have lengths a, b, c.

Proof: The hard part of the proof is algebraic rather than
geometric. First, let us suppose, as a matter of notation, that
the three numbers a, b, c are written in order of magnitude, so
that

a < b < c.
Let us start with a segment AB, with
to find a triangle 1::1 ABC, with BC = a
this:

A£.------------~B

In a sense we are going to tackle this problem backwards. That
is, we are going to start off by assuming that there is such a
triangle. On the basis of this assumption, we will find out
exactly where the third vertex C must be. This procedure in
itself will not, of course, prove that the above statement is
true, because we started by assuming the very thing that we are
supposed to be proving. But once we have found the exact location
of the points that might work, it will be very easy to check that
these points really do work. (Of course, there are two possible

- +-+
places for C, on the two sides of the lineAB.)
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(This procedure is just what we use in solving equations.
To solve 3x - 7 = x + 3 we first assume that there is an x
which satisfies this equation. For this x we find successively
that

y

e-x
B

0
J

as in the figure. Then DB == c - x,
out what x and y are equal to,

x

3x =
2x =
x =

c.
Theorem, we have

x 2 + y2 = b2

A""'----------~----~

and let
We want

a, band
Pythagorean

(1)

Let y = CD,
as indicated.
in terms of

By the

x + 10,

10,

5.
Then we reverse our steps and show that 5 actually does satisfy
the given equation.)

Suppose, then, that there is a triangle 11 ABC of the sort
that we are looking for. Let us drop a perpendicular from C to
1Jr, and let D be the foot of the perpendicular. Then D is
between A and B, because AD < b < c and BD < a < c.

C

and
( 2)

Therefore

and

y2 + (c _ x)2 = a2 .

y2 = b 2 _ x 2

y2 a2 _ (c 2= - x) .

[A-IX]
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y2 we see that

(c - x)2,

c 2 + 2cx _ x 2 ,

2- a ,

Equating the two expressions for

b2 _ x 2 = a2 _

b 2 _ x 2 = a2 _

2cx = b 2 + c 2

A-53

SQ

and
(3)

b2 + c 2 _ a 2
x = 2c

What we have found, so far, is that if x and y satisfy
(1) and (2), then x satisfies (3). We shall check, conversely,
that if x and y satisfy (1) and (3), then x and y also
satisfy (2). For if (1) and (3) hold, then we have from (1) that

y2 = b2 _ x2.

Adding (c - x)2 to both sides we get

y2 + (c _ x)2 = (b2 _ x2) + (c _ x)2

= b2 _ x 2 + c 2 _ 2cx + x2

= b2 + c2 - 2cx.
Substituting tor x from (3) gives

y2 + (c _ x)2 = b2 + c2 _ (b 2 + c2 _ a2)

= a2 ,
so that (2) holds.

Now that we knpw what triangle to look for, let us start all
over again. We have three positive numbers, a, b, c. Each of
them is less than the sum of the other two, and a < b < c. Let

b 2 + c2 _ a2
x = 2c

Then x > 0, because b2 ~ a 2 and c2 > O. We want to set

y = ,jb2 _ x 2 ,

so that x2 + y2 = b2, but to do this we must first make sure
that x < h, that is, that h - x > O. We have

[A-IX]
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b - x

, '.
;

2bc _ b2 2- c= 2c
a2 (c 2 - 2bc= 2c
a 2 _

b~
_ b)2

=

c < a + b. Hence,Now we are given that c - b < a and so

(c - b)2 < a2. It follows from the equation above that
b - x > 0, or x < b.

We are now ready to construct our triangle. Let AB be a '
segment of length c.

c

A B
0

.... ~

"""c

b2 + c2 a2
Let D be a point on AB such that AD = x = 2c
Such a point exists since we know x < b < c. Let C be a point
on the perpendicular to AB through D, such that

2- x .
Then

AC 2 = x2 + y2 = b2,

and
BC2 y2 + (c _ x)2 2

= = a .

Therefore AC = b and BC = a, which is what we wanted.

The proof of the Two Circle Theorem is now fairly easy.

[A-IX]
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Theorem 14-5. (The Two Circle Theorem.)
If two circles have radii a and b, and if c is th~

distance between their centers, then the two circles intersect
in two points, one on each side of the line of centers, provided
each one of a, b, c is less than the sum of the other two.

and
Proof: Let Cl, the circle with radius b,
C2, the circle with radius a have center

have center A,
B. Then AB = C.

C2

We know by the Triangle Existence Theorem that there is a
triangle 6 XYZ whose sides have lengths a, b , and c , like
this:

y

x c.... ........;:a.., Z

c

[A-IX]
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such that AP::: AQ = b.
and Q. By the S.A.S.

Q,

P

going to copy this triangle on
following way. On each side of
in such a way that the angles

At----------~B

Q
take points P and
C1 passes through

On these rays we
Therefore circle
Postulate,

Using the S.A.S. Postulate, we are
~

each side of the line AB, in the
+-+AB we take a ray starting at A,
formed are congruent to angle X.

p

Ppasses through
/). APB :: Ii XYZ ~ ~ A~.

PB ::: a :::~, and hence circle C2Therefore
and Q.

This shows that P and Q are at least part of the inter­
section of C1 and C2. To show that they~ the intersection
we must prove that no third point, R, can lie on both Cl and
C2. If there were such a point R we would have, by the S.S.S.
Theorem

/). ABR ;jjjl /). ABP, and so, mL BAR::: mL BAP.
But in the given plane there are only two such angles, one on
each side of AIr: and hence, either JUt::: U or PJt::: AQ~ Since
AR ::: AP ::: AQ = b this means that either R::: P or R::: Q, and
80 there can be no third point on both Cl and C2.

[A-IX]



Appendix X

TRIGONOMETRY

X-I. Trigonometric Ratios.
The elementary study of trigonometry is based on the follow­

ing theorem.

Theorem X-I. If an acute angle of one right triangle is
congruent to an acute angle of another right triangle, then the
two triangles are similar.

Proof: In ~ ABC and ~ A'B'C' let L C and L Cl be
right angles and let mL A = mL A'. Then ~ ABC '" ~ AlB' C' by
A.A. Similarity Corollary 12-3-1.

We apply this theorem as follows: Let r be any number
between 0 and 90, and let ~ ABC be a right triangle with
mL C = 90 and mL A = r. For convenience set

AB = c, AC = b, BC = a.

(The Pythagorean Theorem then tells us that c2 = a2 + b2 . )

~A b

at,bl,c',
However, we

If we

mL C' = 90

consider another such triangle 6 A'B'C' with
and mL A' = r, we get three corresponding numbers
which would generally be different from a, b, c.

always have
at a
or = c·

To see this, note that it follows from Theorem X-I that
a l c'a-=c·

If we multiply both sides of this equation by
desired result.

a
or we get the
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a

'I
a = ~ and

b
A......-----~-------IL

Theorem we see that if

cos 30° = 1.

b
c
as

Thus the ratio ~ does not depend on the particular triangle
we use, but only on the measure r of the acute angle. The value

° °of this ratio is called the sine of r, written sin r for
short. The reason we specify that we are using degree measure is
that in more advanced aspects of trigonometry a different measure
of angle, radian measure, is common. B

Let us see what we can say
about sin 30°. We know from
Theorem 11-9 that in this case

1if c = 1, then a =~. Hence,

° a 1sin 30 =c = ~.

It is evident that the ratio
can be treated in the same way
~. The ratio ~ is called

the cosine of r O, written
cos rOo From the Pythagorean

../3c = 1, then b = 2. Hence,

Of the four other possible ratios of the three sides of the
triangle, we shall use only one, %. This is called the tangent
of r O, written tan rOo We see that tan 30° = 1. (This use

./3
of the word "tangent" has only an unimportant historical connection
with its use with relation to a line and a circle.)

These three quantities are called trigonometric ratios.

[A-X]
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Problem Set X-I--
1. In each of the following give the required information in

terms of the indicated lengths of the sides.

a. sin A = 1, cos A = 1, tan A = 1.

