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Chapter 11
AREAS OF POLYGONAL REGIONS

11-1. Polygonal Reglons.

A triangular region is a figure that consists of a triangle
plus its interior, like this:

%W

A polygonal region 1s a figure in a plane, like one of these:

that can be "cut up" into triangular regions. To be exact:

Definitions: A triangular region is the union of a triangle
and 1ts interior. A polygonal region 1s the union of a finite
number of coplanar triangular regions, such that if any two of
these intersect the intersection 1s elther a segment or a point.

The dotted lines in the figures above show how each of the
two figures can be cut up in this way. Here are more examples:
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In the last two examples the figures have "holées" in them. This
possibility 1s not excluded by the definition, and these figures
are perfectly good polygonal regions.

On the other hand, the region APDFQC cannot be "cut up" into

c F

A D

regions ABC and DEF even though it 1s the unlon of these two
triangular regions. The 1lntersection of the two trilangular
regions 1s the quadrilateral region EPBQ, which is certailnly
not a segment or a point. Thils does not mean that APDFQC 1is
not a polygonal region, but merely that its description as a
union of triangular regions ABC and DEF 1s not enough to

[sec. 11-1]

In the last two examples the figures have "holées" in them. This

L s oo iMoo o o e o Rl o o M Lo oW LB TS BSOS s B o SN B B o Avaad delamacnsn €8 sessasm oy



319

show this. APDFQC 1is in fact a polygonal region, as 1s shown
below.

The polygonal regions form a rather large class of figures.
Of course, there are simple and important figures that are not
polygonal regions. For example, the figure formed by a circle
together with 1ts interior is not of this type.

If a figure can be cut up into triangular regions, then this
can be done in a great many ways. For example, a parallelogram
plus its interior can be cut up in many ways. Here are three of
these ways.

// - \ //
-~ \‘\\ \ A
7 V/ \
7 A S P
// N - \

In this chapter we will study the areas of polygonal regions,
and learn how to compute them. The sixteen postulates that we have
introduced so far would enable us to do this, but the treatment
would be extremely difficult and quite unsuitable for a beginning
geometry course like this one. Instead we shall introduce measure
of area in much the same way we did for measure of distance and
angle, by means of appropriate postulates.

L

[sec. 11-1]
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Postulate 17. To every polygonal region there
corresponds a unique positive number.

Definition: The area of a polygonal region is the number
assigned to it by Postulate 17.

We designate the area of a region R simply by area R. 1In
the following postulates, when we speak of a region, for short, it
would be understood that we mean a polygonal region.

Our intuition tells us that two regions of the same shape and
size should have the same area, regardless of their positions in
space. This fundamental fact is the motivation of the next
postulate.

Postulate 18. If two triangles are congruent,
then the triangular regions have the same area.

If a region 1s cut into two pleces 1t is clear that the area
of the region should be the sum of the areas of the pleces. This
is what our next postulate says. Let us state the postulate and
then consider its meaning.

Postulate 19. Suppose that the region R 1is
the union of two regions Rl and R2. Suppose that
Rl and R2 intersect at most in a finite number of
segments and points. Then the area of R 1s the
sum of the areas of R1 and R2.

The three figures below show examples of the application of
this Postulate.

[sec. 11-1]
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R | R ‘\\’//

In each figure the intersection is heavily marked, and consists of
a segment in the first figure, three segments in the second, and

two segments and a point in the third. ‘
On the other hand, the next figure is the union of two tri-

R Rz

angular regions, Rl and R2, but their intersection is not made
up of a finite number of segments and points. Instead 1t is the
quadrilateral reglon in the middle. Thus Postulate 19 cannot be
applied to this case. If we tried to calculate the area of the
whole region by adding the areas of R1 and R2 the area of the
quadrilateral region would be counted twice. It was 1in anticip-
ation of this situation that we insisted, in the definition of
polygonal region, that the triangles determining the region must
not overlap.

As was the case with distance and angle, the "unit of area'
can be specified at will. However, it is convenient and customary
to choose thls unit to be closely associlated with the unit of
distance. If we are to measure distance in inches, we measure
area in square inches; and in general, whatever unit of distance
we use, we use the corresponding square unit to measure area. One
way to ensure this would be to state as a postulate that the area
of a square 1s to be the square of the length of an edge.

[sec. 11-1]

angular regions, Rl and R2, but their intersection is not made
up of a finite number of segments and points. Instead it is the
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(By the "area of a square" we mean, of course, the area of the
polygonal reglon which 1s the union of the square and its interior.
We will speak in the same way of the area of any quadrllateral,
meaning the area of the corresponding polygonal region.)

The statement A = e2 is, however, a little too special to
be convenient. The difficulty is that if we establish our unit of
area by the postulate A = e2, then we would have the problem of
proving that the corresponding formula holds also for rectangles.
That is, we would have to prove that the area of a rectangle is
the product of the length of 1ts base and the length of its
altitude. Of course, if we know that this holds for rectangles,
then it follows immediately that for squares we have A = e2,
because every square is a rectangle. The converse can also be
proved, but the proof is harder than one might think. The most
convenient thing to do, for the present, is to take as a postulate

the more general formula, that is, the one for rectangles:

Postulate 20. The area of a rectangle is the
product of the length of its base and the length of
its altitude.

b

[sec. 11-1]

pecause every square 18 a recidangile. r'ne converse carin also be
proved, but the proof is harder than one might think. The most
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Notice that in the previous paragraph and in Postulate 20 we
were very careful to say, "length of its base" and "length of its

altitude". In using Postulate 20 from now on, we will just say,
"The area of a rectangle is the product of 1ts base and its
altitude". This means that we use "base" and "altitude" sometimes

to indicate line segments and sometimes to indicate their lengths.
From now on we will do this fairly generally, trusting in your
ability to tell from the context which meaning of a word we intend.
If we "bisect a side of a triangle" the word "side" will have its
original meaning, as a set of points. If we "square the side of
a triangle" we are using the word "side" as an abbreviation for
"length of the side". Such abbreviations will be very convenient
in this and later chapters.

On the basis of the four area postulates we can calculate the
areas of trilangles, parallelograms, and a variety of other figures.

Problem Set 1l-1

1. Show that each of the regions below is polygonal by indicating
how each can be cut into triangular regions such that if two
of them intersect their intersection is a point or segment of
each of them. Try to find the smallest number of trilangular
regions 1in each case.

a. b.

[sec. 11-1]
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Find the area of a rectangle 50 ft. long and 16% ft. wide.

a. If you double the altitude of a rectangle and leave the
base the same, how 1s the area changed?

b. If both the altitude and the base of a rectangle are
doubled, how is the area changed?

How many tiles, each 6 inches square, does it take to cover a
rectangular floor 37 ft. 6 in. by 12 ft.?

The figure shown 1is a face e 33
of a certain machline part. r I’_9.._. _f
In order to compute the cost 7 N 9"
of painting a great number /;%%7 9" 3
of these parts 1t 1s necessary Aé { FTET
to know the area of a face. ‘r__'5"'_*__l
The shaded regions are not Iu
to be painted. Find the area ?
to be painted. %rv —I;

T 18— l

fe— 11" 22"
[sec. 11-1]
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Are the following statements true or false? Give a reason for
each answer.

a. A triangle is a polygonal region.

b. Postulate 17 says that for every positive number A
there corresponds some polygonal region R.

c. Every polygonal region has an unique area.

d. If two triangles are congruent, then the triangular
regions have the same area.

e. The union of two polygonal regilons has an area equal to
the sum of the areas of each region.

f. Postulate 20 assures us that the area of a square having

side e 1is A = e=.

g. The interior of a trapezoid i1s a polygonal region.
h. A triangular region 1is a polygonal region.

A rectangular region having base 6 and altitude 4 can be
divided up into squares having a base 2, as in Figure 1.
Notice that a square with base 2 is the largest square pos-
sible which will divide Fhe rectangular region into an exact
number of congruent squares.

6

Figure 1.

[sec. 11-1]
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Similarly, a square with base ~% is the largest square
possible which will exactly divide a rectangular region with
base 4 and altitude 1%, as in Figure 2.

4

Nf—

Figure 2.

Determine the side of the largest square which will exactly
divide rectangular regions having the following measures:

a. Db = U h = 12. d. b =1.7; h = 1.41b4.
b. b = 5; h=2%-. e. b=2.0; h= J2.
c. b=23.5 h=1.7. f. b= +/2; h= /3.

What difficulty do you find in parts (e) and (f)? Do you see
that this relates to the dlscussion of the text preceding
Postulate 207?

*8, In the following figure, A, B, C, D, E, F, G are
called vertices, the segments AB, BC, CD, DE, EG, GA,
EF, FD, FB are called edges, and the polygonal regions
ABE, FED, BCDF are called faces. The exterior of the
figure will also be considered as a face.

[sec. 1171]

that this relates to the dlscussion of the text preceding

TS iamdvice™ i OSINO



327

Let the number of faces be f, the number of vertices be v,
and the number of edges be e. In a theorem originated by a
famous mathematician, Euler, the following formula occurs:

f - e + v, which refers to figures of which the above figure
is one possibility. Using the figure, let's compute

f e+ v. You should see that f =4, v=7, e =9, and
this gives us f - e + v = 2.

Using the two figures below, compute f - e + v. Notice that
the edges are not necessarily segments.

a. b. Suppose this figure to be a
sectlon of a map showing
counties:

C. What pattern do you obkserve in the results of the three

computations?

d. In part (a) take a point in the interior of the quadri-
lateral and draw segments from each of the four vertices
to the point. How does this affect the computation of
f - e + v? Can you explain why?

e. Take a point in the exterior of the figure of part (a)
and connect it to the two nearest vertices. How does
this affect the computation?

f. If you are interested in this problem and would like to
pursue it further, you will find it discussed in "The
Enjoyment of Mathematics" by Rademacher and Toeplitz and

in "Fundamental Concepts of Geometry" by Meserve.
[sec. 11-1]
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11-2. Areas of Triangles and Quadrilaterals.
Let us now compute some areas, on the basis of our postulates.

Theorem 11-1. The area of a right triangle is half the pro-
duct of 1ts legs.

b

A == ab. 2A = ab.

Proof: Given A PQR, with a right angle at R. ILet A be
the area of A PQR. Let R' Dbe the intersection of the parallel to
%ﬁ’ through @Q and the parallel to aﬁ through P. Then QR'PR
is a rectangle, and APQR A QPR'. By Postulate 18, this means
that the area of A QPR' 1is A. By Postulate 19, the area of the
rectangle is A + A, Dbecause the two triangles intersect only in
the segment fa. By Postulate 20, the area of the rectangle 1s ah
Therefore

20 = ab,
and

A =~% ab,‘
which was to be proved.

From this we can get the formula for the area of any triangle.
Once we get this formula, it will include Theorem 11-1 as a
speclal case.

Theorem 11-2. The area of a triangle is half the product of
any base and the altitude to that base.

[sec. 11-2]

rectangle is A + A, Dbecause the two triangles intersect only in
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h h|
I
L ——
b b, b
- 4
A = Zbh

Proof: Let A Dbe the area of the glven triangle. The three
figures show the three cases that need to be considered.

(1)

(2)

(3)

If the foot of the altitude is between the two end-points
then the altitude divides the given triangle into two
right triangles, with bases bl and b2, as indicated.
By the preceding theorem, these two triangles have areas

l-b h and %bgh. By Postulate 19, we have

50
A = %blh + -Jé-bzh.

Since bl + b2 = b, we have

_ 1
A_§(bl+b h

5)

= %bh,

which was to be proved.

If the foot of the altitude is an end-point of the base,
there is nothing left to prove: we already know by the
preceding theorem that A = %bh.

In the third figure, we see the given triangle, with area
A, and two right triangles (a big one and a little one.)
We have

1 1

3b,h + A --g(b1 + b)h.

The student should supply the reason for this step.
Solving algebraically for A, we get A = %bh, which
was to be proved.

[sec. 11-2]
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Notice that Theorem 11-2 can be applied to any triangle in
three ways, because any side can be chosen as the base; we then
multiply by the corresponding altitude and divide by 2, to get the
area. The figure below shows the three choices for a single
triangle.

The three formulas %blhl,
L 1y h t gl
§b2h2 and §b3 3 must gilve
the same answer, because all
three of them give the right
answer for the area of the

trlangie.

Notice also that once we know how to find the area of a
triangle, there 1is not much left of the area problem for polygonal
regions: all we need to do is chop up the polygonal regions into
triangular regions (which we know we can do) and then add up the
areas of the triangular regions.

For parallelograms and trapezoids this 1is fairly trivial.

Theorem 11-3. The area of a parallelogram 1s the product of

any base and the corresponding altitude.

b

A = bh

Proof: Draw diagonal gal By Theorem 9-14 Ea divides the
parallelogram into two congruent triangles. Postulate 18 tells us
that congruent triangles have equal area. Now the area of
A PSQ = %bh. Hence the area of parallelogram PQRS = bh, which

was to be proved.

[sec. 11-2]

For parallelograms and trapezoids this 1is fairly trivial.
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Notice that Theorem 11-3 can be applied to any parallelogram
in two ways, because any side can be taken as the base, and can
then be multiplied by the corresponding altitude.

In the first case we get A = bh, and in the second case we get
A = b'h'!. These two expressions bh and Db'h! must glve the
same answer, because both of them give the right answer for the
area of the parallelogram.

The area of a trapezoid can also be obtained by separating it
into two triangles.

Theorem 11l-4. The area of a trapezoid is half the product of
its altitude and the sum of 1ts bases.

b,
A = zn(b, + by)

Proof: Let A be the area of the trapezoid. Either diagonal
divides the trapezoid into two triangles, with areas %blh and
%b2h. (The dotted lines on the right indicate why the second
triangle has the same altitude h as the first.) By Postulate 19

1 1
A = §blh + §b2h.
Algebralcally, this is equivalent to the formula
1
A = -2-h(b1 - bg).
[sec. 11-2]

into two triangles.
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The formula for the area of a triangle ﬁil two useful con-
sequences, both of which are easy to see:

Theorem 11-5. If two triangles have equal altitudes, then
the ratio of their areas is equal to the ratio of their bases.

Given: A ABC and A DEF with equal altitudes.
b

. Area of A ABC _ "1
SRS Area of & DEF - b,
This is easy to establish once we have the formula A = %bh
Foh by
because 1t simply means that T =5 which is true.
?b h 2
2

Theorem 11-6. If two triangles have equal altitudes and
equal bases, then they have equal areas.

The proof of this 1s clear because the formula A = %bh glves
the same answer in each case.

[sec. 11-2]
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Problem Set 11-2

In right triangle ABC, with right angle at C, AC =7,
BC = 24, AB = 25.

a. Find the area of A ABC.
b. Find the altitude to the hypotenuse.

The hypotenuse of a right triangle is 30, one leg is 18, and
the area of the triangle is 216. Find the length of the
altitude to the hypotenuse and the length of the altitude to
the given leg.

G —>
In AABC, CD | AB and
«> «—>
AE | BC. ¢
a. If AB=8, CD =9,
AE = 6, find BC.

b. If AB = 11, AE = 5, E
BC = 15, find CD.

C. If CD = 14, AE = 10,

BC = 21, find AB. A D B
d. If AB=c¢, CD =nh,

BC = a, find AE.

Cc
In this figure CQ = QD. B
Prove that the
Area A ABC = Area A ABD.
_ : N

[sec. 11-2]

c. If CD =14, AE = 10, M \
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If ABCD is a square, find
the area of the star plctured

here in terms of

S

and b.

The segments forming the

boundary of the star are

congruent.

In parallelogram ABCD,
«> &> >

AE | B¢, iF | BC, and

<> <>

BG | DA.

a. If
BC
AF

b. e
GB
AD

¢. If
AE
AD

d. If
AF
AE

AE =

AE

AF

GB

14,

15,

16,

It

7, DC

then

10,
then

6, DC

then

16,
then

AD = 20,

Prove that the diagonals of
a parallelogram divide 1t
into four triangles which

have equal areas.

GB
AD

it

15,

then

D C

[F——-——-=>

Pre———————
m o e ——— ——

G
/;?\\\
~
= 18 / ~~o
’ A‘/\\ = o
| ~
I e )
o
1%, : i
]
|
H
E Cc
H
Q
A B
[sec. 11-2]
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8. Find the area of trapezoid

ABCD,

a. If AB =12, DC = 6,
DE = 4.

b. If AB=9. AD =14,

DC =5, CF = 3.

c. If AE =4, FB = 6,
DE =5, DB = 13,
DC = 6.

d. If AB =27, DE =7,
AE = 3, EF = FB.

e. If AE =12, EF = 3,
FB =9, CF = FB.