2:J3
A 4

b. sin r O = 1, cos r O = 1, tan r O = ? •

~
13

c. sin P = 1, cos P = ?, tan Q = ? .

Q

d. sin A = ?, sin B = '). ,
tan A 1, tan B ? . 8= = 2:1x

A z

2. In each of the following find the correct numerical value
for x.

a. cos P = x.

p.£.... .........l

b. otan a = x.

[A-X]

13/\13
U

10
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3.

4.

Find: sin 60°,

Find: sin 45°,

5. By making careful drawings with ruler and protractor
determine by measuring

a. sin 20°, cos 20°, tan 20°;

b. sin 53°, cos 53°, tan 53°.

X-2. Trigonometric Tables and Applications.
Although the trigonometric ratios can be computed exactly

for a few angles, such as 30°, 60° and 45°, in most cases we
have to be content with approximate values. These can be worked
out by various advanced methods, and at the end of this Appendix
we give a table of the values of the three trigonometric ratios
correct to three decimal places.

Having a tttrig table tt, and a device for measuring angles,
such as a surveyor's transit (or strings and a protractor) one
can solve various practical problems.

Example X-I. From a point 100
flag pole the angle between the
horizontal and a line to the top
of the pole is found to be 23°.
Let x be the height of the
pole. Then

feet from the base of a

x
100'

x ° 4100 = tan 23 =. 25.
Hence, x = 42.5 feet. An angle like the one used in this example
is frequently called the angle of elevation of the object.

[A-X]

can solve various practical problems.



Example X-2. In a circle of radius 8 cm.
length 10 cm. What is the measure of an angle
major arc AS? We have AC = 8,

1AQ = 2' . 10 = 5. Hence,
sin L ACQ = ~ = .625,
mL ACQ = 39°,
m(minor arc AB) = mL ACB =

2(mL ACQ) = 78°. P

Hence, mL APB = ~(arc AB) =

39° to the nearest degree.

Problem Set X-2.

A-6l

a chord AB has
inscribed in the

1. From the table find: sin 17°,
sin 60°. Does the last value
Problem 3 of Set X-I?

cos 46°, tan 82°, cos 33°,
agree with the one found in

2. From the table find x to the nearest degree in each of the
follOWing cases:

cos x = .731,

sin x = .413,

sin x = .390,

tan x = 2,

tan x = .300
1cos x = '!.

3. A hiker climbs for a half mile up a slope whose inclination
is 17°. How much altitude does he gain?

4. When a six-foot pole casts a four-foot shadow what is the
angle of elevation of the sun?

5. An isosceles triangle has a base of 6 inches and an
opposite angle of 30°. Find:

a. The altitude of the triangle.

b. The lengths of the altitudes to the equal sides.

c. The angles these altitudes make with the base.

d. The point of intersection of the altitudes.

[A-X]

follOWing cases:
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D

mL CBD = 420
,

and AB.

A..-:;....----~-----IIo...----',

A regular decagon (10 sides) is inscribed in a circle of
radius 12. Find the length of a side, the apothem, and the
area of the decagon.

Given, mL A = 260
,

BC = 50; find AD

6.

7.

b < 1
c '~ < 1,

which is what we wanted to prove.