9. Find the area of a trapezold if 1ts altitude has length 7 and
its median has length 14. (Hint: See Problem 10 of Problem
Set 9-6.)

10. A triangle and a parallelogram have equal areas and equal
bases. How are their altitudes related?

11. Compare the areas of

a. Parallelogram ABCD
and triangle BCE.

b. A BCF and A BCE. A F D E

c. A ABF and A FCD, if
F 1s the mid-point of
E‘

ds ACFD and A BCE and
parallelogram ABCD,
if F 1s the mid-point
of XB:

[sec. 11-2]

10. A triangle and a parallelogram have equal areas and equal




336

12.

13.

14,

15.

16.

*17 .

In surveying the field shown
here, a surveyor laid off
=
north-and-south line NS
through B and then locgzgd
the east-and-west lines CE,
ey e
DF, AG. He found that

CE = 5 rods, DF = 12 rods,
AG = 10 rods, BG = 6 rods,
BF = 9 rods, FE = 4 rods.

Find the area of the field.

Prove the theorem: If
quadrilateral ABCD has
perpendicular diagonals,

its area equals one-half
the product of the lengths
of the diagonals.

Write a corollary to the theorem of Problem 13 relating to
the area of a rhombus.

The area of a quadrilateral is 126 and the length of one
diagonal is 21. If the diagonals are perpendicular, find
the length of the other diagonal.

The diagonals of a rhombus have lengths of 15 and 20. Find
its area. If an altitude of the rhombus is 12, find the
length of one side. C

Would the theorem of Problem
13 s8ti1ll be true if the poly- p
gonal region ABCD was not

O

Y

convex, as in this figure?

> ————— —

[sec. 11-2]

of the diagonals. \i///,
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19.

20.
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Prove that a median of a triangle divides the trilangle into
two triangles each having an area equal to one-half the area
of the original triangle.

a. If AD and BE are A
two medians of A ABC
intersecting at G,
prove that Area A AEG =
Area A BDG.

b. Determine what part C
Area A BDG 1is of D
Area A ABC. (Hint: B
Use other median CF.)

If AB 1s a fixed segment

in plane E, what other

positions of P in plane E P
will let the area of A ABP

remain constant? Describe

the location of all possible

positions of P 1in plane E

which satisfy the condition. A B
Describe the location of all

possible positions of P in

space which satisfy the

condition.

[sec. 11-2]

positions of P in plane E (24
will let the area of A ABP /\\\\
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*2).

»22,

The figure at the right

is formed from four right
triangles and four rect-
angles. Notice that there
1s a square hole one unit
on a side.

a. Total the areas of
the eight parts.
(Omit the hole.)

b. Show that the same
result is obtained
by taking one-half
the product of the
length of the base
and the length of
the altitude to 1t.

c. Explain why
the results
in (a) and
(p) come out
the same in 3

) S )

41/2 C 51/2

Rl H

Q! K

S51/2 41/2

spite of the N
hole.

A line cuts a rectangular
region into two reglons
of equal area. ' Show that
it passes through the
intersection of the
diagonals of the rect-
angle.

[sec. 11-2]

the results ///
in (a) and -

o
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11-3. The Pythagorean Theorem.
Now that we know how to work with areas, the Pythagorean
Theorem 1s actually rather easy to prove.

Theorem 11-7. (The Pythagorean Theorem). In a right triangle,
the square of the hypotenuse is equal to the sum of the squares of
the legs.

Proof: We take a square for which the length of each side is
a + b. In this square we draw four right triangles with legs a
and b, 1like this:

then

(1) Each of the four right triangles is congruent to the
given triangle by the S.A.S. Postulate. Therefore
their hypotenuses have length ¢, as indicated in the
figure above.

[sec. 11-3]
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(2) The quadrilateral formed by the four hypotenuses is a
square. We can show this in the following way:

/ z 1is a right angle because m/y + m/ z + m/ x = 180, and
m/y +m/ x=90. (The acute angles of a right triangle are
complementary). Since all four sides are each equal to c¢, the
quadrilateral is a square.

(3) The area of the large square is equal to the area of the
small square, plus the areas of the four congruent right

triangles.
Therefore
(2 + b)% = ¢% + u(Zab).
Therefore
a2 + 2ab + b2 = 02 + 2ab,
and finally, a2 + b2 = 02, which was to be proved.

The converse of the Pythagorean Theorem 1s also true.

Theorem 11-8. If the square of one side of a triangle is
equal to the sum of the squares of the other two sides, then the
triangle is a right triangle, with a right angle opposite the
first side. c

A c B

Proof: Given A ABC, as 1n the figure with c2 = a2 + b2.

Let A A'B'C' be a right triangle with legs a and b.
Cl

(o 0]

d

[sec. 11-3]

Theorem 11-8. If the square of one side of a triangle 1is
eaual to the sum of the saduares of the other two sides. then the
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Let 4 Dbe the hypotenuse of the second triangle. By the
Pythagorean Theorem,

d2 = a2 + b2.

Therefore d2 = c2. Since ¢ and d are both posltive, this

means that d = ¢. By the S.S.S. Theorem, we have A A'B'C' = A ABC.
Therefore / C & / C'. Therefore [/ C 1is a right angle, which
was to be proved.

Problem Set 11-3a

1. A man walks due north 10 miles and then due east 3 miles.
How far is he from his starting point? ("As the crow flies".)

2. A man walks 7 miles due north, 6 miles due east and then 4
miles north. How far is he from his starting point?

3 A man travels 5 miles north, 2 miles east, 1 mile north, then
4 miles east. How far is he from his starting point?

L, In the rectangular solid indicated in the diagram, find the
length of AC; of AD.

D
|
|
|
Ao c
e~
///
-3 12
//
//
A ¢ B

Bis Which of the following sets of numbers could be the lengths of
the sides of a right triangle?

a. 10, 24, 26. d. 9, 4o, 41,

b. 8, 14, 17. e. 1.5, 3.6, 3.9.

¢c. T, 24, 25. £, 1%, 2%, 3%
[sec. 11-3]

L, In the rectangular solid indicated in the diagram, find the
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8.

A Show by the converse of the Pythagorean Theorem that
integers which represent lengths of sides of right tri-

angles can be found in the following manner.

Choose any positive integers m and n, where
m > n. Then m2 - n2 and 2mn will be the lengths
of the legs of a right triangle and m2 + n2 will

be the length of its hypotenuse.

b. Use the method of part (a) to list integral lengths of
sides of right triangles with hypotenuse less than or
equal to 25. There are six such triangles.

a. With right angles and
lengths as marked in the
figure, find AY, AZ
and AB.

b, If you continue the
pattern established in
this figure making
BC =1 and m/ CBA = 90,
what would be the length
of KE} What would be
the length of the next
segment from A? You
should find an interest-

ing pattern developing.

In the rectangular solid at
the right AW =1, AB = 2,

AD = 2.

BC

Find AY.

Z Y
'X
|

w

A
A B
[sec. 11-3]

, = 1L ana m/ UBA = YU, AN '
what would be the length N \\ / ‘\?)Y
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*10.

11.

12
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In A ABC, AB = 14, BC = 15,
AC = 13. 13 15

a. Find the length of the c
altitude, hc’ to AB.

b. Find the length of the A D 14 B
altitude, ha’ to BC.

AABC has obtuse angle / B, ¢
and AB = 6, BC = 14, AC = 18.
Find the length of the altitude,
<> 18
h,, to AB. 4
A 6 B

One angle of a rhombus has a measure of 60 and one side has
length 8. Find the length of each diagonal.

D C
In rhombus ABCD, AC = 6
and BD = 4., Find the
length of the perpendicular
from any vertex to either
opposite side. A B
In the figure BC | CA, B
BC =5, CA =12, CD | AB. 5
Find CD. o A
C 12 A
[sec. 11-3]

length 8. Find the length of each diagonal.
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1k,

15.

16.

17.

The lengths of the legs of' 5
right triangle ABC are 15 ) h| \8
and 8. Find the length of

the hypotenuse. Find the A D B

length of the altitude to
the hypotenuse.

If the lengths of the legs
of a right triangle ABC
are a and b, find the
length of the altitude to
the hypotenuse.

A ABC 1s isosceles with

CA = CB. Medians AP and
E@ are perpendicular to
each other at S. If

SP = n, find the length of
each segment and the areas
of polygonal regions ASQ,
ASB, ABC and QSPC 1in
terms of n. (Do not change
radicals to decimals.)

A proof of the Pythagorean Theorem
making use of the following figure
was discovered by General James A.
Garfield several years before he
became President of the United
States. It appeared about 1875 in
the "New England Journal of Education."
Prove that a2 + b2 = 02 by stating
algebraically that the area of the
trapezold equals the sum of the areas
of the three triangles. You must in-
clude proof that / EBA is a right

angle.

[sec. 11-3]

ASB, ABC and QSPC 1in / }$§ \
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*19.

ABCD 1is a three-dimensional
"pyramid-like" solid,

Note that points A, B, C,
and D are not coplanar.

We are told that BD = BC = BA
= AC = CD = DA = 2.

a. R and S are mid-
points of BA and 65,
respectively. Prove
EE is perpendicular to
both BA and CD.

b. Find the length of RS.

In AABD, / ABD 1is a right

angle, AB =BC =1, AC =CD. A

Find AD. Find m/ ADC and
m/ DAB.

C---ac--

345

[sec. 11-3]




346

The Pythagorean Theorem also gives us information about the
shapes of certain simple triangles. Two very useful relationships
are stated in the following two theorems. We give figures which
suggest their proofs.

Theorem 11-9. (The 30-60 Triangle Theorem.) The hypotenuse
of a right triangle is twice as long as a leg if and only if the
measures of the acute angles are 30 and 60.

\
3
3038\

60° 60°\

g —_——

Theorem 11-10. (The Isosceles Right Triangle Theorem.) A
right triangle is isosceles if and only if the hypotenuse is /2
times as long as a leg.

Problem Set 11-3b

| The lengths of two sides of a triangle are 10 and 14 and the
measure of the angle included between these sides 1s 30.
What 1s the length of the altitude to the side 14?2 What 1is
the area of the triangle?

2. The measure of the congruent angles of an isosceles triangle
are each 30 and the congruent sides each have length 6. How
long 1s the base of the triangle?

[sec. 11-3]

90 C=«/EO
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The measure of one acute angle of a right triangle is double
the measure of the other acute angle. If the length of the
longer leg is 5./3, what is the length of the hypotenuse?

Show that in any 30° - 60° right triangle with hypotenuse s
the length of the side opposite the 60° angle is given by

h = %3,

In parallelogram ABCD, AB = 2 A 3 D
and AD = 3, m/ B = 60. Find

the length of the altitude from 2

A to ff;. 60°

If an altitude of an equilateral triangle is 15 inches long,
how long 1is one side of the triangle?

In a right trlangle with acute angles of 30° and 60°, what is
the ratio of the shortest side to the hypotenuse? Of the
hypotenuse to the shortest side? Of the shortest side to the
side opposite the 60° angle? Of the side opposite the 60°
angle to the shortest side? Of the side opposite the 60°
angle to the hypotenuse? Of the hypotenuse to the side
opposite the 60° angle? Are these ratios the same for every
30° - 60° right triangle? If you have done this problem
carefully, you should find the results very helpful in many
of the following problems. '

What is the area of the 1sosceles triangle whose congruent
sides have lengths of 20 inches each and whose base angles
have measures of:

a. 30% b. 459 c. 60?

What is the area of the i1sosceles triangle whose base has a
length of 24 inches and whose base angles each have measures

a. 459 b. 307 c. 60?

[sec. 11-3]

side opposite the obU~ angle? U1l the slde opposite the U~
angle to the shortest side? Of the side opposlite the 60°
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10.

Use the information given in the figures to determine
numerical values called for below:

the

b.

a = X = a =

2a = y = X =

3a. = y =
c. d.

20° 130°
X
a° 90° 50°
——

a = 4 a =

2a = X =

X = y =

[sec. 11-3]
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£ 8
90°%
X
8 8
X
8
X =
y =
h.
2
X X
20
a° a
X
a = a =
X = X =
11. In this figure AB | plane E. A

A BFH 1lies in plane E.
HF | FB. AB = BH = 6.
m/ FHB = 30.

Glve the measures of as

many other segments and
angles of the figure as
you can determine.

*12, In AABC, m/ A =30, AC =4, <
AB = 3./3. Find BC. Is /C 4
a right angle?
30° -
A 3V/3 B

[sec. 11-3]
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*13. In A ABC as shown in the figure, ¢
find BC. (Hint: Draw the
altitude from C.)

14, The base of an isosceles triangle is 20 inches and a leg is

26 inches. Find the area.
F

15. In this figure FD = FC,
DB = CA, DF | FB, and
E‘lﬁ. Prove A FAB D A B C
is 1sosceles.

16. DA and CB are both 0 ¢
perpendicular to AB 1in
this figure. AE = FB y
and DF = CE. Prove A E 3 B
LxE/y.

17. Prove the theorem: The area
of an equilateral triangle
with side s 1is given by

s2
Area = T J3_.

[sec. 11-3]

D

16. DA and TB arebotn N A
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19.

20.

2l.

22.

23.

24,
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Find the area of an equllateral triangle having the length of
a side equal to:

a. 2. c. /3.
b. 8. d. T.

The area of an equilateral triangle is 9A¢§i Find its side
and 1ts altitude.

The area of an equilateral triangle is 16‘¢§1 Determine its
side and 1ts altitude.

A square whose area is 81 has its perimeter of length equal
to the length of the perimeter of an equilateral triangle.

Find the area of the equilateral triangle.
H G

This flgure represents a
cube. The plane determined |

by points A, C and F I

is shown. If AB 1is 9 1

inches, how long is AC? :D

What 1s the measure of /L‘ -T——=)¢
/ FAC? What is thé area /’ P2
of A FAC? /i

. A B
In trapezoid ABCD, base D c
angles of 60° include a
base of length 12. The
non-parallel side AD has
length 8. PFind the area 60° 607
of the trapezoild.

Find the area of the D c
trapezoid.

[sec. 11-3]
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®25

*26.

In the figure, plane E and
plane F intersect in 'Kg,
forming dihedral angle

/ F-AB-E. 65.1 plane E,

| AB, and CD ] AB. D
the mid-point of AB.

& AC. If AB = 446,

DG
is
BC
AG
m/ CAG = 45, find CG and

6, m/ CBG = 45, and

m/ F-AB-E.

Figure ABCD 1is a regular

tetrahedron (its faces are A
equilateral). Let any edge
be NM | AB and N N
W | Bc.
B D

a. Show that the length

of a bi-median, that M

is, the segment, NM,

Joining the mid-points c

of opposite edges, is

2

(Hint: Draw AM.)
b. Show that the length of the altitude, AH, of the

N

tetranedron is = e. (Hint: Draw HC and HD.
Does H 1lie on BM? Recall that the medians of a
triangle are concurrent at a point -% of the distance

from each vertex.)

[sec. 11-3]

of a bi-medlan, that \\/M
2 a 4+ caaoomant W
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ABXY 1is a square. AB = 6.
m/ X-AB-E = 60.

Rectangle ABCD 1s the
projection of square ABXY
on plane E. What is the
area of rectangle ABCD?

/
D

Given any two rectangles anywhere in a plane, how can a
single line be drawn which will separate each rectangular
region into two regions of equal area?

Review Problems

If the side of one square is double the side of another
square, then the area of the first Square is times
the area of the second square.

In AABC, CD | BB, RE | B8, AB =8, D=9 and AE - 6.
Find BC.

Review Problems
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10.

A man walks 5 miles north, then 2 miles east, then 1 mile
north, then 6 miles east. How far will he be from his
starting point?

If the diagonal of a square is 15 feet long, how long is
each side?

Find the area of an isosceles triangle in which the base is
12 and each congruent side is 10.

In the figure, PQRS 1is a ) Q
<> <>
parallelogram, QT | SR, ,
<> <>

and SV | QR. |
a. If SV =7 and PS = 5, :
find the area of PQRS. ‘
b. If SV=8, Q=4 and e v —_d
S S 7 R T

SR = 10, find QR. N p

~ /

\\yq/

In an equilateral triangle the length of the altitude is
6 inches. What is the length of each side?

The side of a rhombus is 13 and one of its diagonals is 24,
Find 1ts area.

In A ABC base AB = 12, median CD =8, and m/ ADC = 30.
The area of A ABC 1is .