Theorem X-3. For any acute angle A,

~~~ ~ = tan A, and (sin A}2 + (cos A)2 = 1.

X-3. Relations Among the Trigonometric Ratios.

Theorem X-2. For any acute LA, sin A < 1, cos A < 1.

Proof: In the right triangle t::. ABC of Section X-I,

and b < c. Dividing each of these inequalities by ca < c
gives

Proof: a
sin A c a
cos A = 0- = b = tan A.

c

(sin A)2 + (cos A}2

=

[A-X]

Theorem X-3. For any acute angle A,
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x

yA "-------.....

Theorem X-4. If LA and LB are complementary acute
1angles, then sin A = cos B, cos A = sin B, and tan A = tan B.

B

Proof: In the notation of the figure we have

sin A x cos B,= - =z

cos A ="Z= sin B,z

tan A x 1 1
=-:::-= tan B·y "Z

x

Problem Set X-3

Do the following problems without using the tables.

1. If sin A = t what is the value of cos A? What is the
value of tan A? (Use Theorem X-3.)

2. With ruler and compass construct LA, if possible, in each
of the following. You are allowed to use the results of
earlier parts to simplify later ones.

a. cos A == .8.

A c

[A-X]

Do the following problems without using the tables.
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Solution: Take AC any convenient segment and construct
CQ1 AC. ~th center A and radius ~§ construct an arc inter­
secting CQ at B. Then cos(L BAC) = .8.

2
b" cos A = '!"

3c. cos A = ~.

d. sin A = .8 .

e. sin A = .1.

f. tan A 2
= '!.

g. tan A 3
= ~.

[A-X]
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Table of Trigonometric Ratios

Tan- Tan-
An Ie Sine Cosine ent An Le Sine Cosine ent

0 0.000 1.000 0.000
1 .017 1.000 .017 46 0.719 0.695 1.036
2 .035 0.999 .035 47 .731 .682 1.072
3 .052 .999 .052 48 .743 .669 1.111
4 .070 .998 .070 49 .755 .656 1.150
5 .087 .996 .087 50 .766 .643 1.192
6 .105 .995 .105 51 .77~ .629 1.235
7 .122 .993 .123 52 .78 .616 1.280
8 .139 .990 .141 53 .799 .602 1.327
9 .156 .988 .158 54 .809 .588 1.376

10 .174 .985 .176 55 .819 .574 1.428
11 .191 .982 .194 56 .829 .559 1.483
12 .208 .978 .213

§~
.839 .545 1.540

13 .225 .974 .231 .848 .530 1.600
14 .242 .970 .249 59 .857 .515 1.664
15 .259 .966 .268 60 .866 .500 1.732
16 .276 .961 .287 61 .8~5 .485 1.804

i~
.292 .956 .306 62 .8 3 .469 1.881
.309 .951 .325 63 .891 .454 1.963

19 .326 .946 .344 64 .899 .438 2.050
20 .342 .940 .364 65 .906 .423 2.145
21 .358 .934 .384 66 .914 .407 2.246
22 .375 .927 .404 67 .921 .391 2.356
23 .391 .921 .424 68 .927 .375 2.475
24 .407 .914 .445 69 .934 .358 2.605
25 .423 .906 .466 70 .940 .342 2.747
26 .438 .899 .488 71 .946 .326 2.904
27 .454 .891 .510 72 .951 .309 3.078
28 .469 .883 .532 73 .956 .292 3.271
29 .485 .875 .554 74 .961 .276 3.487
30 .500 .866 .577 75 .966 .259 3.732
31 .515 .857 .601 76 .970 .242 4.011
32 .530 .848 .625 77 .974 .225 4.331
33 .545 .839 .649 78 .978 .208 4.705
34 .559 .829 .675 79 .982 .191 5.145
35 .574 .819 .700 80 .985 .174 5.671
36 .588 .809 .727 81 .988 .156 6.314

~~
.602 .799 .754 82 .990 .139 7.115
.616 .788 .781 83 . .993 .122 8.144

39 .629 .777 .810 84 .995 .105 9.514
40 .643 .766 .839 85 .996 .081 11.43
41 .656 .755 .869 86 .998 .010 14.30
42 .669 .743 .900 87 .999 .052 19.08
43 .682 .731 .933 88 .999 .035 28.64
44 .691 ·t19 .966 89 1.000 .017 57.29
45 .70 • 07 1.000 90 1.000 .000

[A-X]

20 .342 .940 .3b4 b5 .90b .ll-23 2.1ll-5
21 .358 .934 .384 66 .914 .401 2.246-



Problem Set X-2

A

B.....:;...-..L--~C

CE = .966, 6 = 5.796.

mL B = mL C = 75°.

tan C. AD = 3 .732 . 3 = 11.196.

mL A = 30,

AD
a. CD =

CEb. CB = sin B.

c. mL ECB = 90°

sin 17° = 1 x x = .292 . 2640 = 771 feet.
~ ·5280

tan x =*= 1. 5 . x = 56°.

5.

3.

4.

d. DF 0CD = tan 15. DF = .268 . 3 = .804.
o

[A-X]



80 b6. sin 1 =~,

b = 3.71, 2b = 7.42

80 acos 1 = ~,

~b

A-67

a = 11.41.

area = ~ •10 . 7.42 . 11.41 = 423.

4 0 CD7. tan 2 = 50' CD = 45.0.

tan 260 =~, AC = 92.2, AB = 42.2.

sin 260 = 16' AD = 103.

Problem Set X-3--

l. (sin A)2 + (cos A)2 = 1, .!+ (cos A)2 = 1,
9

~ 2/2cos A - 9 =~. 1

sin A "! 1
tan A = cos A = =

2../2 2./2
--r

2. (c) is impossible.

(d) A here is congruent to B of part (a) •

(g) A here 1s the complement of the A of part (f) .

[A-X]
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cos A ~~ =~. ,





Appendix XI

REGULAR POLYHEDRA

A polyhedron is a solid whose boundary consists of planar
regions -- called faces -- which are polygonal regions. The sides
and vertices of the polygons are called the edges and vertices of
the polyhedron. Prisms and pyramids are examples of special kinds
of polyhedrons. A regular polyhedron is a convex polyhedron (see
Section 3-3 for definition of convexity) whose faces are bounded
by regular polygons all with the same number of sides and such
that there are the same number of faces (and edges) at each vertex.
We shall determine all the regular polyhedra, uSing Euler's famous
formula connecting the number of vertices, edges, and faces of a
convex polyhedron (more generally, one without any holes). An
excellent exposition of this formula can be found in Rademacher
and Toep1itz, "The EnjoYment of Mathematics." Strictly speaking,
we show that there are only five possibilities for the numbers of
vertices, edges, and faces, but omit the proof that. each of these
possibilities is realized in essentially one and only one way by
a regular polyhedron.

Suppose we have a regular polyhedron with V vertices, E
edges and F faces, and with r faces about each vertex and n
sides (and vertices) for each face. If the E edges were all
shrunk slightly, so as to pull away from the vertices, we would
have E segments, each with two end-points, and so 2E end­
points altogether. Now there are r of these end-points near
each of the V vertices, and hence rV end-points in all. We
must therefore have the relation rV = 2E, or

(1) V = 2E.
r

Similarly, imagine each face shrunk and count the resulting
sides of the polygonal regions. There are 2 sides near each
edge, and so 2E sides. There are n sides on each face, and
so nF sides. Thus nF = 2E, or

(2) 2E
F = n:-'
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Now Euler's formula tells us that

v - E + F = 2.

Substituting for E and F from Equations (1) and (2),
we get

Dividing by 2E gives

(3)

Hence

or

111 1
r - ~ + n = E·

111
r - ~ + n > 0,

111
r + n > ~.

N ' >3 1<1 .!.>~_.!.>~ 1 1ow r _ , so r _ '!, n c: r - t:. - '! = 0'

so n < 6. Thus, n = 3, 4, or 5, and the only possibilities
for the faces are triangles, squares, or regular pentagons. By

the same argument we see that r = 3, 4, or 5 are the only
possibilities. E can be found from (3), and then V and F
from Equations (1) and (2).

For n = 3, r = 3, we get V = 4, E = 6, F = 4.
For n = 3, r = 4, we get V = 6, E = 12, F = 8.
For n = 3, r = 5, we get V = 12, E = 30, F = 20.

Trying n = 4, we see that the only possibility for r is

3, in which case V = 8, E = 12, F = 6. Finally, for n = 5,
the only possibility is r = 3, which yields V = 20, E = 30,
F = 12.

These five possibilities are realized in essentially one way
for each choice of F, E, and V (more precisely, two regular
polyhedra with the same values for F, E, and V are "similar"),
although we do not prove this. They are exhibited in the follow­
ing table:

[A-XI]

from Equations (1) and (2).
.. I .
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N b fum er 0
Boundary Number Number Number Faces (or

Regular of of of of Edges) at
Polyhedron Face Faces Edges Vertices a Vertex

Tetrahedron Triangle 4 6 4 3
Octahedron Triangle 8 12 6 4
Icosahedron Triangle 20 30 12 5
Cube Square 6 12 8 3
(Hexahedron)
Dodecahedron Pentagon 12 30 20 3

Tetrahedron Hexahedron Octahedron

Dodecahedron Icosahedron

We observe a curious duality between the octahedron and the
cube and between the icosahedron and the dodecahedron, obtained by
interchanging F and V, nand r, and leaving E unchanged.
The tetrahedron is self-dual. This duality can be established by
starting with one of the solids and forming a new one whose
vertices are the centers of the faces of the original one, and
whose edges are the segments connecting the centers of adjacent
faces. These and other relations among the regular polyhedra and
related semi-regular polyhedra are discussed in various books;
for example, "Mathematical Snapshots," by Steinhaus; "Mathematical
Models," by Cundy and Rollett.

[A-XI]
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The Meaning and Use of Symbols

General.

=. A = B can be read as tlA equals Bii