Derive a formula for the
area of the figure at the
right in terms of the 1in-
dicated lengths.

——a  wva s e ] VR e W e - e -y -~ verw e waagy wes ~ - oo wvem v v vves e

6 inches. What is the length of each side?
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12,

13.

1k,

*®15,
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Find the area of the shaded
region of the Figure at the
right.

----------
------------

T BN 2a
b

---------
ooooooooo

Rgxaiiaehy 3q —>

ooooooooo

Diagonal AD of the pentagon
ABCDE shown is 44 and the b
perpendiculars from B, C, C
and E are 24, 16, and 15
respectively. AB = 25

and CD = 20. What is the
area of the pentagon?

Given: Parallelogram ABCD E
with X and E mid-
points of AB and AD
respectively.

To prove: Area of region
AECX =-% area parallelogram R

ABCD.

A D
E

Prove that the area of an isosceles right triangle is equal
to one fourth the area of a square having the hypotenuse of
the triangle as a side.

An equllateral triangle has one side in a given plane. The
plane of the triangle is inclined to the gilven plane at an
angle of 60°. What is the ratio of the area of the triangle
to the area of its projection on the plane?
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*16.

*17.

*18,

*19.

*20,

Explain how to divide a trapezold into two parts that have
equal areas by a line through a vertex.

Find the length of the diagonal of a cube whose edge is 6
units long.

H
In this rectangular solid ////1
[}

AE = 5, AB = 10 and E ,L._.__
L/

[n
o

AD = 10.

a. Find AC. A B
b. Find AG.

Given: Square ABCD with A B E
points E and F as

shown, so that EC | FC.

Area ABCD = 256 sq. ft. F
Area of A CEF = 200 sq. ft.

Find BE.

If W, X, Y and Z are
mid-points of sides of
square ABCD, as shown in
the figure, compare the area
of this square with that of
square RSPQ. Z X

’ |/
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*¥21, The figure shows two isosceles right triangles. The first of
these has a horizontal side of length 10 units and the second
has a horizontal hypotenuse of length 14 units.

Draw two such triangles on graph paper. Cut out the
second one and place it on the first to show that
thelr areas are apparently equal.

In the first figure count the number of small squares
and the number of small half squares (right isosceles
triangles). Use these numbers to compute the area.

Do the same for the second figure.

Expléin the discrepancy.






Chapter 12
SIMILARITY

12-1. The Idea of a Simllarity.
Proportionality. Roughly speaking, two geometric figures are

similar if they have exactly the same shape, but not necessarily
the same size. For example, any two circles are similar; any two
squares are similar; any two equilateral triangles are similar;
and any two segments are similar.

OQ A \——

Below are two triangles, with the lengths of the sides as
indicated:

Bl

A b=4 c A

These filgures stand in a very special kind of relation to each
other. One way to describe this relation, speaking very roughly,
is to say that the triangle on the left can be "stretched", or the
one on the right can be "shrunk", so as to match up with the other
trliangle, by the correspondence

ABC<—=>A'B'C! .

inaicateda:
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Of course, this correspondence is not a congruence, because each
side of the right-hand triangle 1is twice as long as the corres-
ponding side of the other. Correspondences bf this type are
called similarities. The exact definition of a similarity will be
given later in this chapter.

Notlce that the lengths of the sides of our two triangles
form two sequences of positive numbers, a, b, ¢ and a', b',

¢', standing in a very special relation: each number in the
second sequence is exactly twice the corresponding number in the
first sequence; or, saild another way, each number 1n the first
sequehce is exactly half the corresponding number in the second
sequence. Thus

a' = 2a, a = %a',
bt = 2b, or b = 30!,
c! = 2¢; o = %c'

Another way of putting this is to write

_ _c' _ a _b ¢ 1
a b "¢ ~%& OF FTEpTToerT3

Sequences of positive numbers which are related in this way are
called proportional.

Definition: Two sequences of numbers, a, b, ¢,

and p, q, r, ..., none of which is zero, are proportional 1if
a_b_c_ 2_49_X_
> =q=TF " o == %»* T = e

The simplest proportionalities are those involving only four
numbers, and these have speclal properties that are worth noting.
We list some of them for later reference.

[sec. 12-1]
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Algebraic Properties of a Simple Proportion.
a e

If -
with a, b, ¢, d all different from zero,
then (1) ad = be,

(2) 2.2,

(3) et

(4) a g b_c¢ a d,

Proof: Taking the original equation ~% =‘%,

(1) Multiply both sides by bd to get ad = bc;

(2) Multiply both sides by = to get 2 = 2
(3) Add 1 to both sides to get 2 ; b _¢ E d.
(1) Subtract 1 from both sides to get 242 = &z 9

Other relations can be derived, but these are the most useful.

b

Definition: If a, b, ¢ are positive numbers and %-= o’

then b 1is the geometric mean between a and c.

From Property (1) above, it follows that the geometric mean

between a and ¢ 1is Jac.

Problem Set 12-1

i Complete each statement:
a. If £= %- then  Ta = .
b. If ¥=7 then lx-= .
6 4
. == = then by =
c If 5 n v
[sec. 12-1]
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*5

*5

In each of the following proportionalities, find x.

a. 3=
b, 2=
Complete
a. If
b If
G u If
d. Ir
In each

number

b, 2

3

T
i
7.

C.

d.

each statement:

3a =

53

Tb

5*9

of the

a In terms of the numbers

Ie

5d°
Tc
T

2x,
Um,

Ya,

6x,

a == m——t,
then 5 =
then % = —
then % = —
then % = —

Wi S
| I
N“: ij

and

and

and

and

o plo wjg e
|

following proportionalities, express the

Complete each statement:

a. If
B If
G if
d. I£

Here are three sequences of numbers.

a +
c

ol®

0 WX ol

b, ¢ and d.

& .
d.

= %-, then ag; b

=-% s then Vi Z 2

= -171-, then %

= %,, then L2 ; &

3b _ 5a
Tec ~ T7d-
b _6a
2¢c ~ bha’
- b
= , and &L 5 2 -
= —, and & ; g =
b - a _
= , and 5 =

sequences proportional?

-

a.
bb

c.

> T, 12.

[sec. 12-1]
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One can tell at a glance that the sequences a and b are

proportional since each number in b is 3 times the
corresponding number in a. The comparison of a and ¢

is not such a simple matter. An efficient way to make such

a comparison might be to change each to a new proportional
sequence beginning with 1, that 1is,

7

a. 1, g, )4'-
7

b. 1, %, —.

C. 1, —, —

b ’ L4

In the following list of sequences of numbers, which pairs
of sequences are proportional? Make a complete list of
these palrs of sequences.

a. 5, T, 9. f. '%, -%, 1.
b, 1, 2, 3. g. 27, 21, 5l.
c. 9, 7, 1T h. 15, 30, 45.
a. o5, 33 4. 1. 10, 1k, 18.
e 18, 14, 34,

w o _ vV
If T0=%0 - T what are the values of w and v?
% z'i = =T what are the values of Xx, y and

Which of the following are correct for all values of the
letters involved assuming that no number in any sequence
shown is zero?

& 3 _ 4 a a+b _ 1
I3~ IF 22 t p2 atb
k X v Z w
b. —L= . e. — I S I e IS e—
10J 10k x2 y2 Z2 w2
[¢] r =i= t £ 1 = c - d
2 rs st c+d -2 _ 42

[sec. 12-1]
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6
11. If %6-=-£% = é% S %g, what are the values of p, q and t?

12. The geometric mean of two positive numbers a and c¢ 1is

b =./ac. The arithmetic mean of a and ¢ 1is 4 = 2—%—9.
Find the geometric mean and the arithmetic mean of the follow-

ing pairs:
a. L  and 9. d. 2 and 24,
b. 6 and 12. e. 2 and 3.

c. 8 and 10.

12-2. Similarities between Triangles.
We can now state the definition of a simllarity between two
triangles. Suppose we have given a correspondence

ABC<—>A'B'C!

between two triangles

B

A 5 c A Y C!
As 1ndicated in the figure, a 1is the length of the side opposite
A, b 1is the length of the side opposite B, and so on. If
corresponding angles are congruent, and

a _b _c
Eﬁ “ Dot T ©or

then the correspondence ABC<>A'B'C' 1is a simlilarity, and we
write

A ABC~ AA'B'C!.

[sec. 12-2]
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Definition: Given a correspondence between the vertices of
two triangles. If corresponding angles are congruent and the
corresponding sides are proportional, then the correspondence 1is
a similarity, and the triangles are said to be similar.

Notice that this definition requires two things: (1) corres-
ponding angles must be congruent, and (2) corresponding sides must
be proportional. In putting both of these requirements into the
definition, we are making sure that the deflinition may be applied
to polygonal figures of more than three sides. To see what the
possible troubles might be, 1f we used only one of our two require-
ments, let us look at the situation for quadrilaterals.

B' o

A D A D!

First consider the correspondence ABCD<«—=>A'B'C'D', between the
two rectangles in the figure. Corresponding angles are congruent,
because all of the angles are right angles, but the two rectangles
don't have the same shape, by any means.

Now consider a square and a rhombus, with edges of length 1
and 2, like this:

Under the correspondence ABCD<>A'B!C'D', corresponding sides
are proportional, pbut the shapes are quite different.

[sec. 12-2]
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We shall see later that for the case of correspondences
between triangles, if either one of our conditions holds, then so
does the other. That 1s, if corresponding angles are congruent,
then corresponding sides are proportional; and conversely, if

corresponding sides are proportional, then corresponding angles
are congruent. These facts are given in the A.A.A. Similarity
Theorem and the S.S.S. Similarity Theorem, which will be proved
later in this chapter.

Problem Set 12-2

1. Given a similarity A ABC ~ A DEF,

B

-

D F

write down the proportionality between corresponding sides,
using the notation AB, AC, and so on. Then:

a. Express AB in terms of AC, DE and DF.
b. Express BC 1in terms of AB, DE and EF.
c. Express AC 1in terms of BC, EF and DF.
d. Express AB 1in terms of BC, DE and EF.
e. Express BC 1in terms of AC, EF and DF.

f. Express AC 1n terms of AB, DE and DF.

[sec. 12-2]
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2, Below are listed five sets of 3 numbers. Point out which
pairs of sets of numbers (not necessarily in the order gilven)
might be lengths of sides of similar triangles. Write out
the equal ratios in each case. For example, a, b;

3_4_ 6
5§81z
a. 3, 4, 6 d. 9, 12, 18
b. 8, 6, 12 e 2, ll—é A

c. 3, 4, o9,

3. Two prints of a negative are made, one a contact print and
one enlarged. In the contact print an object has a length
of 2 inches and a height of 1.6 inches. In the enlarged
print the same object has a length of 7.5 inches. Find its
height in the enlargement.

y, If AABC A A'B'C', does it follow that A ABC ~ A A'B'C!'?
Why or why not?

B Prove: The triangle whose vertices are the mid-points of the
sides of a given triangle is similar to the given triangle.

12-3. The Basic Simllarity Theorems.

Consider a triangle AABC. ILet D and E be different
points on the sides AB and 'KEZ and suppose that fﬁ? and ‘EE
are parallel.

A

/ .

B C

It looks as 1f the correspondence

ABC<> ADE

[sec. 12-3]
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ought to be a similarity, and it 1s, as we shall presently see.
We prepare the way with a series of theorems.

Theorem 12-1. (The Basic Proportionality Theorem.) If a
line parallel to one side of a triangle intersects the other two

sides 1in distinct points, then it cuts off segments which are
proportional to these sides.

Restatement: In A ABC let D and E Dbe points of AB and
A —» A >
AC such that DE || BC. Then

AB = AC
D IE°

Proof: (1) In AADE and A BDE think of AD and BD as
the bases and the altitude from E to 'ﬁﬁb as their common
altitude. Then by Theorem 11-5,

area A BDE _ BD
area A ADE AD®

(2) In A AED and A CED think of AE and CE as
<>
the bases and the altitude from D to AC as thelr common
altitude. Then by Theorem 11-5,

area ACDE _ CE
area A ADE ~ AE’

(3) A BDE and A CDE have the same base, DE, and
congruent altitudes, since the lines fﬁ? and iii are parallel,.
Hence by Theorem 11-6,

area ABDE = area A CDE.

[sec. 12-3]
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Proof: (1) In A ADE and A BDE think of AD and BD as
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(4) It follows from (1), (2) and (3) that

BD _ CE
ED T EE

Applying Algebraic Property (3), from Section 12-1,
AB _ AC
ED T AE°

The converse of Theorem 12-1 is also true (and 1s easier to
prove). That is, we have:

Theorem 12-2. If a line intersects two sides of a triangle,
and cuts off segments proportional to these two sides, then it is
pargllel to the third side.

Restatement: Let A ABC be a triangle., Let D be a point
between A and B, and let E be a point between A and C. If

AB _ AC
i - iE’
—3 -
then BC and DE are parallel.
A
D
C
B _ c

s >
Proof: Let ng be the line through B, parallel to DE,
and intersecting AE 1in C'. By Theorem 12-1,

AB _ AC!
E_KE_’
so that
—4 O-A_B
AC' = AE i5"

But the equation given in the hypothesis of the theorem means that

AC=AE-%.

[sec. 12-3]
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R
Therefore AC' = AC. Therefore C' =C, and BC 1is parallel to
‘>
DE, which was to be proved.

Problem Set 12-3a

1. In this figure the lengths
of segments are a, b, Xx
and y as shown.

a X
a+ b _ a_ __ o
= = " 5= . 60
y
a+b _ x4+ a _ b °
b x ) 60
a+ b _ X + _ Y
X+y X a + E -
2. In this figure if HT || AB, F
FA _ IB _
FH ~ FT ~
H T
FA _ FT _
)37 : FH ~
FH _ BT _
T = il - A .

3 s In the figure,

a. If RH =4, HF =17,
BF = 10, then AB =
b. If RH = 6, HF = 10,
c. If RH = 5, RF = 20, A B E

AF = 18, then BF =

[sec. 12-3]



4,

In the figure,

1£
If
If
1E
1£

DE || AB.

AC =

BC =
AD =
AC =

In the figure
have measures as lndicated.

Can MN || KL? Justify your

answer.

let the segments

B

CD=14, CE =28, find
BE = 10, CD = 4, find
EB =6, CD=28, find
CD =7, BC =18, find

=6, BC = 18, find

20

BC.
CE.
AC.
BE.

371

Which of the followling sets of
data make

a.

b.

Can

AB
AG

AB
AG

AF
GC

AC
AF

AB
GC

FG || BC?
14, AF = 6,
3.

12, FB = 3,
6.
6: FB'—'5’
8.
21, GC =9,
5.
24, AC = 6,
4,

MN || KL? Justify your

AC

7,

I
Qo

AC

AG

9,

AB = 1%,

AF = 8,

il

[sec. 12-3]
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10.

If, in the figure, DF | AB,

prove
a DA _FB
* €D "~ Cr-
Hint: Use Theorem 12-1 D
and subtract 1 from each
fraction.
b CA _ CB A B
* DE T FB°
" CA _ CD
* ©TB -~ Tr

Glven the figure, one person

handled the problem of finding
w 1in this way: | 7 19
L .19 -w
9 w 9 w
Propose a more convenient
C
D E

equation. Do you get the
same result?

Place conditions upon Xx such
that DE || AB, glven that
COh=x-3, DA =3x - 19,
CE=14, and EB = x - 4,

3x-19 x-4

A B

In this figure if EF ||AB, FG ||BC, and GH || DC, prove
HE || DA. Must the figure be planar?
G

[sec. 12-3]
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12.

Prove:

If three or more

parallels are cut by two
transversals, the intercepted
segments on the two transver-

sals are proportional.

If the lines
are transversals

Restatement:

L1 and L2

of the parallel lines
> 3
BE, and CF, then

AB _ DE
BC ~ EF

| g
AD,

Three lots extend from Packard
Street to State Street as shown

in this drawing.

The side

lines make right angles with
State Street, and the total
frontage on Packard Street 1is

360" .

Find the frontage of

each lot on Packard Street.

13 s Given:[ﬁ&ABC, XYZ, such that

eXK:
B I
Prove: &C Hjﬁi

> E—p
YB, 2C meet in O and

[sec. 12-3]
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14. A printer wishes to make a card aa— i
6 inches long and of such width
that when folded on the dotted
line as shown it will have the X
same shape as when unfolded.
What should be the width?

Theorem 12-3. (The A.A.A. Similarity Theorem.) Given a
correspondence between two trianglgs. If corresponding angles

are congruent, then the correspondence is a similarity.
Restatement: Given a correspondence
ABC «—>DEF

between two triangles. If /A=®/D, /B=®/E and /C=/F,
then

A ABC ~ A DEF.

Notice that to prove that the correspondence is a similarity,
we merely need to show that corresponding sides are proportional.
(We don't need to worry about the angles, because corresponding
angles are congruent by hypothesis). The proportionality of the
sides means that

AB _ AC _ BC
DE ~ DF  EF°

It will be sufficient to prove that the first of these equations
always holds. (Exactly the same proof could then be repeated to
show that the second equation also holds).

[sec. 12-3]
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B C
— —
Proof: Let E!' and F!' be points of AB and AC, such
that AE' = DE and AF' = DF. By the S.A.S. Postulate, we have

A AE'F' = A DEF.

«—> <>
Therefore / A E'F' = / B. Therefore E'F' and BC are parallel,
or coincide. If they coincide then A AE'F' = A ABC, and so
AABC 2 ADEF; 1n this case,

AB = DE and AC = DF,
or

AB _ AC _
DE - DF ~
> <>

If E'F' and BC are parallel, then by Theorem 12-1, we have

AB _ AC

IE' = BF-
But AE' = DE and AF' = DF. Therefore

AB _ AC

DE ~DF

which was to be proved.

The theorem Jjust proved allows us to prove a corollary which,
it turns out, we quote oftener than the theorem in showing that
two triangles are similar. Recall from Corollary 9-13-1 that if
two pairs of corresponding angles of two ftriangles are congruent,
the third pair must be also. Thus from Theorem 12-3 we lmmedlate-
ly get the following corollary:

[sec. 12-3]
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Corollary 12-3-1. (The A.A. Corollary.) Given a correspond-
ence between two triangles. If two pairs of corresponding angles

are congruent, then the correspondence 1s a similarity.
For example, if /A= /D and /B = /E, then
A ABC ~ A DEF.

if /A=2/D and /C =/ F, then the same conclusion follows.
And similarly for the third case.

We can now justify our statement at the beginning of this
section by proving the following corollary:

Corollary 12-3-2. If a line parallel to one side of a tri-

angle intersects the other two sides in distinct points, then it
cuts off a triangle similar to the given triangle.

A

D E

/ ~

B c

<> <>
For if DE || BC then by corresponding angles / ADE & / B and
L AED 2 / C. Also /A= /A. Hence AADE ~ A ABC, by
Theorem 12-3 or Corollary 12-3-1.

Theorem 12-4, (The S. A. S. Similarity Theorem.) Given a
correspondence between two triangles. If two pairs of correspond-
ing sldes are proportional, and the included angles are congruent,
then the correspondence 1is a similarity.

[sec. 12-3])
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Restatement: Given ABC<—>DEF.
If /A=/D

AB AC
and E = B
then A ABC ~ A DEF.

A
D
Ele FI
E F
B C

— —
Proof: Let E!' and F!' be points of AB and AC, such
that AE' = DE and AF' = DF. Then

AB _ AC
AE' — AR

e 3>
By Theorem 12-2, this means that E'F' and BC are parallel.

When two parallel lines are cut by a transversal, corresponding
angles are congruent. Therefore

/BE/e
and /c=/Ff.
But we know, by the S. A. S. Postulate, that
A AE'F' 2 A DEF.

Therefore /e /E
and / ft/F.
Therefore /B=E/E
and /C=/F.

We already knew by hypothesis that

/A= /D.
Therefore, by the A.A.A. Similarity Theorem, We have
A aBc ~ A\DEF ,
which was to be proved.

[sec. 12-3]
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We have one more basic similarity theorem for triangles.

Theorem 12-5. (The S. S. S. Similarity Theorem.) Given a
correspondence between two triangles. If corresponding sides are
proportional, then the correspondence is a similarity.

Restatement: Given ABC«—>DEF.

Ir AB _ AC _ BC
DE - DF ~ EF’

then A ABC ~ A DEF.

E'e f Fv
/ \ _
B C

—
Proof: As before, let E!' and F' be points of AB and
—
AC, such that AE!' = DE and AF' = DF.

m

Statements Reasons
1. %% = %%- 1. Hypothesis.
2. 22 =2 2. Substitution.
0 E'F' and BC are parallel| 3 Statement 2 and Theorem 12-2.
4. Je= /B and /Jf = /C. 4. Theorem 9-9.
5. AABC ~ AAE'F', 5. A. A. Corollary.
E'F! AE!
6. Bt = iB° 6. Definition of similar tri-
B AS angles.
E'F!' = B AE! _ poDE 7. Statement 6 and substitution
= Bogg~ = BCgm- : '
8 %‘% = %% or EF = BGKD%- 8. Hypothesis.
[sec. 12-3]
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11.
12.
13,

E'F!

279

= EF. 9. Statements 7 and 8.

AAE'F' @ A DEF. 10. The S.S.S. Theoremn.

,Le®/E and /f = /F. |[11. Corresponding parts.

/B

/E and /C= /F. [12. Statements U4 and 11.

AABC ~ ADEF, 13. The A.A. Corollary.

Problem Set 12-3b

Gilven a correspondence ABC<«—>DEF between two triangles.
Which of the followlng cases are sufficient to show that the
correspondence 1s a similarity?

a.

B

e.

£.

/A*/D, /B=/E.

AB _ DE

AC ~ DF°

Corresponding sides are proportional.

Both triangles are equllateral.

Both triangles are isosceles, and m/ A = m/ D.

m/ C=m/ F =90, and AB = DE.

Which of these similarity theorems do not have related con-
gruence theorems: S.A.S., S.S.S., A.A.A., A.A.?

Is there any possibility of A I being similar to A ITI 1if:

a.

b.

two angles of A I have measures of 60 and 70 while two
angles of A II have measures of 50 and 80?

two angles of A I have measures of 40 and 60 while two
angles of A II have measures of 60 and 80?

AI 1is a right A , while A II 1is isosceles with one
angle of measure 40?

AI has sides whose lengths are 5, 6, 7, while A II
has a perimeter of 36,000.
[sec. 12-3]
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y, Here are six palrs of triangles. In each case tell whether
the two triangles are similar. If they are, state the theorem

you would quote as proof.

b. ANKS
60°
o \
24 2o
'3
5
e.
9
S 4
8 3b

5 Given the figure shown with

C
AC | BC and CX | AB.
a. Name an angle which 1s
congruent to / ACB.
b. Name an angle with the
X B

A
same measure as Z_B.

C. Name a triangle which
is similar to A ACB.

6. If the lengths of DX, XE, 2 s
and FX are p, q@ and r
respectively, what length
of XG will assure similar-
i1ty of the triangles? If
p = 3q, must m/ D = 3m/ E? r 9 c

F'

[sec. 12-3]
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Below 1s a series of statements giving the lengths of sides
of a number of triangles. Declde for each pair whether the
triangles are similar and then make a statement as follows:

A is similar to A s or
A is not similar to A .

For each pair that are similar write a statement showing the
proportionality of the sides.

a. AB=5 AF=3, FB=7. QR=15 Q =9, RS = 21.
b. MP=2, MW=5 TW=6. RS =75 IS=9, RL=3.
c. AB =5, BC =2, AC = 4. XY=2%, XZ = 2, YZ = 3.
d. AB=6, AC=T7, BC=8. RS =540, RT =35, ST = 30.
e. AB=1.8, BC = 2.4, AC = 3.
XW =0.4, XT =0.5, WT = 0.3.
Given: /B = / D.
= 4B, A
CD = AP B/\L D
Prove: BD = 5BL.
C
1 P
m X
Fig. a. Fig. b. Fig.c Fig.d

In each figure a segment has been drawn parallel to the base
of a triangle, and the lengths of certain segments have been
indicated. '

[sec. 12-3]
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10.

11,

*12.

e’

f.

g.

Prove that x = % (Hint: Write a proportion.)
Prove that x = mp.
Prove that x = k2.

Prove: Xx = %u

Part ¢ is a speclal case of which other part?
Part 4 is a speclal case of which other part?

Do the resulps depend on the size of the vertex angle?

Explain how two triangles can have five parts (sides, angles)
of one triangle congruent to five parts of the other triangle,

but not be congruent triangles.

Given: In the diagram ) A
D || o.D. o
171°
Prove: OOB = 69g_ . D
1°1 11 B X _—1"
/ B1
D
O,
)
a. If BR, CS and DT are
perpendicular to BD,
name the pairs of R
similar triangles.
b. Which 1s correct: T
y q N P+ q S
c. Which is correct: % b
X P X P + q B C D
1,1 1
d. Show that .J-C.+§—E'

[sec. 12-3]
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1k,

15.

383

e. The problem, "How long does it take two men to complete
a task which one alone can complete in 6 hours and the
other alone in 3 hours?" can be answered by solving

%-+ %-: %u Solve this equation geometrically. (Hint:

see part (d) and the figure.)
R

Given parallelogram ABRQ Q

with diagonal QB and e
segment AF intersecting

in H as shown. )

Prove: QH . HF = HB . AH.

A

1)

In this figure if DB | AC D
and DQ = BQ = 2AQ = 3 QC.

Prove: a. A AQD ~ A DQC.

b. ABQC ~ A AQD. A E{::::::::::::::>C

c. Kﬁ.l DC.

Prove the following theorem:
the bisector of an angle of
a triangle divides the

opposite side into segments 7/
proportional to the adjacent ‘,// //

P
sides. /
— /
Given: A ABC, AD the bi- //
sector of / A meeting BC //
in D. /
CD CA :

Prove: T = 15" D B

(Hint: Make BE || AD.)

[sec. 12-3]
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*16, Given AABC. Let the bisectors of the internal and external
angles at A meet Tﬁg in points D and D' respectively.

Prove that %2% ='%%. (Hint: Make BF || D'A.)

E

L D B DT~
*17. If we have an electrical circult consisting of two wires in

parallel, with resistances Rl and R2, then the resistance
R of the circult is glven by the equation

1 1

1
= = + .
R ™R “R'2

R
|

Rz
The following scheme has been used to find R, given Rl

[sec. 12-3]
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Numerical scales are marked off on three rays as in Figure 1.
A straight-edge is placed so as to pass through Rl and R
on the two outer scales, and R 1s read off on the third
scale. Using the scales of the figure, select values for
Rl’ R2, find R from the figure and check your result to
see that the equation above 1s satisfied.

2

a. Prove that the method really works. See Figure 2.

b. Could the same diagram be used to find R 1in the

1 1
equation TE=F

L1,
Ry

1
In this figure WS A
and LQ are medians
RW _ RT _ WS
and ¢ = I§ < IQ° Q
Prove that S L
A RWT ~ A ALM. W M

Given in this figure that
RA | AB, FB | AB and

RH | AF.

Prove that A HRA ~ A BAF
and HR°'BF = BA-HA.

[sec. 12-3]
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20.

A method of enlargement.

The -figure AlBlchl has been enlarged by introducing from

_— —>

—> —
an arbitrary point P, the rays PAl, PB PC and PD

1’ 1 1’
c so that PA. = 2PA

locating A2, B and D

27 2 2 2 1?

P32 = 2PB1, etc.; and finally drawing segments A2B2,

A2D2 etc.

a. Draw a simple object, a block or a table, for example,
and enlarge it by the method shown. Is it necessary

that PAl, PBl, etec. be doubled?
b. How could the method be modified to draw a figure with
sides half the length of those of AlBlchl?
. A2B2 PA
c. Prove: A PAlBl ~ A PA2B2 and I;B; = PKI.
d. Prove: A AlBlDl ~ A A2B2D2.
e. Could the enlargement be carried out if P were

selected on or inside the given figure?

[sec. 12-3]

22
a. Draw a simple object, a block or a table, for example,
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*21. Given: Quadrilateral RSTQ
as in the figure with RS || QT
and A QXR ~ A TXS.

Prove: QR = TS.

22. Given: AW | MW.
BFRQ 1s a square with
Q on AW and R on Q
WM as shown in the
figure.

Prove: AB-WR
and AB-FM

QW-BQ,
RF-BQ.

23. Prove the following theorem: 1In similar triangles corres-
ponding medlians have the same ratio as corresponding sides.

F‘
. Q
W Z N
A B H R

24k. Prove the following theorem: In similar triangles corres-
ponding altitudes have the same ratio as corresponding sides.

F‘
X Q w A H B

[sec. 12-3]
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25. Prove that if the sides of two triangles are respectively
parallel, the triangles are similar.

Given: AB || HR .
AF || TW .
BF || RW..
Prove: /\ ABF ~ /\ HRW .
fw\ F
" / _ = qgizaé;z>\\\\\\\\\\\\T\\
¢/ AT B
/g\ \R\‘\@]q
A B w
Case I CaseIl
E
26. Given: /AT /B and AC = BD.
Show CD || 1B
C D
A B

[sec. 12-3]
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*27. It 1s known (see Chapter 5) that if two triangles correspond
so that two sides and the angle opposite one of them in one
triangle are congruent respectively to two sides and the
angle opposite the corresponding side of the other (S. S. A.),
the triangles need not be congruent. (See diagram.)

CI

Is the following statement true or false? Explain.

If two trilangles correspond such that two sides of one tri-
angle are proportional to two sides of the other, and the
angles opposite a pair of corresponding sides are congruent,
then the triangles are similar.

*28, A EDF is isosceles with
DE = DF., A ABC 1is such that

E and F 1lie between A and B

c, ¢B ||ED, and A, B, D D

are collinear.

a. What true statements con- A
cerning simlilarity and E F

proportions can be made
concerning

1. A ABC and A ADE?
2. A ABC and A ADF?
b. Is the following statement true or false? Explain.

Given A ABC with D on segment AB, X on segment

AC, such that %% = %%a then BC and DX must be
parallel.
[sec. 12-3]

*28, A EDF is isosceles with
DE = DR AARC 4o auch that
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*29.

A tennis ball is served from a height of 7 feet to clear a

net 3 feet high. If it is served from a line 39 feet behind
the net and travels in a straight path, how far from the net
does it hit the ground?

*30.

*31.

In the parallelogram ABCD
shown in the figure the line
s i

BF intersects AC at E,
88 at G, and BB at F.
Prove that EB 1s the
geometric mean of EG and
EF.

Given AABC and XYZ such
<> e p

that AX, BY and CZ are
<> <>

parallel and also AC || XZ.

—> —>

BA and YX meet in D and

<> “—>

BC and YZ meet in E.

> <>
Prove: AC || DE || XZ.

[sec. 12-3]

D at G, and AD at F.
Prove that FR da t+he
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B
*¥32. The angles in the figure
marked with small squares
are right angles.
BF _ AD
a. Show that B¢ = A0
b. Then show that
BE _CD  AC + AD BC
AB -~ AC 'AB " AC 'IB"
F C
il O
A E D

12-4, Similarities in Right Triangles.
Theorem 12-6. In any right triangle, the altitude to the
hypotenuse separates the triangle into two triangles which are

similar to each other and to the original triangle.

Restatement: Let A ABC be a right triangle with its right
angle at C. Let CD be the altitude from C to the hypotenuse
AB. Then

A ACD ~ A ABC ~ A CBD.

Notice that the restatement is more explicit than the first
statement of the theorem; it tells us exactly how the vertices
should be matched up to give the similarities. Notice also what
the scheme is in matching up the angles: (1) The right angles
match up with each other, as they have to in any similarity of

[sec. 12-14]
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right triangles. (2) Each little triangle has an angle in common
with the big triangle, and so the angle matches itself. (3) The
remaining angles are then matched.

Proof: 1In the proof, the notation for the angles will be as
shown in the figure.

Since / C 1is a right angle, we know that /a and /D
are complementary. That is,

m/ a+m/ b= 90.
Also, since / d 1s a right angle,
m/ a + m/ b'= 90,

Therefore Lb& /Db,
Trivially, [ ag/a;
and lcE/4,

because / d 1is a right angle. By the A.A.A. Similarity Theorem,
we have

A ACD ~ A ABC.

The proof of the other half of the theorem is precisely
analogous, wlth the point B behaving llike the point A.

Corollary 12-6-1. Given a right triangle and the altitude
from the right angle to the hypotenuse:

(1) The altitude is the geometric mean of the segments into
which 1t separates the hypotenuse.

(2) Either leg is the geometric mean of the hypotenuse and
the segment of the hypotenuse adjacent to the leg.

[sec. 12-4]

A ACD ~ A ABC.