, HA is equal to BIi

,

IIA equal B" (as in llLet A = Btl), and possibly other
ways to fit the structure of the sentence in which the
symbol appears. However, we should not use the symbol,
=, in such forms as IlA and Bare ."; its proper use is
between two expressions. If two expressions are connected
by 11=" it is to be understood that these two expressions
stand for the same mathematical entity, in our case either
a real number or a point set.

". "Not equal to". A f B means that A and B do not
represent the same entity. The same variations and
cautions apply to the use of f as to the use of =.

Algebraic.

+, ., -, +. These familiar algebraic symbols for operating with
real numbers need no comment. The basic postulates about
them are presented in Appendix II.

<, >, ~, >. Like =, these can be read in various ways in
sentences, and A < B may stand for the underlined part
of "If A is less than B", "Let A be less than B",
"A less than B implies", etc. Similarly for the other
three symbols, read "greater than", "less than or equal
to", "greater than or equal to". These inequalities apply
only to real numbers. Their properties are mentioned
briefly in Section 2-2, and in more detail in Section 7-2.

~, IAI. "Square root of A" and "absolute value of AU. Discussed
in Sections 2-2 and 2-3 and Appendix IV.

Geometric.

Point Sets. A single letter may stand for any suitably described
point set. Thus we may speak of a point P, a line m, a
half-plane H, a circle C, an angle x, a segment b, etc.

a

them are presented in Appendix II.
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BA and BC as

as vertices (P. 72).
as edge and with sides

the two points A and B (P. 30).
A and B as end-points (p.45).
its end-point and containing

AB.
AB.
AB.

The line containing
The segment having
The ray with A as
point B (P. 45).

LABC The angle having B as vertex and
sides (P. 71).

6,ABC. The triangle having A, Band C
~L A-BC-D. The dihedral angle having BC

containing A and D (P. 299).

Real Numbers.

AB. The positive number which is the distance between the two
points A and B, and also the length of the segment AB

(P. 34).
~ABC. The real number between 0 and 180 which is the

degree measure of LABC (P. 80).
Area R. The positive number which is the area of the polygonal

region R (P. 320).

Relations.

"­=.

1·

II ·

Congruence. A ~ B is read "A is congruent to Btl, but
with the same possible variations and restrictions as
A = B. In the text A and B may be two (not necessarily
different) segments (P. 109), angles (P. 109), or
triangles (P. Ill).
Perpendicular. AlB is read tlA is perpendicular to Btl,
with the same comment as for ~. A and B may be either
two lines (P. 86), two planes (P. 301), or a line and a
plane (P. 229).
Parallel. A II B is read tI A is parallel to Bn , with the

"-same comment as for =. A and B may be either two lines
(P. 241), two planes (P. 291) or a line and a plane
(P.29l).

b

0"""' ....... "' _



(The Ruler Postulate.) The points
correspondence with the real numbers

List of Postulates

Postulate 1. (P. 30) Given any two different p01nts, there
is exactly one line which contains both of them.

Postulate 2. (P. 34) (The Distance Postulate.) To every
pair of different points there corresponds a unique positive
number.

Postulate 3. (P. 36)
of a line can be placed in
in such a way that

(1) To every point of the line there corresponds exactly
one real number,

(2) To every real number there corresponds exactly one point
of the line, and

(3) The distance between two points is the absolute value
of the difference of the corresponding numbers.

Postulate 4. (P. 40) (The Ruler Placement Postulate.)
Given two points P and Q of a line, the coordinate system
can be chosen in such a way that the coordinate of P is zero
and the coordinate of Q is positive.

Postulate 5. (P. 54) (a) Every plane contains at least
three non-collinear points.

(b) Space contains at least four non-coplanar points.

Postulate 6. (P. 56) If two points lie in a plane, then
the line containing these points lies in the same place.

Postulate 7. (P. 57) Any three points lie in at least one
plane, and any three non-collinear points lie in exactly one
plane. More briefly, any three points are coplanar, and any

three non-collinear points determine a plane.

Postulate 8. (P. 58) If two different planes intersect,
then their intersection is a line.

c

Given two points P and Q of a line, the coordinate system
can be chosen in such a way that the coordinate of P is zero



Postulate 9. (P. 64) (The Plane Separation Postulate.)
Given a line and a plane containing it, the points of the plane
that do not lie on the line form two sets such that

(1) each of the sets is convex and
(2) if P is in one set and Q is in the other then the-segment PQ intersects the line.

(P. 66) (The Space Separation Postulate.)
that do not lie in a given plane form two

Postulate 10.
The points of space
sets such that

(1) each of the sets is convex and
(2) if P is in one set and Q is

the segment PQ intersects the plane.
in the other then

Postulate 11. (P. 80) (The Angle Measurement Postulate.)
To every angle LBAC there corresponds a real number between
o and 180.

Postulate 12. (P. 81) (The Angle Construction PostUlate.)
Let At be a ray on the edge of the half-plane H. For every

~

number r between 0 and 180 there is exactly one ray AP,
with P in H, such that ~PAB = r.

Postulate 13. (P. 81) (The Angle Addition PostUlate.)
If D is a point in the interior of LBAC, then
~BAC = ~BAD + ~D~C.

Postulate 14. (P. 82) (The Supplement PostUlate.) If two
angles form a linear pair, then they are supplementary.

Postulate 15. (P. 115) (The S.A.S. PostUlate.) Given a
correspondence between two triangles (or between a triangle
and itself). If two sides and the included angle of the first
triangle are congruent to the corresponding parts of the second
triangle, then the correspondence is a congruence.

Postulate 16. (P. 252) (The Parallel Postulate.) Through
a given external point there is at most one line parallel to a
given line.

Postulate 17. (P. 320) To every polygonal region there
corresponds a unique positive number.

d



Postulate 18. (P. 320) If two triangles are congruent,
then the triangular regions have the same area.

Postulate 19. (P. 320) Suppose that the region R is the
union of two regions Rl and ~. Suppose that Rl and ~

intersect at most in a finite number of segments and points.
Then the area of R is the sum of the areas of Rl and ~.

Postulate 20. (P. 322) The area of a rectangle is the
product of the length of its base and the length of its altitude.

Postulate 21. (P. 546) The volume of a rectangular
parallelepiped is the product of the altitude and the area of
the base.

Postulate 22. (P. 548) (Cavalieri's Principle.) Given two
solids and a plane. If for every plane which intersects the
solids and is parallel to the given plane the two intersections
have equal areas, then the two solids have the same volume.

e





A, B, C be three points of a
If x < y < z, then B is

List of Theorems and Corollaries

Theorem 2-1. (P. 42) Let
line, with coordinates x, y, z.
between A and C.

Theorem 2-2. (P. 43) Of any three different points on the
same line, one is between the other two.

Theorem 2-3. (p.44) Of three different points on the same
line, only one is between the other two.

Theorem 2-4.
be a ray, and let
one point P of

(P. 46) (The Point Plotting Theorem) Let AB
x be a positive number. Then there is exactly

--+
AB such that AP = x.

Theorem 2-5. (P. 47) Every segment has exactly one
mid-point.

Theorem 3-1. (P. 55) Two different lines intersect in at
most one point.

Theorem 3-2. (P. 56) If a line intersects a plane not
containing it, then the intersection is a single point.

Theorem 3-3. (P. 57) Given a line and a point not on the
line, there is exactly one plane containing both of them.

Theorem 3-4. (P. 58) Given two intersecting lines, there
is exactly one plane containing them.

Theorem 4-1. (P. 87) · If two angles are complementary, then
both of them are acute.

Theorem 4-2. (P. 87)

Theorem 4-3. (P. 87)

Theorem 4-4. (P. 87)
supplementary, then each of

Every angle is congruent to itself.

Any two right angles are congruent.

If two angles are both congruent and
them is a right angle.

Theorem 4-5. (P. 87) SUpplements of congruent angles are
congruent.

g

Theorem 3-2. (P. 56) If a line intersects a plane not