Restatement:
angle at C, and
AB. Then

AD CD

(1) z5=%p

AD _ AC

@) =78
Proof: (1)
(2)

1. Given right A ABC with
altitude drawn to the

393

Let A ABC be a right triangle with its right
let D be the foot of the altitude from C to

C C

BA*®

g8

By Theorem 12-6, /\ ADC ~ /\ CDB .

Hence, %% = %% s
By Theorem 12-6, /\ ADC ~ /\ ACB .
Hence, %g = %% i
Also, /\ BDC ~ /\ BCA ,
BD _ BC
and so BC ~ BR °

Problem Set 12-4%

hypotenuse and lengths as X 5

shown,
lengths.

find the unknown

2. Follow the directions in.

Problem 1.

y
4
y o) X
Z
[sec., 12-U4]
Hence, ﬁ% = ﬁ% "




394

In this right triangle with
the altitude drawn to the
hypotenuse it is possible
to find a numerical value

for each segment a, x, ¥y.
Find them.

In a right triangle if the altitude to the hypotenuse is 12
and the hypotenuse 1is 25, find the length of each leg and of
the segments of the hypotenuse.

In right A ABC, with right
angle at C and altitude CD,

a.

if AD =2 and DB = 8,
find AC, CD and CB.

if CD =9 and AD = 3,
find AC, CB and AB.

If CB =12 and AD = 10,
what are the lengths of
the other segments?

if AC =8 and DB = 12,
what are the lengths of
the other segments?

[sec., 12-4]

find AC, CB and AB.

@)

B/

c
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12-5. Areas of Similar Triangles.

Given a square of side a, and a square of side 2a, 1t is
easy to see that the area of the second square is 4 times the area
of the first. (This is because (2a)2 = 4a2.) In general, if two
squares have sides a and ka, then the ratio of the areas i1s

k2, because

(ka)? _ k% _ 2
8.2 3.2

An analogous result holds for simllar triangles:

Theorem 12-7. The ratio of the areas of two similar tri-
angles is the square of the ratio of any two corresponding sides.

Proof: Given AABC ~ A A'B!'C!'. Then
at b! c!
a b "¢ -

Iet k Dbe the common value of these ratios, so that a'= ka,

b' = kb, c¢' = ke. Let BD be the altitude from B to AC, and
let B'D' be the altitude from B' to A'Cf. Since AABD and
AA'B'D' are right triangles, and /A ® / A', we have

A ABD ~ AA'B'D',

nt €'
Therefore 5 =5 = k.
Let Al and A2 be the areas of the two triangles. Then
1
Al = -§bh,
and A, = 1 'ht
2 = 2P
= 3(kb) (kh)
= k° . (on).
[sec. 12-5]

Proof: Given A ABC ~ A A'B!'C!'. Then
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2 2
Therefore - = k2 = (%L) = (%L) = (QL) s

A 2

2

A c

1

which was to be proved.

Problem Set 12-5

What is the ratio of the areas of two similar triangles whose
bases are 3 inches and 4 inches? x 1inches and y inches?

A slde of one of two similar triangles 1s 5 times the corres-
ponding side of the other. If the area of the first is 6,
what is the area of the second?

In the figure if H 1s the
mid-point of AF and K 1is
the mid-point of AB, the
area of A ABF 1is how many H
times as great as the area of

A AKH? If the area of

AABF 1is 15, find the area A K B
of A AKH.

The area of the larger of two similar triangles 1s 9 times
the area of the smaller. A side of the larger is how many
times the corresponding side of the smaller?

The areas of two similar triangles are 225 sq. in. and 36
8q. in. Find the base of the smaller if the base of the
larger 1s 20 1nches.

The areas of two similar triangles are 144 and 81. If a side
of the former is 6, what is the corresponding side of the
latter?

In A ABC, the point D 18 on side AC, and AD 1is twice
CD. Draw DE parallel to AB intersecting BC at E, and
compare the areas of triangles ABC and DEC.

[sec. 12-5]

AABF is 15, find the area A K B

e - A AVYIT



10,

11, .

12.

13.

397

The edges of one cube are double those of another.
a. What is the ratio of the sums of thelr edges?
b. What 1s the ratio of theilr total surface areas?

How long must a side of an equilateral triangle bé in order
that 1ts area shall be twice that of an equilateral triangle
whose side 1s 107

If similar triangles are drawn on the side and on the altitude
of an equilateral trlangle, so that the side and altitude are
corresponding sides of the triangles, prove that thelr areas
are to each other as 4 is to 3.

Two pieces of wire of equal length are bent to form a square
and an equilateral triangle respectively. What is the ratio
of the areas of the two figures? C

A triangular lot has sides
with lengths 130 ft., 140 ft.,
and 150 ft. The length of the
perpendicular from one corner
to the side of 140 ft. is 120
ft. A fence is to be erected
perpendicular to the side of
140 ft. so that the area of
the lot is equally divided.
How far from A along B A
should this perpendicular be 140’
drawn?

Prove the theorem: The mid-
point of the hypotenuse of a
right triangle is equidistant
from the vertices.

A

[sec. 12-5]
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g
2 -
14, Prove Theorem 11-9 by using K 60
the following diagram and c
problem 13. 2
A 30° c
15. In this triangle AR = RC = RB. A
Prove that AABC 1is a right R
triangle.
C B

*16. Prove: The geometric mean of two positive numbers is less
than their arithmetic mean, except when the two numbers are
equal, in which case the geometric mean equals the arith-
metic mean. (Hint: Let the two given numbers be the dis-
tances AH and HB, I1let HC C

be perpendicular to AB,

with HC =+/AH-HB, and let

M Dbe the mid-point of AB.

Prove / ACB 1s a right

angle and use the preceding B B
two problems.) A M H

17. Given: P-ABC 1s a triangular
pyramld with a section RST
parallel to the base ABC. PY
is perpendicular to the plane
of the base, and_X is the R T
intersection of PY with the
plane of A RST.

area A RST _ PX)

Prove: area A ABC ‘PY

[sec. 12-5]

with HC =+AH-HB, and let / /‘ \
M be the mid-point of Kﬁ.
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\

#18, In the figure, A ABC 1is a
right triangle, with hypot-
enuse KE; and CH 1is the
altitude from C.

Let the areas of A ABC,
AACH, A CBH be K

1 Ko A H B

K respectively.

3
The following sequence of statements constitutes a different
proof of the Pythagorean Theorem. Glve a reason for each of
the following statements:

1. K, =K, +K

1 2 3"
K K
2 3
2. 1= + .
LN
Se A ACH ~ A ABC ~ A CBH.
2 2
1= (39 + (3R

5. (AB)°= (AC)2 + (BC)Z.

Preamble. In the following problems, the lengths of two sides
and the included angle of a triangle are given, and it 1s required
to find the length of the third side. By the S.A.S. congruence
theorem, the third side 1is uniquely determined, so there should be
a method of finding it numerically. Another way of giving the
included angle is to glve a represehtative right triangle in which
the angle (or its supplement) is one of the acute angles. Actually,
only the number k = %% is needed, For numerical work, this
number, which depends on / R, has been tabulated, and if this
table 1s readily available the computation of the length of the
third side 1is quite straightforward. The number k 1s called the
cosine of / R, abbreviated k = cos / R, and the table is called
a table of cosines. For thils reason the formula for a2 that we
find 1is called the law of cosines. You willl meet 1t again in
trigonometry.

[sec. 12-5]
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*19.

*20 .

*21,

In the two triangles shown in
the diagram, /A= /R, AC =D,
AB=c¢c, RS=k and /S 1s a
right angle. Find a 1in terms
of b, ¢, and k.

(Hint: ILet D be the foot of

the altitude to AB, and let . r
X, ¥, h Dbe as indicated in
the figure. Express a2 in R m 5

terms of h and Yy; express
h and y in terms of x, D,
and c¢; then, from the similar-
ity AADC ~ A RST, express
x 1in terms of b and k.)

In the two triangles shown in
the diagram, / BAC 1s the
supplement of / R, and AC = D B
AB=c, RS =k and /S 1is a \A—\/—-/
right angle. Find a 1in terms y T
of b, ¢ and k.

(Hint: Let D be the foot of
<>

the perpendicular to AB from

C. Then A ADC ~A RST.) STk R

a. Let m, be the length of the median to the side BC of
AABC, and let BC =a, CA =Db, AB = c¢. Prove that

2
2 1,.2 2 a
ma—'g(b + C —5).
b. Let m,s My, m, be the lengths of the medlans of

A ABC, wlth sides of length a, b, c¢. Prove that

2 2 2 3,.2 2 2
mg + my o+ mo = E{a + b° + ¢9).

[sec. 12-5]

right angle. Find a 1in terms y T

o~ h g g P | Y '\



Review Problems

In the figure HQ | AB.

401

a. If FA =11, FQ = 4, F

FH =2, FB= ?
b If FB=6, F‘H=1,

HA = 4, FQ = 2 Q
c If FA = 9, FB =17,

_ ok -

FH = 25, FQ = ? A -
d. If HA = 6, FB = 12,

FH = 3, QB = 2

A

a. Are the two triangles

plctured here, similar -

if AB =4, AF =9,

QF = 3, and AT = 2% s
b. If AB =5, AT = 3, B Q

AQ = 4%, what must AF F

be to make A TAQ ~A BAF?

Give the geometric mean and the arithmetic mean for each of

the following:
a. 8 and 10 b.

6 V2 and 34/2.

Sketch two figures which are not similar, but which have the
sides of one proportional to the corresponding sides of the

other.

In right A ABC, if FC 1is
the altitude to the hypotenuse,

AF = 12 and BF = 3, find
AC, FC and BC.
b. If AB = 5, AT = 3,

AN IILI'

B

B‘\\\\\\\:SS
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10,
11.

If CD=x+ 3, DA = 3x + 3,
CE=5 and EB = x + 5,

what must be the value of X g
to assure that DE | AB?

Given in this figure, A

B
ZB“—:—‘ZD, CD = 4AB. \
Prove BD = 5BE. a i
B
c

\

A side of one equlilateral triangle is congruent to an altitude

of another equilateral triangle. What 1s the ratio of their
areas?

In A ABC, AC | BC, CF | AB, - y
AB = 20 and FC = 8. Find A B
a, b, x, and y.
a b
C

If AABC ~ A DEF and A ACB ~ A DEF, s8how that AB = AC.

Given rectangle ABFQ as
shown in the figure with

WX | AF.
Prove: Q F
as AF-XW = AW-QA. X

b. QF.XW = AX-QA.

G« AF.AX = AW.QF.




12.

13.

%1l

15.

*14,

ko3

The tallest trees in the world are the redwoods along the
coast of northern California. To measure one of these giants
you move some distance from the tree and drive a stake in the
ground. Then you hold a small mirror at ground level and
sight it in, moving away from the stake until the top of the
stake and the top of the tree are in a direct line.

If your stake is 5 feet tall and is 520 feet from the base of
the tree, and if your mirror is 8 feet from the stake when

the top of the stake and the top of the tree are in a straight
line, how tall is the tree?

In right A ABC with CF A
the altitude to the hypotenuse, 2 F
and lengths as indicated in the
figure, find x, y, and w. ° y
X
c w B

Join the vertices of A ABC to a point R outside the tri-
angle. Through any point X of AR draw XY | AB meeting
BR at Y. Draw YZ ||BC meeting RC at Z. Prove

AXYZ ~A ABC.

When we photograph a triangle, is the picture always similar
to the original triangle? When can we be sure that it is?

Join the vertices of A ABC to a point R outside the tri-
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Chapters 7 to 12
REVIEW EXERCISES

Write (1) if the statement is true and (0) if it is false. Be
able to explain why you mark a statement false.

L.

10,

11.

12,

An exterilor angle of a triangle is larger than any interior
angle of the triangle.

In space there 1s only one perpendicular to a given line
through a given external point.

The angle opposite the longest side of a triangle is always
the largest angle.

In AABC, if m/ A <m/ B, then AC < BC.
If AB | BC, then AB < AC.

A triangle can be formed with sides of lengths 351, 513, and
135.

If an angle of one triangle is larger than an angle of a
second triangle, then the side opposite the angle in the
first 1s longer than the slde opposite the angle in the

second.

Two lines in space are parallel if they are both perpendicu-
lar to the same line.

Through every point in a plane there 18 a line parallel to a
given line 1n the plane.

Given two lines and a transversal of them, if one pair of
alternate interlior angles are congruent, the other pair are
also congruent.

If two lines are cut by a transversal so that one of two
alternate interior angles 1is 90o larger than the other, the
two lines are perpendicular.

If two lines are cut by a transversal, there are exactly four
pairs of corresponding angles.

LL Gli aliglic wvai Viie Vi LAMIKLT L0 1L EpTl VilGil Qli QlidS viLe G

second triangle, then the side opposite the angle in the
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1k,

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.
26.

27.
28.

20.

%05

If two intersectling lines are cut by a transversal, no pair
of corresponding angles are congruent.

If the alternate interior angles formed by two lines and a
transversal are not congruent, the two lines are perpendicu-
lar.

Given two parallel lines and a transversal, two interior
angles on the same side of the transversal are complementary.

If L, M and N are three lines such that L || M and
M ||IN, then L ||N.

If L, M and N are three lines such that L | M and
M ] N, then L | N.

Since the sum of the measures of the angles of any triangle
is 3 times 60, the sum of the measures of the angles of any
quadrilateral is 4 times 60.

If two angles of one triangle are congruent to two angles of
another triangle, then the third angles are congruent.

If two angles and a slde of one triangle are congruent to two
angles and a side of another, the trilangles are congruent.

The acute angles in a right triangle are complementary.

An exterior angle of a triangle is the supplement of one of
the interior angles of the triangle.

If a dlagonal of a quadrilateral separates it into two con-
gruent triangles, the quadrilateral is a parallelogram.

If each two opposite sides of a quadrilateral are congruent
the quadrilateral is a parallelogram.

Opposite angles of a parallelogram are congruent.
A diagonal of a parallelogram bisects two of its angles.
A quadrilateral with three right angles 1s a rectangie.

The perimeter of the triangle formed by jolning the midpoints
of the sides of a given triangle is half the perimeter of the
given triangle.

— - Al ~

If two angles and a slde of one triangle are congruent to two
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29.

30.

3.

32.

33.

34,

35.

36.

37.

38.

39.

4o.

41,

ho,

If the diagonals of a quadrilateral are perpendicular and
congruent, the quadrilateral is a rhombus.

A set of parallel lines intercepts congruent segments on any
transversal.

The area of a right triangle is the product of the hypotenuse
and the altitude to the hypotenuse.

The area of a parallelogram is the product of the lengths of
two of 1ts adjacent sides.

The area of a trapezoid is half the product of its altitude
and the sum of 1ts bases.

If two triangles have equal area and equal bases, then they
have equal altitudes.

If the legs of a right triangle have lengths a and b and
the hypotenuse is of length ¢, then pe = (¢ - a)(c + a).

If the lengths of the sides of a triangle are 20, 21 and 31,
it is a right triangle.

Two right triangles are congruent if the hypotenuse and a leg
of one are congruent respectively to the hypotenuse and a leg
of the other.

If one of the angles of a right triangle contains 300, then
one leg is twice as long as the other leg.

The length of the diagonal of a square can be found by
multiplying the length of a side by 2.

If a line intersecting two sides of a triangle cuts off a
triangle similar to the larger one, the line 1s parallel to
the third side of the triangle.

If each of two triangles have angles of 36° and 370, the two
triangles are similar.

If two triangles have an angle of one congruent to an angle
of the other, and two sides of one proportional to two sides
of the other, the triangles are similar.




43,

iy

15,

46.

b,

48.

49.

50.

hl.

2.

53.

54,

55.

56
57.

4o7

If the sides of ome triangle have lengths 6, 12, and 10, and
the sides of another have lengths 15, 9 and 18, then the tri-
angles are similar.

Any altitude of a right trlangle separates it into similar
triangles.

A triangle whose sides measure 4, 6 and 8 will have an area
more than half the area of a triangle whose sides measure
6, 9 and 12.

If A, B, X, and Y are coplanar and if AX = BX and
>
AY = BY, then AB | Xv.

If three non-collinear points of a plamne are each equidistant
3

from polnts P and Q, then PQ 1s perpendicular to the

plane.

If a line not contained in a plane 1s perpendicular to a
line in a plane, then 1t is perpendicular to the plane.

A line perpendicular to each of two lines 1n a plane is per-
pendicular to the plane.

If a plane bisects a segment, every point of the plane is
equidistant from the ends of the segment.

If a plane 1is perpendicular to each of two lines, the two
lines are coplanar,

There are infinitely many planes perpendlcular to a given
line.