conta1nin2 it. then the intersection is a sin21e Dointa



Theorem 4-6.
congruent.

Theorem 4-7.

Theorem 4-8.
right angle, then

(P. 88)

(P. 88)

(P. 89)
they form

Complements of congruent angles are

Vertical angles are congruent.

If two intersecting lines form one
four right angles.

Theorem 5-1. (P. 109) Every segment is congruent to itself.

Theorem 5-2. (P. 127) If two sides of a triangle are
congruent, then the angles opposite these sides are congruent.

Corollary 5-2-1. (P. 125) Every equilateral triangle is
equiangular.

Theorem 5-3. (P. 129) Every angle has exactly one bisector.

Theorem 5-4. (P. 132) (The A.S.A. Theorem.) Given a
correspondence between two triangles (or between a triangle and
itself). If two angles and the included side of the first
triangle are congruent to the corresponding parts of the second
triangle, then the correspondence is a congruence.

Theorem 5-5. (P. 133) If two angles of a triangle are
congruent, the sides opposite these angles are congruent.

Corollary 5-5-1. (P. 133) An equiangular triangle is
equilateral.

Theorem 5-6. (P. 137) (The S.S.S. Theorem.) Given a
correspondence between two triangles (or between a triangle and
itself). If all three pairs of corresponding sides are congruent,
then the correspondence is a congruence.

Theorem 6-1. (P. 167) In a given plane, through a given
point of a given line of the plane, there passes one and only one
line perpendicular to the given line.

Theorem 6-2. (P. 169) . The perpendicular bisector of a
segment, in a plane, is the set of all points of the plane that
are equidistant from the end-points of the segment.

h

Theorem 5-5. (P. 133) If two angles of a triangle are



Theorem 6-3. (P. 171) Through a given external point there
is at most one line perpendicular to a given line.

Corollary 6-3-1. (P. 172) At most one angle of a triangle
can be a right angle.

Theorem 6-4. (P. 172) Through a given external point there
is at least one line perpendicular to a given line.

Theorem 6-5.
line L~ then M

that contains C.

(P. 183) If M is between A and C on a
and A are on the same side of any other line

Theorem 6-6. (P. 183)
B is any point not on line

L AJ3C.

If M is between A and C, and
~

AC, then M is in the interior of

An(P. 193) (The Exterior Angle Theorem.)
triangle is larger than either remote

Theorem 7-1.
exterior angle of a
interior angle.

Corollary 7-1-1. (P. 196) If a triangle has a right angle,
then the other two angles are acute.

Theorem 7-2. (P. 197) (The S.A.A. Theorem.) Given a
correspondence between two triangles. If two angles and a side
opposite one of them in one triangle are congruent to the
corresponding parts of the second triangle, then the correspon­
dence is a congruence.

Theorem 7-3. (P. 19~ (The HYpotenuse - Leg Theorem.)
Given a correspondence between two right triangles. If the
hypotenuse and one leg of one triangle are congruent to the
corresponding parts of the second triangle, then the correspondence
is a congruence.

Theorem 7-4. (P.200) If two sides of a triangle are not
congruent, then the angles opposite these two sides are not
congruent, and the larger angle is opposite the longer side.

1

then the other two angles are acute.



Theorem 7-5. (P. 201) If two angles of a triangle are not
congruent, then the sides opposite them are not congruent, and
the longer side is opposite the larger angle.

Theorem 7-6. (P. 206) The shortest segment joining a point
to a line is the perpendicular segment.

Theorem 7-7. (P. 206) (The Triangle 'Inequality • ) The sum
of the lengths of any two sides of a triangle is greater than
the length of the third side.

Theorem 7-8. (P. 210) If two sides of one triangle are
congruent respectively to two sides of a second triangle, and
the included angle of the first triangle is larger than the
included angle of the, second, then the opposite side of the
first triangle is longer than the opposite side of the second.

Theorem 7-9. (P. 211) If two sides of one triangle are
congruent respectively to two sides of a second triangle, and
the third side of the first triangle is longer than the third
side of the second, then the included angle of the first
triangle i~ larger than the included angle of the second.

Theorem 8-1. (P. 222) If each of two points of a line is
equidiatant from two given points, then every point of the line
ia eqUidistant from the given points.

Theorem 8-2. (P. 225) If each of three non-collinear
points of a plane is equidistant from two points, then every
point of the plane is eqUidistant from these two points.

Theorem 8-3. (P. 226) If a line is perpendicular to each
of two intersecting lines at their point of intersection, then
it ia perpendicular to the plane of these lines.

Theorem ·"8-4. (P. 230) Through a given point on a given
line there passes a plane perpendicular to the line.

Theorem 8-5.
dicular, then the
given line at its

(P. 231) If a line and a plane are perpen­
plane contains every line perpendicular to the
point of intersection with the given plane.

j

triangle i~ larger than the included angle of the second.



(P. 244) Let L be a line, and let P be a
Then there is at least one line through P,

Theorem 8-6. (P. 232) Through a given point on a given
line there is at most one plane perpendicular to the line.

Theorem 8-7. (P. 232) The perpendicular bisecting plane of
a segment is the set of all points equidistant from the end-points
of the segment.

Theorem 8-8. (P. 234) Two lines perpendicular to the same
plane are coplanar.

Theorem 8-9. (P. 235) Through a given point there passes
one and only one plane perpendicular to a given line.

Theorem 8-10. (P. 235) Through a given point there passes
one and only one line perpendicular to a given plane.

Theorem 8-11. (P. 235) The shortest segment to a plane
from an external point is the perpendicular segment.

Theorem 9-1. (P. 242) Two parallel lines lie in exactly
one plane.

Theorem 9-2. (P. 242) Two lines in a plane are parallel
if they are both perpendicular to the same line.

Theorem 9-3.
point not on L.
parallel to L.

Theorem 9-4. (P. 246) If two lines are cut by a transversal,
and if one pair of alternate interior angles are congruent, then
the other pair of alternate interior angles are also congruent.

Theorem 9-5. (P. 246) If two lines are cut by a transverasl,
and if a pair of alternate interior angles are congruent, then
the lines are parallel.

Theorem 9-6 • . (P. 252) If two lines are cut by a transversal,
and if one pair of corresponding angles are congruent, then the
other three pairs of corresponding angles have the same property.

Theorem 9-7. (P. 252) If two lines are cut by a transversal,
and if a pair of corresponding angles are congruent, then the
lines are parallel.

k
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if they are both perpendicUlar to the same line.



(P. 255) In a plane, if a line is
of two parallel lines it is perpendicular

Theorem 9-8. (P. 253) If two parallel lines are cut by
a transversal, then alternate interior angles are congruent.

Theorem 9-9. (P. 254) If two parallel lines are cut by a
transversal, each pair of corresponding angles are congruent.

Theorem 9-10. (P. 254) If two parallel lines are cut by a
transversal, interior angles on the same side of the transversal
are supplementary.

Theorem 9-11. (P. 255) In a plane, two lines parallel to
the same line are parallel to each other.

Theorem 9-12.
perpendicular to one
to the other.

Theorem 9-13. (P. 258) The sum of the measures of the
angles of a triangle is 180.

Corollary
two triangles.
then the third

9-13-1.
If two

pair of

(P. 259) Given a correspondence between
pairs of corresponding angles are congruent,
corresponding angles are also congruent.

(P. 260) For any triangle, the measure
the sum of the measures of the two

Corollary 9-13-2. (P. 260) The acute angles of a right
triangle are complementary.

Corollary 9-13-3.
of an exterior angle is
remote interior angles.

Theorem 9-14. (P. 265) Either diagonal divides a
parallelogram into two. congruent triangles.

Theorem 9-15. (P. 265) In a parallelogram, any two
opposite sides are congruent.

'Cor ol l ary 9-15-1. (P. 266) If Ll II L2 and if P and Q

are any two points on Ll, then the distances of P and Q
from L2 are equal.

Theorem 9-16. (P. 266) In a Parallelogram, any two
opposite angles are congruent.

1

then the third pair of corresponding angles are also congruent.



(P. 268) If a parallelogram has one right
four right angles, and the parallelogram

Theorem 9-17. (P. 266) In a parallelogram, any two
consecutive angles are supplementary.

Theorem 9-18. (P. 266) The diagonals of a parallelogram
bisect each other.

Theorem 9-19. (P. 266) Given a quadrilateral in which both
pairs of opposite sides are congruent. Then the quadrilateral
is a parallelogram.

Theorem 9-20. (P. 266) If two sides of a quadrilateral are
parallel and congruent, then the quadrilateral is a parallelogram.

Theorem 9-21. (P. 266) If the diagonals of a quadrilateral
bisect each other, then the quadrilateral is a parallelogram.

Theorem 9-22. (P. 267) The segment between the mid-points
of two sides of a triangle is a parallel to the third side and
half as long as the third side.

Theorem 9-23.
angle, then it has
is a rectangle.

Theorem 9-24. (P. 268) In a rhombus, the diagonals are
perpendicUlar to one another.

Theorem 9-25. (P. 268) If the diagonals of a quadrilateral
bisect each other and are perpendicUlar, then the quadrilateral
is a rhombus.

Theorem 9-26.
congruent segments
congruent segments

(P. 276) If three parallel lines intercept
on one transversal, then they intercept
on any other transversal.

Corollary 9-26-1. (P. 277) If three or more parallel lines
intercept congruent segments on one transversal, then they
intercept congruent segments on any other transversal.

Theorem 9-27. (P. 279) The medians of a triangle are
concurrent in a point two-thirds the way from any vertex to
the mid-point of the opposite side.

m

is a rectangle.
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Theorem 10-1. (P. 292) If a plane intersects two parallel
planes, then it intersects them in two parallel lines.

Theorem 10-2. (P. 292) If a line is perpendicular to one
of two parallel planes it is perpendicular to the other.

Theorem 10-3. (P. 293) Two planes perpendicular to the
same line are parallel.

Corollary 10-3-1. (P. 294) If two planes are each parallel
to a third plane, they are parallel to each other.

Theorem 10-4. (P. 294) Two lines perpendicular to the
same plane are parallel.

Corollary 10-4-1. (P. 294) A plane perpendicular to one
of two parallel lines is perpendicular to the other.

Corollary 10-4-2. (P. 294) If two lines are each parallel
to a third they are parallel to each other.

Theorem 10-5. (P. 295) Two parallel planes are everywhere
equidistant.

Theorem 10-6. (P. 301) Any two plane angles of a given
dihedral angle are congruent.

(P. 302) If a line is perpendicular to
containing this line is perpendicular

Corollary 10-6-1.
a plane, then any plane
to the given plane.

Corollary 10-6-2. (P. 302) If two planes are perpendicular,
then any line in one of them perpendicular to their line of
intersection is perpendicular to the other plane.

Theorem 10-7. (P. 307) The projection of a line into a
plane 1s a line, unless the line and the plane are perpendicular.

Theorem 11-1. (P. 328) The area of a right triangle is
half the product of its legs.

Theorem 11-2. (P. 328) The area of a triangle is half the
product of any base and the altitude to that base.

n



(P. 332) If two triangles have the same
ratio of their areas is equal to the ratio

(The Pythagorean Theorem.) In a
the hypotenuse is equal to the sum

t Theorem 11-3. (P. 330) The area of a parallelogram is the
\ product of any base and the corresponding altitude.

I Theorem 11-4. (P. 331) The area of a trapezoid is half the
product of its altitude and the sum of its bases.

Theorem 11-5.
altitude, then the
of their bases.

Theorem 11-6. (P. 332) If two triangles have equal
altitudes and equal bases, then they have equal areas.

Theorem 11-7. (P. 339)
right triangle, the square of
of the squares of the legs.

Theorem 11-8. (P. 340) If the square of one side of a
triangle is equal to the sum of the squares of the other two,
then the triangle is a right triangle, with a right angle
opposite the first side.

Theorem 11-9. (P. 346) (The 30 - 60 Triangle Theorem.)
The hypotenuse of a right triangle is twice as long as the
shorter leg if and only if the acute angles are 300 and 600 •

Theorem 11-10. (P. 346) (The Isosceles Right Triangle
Theorem.) A right triangle is isosceles if and only if the
hypotenuse is )fi' times as long as a leg.

Theorem 12-1. (P. 368) (The Basic Proportionality Theorem.)
If a line parallel to one side of a triangle intersects the other
two sides in distinct points, then it cuts off segments which are
proportional to these sides.

Theorem 12-2. (P. 369) If a line intersects two sides of
a triangle, and cuts off segments proportional to these two
sides, then it is parallel to the third side.

o



Theorem 12-3. (P. 374) (The A.A.A. Similarity Theorem.)
Given a correspondence between two triangles. If corresponding
angles are congruent, then the correspondence is a similarity.

Corollary 12-3-1. (P. 376). (The A.A. Corollary.) Given
a correspondence between two triangles. If two pairs of
corresponding angles are congruent, then the correspondence is
a similarity.

Corollary 12-3-2. (P. 376) If a line parallel to one side
of a triangle intersects the other two sides in distinct points,
then it cuts off a triangle similar to the given triangle.

Theorem 12-~. (P. 376) (The S.A.S. Similarity Theorem.)
Given a correspondence between two triangles. If two
corresponding angles are congruent, and the including sides are
proportional, then the correspondence is a similarity.

Theorem 12-5. (P. 378) (The S.S.S. Similarity Theorem.)
Given a correspondence between two triangles. If corresponding
sides are proportional, then the correspondence is a similarity.

Theorem 12-6. (P. 39~) In any right triangle, the altitude
to the hypotenuse separates the triangle into two triangles which
are similar both to each other and to the original triangle.

Corollary 12-6-1. (P. 392) Given a right triangle and the
altitude from the right angle to the hypotenuse:

(1) The altitude is the geometric mean of the segments
into which it separates the hypotenuse.

(2) Either leg is the geometric mean of the hypotenuse
and the segment of the hypotenuse adjacent to the leg.

Theorem 12-7. (P. 395) The ratio of the areas of two
similar triangles is the square of the ratio of any two
corresponding sides.

Theorem 13-1.
a plane through its
radius.

(P. 410) The intersection of a sphere with
center is a circle with the same center and

p

Theorem 12-6. (P. 39~) In any right triangle, the altitude



Theorem 13-2. (P. 414) Given a line and a circle in the
same plane. Let P be the center of the circle, and let F be
the foot of the perpendicular from P to the line. Then either

(1) Every point of the line is outside the circle, or
(2) F is on the circle, and the line is tangent to the

circle at F, or
(3) F is inside the circle, and the line intersects the

circle in exactly two points, which are equidistant from F.

Corollary 13-2-1. (P. 416) Every line tangent to C is
perpendicular to the radius drawn to the point of contact.

Corollary 13-2-2. (P. 416) Any line in E, perpendicular
to a radius at its outer end, is tangent to the circle.

Corollary 13-2-3. (P. 416) Any perpendicular from the
center of C to a chord bisects the chord.

Corollary 13-2-4. (P. 416) The segment joining the center
of C to the mid-point of a chord is perpendicular to the chord.

Corollary 13-2-5. (P. 416)
perpendicular bisector of a chord
the circle.

In the plane of a circle, the
passes through the center of

Corollary 13-2-6
circle intersects the
the circle in exactly

(P. 417) If a line in the plane of a
interior of the circle, then it intersects
two points.

Theorem 13-3. (P. 417) In the same circle or in congruent
circles, chords equidistant from the center are congruent.

Theorem 13-4. (P. 417) In the same circle or in congruent
circles, any two congruent chords are equidistant from the center.

at F, or
in a circle

8

8

outside 8, or
is tangent to

E intersects

Theorem 13-5. (P. 424) Given a plane E and a sphere 8
with center P. Let F be the foot of the perpendicular segment
from P to E. Then either

(1) Every point of E is
(2) F is on 8, and E

(3) F is inside 8, and
with center F.

q
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perpendicular bisector of a chord passes through the center of



Corollary 13-5-1. (P. 426) A plane tangent to S is
perpendicular to the radius drawn to the point of contact.

Corollary 13-5-2. (P. 426) A plane perpendicular to a