At a point on a line there are infinitely many lines per-
pendicular to the line.

Through a point outside a plane there 1s exactly one line
perpendicular to the plane.

If a plane intersects two other planes in parallel lines,
then the two planes are parallel.

Two planes perpendicular to the same line are parallel.

> «— >
If plane E 1is perpendicular to AB and AB | CD, then

E | TB.

pendicular to the plane.
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58.

59.

60.

If each of two planes is parallel to a line, the planes are
parallel to each other.

If a plane intersects the faces of a dihedral angle, the
intersection 1s called a plane angle of the dihedral angle.

The projection of a line into a plane 1s always a line.



Chapter 13
CIRCLES AND SPHERES

13-1. Basic Definitions.
In this chapter we commence the study of point sets not made

up of planes, half-planes, lines, rays and segments. The simplest
such curved figures are the circle and the sphere and portions of
these. As usual in starting to talk about new figures we begin
with some definitions.

Definitions: A sphere is the set of points each of which is
at a given distance from a given point. A circle 1s the set of

points in a given plane each of which 1s at a given distance from
a glven point of the plane. 1In each case the given point is called
the center and the given distance the radius of the sphere or

circle. Two or more spheres or circles with the same center are
said to be concentric.

(VA

Q,

| [

Circle Sphere

PQl = PQ2 = PQ3 = PQM = radius.
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Theorem 13-1. The intersection of a sphere with a plane
through its center 1s a circle with the same center and radius.

Proof: Since the sphere includes all points at a distance of
the radius from the center, its intersection with a plane through
the center will be the set of all points in the plane at this
distance from the center; that 1is, the circle in this plane with
the same center and radius.

Definition: The circle of intersectlion of a sphere with a
plane through the center is called a great circle of the sphere.

There are two types of segments that are assoclated with
spheres and circles.

Definitions: A chord of a circle or a sphere is a segment

whose end-points are polnts of the circle or the sphere. The line
containing a chord is a secant. A diameter is a chord containing
the center. A radius is a segment one of whose end-points is the
center and the other one a point of the cilrcle or the sphere.

The latter end-point is called the outer end of the radius.

The use of the word "radius" to mean both a segment and the
length of that segment follows the convention introduced in
Chapter 11. In the same way we use "diameter" to refer also to
the length of a chord through the center as well as to the chord
itself.

We may refer to a circle as circle C, or simply C. (C 1is
most often used.) In stating problems it is convenient to use the
convention that circle P denotes the circle with center P,
provided there is no ambiguity as to which circle we mean. Similar
remarks apply to spheres.

[sec. 13-1]

The use of the word "radius" to mean both a segment and the
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Problem Set 13-1

Study Section 13-1"to help you decide whether the following
statements are true or false:

a.

b.

h.

There 1is exactly one great circle of a sphere.
Every chord of a circle contains two points of the circle.
A radius of a circle is a chord of the circle.

The center of a circle bisects only one of the chords of
the circle.

A secant of a circle may intersect the circle in only one
peoint.

All radil of a sphere are congruent.

A chord of a sphere may be longer than a radius of the
sphere.

If a sphere and a circle have the same center and inter-
sect, the intersection is a circle.

Using your previous understanding of circles and spheres as
well as your text, decide whether the following statements
are true or false:

a.

If a line intersects a clrcle in one point, it intersects
the circle in two points.

The intersection of a line and a circle may be empty.

A line in the plane of a circle and passing through the
center of the circle has two points in common with the
circle.

A circle and a line may have three points in common.

If a plane intersects a sphere in at least two points,
the intersection is a line.

A plane cannot intersect a sphere in one point.

[sec. 13-1]
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g. If a plane intersects a radius of a sphere at its mid-
point, the intersection of the plane and the sphere is a
circle.

h. If two circles intersect, their 1ntersection is two
points.

3 A city 1s laid out in square blocks 100 yards on a side.
Neglect the width of the streets in the following problems.

a. Describe the location of the points which are 200 yards
(as the crow flies) from a given street intersection.

b. Describe the location of the points a taxi might reach
by traveling 200 yards from a given street intersection.
(City law prohibits U-turns.)

. Prove the theorem: A diameter of a circle is 1its longest
chord.

13-2. Tangent Lines. The Fundamental Theorem for Circles.

Definitions: The interior of a circle is the union of its
center and the set of all points in the plane of the circle whose
distances from the center are less than the radius. .The exterior
of the circle is the set of all points in the plane of the circle
whose distances from the center are greater than the radius.

From these definitlions it follows that a point in the plane
of a circle 1s either in the interior of the circle, on the circle,
or in the exterior of the circle. (We frequently use the more
common word "inside" for "in the interior of", etc.)

[sec. 13-2]

Definitions: The interior of a circle 1s the union of 1its
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Definitions: A tangent to a circle is a line in the plane of
the circle which intersects the circle in only one point. This
point is called the point of tangency, or point of contact, and
we say that the line and the circle are tangent at this point.

In the figure, L 1s tangent to the circle at Q.

We now want to find out what the possibilities are for a line
and a circle in the same plane. It looks as if the following
three figures ought to be a complete catalog of the possibillities:

A

In each case, P 1s the center of the circle, and F 1is the foot
of the perpendicular from P to the line. We shall soon see that
this point F -- the foot of the perpendicular -- 1s the key to
the whole situation. If F 1s outside the circle, as in the first
figure, then all other points of the line are also outside, and

the line and the circle do not intersect at all. If F 1s on the
circle, then the line is a tangent line, as in the second figure,
and the point of tangency is F. If F 1s inside the circle, as
in the third figure, then the line is a secant line, and the points
of intersection are equidistant from the point F. To back all of
this up, we need to prove the followlng theorem:

[sec. 13-2]
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, Theorem 13-2. Glven a line and a circle in the same plane.
Let P be the center of the circle, and let F be the foot of
the perpendicular from P to the line. Then either

(1) Every point of the line is outside the circle, or

(2) F 1is on the circle, and the line is tangent to the
circle at F, or

(3) F 1is inside the circle, and the line intersects the

circle in exactly two points, which are equidistant from
FC

This theorem 1s long, but 1ts length is worthwhile, because
once we have proved 1t, the hard part is over: all of the elemen-

tary theorems on secants, tangents and chords are corollaries of
it.

Proof: To prove the theorem, we shall show that if F 1is
outside the circle, then (1) holds; if F 1is on the circle, then
(2) holds; and if F 1s inside the circle, then (3) holds.

If F 1s outside the circle, then (1) holds.

v
Let r be the radius of the clrcle. Then PF > r. By Theorem 7-6,
the segment PF 1s the shortest segment Joining P to the line.

If Q 1is any other point of the line, then PQ > PF. Therefore,
PQ > r, and Q 1s outside the circle.

[sec. 13-2]
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If F 1is on the circle, then (2) holds.

Here we have PF = r. If Q 1is any other point of the line, then
PQ > r. (Why?) Therefore the line is tangent to the circle, and
the point of tangency is F.

If F 1is inside the circle, then (3) holds.

A

Q

v

The proof 1s as follows. If Q 1is on both the line and the circle,
then A PFQ 1s a right triangle with a right angle at F. By the
Pythagorean Theorenm, PF2 + FQ2 = r2,

so that FQ° = r° - PF°,

and FQ =+/r° - PF°.

(The number under the radical is positive, because PF < r.) Thus
any point Q common to the line and the circle must satisfy this
last equation.

Conversely, any point Q 1lying on the line and satisfying
this equation will be at distance r from P, as can be seen by
going backwards through the algebra above. The equation

FQ =«/r2 - PF§
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is therefore the characterizing feature of the points Q which are
intersections of the line and the circle.

By the Point Plotting Theorem there are exactly two such points,
one on each of the two rays with end-point F. Obviliously, they are
equldistant from F.

This reasoning does not apply when the line passes through P,
but in this case we have P = F, PQ = FQ = r, and there are two
points @Q as before.

Now we can proceed to our first baslic theorems on tangents and
chords which are all corollaries of Theorem 13-2. In all of these
corollaries, it should be understood that C 1s a circle in a plane
E, with center at P. To prove them, you merely need to refer to
Theorem 13-2 and see which of the three conditlions in the conclusion
of the theorem applies to the case in hand.

Corollary 13-2-1. Every line tangent to C 1s perpendicular
to the radius drawn to the point of contact.

Here it is Condition (2) that applies; and this means that the
tangent and radius are perpendicular.

Corollary 13-2-2. Any line in E, perpendicular to a radius
at its outer end, is tangent to the circle.

Since the outer end of the radius must be F, Condition (2)
applies, and we have tangency.

Corollary 13-2-3. Any perpendicular from the center of C to
a chord bisects the chord.

Here Condition (3) applies. (In Cases (1) and (2) there is no
chord.)

Corollary 13-2-4. The segment joining the center of C to
the mid-point of a chord is perpendicular to the chord.

Use Corollary 13-2-3 or Condition (3).

Corollary 13-2-5. In the plane of a circle, the perpendicular
bisector of a chord passes through the center of the circle.

Use Corollaries 13-2-4 or 13-2-3, or Condition (3).
[see. 13-2]

tangent and radius are perpendicular.
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Corollary 13-2-6. If a line in the plane of a circle inter-
sects the interior of the circle, then it intersects the circle in
exactly two points.

Here also, Condition (3) applies. (In Case (1) and (2), the
line doesn't intersect the interior of the circle.)

Definition: Circles of congruent radli are called congruent.

By the distance from a chord to the center of a circle we mean
the distance between the center and the line containing the chord,
as defined in Section 7-3. The proofs of the following two theorems

are left to you:

Theorem 13-3. In the same circle or in congruent circles,
chords equidistant from the center are congruent.

Theorem 13-%. In the same circle or in congruent circles,
any two congruent chords are equidistant from the center.

The following additional definitions are useful in talking
about circles and lines.

Definitions: Two circles are tangent 1f they are each tangent
to the same line at the same point. If tangent circles are coplanar

they are internally or externally tangent according as their centers
lie on the same side or on opposite sides of the common tangent

line.

Internally tangent Externally tangent

[sec. 13-2]

Definitions: Two circles are tangent 1f they are each tangent
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Problem Set 13-2

State the number of the theorem A K

or corollary which Jjustifies

each conclusion below. (C 1is

the center of the circle in the B S
plane figure.)

a. If TA =TB, then CK | AB.

o i
b. If RS | CK, then RS 1is
tangent to the circle.

H

3

C. If T 1s in the interior of the circle, then KC will
intersect the circle in exactly one point other than
point K.

d. The perpendicular bisector of -ﬁﬁ- contains C.

&l
R
3

e. If AB and FH are equidistant from C, then
> — >

f. If RS 1is tangent to circle C, then CK | RS.

g. If CK | AB, then AT = TB.

h. If AB & FH, then AB and FH are equidistant from C.

Prove Corollary 13-2-3: Any perpendicular from the center,
C, of a circle to a chord bisects the chord.

Use this flgure to prove

Corollary 13-2-5: In the

plane of a circle, the

perpendicular bisector of

a chord passes through the

center of the circle. B

T

4

Given a circle, how can its center be located?

[sec. 13-2]
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In circle C, KN = 40, and
MN = 24, How far is MN from
the center of the circle?

In a circle whose diameter is 30 inches a chord is drawn per-
pendicular to a radius. The distance from the intersection of
chord and radius to the outer end of the radius is 3 inches.
Find the length of the chord.

Given: The figure below, with C the center of the circle
and ?EE_L?Ei In the ten problems respond as follows:

Write "A" if more numerical information is given than is
needed to solve the problem.

Write "B" if there is insufficient information to solve the
problem.

Write "C" 1if the information is sufficlent and there is no
unnecessary information.

Write "D" if the information given is contradictory.

(You do not need to solve the problems.)

a. KP =4, PC=1, CT =6, KT =27

b. RP =5, RS =% K
c. CI=13,CP =5, RS =2

d. KP = 18, RS = 48, KC = 25, RK = ?

e. PC=23.5, RS =24, RK = *? R 1P S
f. KT = 40, RP = 16, CS = ? Ic

g. €63 =8, TK =16, PC = ?

h. RK = 20, RS = 32, KP = 13, KT = 2

i. RS =6, KC=5, PT =2 T

J. P =5, CS=6, RS =2

[seec. 13-2]

problem.

vy o & _ Ml - S IR T Y - PR T . Y- - Y T B . I I T




420

®10,

11.

In a circle with center P a chord AB 1is parallel to a

tangent and intersects the radius to the point of tangency

at 1ts mid-point.

If AB = 12,

find the radius of the circle.

Prove that the tangents to a circle at the ends of the diameter

are parallel.

In circle O with center at
o, AB is a dlameter and
AC 1is any other chord from
B

A. If CD 1s the tangent

e e
at C, and DO || AC,
prove that Tﬁg is tangent

at B.

For the concentric circles
of the figure, prove that
all chords of the larger
circle which are tangent to
the smaller circle are
bisected at the point of
contact.

Restatement: 1In each circle
the center is 0. AB, a
chord of the larger circle,
is tangent to the smaller
circle at R.

Prove: AR = BR.

[seec. 13-2]
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One arrangement of three

circles so that any one is
tangent to the other two

is shown here. Make sketches
to show three other arrange-
ments of three circles with
each circle tangent to the

other two.

Prove: The line of centers of two tangent circles contains
the point of tangency. (Hint: Draw the common tangent.)

NOOC

Case I Case II

In the figure, A, B and
C are the centers of

the circles. AB = 14,

BC = 10, AC = 18.

Find the radius of

each circle. ‘

[sec. 13-2]
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i5.

*16.

7.

18.

*19.

Prove Theorem 13-3: In the same circle or congruent circles,
chords equidistant from the center are congruent.

Given: In the figure P 1is 2 e
the center of the circle,
and m/ AEP = m/ DEP. P
Prove: AB = CD. A D
B
R

R

In circle R, Eﬁg
and RE | BC, RD
Prove that DA = EC.

N —

AB
RE.

A o

Prove: The'mid—points of all congruent chords in any circle
lie on a circle concentric with the original circle and with
a radlus equal to the distance of a chord from the center;
and the chords are all tangent to this inner circle.

Given: AB is a diameter
of circle O. 75? is
‘zgpgent to 0 at T. 0
—» =, L
AC | CD. BD | CD. A B
C
T
D

Prove: CO = DO.

[sec. 13-2]

l1ie on a circle concentric with the original circle and with
a radius equal to the distance of a chord from the center;
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13-3. Tangent Planes. The Fundamental Theorem for Spheres.

Once you have studied and understood the last section, you
should have very little trouble with this one. We shall see that
spheres and planes in space behave in very much the same way as
circles and lines in a plane, and the analogy between the theorems
of the last section and the theorems of this section is very close
indeed.

Definitions: The interior of a sphere is the union of its
center and the set of all points whose distances from the center
are less than the radius. The exterior of the sphere is the set
of all points whose distances from the center are greater than the
radius.

Definitions: A plane that intersects a sphere in exactly one
point 1s called a tangent plane to the sphere. If the tangent
plane intersects the sphere in the point Q then we say that the
plane 1s tangent to the sphere at Q. Q 1s called the point of
tangency, or the point of contact.

The basic thearem relating spheres and planes is the following:

[sec. 13-3]
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Theorem 13-5. Given a plane E and a sphere S with center
P. Let F Dbe the foot of the perpendicular segment from P to
E. Then either

(1) Every point of E is outside S, or

(2) F is on S, and E 1is tangent to S at F, or

(3) F 1is inside S, and E intersects S 1in a circle

with center F.

Proof: If F 1is outside S then (1) holds.

The proof follows almost word for word the corresponding
proof for the circle in Theorem 13-2. The only significant change
is the use of Theorem 8-11 (shortest segment from point to plane)

instead of Theorem 7-6.
If F is on S then (2) holds.

Here,‘again, the proof 1s almost ldentical with that of
Theorem 13-2.

[sec. 13-3]
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If F 1is inside S then (3) holds.

Let Q Dbe any point which lies on both E and S. Let
r be the radius of S, and let x = PF.

Then L PFQ 1s a right angle, because every line in E, through
F, 1s perpendicular to Fﬁ. Therefore

FQ2 + x2 = r2,

FQ = «/r° - x°.