radius at its outer end is tangent to S.

Corollary 13-5-3. (P. 426) A perpendicular from P to a
chord of S bisects the chord.

CorollarY 13-5-4. (P. 426) The segment joining the center
of S to the midpoint of a chord is perpendicular to the chord.

""'Theorem 13-6. (P. 431) "If AB
same circle having only the point B- - ""'union is an arc AC, then mAB + mBC

-and BC are arcs of the
in common, and if their­= mAC.

Theorem 13-9.
circles, if two arcs
chords.

Theorem 13-7. (P. 434) The measure of an inscribed angle
is half the measure of its intercepted arc.

Corolle£Y.13-7-1. (P. 437) An angle inscribed in a semi­
circle is a right angle.

Corollary 13-7-2. (P. 437") Angles inscribed in the same
arc are congruent.

Theorem 13-8. (P. 441) In the same circle or in congruent
circles, if two chords are congruent, then so also are the
corresponding minor arcs.

(P. 441) In the same circle or in congruent
are congruent, then so are the corresponding

Theorem 13-10. (P. 442)
circle formed by a secant ray
the angle is half the measure

Given an angle with vertex on the
and a tangent ray. The measure of
of the intercepted arc.

Theorem 13-11. (P. 448) The two tangent segments to a circle
from an external point are congruent, and form congruent angles
with the lIne joining the external point to the center of the
circle.

r

arc are congruent.



Theorem 13-12. (po 449) Given a circle C and an external
point Q, let Ll be a secant line through Q, intersecting C
in points Rand S; and let L2 be another secant line through
Q, intersecting C in points T and U. Then QR. QS = QU • QT.

Theorem 13-13. (Po 450) Given a tangent segment QT to a
circle, and a secant line through Q, intersecting the circle in
points Rand S. Then QR. QS = QT2.

Theorem 13-14. (P. 451) If two chords intersect within a
circle, the product of the lengths of the segments of one equals
the product of the lengths of the segments of the other.

Theorem 14-1. (P. 467 ) The bisector of an angle, minus its
end-point, is the set of points in the interior of the angle
equidistant from the sides of the angle.

Theorem 14-2. (P. 469) The perpendicular bisectors of the
sides of a triangle are concurrent in a point equidistant from
the three vertices of the triangle.

Corollary 14-2-1. (P. 470-) There is one and only one circle
through three non-collinear points.

Corollary 14-2-2. (P. 470) Two distinct circles can
intersect in at most two points.

Theorem 14-3. (P. 470) The three altitudes of a triangle
are concurrent.

Theorem 14-4. (P.,47l) The angle bisectors of a triangle
are concurrent in a point eqUidistant from the three sides.

Theorem 14-5. (P. 476) (The Two Circle Theorem.) If two
circles have radii a and b, and if c is the distance
between their centers, then the circles intersect in two points,
one on each side of the line of centers, provided each one of a,
b, c is less than the sum of the other two.

Construction 14-6. (P.477) To copy a given triangle.

Construction 14-7. (P.479) To copy a given angle.

s



Construction 14-8. (P. 481) To construct the perpendicular
bisector of a given segment.

Corollary 14-8-1. (P. 481) To bisect a given segment.

Construction 14-9. (P. 482) To construct a perpendicular
to a given line through a given point.

Construction 14-10. (P. 484) To construct a parallel to a
given line, through a given external point.

Construction 14-11. (P. 484) To divide a segment into a
given number of congruent segments.

Construction 14-12. (P. 491) To circumscribe a circle about
a given triangle.

Construction 14-13. (P. 491) To bisect a given angle.

Construction 14-14. (P. 492) To inscribe a circle in a
given triangle.

Theorem 15-1. (P. 517) The ratio 2Cr ' of the circum­
ference to the diameter, is the same for all circles.

Theorem 15-2. (P. 522) The area of a circle of radius r
is vr2 .

Theorem 15-3. (P. 526) If two arcs have equal radii, their
lengths are proportional to their measures.

Theorem 15-4. (P. 526)
has length ~r •

Theorem 15-5. (P. 527)
product of its radius by the

An arc of measure q and radius

The area of a sector is half the
length of its arc.

r

Theorem 15-6. (P. 527) The area of a sector of radius r
and arc measure q is ~r2 .

Theorem 16-1. (P. 535) All cross-sections of a triangular
prism are congruent to the base.

Corollary 16-1-1. (P. 536) The upper and lower bases of
a triangular prism are congruent.

t

Theorem 15-2. (P. 522) The area of a circle of radius r



Theorem 16-2 . (P. 536) (Prism Cross-Section Theorem.) All
cross-sections of a prism have the same area.

Corollary 16-2-1. (P. 537) The two bases of a prism have
equal areas.

Theorem 16-3. (P. 537) The lateral faces of a prism are
parallelogram regions, and the lateral faces of a right prism
are rectangular regions.

Theorem 16-4. (P. 540) A cross-section of a triangular
pyramid, by a plane between the vertex and the base, is a
triangular region similar to the base. If the distance from the
vertex to the cross-section plane is k and the altitude is h,
then the ratio of the area of the cross-section to the area of
the base is (*).

Theorem 16-5. (P.542) In any pyramid, the ratio ~f the
area of a cross-section and the area of the base is (*), where
h is the altitude of the pyramid and k is the distance from
the vertex to the plane of the cross-section.

Theorem 16-6. (P.543) (The Pyramid
Given two pyramids with the same altitude.
same area, then cross-sections equidistant
have the same area.

Cross-Section Theorem.)
If the bases have the

from the bases also

Theorem 16-7. (P. 548) The volume of any prism is the
product of the altitude and the area of the base.

Theorem i6-8. (P.549) If two pyramids have the same alti­
tude and the same base area, then they have the same volume.

Theorem 16-9. (P.550) The volume of a triangular pyramid
is one-third the product of its altitude and its base area.

Theorem 16-10. (P .55l) The volume of a pyramid is one-third
the product of its altitude and its base area.

Theorem 16-11. (P.555) A cross-section of a circular
cylinder is a circular region congruent to the base.

u

Theorem 16-6. (P.543) (The Pyramid Cross-Section Theorem.)



Theorem 16-12. (P. 555) The area of a cross-section of a
circular cylinder is equal to the area of the base.

Theorem 16-13. (P. 555) A cross-section of a cone of
altitude h, made by a plane at a distance k from the vertex,
is a circula2 region whose area has a ratio to the area of the

base of (*) .
Theorem 16-14. (P. 557) The volume of a circular cylinder

is the product of the altitude and the area of the base.

Theorem 16-15. (P. 557) The volume of a circular cone is
one-third the product of the altitude and the area of the base.

Theorem 16-16. (P. 559) The volume of a sphere of radius r
is ~3.

Theorem 16-17. (P. 562) The surface area of a sphere of
2radius r is S = 4vr .

Theorem 17-1. (P. 579) On a non-vertical line, all segments
have the same slope.

Theorem 17-2. (P. 584) Two non-vertical lines are parallel
if and only if they have the same slope.

Theorem 17-3.
dicular if and only
of each other.

(P. 586) Two non-vertical lines are perpen­
if their slopes are the negative reciprocals

(The Distance Formula.) The

(x1'Yl) and (x2 ' Y2) is equal to
Theorem 17-4. (P. 589)

distance between the points

~(~ - xl)2 + (Y2 - Yl)2 •

Theorem 17-5. (P. 593) (The Mid-Point Formula.)
Let PI = (xl'Yl) and let P2 = (x2'Y2). Then the mid-point

Xl + x2 Yl + Y2
of P1P2 is the point P = ( 2 ' 2 )

v



Theorem 17-6. (P. 605) Let L be a non-vertical line
with slope m, and let P be a point of L, with coordinates
(x1'Yl). For every point Q = (x,y) of L, the equation
y - Yl = m(x - Xl) is satisfied.

Theorem 17-7. (P. 606) The graph of the equation
Y - Yl = m(x - Xl) is the line that passes through the point
(xl'Yl) and has slope m.

Theorem 17-8. (P. 611) The graph of the equation Y = mx + b
is the line with slope m and y-intercept b.

Theorem 17-9. (P. 6l3) Every line in the plane is the graph
of a linear equation in x and y.

Theorem 17-10. (P. 613) The graph of a linear equation
in x and y is always a line.

Theorem 17-11. (P. 623) The graph of the equation

(x - a)2 + (y - b)2 = r 2 is the circle with center at (a,b)
and radius r.

Theorem 17-12. (P. 624) Every circle is the graph of an

equation of the form x2 + y2 + Ax + By + C = o.

Theorem 17-13. (P. 625) Given the equation

x2 + y2 + Ax + By + C = O. The graph of this equation is