Since Q 1s any point of the intersection of E and S,
then every point Q of the intersection is such that FQ is
constant. Therefore every point of the intersection lles on the

circle with center at F and radius \/r2 - x°,
Although we have shown that every point of the intersection

is on the circle, we have not shown that this set of points 1is

the circle. That 1s, there concelvably could be some points of

the circle which are not points of the intersection. We now

prove that this is not possible by showing that if Q 1lies on
[sec. 13-3]
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the circle, then it must be a point of the intersection.
Suppose that Q lies on the circle with center F and

radius r2 - x2. Then é PFQ 1s a right angle, as before,

so that
PQ2 X +<-\/ - X )
PQ = \/r— r, since r > 0.

Therefore Q lies on the sphere. Therefore every point of the
circle lies 1n the intersection. Therefore the circle is precilse-
ly the intersection, which was to be proved.

Our first basic theorems on tangents to a sphere are all
corollaries of Theorem 13-5. In all of these corollaries, it
should be understood that S 1s a sphere with center at P.

Corollary 13-5-1. A plane tangent to S 1s perpendicular
to the radius drawn to the point of contact.

Corollary 13-5-2. A plane perpendicular to a radius at its
outer end is tangent to S.

Corollary 13-5-3. A perpendicular from P to a chord of S
bisects the chord.

Given: PQ | AB. 3
Prove: AQ = BQ.

Corollary 13-5-4. The segment joining the center of S to
the mid-point of a chord is perpendicular to the chord.

[sec. 13-3]
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Problem Set 13-3

Sphere O 1s tangent to
plane E at A. ?ﬁ? and
?ﬁ? are lines of E
through A. What 1s the
relationship of ?ﬂ? to

ﬁﬁ? and ﬁﬁ%

In a sphere having a radius of 10, a segment from the center
perpendicular to a chord has length 6. How long 1s the
chord?

In a sphere whose radius is 5 inches, what is the radius of
a circle made by a plane 3 1inches from the center?

Prove that circles formed on a sphere by planes equidistant
from the center of the sphere are congruent.

In the flgure, plane E
intersects the sphere
having center O. A and

B are two points of the
1ntersection_._ F lii in_ (’)};‘\ 7
plane E. OF | E. AF | BF. A

IJf AB =5 and OF = AF,
find the radius of the
sphere and m/ AOB. If G
is the mid-point of AB,
find O0G.

Given a sphere and three points on it. Explain how to deter-
mine the center and the radius of the circle which the points
determine. Explain how to determine the center and radius of
the sphere.

[seec. 13-3]
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*7.

%9,

*10.

Given that plane E 1is tangent to a sphere S at point T.
Plane F 1s any plane other than E which contains T.
Prove (a) that plane F intersects sphere S and plane

E in a circle and a line respectively; and (b) that the
line of intersection 1s tangent to the circle of intersection.

Show that any two great circles of a sphere intersect at the
end-points of a diameter of the sphere.

Two great circles are said to be perpendicular if they lie in

perpendicular planes. Show that, given any two great circles,
there is one other great circle perpendicular to both. If
two great circles on the earth are meridians (through the
poles), what great circle is their common perpendicular?

In the figure, A and B
are the centers of two
intersecting spheres.
Briefly describe the inter-
section.

M and N are points of
the intersection. O 1is a
point in the plane of the
intersection and is collinear
with A and B.

If the radius of sphere A
i1s 13, the radius of
sphere B is 542, and

MB | NB, find the distance

between the centers of the
spheres.

4% us

[seec. 13-3]




429

13-4%. Arcs of Circles.

So far in this chapter we have been able to treat circles
and spheres in similar manners. For the rest of this chapter we
will confine ourselves excluslvely to circles. The topics we will
discuss have thelr corresponding analogies in the theory of spheres
but these are too complicated to consider in a beginning course.

Definition: A central angle of a glven circle 1s an angle
whose vertex is the center of the circle.

Definitions: If A and B are two points of a circle with
center P, not the end-points of a diameter, the union of A, B,
and all the points of the circle in the interior of / APB 1s a
minor arc of the circle. The union of A, B, and all points of
- the circle in the exterior of Z APB 1s a major arc of the circle.
If AB 1s a diameter the union of A, B, and all points of the
circle in one of the two half-planes lying in the plane of the
- ¢ircle with edge 7&? is a semi-circle. An arc is either a minor
arc, a major arc or a semi-circle. A and B are the end-points

of the arc.

[sec. 13-14]
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An arc with end-points A and B 1s most easily denoted by
KB. This simple notation is always ambiguous, for even on the
same circle there are always two arcs with A and B as end-
points. Sometimes 1t will be plain from the context which arc
is meant. If not, we will pick another point X somewhere in
the arc Kﬁ, and denote the arc by ﬂiﬁ.
A

For example, in the figure, ﬁiﬁ is a minor arc; ﬁgﬁ is the
corresponding major arc; and the arcs EKE and 6;% are semi-
circles.

The reason for the names "minor" and "major" is apparent when
one draws several arcs of each kind. A major arc is, in an
intuitive sense, "bigger" than a minor arc. This relation will be
made more explicit in our next definition.

P N
Definition: The degree measure mAXB of an arc AXB 1is

defined in the following way:
(1) If KEB is a minor arc, then mﬁfﬁ is the measure of

the corresponding central angle.

[sec. 13-4]
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(2) 1r is a semi-circle, then mAxB = 180.

(3) 1I1f is a major arc, and AYB 1s the corresponding
P N
minor arc, then mAXB = 360 - mAYB.

5 8

In the figure, m/ APB 1s approximately 60. Therefore
mﬁ?ﬁ is approximately 60, and mﬁiﬁ is approximately 300.

Hereafter, mﬁiﬁ will be called simply the measure of the
arc KEB. Note that an arc is minor or major according as its
measure is less than or greater than 180.

The following theorem 1s simple and reasonable, but its proof
is surprisingly tedious. We will state 1t without proof, and
regard it, for practical purposes, as a postulate:

Theorem 13-6. If KB and ﬁa are arcs of the same circle

having only the point B 1in common, and if thelr union is an arc
AC, then mAB + mBC = mAC.

B

mAXB "+ mBYC = mABC.
[seec. 13-4]
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Notice that for the case in which KB‘ is a minor arc, the
theorem follows from the Angle Addition Postulate. The proof in
the general case 1s more troublesome.

In each of the figures below, the angle x 1s said to be
inscribed in the arc KEB.

\_/

c

Definition: An angle is inscribed in an arc if (1) the two
end-points of the arc lie on the two sides of the angle and (2)
the vertex of the angle is a point, but not an end-point, of the
arc. More concisely, / ABC 1s inscribed in iB0.

In the first figure, the angle is inscribed in a major arc,
and in the second figure the angle is inscribed in a semi-circle.

In each of the figures below, the angle shown is saild to

intercept Eaﬁ.
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In the first case, the angle 1s inscribed; in the second case, the
vertex 1s outside the circle; in the third case, the angle is a
central angle; and in the last case, one side of the angle is
tangent to the circle. 1In the second case, the angle shown
intercepts not only the arc faﬁ but also the arc KEB.

These figures glve the general idea. We will now give the
definition of what it means to say that an angle intercepts an
arc. You should check very carefully to make sure that the
definition really takes care of all four of the above cases.

Definition: An angle intercepts an arc if (1) the end-points
of the arc lie on the angle, (2) each side of the angle contains
at least one end-point of the arc and (3) except for its end-
points, the arc lies in the interior of the angle.

The reason why we talk about the arcs intercepted by angles
is that under certain conditions there 1is a simple relation between
the measure of the angle and the measure of the arc.

[sec. 13-4]
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B

In the figure above we see three inscribed angles, Z'x, L Y,
é z, all of which intercept the same arc ﬁE. It looks as if
these three angles are congruent. Indeed, it is a fact that this

is what always happens. This fact 1s a corollary of the following
theorem:

Theorem 13-7. The measure of an inscribed angle is half the
measure of 1ts intercepted arc.

Restatement: Let ‘Z A Dbe inscribed in an arc of a circle,
intercepting the arc BE. Then

m/ A = % mBC.

B

Ai\\\\\*_#’/////c
In order to prove this from our previous theorems we first
consider an angle inscribed 1n a speclal way.

[sec. 13-4]
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Proof: Case 1. Suppose that one side of Z A contains a
diameter of the circle, like this:

>
* m
b
~<
'3)

Let /x and /y be as in the figure. Then

m/ A+m/x=mn/y,
by Corollary 9-13-3. PA = PB, because A and B 1lie on the
circle. Since the base angles of an 1sosceles triangle are
congruent, we have m/ A = m/ x.
Therefore 2(m/ A) =m/ vy,

1 1

and m/ A = -é(ml y) = E(mga),
which was to be proved.

- Now we know that the theorem always holds in Case 1. Using
this fact, we show that the theorem holds in every case.

Case 2. Suppose that B and C are on opposite sides of
the diameter through A, 1like this:

[sec. 13-4]

congruent, we have m/ A = m/ x.
Therefore o0m/ A = m/ v.
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Then m/A=m/v+m/w,

and mBC = mBD + mDC.

(Wwhy, in each case?) By Case 1, we know that
m/ v =-% mBD

and m/ w =-% mbC .

Putting these equations together, we get
m/ A = %-mﬁb +'% mbe
which was to be proved.

Case 3. Suppose that B and C are on the same side of the
diameter through A, 1like this:

The proof here is very much like that for Case 2, and we state it
in condensed form:

m/ BAC=m/t=m/8 -m/ u
=%m§b—%m®
=,]z'(m§b-m6]3)

- LR

You should check carefully to make sure that you see why each of
these equations 1s correct.

[sec. 13-4]
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From thls theorem we get two very important corollaries:

Corollary 13-7-1. An angle inscribed in a seml-circle 1s a
right angle.

This 1s so because such an angle intercepts a semi-circle,
which has measure 180.

Corollary 13-7-2. Angles inscribed in the same arc are

congruent.

The proof of this is fairly obvious because all such angles
intercept the same arc.

Problem Set 13-4a

1. The center of an arc 1s the
center of the circle of A/////’—_—‘\\\\\\B
which the arc is a part.

How would you find the
center of AB?

2. Given: P 1s the center of 3
AC, m/ C = 45.
Prove: 'E?’l,KE. A

'P ‘\C
3 In the figure, mAB = mBF.

a. Prove A AHK ~ A BHF.

b. What other triangle
is similar to A BHF?

[sec. 13-4]
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*5,

6.

The two circles in this figure
are tangent at A and the
smaller circle passes through
0, the center of the larger
circle. Prove that any chord
of the larger circle with end-
point A 1is bisected by the
smaller circle.

Prove: Any three non-collinear
points lie on a circle.

Restatement: A, B, and C
are non-collinear. Prove

that there is a circle contain-
ing A, B, and C.

(Hint: Draw AB and BC.

Can you find the center of

the circle?)

An inscribed quadrilateral 1s
a quadrilateral having all of

its vertices on a circle.
Prove the theorem: The
opposite angles of an
inscribed quadrilateral
are supplementary.

In circle P, let m/ R = 85,
mRS = 40, IV = 90. Find
the measures of the other
arcs and angles in the figure.

[sec. 13-14]
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10.

11.

XY 1s the common chord of two A

intersecting circles. AB and

DC are two segments cutting

the circles as shown in the D X
figure and containing X and

Y respectively. B
Prove: AD || BC. ®

(Hint: See Problem 6.) c

Prove: A diameter perpendic-
A
ular to a chord of a circle
B8

bisects both arcs determined
by the chord.

In the figure, ACB 1is a

semi-circle and CD | AB. c
Prove that CD 1is the

geometric mean of AD and

BD.

A D B
Prove the following converse A
of Corollary 13-7-1: If an
angle inscribed in a circular B
arc is a right angle, then c
the arc is a semi-circle.
D

[sec. 13-4]
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*12. If a pair of opposite angles
of a quadrilateral are
supplementary, the quadri-
lateral can be inscribed in
a circle.

(Hint: Use Problems 5 and 6
in an indirect proof.)

*13, In this figure, AB 1is a
diameter of the smaller of
two concentric circles,
both with center O, and
AC and BD are tangent
to the smaller circle.

CO and DO are radii of

the larger circle.

Prove tha CD 1is a diameter
of the larger circle.

(Hint: Draw AD and CB.)

[sec. 13-4]
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Definition: In the same circle, or in congruent circles,
two arcs are called congruent 1f they have the same measure.

Just as in the definition of congruent segments, angles,
triangles or circles, the intuitive ldea is that one arc can
be moved so as to coincide with the other.

Theorem 13-8. 1In the same circle or in congruent circles,
if two chords are congruent, then so also are the corresponding
minor arcs.

Al

Proof: We need to show, in the above figure, that if
AB = A'B', then B = {1, By the S.S.S. Theorem, we have

A APB & A A'B'P',
Therefore / P &/ P'. Since mAB =m/ P and mA'B' = m/ P!,

this means that AB & A'B', which was to be proved.

The converse 1s also true, and the proof 1s very similar:

Theorem 13-9. In the same circle or in congruent circles,
1f two arcs are congruent, then so are the corresponding chords.

That 1s, in the figure above, if AB = A'B', then AB = A'B'.
And 1f it is the major arcs that are known to be congruent, then
the same conclusion holds.

[sec. 13-4]
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Theorem 13-10. Glven an angle with vertex on the circle
formed by a secant ray and a tangent ray. The measure of the
angle 1s half the measure of the intercepted arc.

Proof: By the angle formed by a secant ray and tangent ray
we mean the angle as lllustrated in the figure above. We prove
the theorem for the case in whlch the angle is acute, as in the
figure. We use the notation of the figure for the measures of
the various angles. In A PQR, /R and / Q have the same
measure Yy, as indicated, because A PQR 1s isosceles. Since
m§R = m/ QPR, what we need to prove is that x = %z.

By Corollary 13-2-1, ‘é PQS 1is a right angle. Therefore
x= 90 - vy.

By Theorem 9-13, 2z + y + y = 180, so that
z = 180 - 2y.

Therefore x = %z, which was to be proved.

[sec. 13-4]
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Prove Theorem 13-9: In the same circle or in congruent

circles, if two arcs are congruent, then so are the corre-

sponding chords.
In the figure AF = BH.
Prove: a. AR = FB.

b. A AMH & A BMF.

ABCD 1is an inscribed square.

E 1s any point of ‘53, as
shown in this figure.

Prove that AE and BE
trisect / DEC.

In the figure, A, B, C, D
are on the circle and fﬁg
1s tangent to the circle at
A. Complete the following
statements:

a. [/ BDC =
b. /ADC & -
c. [/ ACB & =

o
(@]

d. / EAD 1is supplementary to
e. [/ DAB 1is supplementary to
f. [/ ABC 1is supplementary to

[sec. 13-4]
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/ DAE & =

Z.
h. / DBA 1is supplementary to
i. / ADB 1is supplementary to
3

/ DAC = <_>. - ‘C P -
5 In the figure CP and AQ
are tangents, '35 is a
diameter of the circle. If
mPB = 120 and the radius
of the circle is 3, find B
the length of AP.
>

A

*6, Two circles are tangent, either internally or externally, at
a point H. Let u be any line through H meeting the
circles again at M and N. Prove that the tangents at

M and N are parallel.

M

R
%7 » Given: Tangent PT and
e
secant PR. ‘B 1s the mid-
point of ﬁ

Prove: B 1s equidistant
iy it
from PT and PR.

[sec. 13-4]
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Prove the theorem: The
measure of an angle formed

by two secants of a circle
intersecting in the interior
of a circle is one-half the
sum of the measures of the
arcs Intercepted by the angle
and 1ts vertical angle.
Given: A circle with

secants Kﬁ and EB
intersecting at E.

Prove: m/ DEB = %(ﬁﬁﬁ + mAC).

(Hint: Draw BC.)

Prove the theorem: The
measure of an angle formed
by two secants of a circle
meeting in the exterior of
the circle is one-half the
difference of the measures
of the intercepted arcs.
(Hint: See Problem 8.)

C

Verify that the theorem of Problem 9 holds if the words "two
secants" are replaced by "a secant and a tangent" or by "two
tangents."

In the figure, let mAB = 70,
mAR = 80, mED = 150, and K
m/ BFC = 55.

Find mBC, mCD, m/ K,
m/ E, m/ BAD, m/ AGE,
m/ DGE, m/ ADK.

[see. 13-4]
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12.

13.

14.

In the figure, EF 1s tangent
to the circle at D and AC
bisects / BCD. If mAB = 88 C
and mCD = 62, find the -

measure of each arc and each

angle of the figure.

Given inscribed quadrilateral
ABCD with diagonals inter-
secting at P. D

Prove: a. A APD ~ A BPC.

b. AP-PC = PD- PB. ’

Given fﬁg tangent to the
42i?cle at A and secant
BD 1intersecting the circle
at B and C.