(1) a circle, (2) a point or (3) the empty set.

w

Theorem 17-12. (P. 624) Every circle is the graph of an





Index of Definitions

For precisely defined geometric terms the reference is to
the formal definition. For other terms the reference is to an
informal definition or to the most prominent discussion.

absolute value, 27
acute angles, 86
alternate interior angles, 245
altitude

of prism, 535
of pyramid, 540
of triangle, 214, 215

angle(s), 71
acute, 86 ·
alternate interior, 245
bisector of, 129
central, 429
complementar.1, 86
congruent, 86, 109
consecutive, 264
corresponding, 251
dihedral, 299
exterior, 193
exterior of, 73
inscribed, 432
intercepts an arc, 433
interior of, 73
measure of, 79, 80
obtuse, 86
.of' polygon, 506
opposite, 264
reflex, 78
remote interior, 193
right, 85
right dihedral, 301
sides of, 71
straight, 78
supplementary, 82
vertex of, 71
vertical, 88

apothem, 512
arc(s), 429

center of, 437
congruent, 441
degree measure of, 430
end-points of, 429
length of, 525
major, 429
minor, 429
of sector, 527

intercepts an arc, 433
interior of, 73
....003e!" ....O"~ '70 A"



129
169

548

area, 320
circle, 521, 522
parallelogram, 330
polygonal region, 320
rectangle, 322
right triangle, 328
sphere, 562
trapezoid, 331
triangle, 328
unit of, 321

arithmetic mean, 364
auxiliary sets, 176
base of pyramid~ 540
between, 41, 1~2

bisector of an angle,
bisector of a segment,
bisects, 47, 129
Cavalieri's Principle,
center of

arc, 437
circle, 409
sphere, 409

central angle, 429
centroid, 280, 621
chord, 410
circle(s), 409

area of, 521, 522
circumference of, 516
congruent, 417
equation of, 623, 624, 625
exterior of, 412
great, 410
interior of, 412
segment of, 528
tangent, 417

circular
cone, 554
cylinder, 553
reasoning, 119
region, 520

area of, 521
circumference, 516
circumscribed

circle, 490
triangle 490

collinear, 54
complement, 86
complementary angles, 86
concentric

circles, 409
spheres, 409

conclusion, 60



concurrent sets, 278, 469
cone,

circular, 554
right circular, 555
volume of, 557

congruence, 91'
congruent,

angles, 86, 109
arcs, 441
circles, 417
segments, 109
triangles, 98, III

consecutive angles, 264
consecutive sides, 264
constructions, 477
converse, 202
convex polygon, 507
convex sets, 62
coordinate system, 37, 571
coordinates of a lpoint, 37, 569
co-planar, 54
corollary, 128
correspondence, 97
corresponding angles, 251
cross-section

of a prism, 535
of a pyramid, 540

cube, 229
cylinder

circular, 553
volume of, 557

diagonal, 264, 509
diameter, 410
dihedral angle, 299

edge of, 299
face of, 299
measure of, 301
plane angle of l 300

distance, 34
distance between

a point and a line, 206
a point and a plane, , 235
two parallel lines, 266

distance formula~ 589
edge of half-plane, 64
end-point(s)

of arc, 429
of ray, 46
of segment, 45

empty set, 18

or a pyram:tQ, 5Ll-O
cube, 229
t"v'1nnA1'"



equation
of circle, 623
of line, 605, 611

equiangular triangle, 128
equilateral triangle, 128
Euler, 327
existence proofs, 165
exterior angle, 193
exterior

of an angle, 73
of a circle, 412
of a triangle, 74

face of half-space, 66
frustum, 559
Garfield's Proof, 344
geometric mean, 361
graph, 600
great circle, 410
half-plane, 64

edge of, 64
half-space, 66

face of, 66
horizontal lines, 576
hypo tenus e , 172
hypothesis, 60
identity congruence, 100, 109
if and only if, 203
if-then, 60
inconsistent equations, 618
indirect proof, 160
inequalities, 24
infinite ruler, 37
inscribed

angle, 432
measure of, 434

circle, 490
polygon, 511
quadrilateral, 438
triangle, 490

integers, 22
intercept, 275, 433
interior

of angle, 73
of circle, 412
of triangle, 74

intersect, 18
intersection of sets, 16, 18, 473
irrational numbers, 23
isosceles triangle, 127, 128
kite, 272
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if-then, 60
inconsistent equations, 618



lateral
edge, 537
face, 537
surface, 537

lermna, 196
length

of arc, 525
of segment, 45

linear equation, 613
linear pair, 82
line(s), 10

oblique, 216
parallel, 241
perpendicular, 86
skew, 241
transversal, 244

major arc, 429
mean

arithmetic, 364
geometric, 361

measure
of angle, 79, 80
of dihedral angle, 301
of distance, 30, 34, 36

median
of trapezoid, 272
of triangle, 130

mid-point, 47
formula of, 593

minor arc, 429
Non-Euclidean geometries, 253
negative real numbers, 191
numbers

irrational, 23
negative, 191
positive, 191
rational, 22
real, 23
whole, 22

oblique lines, 216
obtuse angle, 86
on opposite sides, 64
on the same side, 64
one-to-one correspondence, 97
opposite

angles, 264
rays, 46
sides, 264

order, 24
order postulates, 191, 192

-- ..... - --·0--'
mid-point, 47

formula . of, 593



605

413
423

ordered pair, 571
origin, 568
parallel

lines, 241
slopes of, 584

lines and planes, 291
planes, 291

parallelepiped, 538
parallelogram, 265

area of, 330
perimeter

of triangle, 287
of polygon, 512

perpendicular
lines, 86

slopes of, 586
line and plane, 219
planes, 301

perpendicular bisector, 169
pi, v , 518
plane(s}, 10

parallel, 291
perpendicular, 301

plane angle, 300
point, 10
point-slope form,
point of tangency

of circles,
of spheres,

polygon, 506
angle of, 506
apothem of, 512
convex, 507
diagonal of, 509
inscribed, 511
perimeter of, 512
regular, 511
sides of, 506
vertices of, 506

polygonal region, 317
polyhedral regions, 546
positive real numbers, 191
postulate(s}, 9

of order, 191, 192
power of a point, 450
prism, 534

altitude of, 535
cross-section of, 535
lateral edge, 537
lateral face, 537
lateral surface, 537
lower base, 535
rec tangul.ar, 535

~-_... - -... ....-··c- ... ·_tJ

of circles, 413
of sphe~es, 423



520
317

546
317

prism (Continued)
right, 535
total surface, 537
triangular, 535
upper base, 535

projection
of a line, 306
of a point, 306

proof
converse, 202
double-column form of, 118
eXistence, 165
indirect, 160
uniqueness, 165
writing of, 117

proportional sequences, 360
pyramid, 540

altitude of, 540
base of, 540
regular, 544
vertex of, 54-0
volume of, 551

Pythagorean Theorem, 339
quadrant, 571
quadrilateral, 263

consecutive angles of, 264
consecutive sides of, 264
cyclic, 473
diagonal of, 264
inscribed, 438
opposite angles of, 264

radius, 409, 410
of sector, 527

rational numbers, 22
ray, 46

end-point of, 46
opposite, 46

real numbers 23
rectangle, 268

area of, 322
rectangular parallelepiped, 538
reflex angle, 78
region

circular,
polygonal,
polyhedral,
triangular,

regular
polygon, 511
pyramid, 544

remote interior angle, 193

...... _ .... """v~."""" ..,~~,......, _.,

cyclic, 473
diagonal of, 264



rhombus, 268
right angle, 85
right dihedral angle, 301
right prism, 535
right triangle, 172
scalene triangle, 128
sector, 527

arc of, 527
radius of, 527

segment(s), 45
bisector, 169
congruent, 109

segment of a circle, 528
semi-circle, 429
separation, 182
set(s), 15

auxiliary, 176
concurrent, 278
convex, 62
element of, 15
empty, 18
intersection of, 16, 473
member of, 15
union of, 17

sHle( s )
consecutive, 264
of angle, 71
of dihedral angle, 299
of polygon, 506
of triangle, 72
opposite, 264

similarity, 365
skew lines, 241
slope, 577

of parallel lines, 584
of perpendicular lines, 586

slope-intercept form, 611
space, 53
sphere, 409

exterior of, 423
interior of, 423
surface area of, 562
volume of, 559

square, 268
square root, 25
straight angle, 78
subset, 15
supplement, 82
supplementary angles, 82

---~- - I

of dihedral angle, 299
of polygon, 506



tangent
circles, 417
common external, 454
common internal, 454
externally, 417
internally, 417
line and circle, 413
plane and sphere, 423
segment, 448

theorem, 9
total surface of a prism, 537
transversal, 244
trapezoid, 265

area of, 331
triangle(s), 72

altitude of, 214
angle bisector of, 130
area of, 328
centroid of, 280
congruent, 98, III
eqUiangular, 128
equilateral, 128
exterior of, 74
interior of, 74
isosceles, 127, 128, 346
median of, 130
overlapping, 123
perimeter of, 287
right, 172
scalene, 128
sides of, 72
similar, 365
300-60°, 346
vertex of, 72

triangular region, 317
undefined terms, 9, 10
union of sets, 17
uniqueness proofs, 165
vertex

of angle, 71
of polygon, 506
of pyramid, 540
of triangle, 72

vertical angles, 88
vertical line, 576
volume

of cone, 557
of cylinder, 557
of prism, 548
of pyramid, 551
of sphere, 559

whole numbers, 22
x-axis, 568
y-axis, 568
y-intercept, 611

_ ... _ ... --1::'1:' ....• ...0' .......... ...,

perimeter of, 287
right, 172
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