Prove: a. A ABD ~ A CAD.

b. BD-CD = AD®.

[sec. 13-4]
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¥*15. In the figure, quadrilateral ABCD 1s inscribed in the
<> >
circle; lines AD and ﬁﬁ? intersect in P, 1lines AB and
= —_
DC intersect in Q; PV and E are the bisectors of
/ APB and / AQD respectively.
—
Prove: PV | QS. P

v
v

(Hint: Show m/ PRQ = m/ QRV. Use theorems developed in
this Problem Set.)

*16. Prove the theorem: If two parallel lines intersect a circle,
they intercept congruent arcs.

< Q >

; A B
I
i
| (

A | B

) \\\\‘kl‘///Z " ) C\\\\~__,////D "
< P R < R >

>

Case I Case II Case III

(One tangent - (Two secants) (Two tangents)
one secant)

[sec. 13-4]
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13-5. Lengths of Tangent and Secant Segments.

Definition: If the line QR 1s tangent to a circle at R,
then the segment QR 1is a tangent segment from Q to the circle.

Theorem 13-11. The two tangent segments to a circle from an
external point are congruent, and form congruent angles with the
line Joining the external polnt to the center of the circle.

Restatement: If QR is tangent to the circle C at R,
and QS 1is tangent to C at S, then QR € QS, and

/ PQR = / PQS.

Proof: By Corollary 13-2-1, A PQR and A PQS are right
triangles, with right angles at R and S. Obviously PQ = PQ
and PR = PS Dbecause R and S are points of the circle. By
the Hypotenuse-Leg Theorem (Theorem 7-3), this means that

A PQR & A PQS.
Therefore QR = @S, and / PQR & / PQS, which was to be proved.

[sec. 13-5]
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The statement of the following theorem is easier to under-
stand if we look at a figure first:

The theorem says that gilven any two secant lines through Q, as
in the figure, we have

QR QS = QU - QT.

Theorem 13-12. Given a circle C and an external point Q,
let Ll be a secant line through Q, intersecting C 1in points
R and S; and let L2 be another secant line through Q,
intersecting C 1in points T and U. Then QR -QS = QU -QT.

Proof: Consider the triangles A SQU and A TQR. These
triangles have / Q in common. And /S & / T, as indicated
in the figure, because both of these angles are inscribed in the
major arc RU. By the A.A. Corollary (Corollary 12-3-1), this
means that

A SQU ~ A TQR.

Therefore corresponding sides are proportional. Hence

QS _ QU
Qq - W’
and
QR - QS = QU * QT,
which was to be proved.
[sec. 13-5]
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Notice that this theorem means that the product QR -QS is
determined merely by the given circle and the given external
point, and 1s independent of the choice of the secant line.

(The theorem tells us that any other secant line gives the same
product.) This constant product is called the power of the point
with respect to the circle.

The following theorem is golng to say that in the figure
below, QR-QS = QT .

T Q
Theorem 13-13. Given a tangent segment QT to a circle,

and a secant line through Q, Iintersecting the circle in poinbs
R and S. Then

QR - @5 = QT°.
The main steps 1n the proof are as follows. You should find
the reasons in each case.

(1) m/ S = %-MER.
(2) m/ RTQ = % mTR.
(3) /s = /RIQ.
(4) A QRT ~ A QIS.
(5) & = &

(6) Qr- Qs = Qre.
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The following theorem is a further variation on the preceding
two; the difference 1s that now we are going to draw two lines
through a point in the interior of the circle. The theorem says
that in the figure below, we always have

QR * QS = QU* QT.

The maln steps in the proof are as follows: You should find the
reason in each case:

(1) /s=/T.
(2) /sQu = / TQR.
(3) A SQU ~ A TQR.
» §-%
(5) QR-QS = QU - QT.

For purposes of reference, let us call this Theorem 13-14.
Write a complete statement of the theorem. That is, write a
statement that can stand alone, without a figure.

[sec. 13-5]
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Problem Set 13-5 -

«—> <> <>
1. AC, CE and EH are

tangent to circle 0 at
B, D, and F respectively.

Prove: CB + EF = CE.

2. Secants 7ﬂ? and 73?
intersect the circle at
A, B, and D, E, as
given in this figure.
If the lengths of the
segments are as shown,
find x.

s
3 In this figure AB 1is
tangent to the circle at A
E—p <
A and secant BW inter- N
sects the circle at K
and W. If AB = 6 and
WK = 5, how long is BK?

[sec. 13-5]
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Given a circle with inter-
secting chords as shown and
with x < w, 1if AB =19,
find x and w.

i G
AB and BC are tangent to

A
circle O at A and C, B
respectively, and m/ ABC = 120. ‘
Prove that AB + BC = OB. ‘

\

Given: The sides of quadri- S N

R

lateral CDRS are tangent
to a circle at L, M, N, .
P as in the figure. P
Prove: SR + CD = SC + RD.

C

L
D

In a circle a chord of length 12 1is 8 inches from the
center of the circle. Using Theorem 13-14, find the radius

of the circle.
n//”—ﬁ\\\\c 6 R

Secants and segments areé
as Indicated. Find the
length of AB. 7

[seec. 13-5]
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10.

11.

®12.

13.

¥*12

In the figure, CD is a

tangent segment to the circle

at D and AC 1is a segment

of a secant which contains

the center of the circle.

If CD = 12 and CB = &4, A
find the radius of the circle.

If two tangent segments to a circle form an equilateral tri-
angle wilith the chord having the points of tangency as its
end-points, find the measure of each arc of the chord.

Show that it is not possible m
m+2 /m+l

for the lengths of the segments

of two intersecting chords to

be four consecutive 1integers. m+3

Prove that if two circles
intersect, the common
secant bisects either
common tangent segment.

If a common tangent of two circles meets the line of centers

at a point between the centers it is called a common internal
tangent. If it does not meet the line of centers at a point

between the centers it is called a common external tangent.

[sec. 13-5]
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C
A D
< P Q
B
«—> <>
In the figure AB 1s a common internal tangent and CD is
a common external tangent.
a. In the figure above, how many common tangents are
possible? Specify how many of each kind.
b. If the circles were externally tangent, how many tangents
of each kind?
c. If the circles were intersecting at two points.
d. If the circles were internally tangent?
e. If the circles were concentric?
*14, Prove: The common internal
tangents of two circles n
meet the line of centers
at the same point.
(Hint: Use an indirect
B
proof.)
(&
*15. Prove that the common tangent segments of common internal

tangents are congruent. Use figure of Problem 14,

[seec. 13-5]
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16. The radii of two circles
have lengths 22 and 8 A
respectively and the =}
distance between their
centers is 50. Find the
length of the common P Q
external tangent segment.
(Hint: Draw a perpendicu-
lar through Q to AP.)

17. Two circles have a common external tangent segment 36
inches long. Their radii are 6 inches and 21 inches
respectively. Find the distance between their centers.

18. The distance between the
centers of two circles
having radii of 7 and 9
is 20. Find the length
of the common internal
tangent segment.

*19. Standing on the bridge of
a large ship on the ocean,
the captain asked a new
young officer to determine
the distance to the horizon.
The young officer took a
pencil and paper and in a
few moments came up with an
answer. On the paper he had wrltten the formula 4 = %«/B
miles. Show that this formula is correct approximately
where h 1s the height in feet of the observer above the
water and d 1s the distance in mlles to the horizon.
(Assume the diameter of the earth to be 8000 miles.)

|
|
!
t
i
|
|
|
]
v

[sec. 13-5]



Review Problems

For circle O,

a. BC 1is a .
b. AD is a
<«
c. AC 1s a
d 0A is a
—p
e, AX 1is a
f. TD 1s a
g. @ is a .
h. /BCA 1is an .
i. é COD 1i1s a .
Given: In the figure,
circle 0O has diameter
AB. AF || OH, m/ A = 55.
Find mBR and mAR.
Given: AB 1is a diameter

e
of circle C. XY Dbisects

/ AXB.

Prove: CY | AB.

(Hint:

Find m/ AXY.)

457
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Indicate whether each of the following statements is true
or false.

a. If a point is the mid-point of two chords of a circle,
then the point is the center of the circle.

b. If the measure of one arc of a clrcle is twice the
measure of a second arc, then the chord of the second
arc is less than twice as long as the chord of the first
arc.

c. A line which bisects two chords of a circle is
perpendlicular to each of the chords.

d. If the vertices of a quadrilateral are on a circle,
then each two of 1ts opposite angles are supplementary.

e. If each of two circles 1is tangent to a third circle,
then the two circles are tangent to each other.

£s A circle cannot contain three collinear points.

g. If a line bisects a chord of a circle, then 1t bisects
the minor arc of that chord. '

h. If PR is a dlameter of circle O and Q 1s any
point in the interior of circle O not on PR, then
/ PQR 1s obtuse.

i. A tangent to a circle at the mid-point of an arc is
parallel to the chord of that arc.

J. It is possible for two tangents to the same circle to
be perpendicular to each other.

Given: In the figure B c
is tangent to circle O

at B. AB = AC. mCB = 100.

Find m/ C and m/ ABX.

O»e




*10.

459

Given: Circle C with

EC | P, BN || $¢, ana "1

HR tangent to circle C R N
at H.

Prove: mHE = m/ RHN. H
(Note: The circle may

be considered to represent c E
the earth, with PQ the

earth's axis, / REN the

angle of elevation of the

North Star, and mHE the

latitude of a point H.) v

A hole 40 inches in diameter 18 cut in a sheet of plywood,
and a sphere 50 inches in diameter is set in this hole.
How far below the surface of the board will the globe sink?

A wheel 1s broken so that only a portion of the rim remains.
In order to find the diameter of the wheel the following
measurements are made: three points C, A, and B are
taken on the rim so that chord AB & chord AC. The chords
AB and AC are each 15 inches long, and the chord BC
is 24 1inches long. Find the diameter of the wheel.

Diameter AD of circle C contains a point B which lies
between A and C. Prove that BA is the shortest segment
Joining B to the circle and BD 1is the longest.

Assume that the earth is a

sphere of radius 4,000 (o
miles. A straight tunnel A B
AB 200 miles long connects

two points A and B on

the surface, and a ventilation

shaft CD 1is constructed at

the center of the tunnel.

What 1is the length (in miles)

of this shaft?

measurements are made: three points C, A, and B are

F . S PN -V, R RN I /RN’ G s < . | ATY N Y e A 2 » 3 PR T, R
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11.

*12.

*¥13.

Given: Circles C and D
internally tangent at P
with common tangent 7ﬁ;
75? is tangent to circle C
at X and K?' is tangent
to circle D at Y.

Prove: AY = AX.

In the figure, K?' is
tangent to the circle at
A. AP = PX = XY. If
PQ =1 and QZ =8

find AX.

Given: @ " %B and @
are 120° arecs on a circle
and P is a point on AB.

Prove: PA + PB = PC.

(Hint: Consider a parallel
to PB through A 1inter-
secting PC in R and the
circle in Q.)




Chapter 14
CHARACTERIZATION OF SETS. CONSTRUCTIONS.

14-1. Characterization of Sets.

In Chapter 6 we showed how a certain figure, the perpendicu-
lar bisector of a segment, could be specified in terms of a
characteristic property of its points, namely, that each of them
is equldistant from the end-points of the segment.

In Chapter 13 a circle (and a sphere) was defined in terms
of a characteristic property of its points, namely, that each of
them is at a glven distance from the center.

Such characterizations or descriptions of a point set
(geometric figure) in terms of a common property of its points
are often very useful, and we shall spend some time discussing
them.

What do we mean when we say that a set 1s characterized by
a condition, or a set of conditions, imposed on its points? 1In
the first place, we certainly mean that every point of the set
satisfies the conditions. But this 1s not enough, as we cah
readily see from an example. Suppose the condition is "in plane
E ,at distance 4 from point Q@ in E". A semi-circle in E
with center Q and radius 4 has all its points satisfying
this condition. So does any other sultable arc.

Every point in AB 1s 4 i 2
units distant from Q, but \
not every point 4 wunits Q /
distant from @Q 1is in KB. /
. AN 4
~
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The obvious trouble with such examples is that they leave
out some points that satisfy the conditions. We want the whole
circle, not Just a part of 1t. 1In general, we want our set to
contain all points that satisfy the conditions. Another way of
saying this is that every point that satisfies the conditions is
a point of the set. This is the second part of the meaning of
characterization.

Let us put the two parts together for future reference:

(1) Every point of the set satisfies the conditions,

(2) Every point which satisfies the conditions is a point

of the set.

If you refer to Theorem 6-2, you will see that the restate-
ment of this theorem 1s worded in exactly this form.

Problem Set 14-1

These problems are proposed for discussion. No proofs are
expected. 1In some of the problems in this set we speak of the
distance from a point to a figure. Thils is defined as the
shortest distance from the polnt to any point of the figure.

Illustrative example: Describe and sketch the set of points
which are one inch from a given line.

a. In a plane.

b. In space.
Answer: < »
*
a. The set consists of lin _ '
two lines, each one P * Given line —p
inch from the given lin
line and parallel to e y »
it
b. The set consists of
all points of a cylin- \
P
drical surface with /

one inch radius and
the given line as axis.

[seec. 14-1]
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What set of points P 1s characterized by the condition
that CP = 3 inches, where C 1s a given point?

What set of points P 1in a given plane E 1s characterized
by the condition that CP = 3 inches, where C 1s a given
point of E?

Describe and sketch the set of points in a plane E which
are equlidistant from each of two parallel lines in E.

E 1s a plane and C 1is a fixed point 3 inches from the
plane. What is the set of points in E whose distance from
C 1s

a. 5 inches? G 2 inches?
b 3 inches?
E 1s a plane. L and M are two intersecting lines in E.

a. How many polnts of E are 2 inches from L and 2
inches from M?

b. Sketch the set of points of E whose distances from
L and M are each at most one inch.

E 1is a plane. A and B are two polnts in E which are
4 feet apart. What is the set of points of E which are

a. U4 feet from A and 4 feet from B?
b. At most 4 feet from A and at most 4 feet from B?
€. 2 feet from A and 2 feet from B?
d. 1l foot from A and 1 foot from B?

AB 1is a segment of length 3 inches in a plane E.
Describe and sketch the set of those points of E which are
one inch from AB.

[sec. 14-1]
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14-2.

Basic Characterizations. Concurrence Theorems.

For convenlence in reference we restate here some of the

characterizations we have already met. Some of these are

definitions and some are theorems.

1. A sphere is the set of points at a given distance from
a gilven point.

2. A circle is the set of points in a given plane at a
given distance from a given point of the plane.

3 The perpendlicular bisecting plane of a given segment
is the set of points equidistant from the end-points
of the segment.

L, The perpendicular bisector, in a given plane, of a
gilven segment in the plane, is the set of points in
the plane equidistant from the end-points of the segment.

Problem Set 1l4-2a
k[ Describe the set of points at a given distance from

a. a given point.

b. a given line.

C. a glven plane.

d. each of two intersecting planes.

e. each of two given points.

£. a segment.

2. Describe the set of points in a plane equidistant from

two points.
two parallel lines.
two intersecting lines.

three non-colllnear points.

[sec. 14-2]
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Describe the set of points equidistant from
a. two glven points.

b. two parallel lines.

c. two parallel planes.
a. two intersecting planes.
- g8 a plane and a line perpendicular to it.

Indicate whether each statement 1is true or false.

a. Given a line u and a plane E there is always a plane
1. containing u and perpendicular to E.
2. contalning u and parallel to E.

b. Given two non-intersecting lines in space, there is
always a plane containing one and

1. parallel to the other.
2. perpendicular to the other.
The Smiths, the Allens and S

the Browns live in homes *
represented by these three
points. They plan to erect
a flagpole at a point which
will be equidistant from
their back doors. Tell how
to find the point where

they should place the pole.

*B

> @

Describe the set which consists of the vertices of all

isosceles triangles having AB as base,

[sec. 14-2]
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7. Find a point in the plane equally distant from three non-
collinear points. Why must the points be non-collinear?

8. What 1s the set of points which are equidistant from two
given points and at the same time equidistant from two
gilven parallel planes? (Hint: Consider the intersection
of the set of points representing the separate conditions.
There may be more than one solution depending on the positions
of the given elements.)

*Q, What is the set of points in a plane which are within four
centimeters of one or the other of two points 1in a plane
which are four centimeters apart?

10. Let L and M be any two intersecting lines. Choose any
two coordinate systems on these lines (not necessarily with
O at the point of intersection). Draw a number of lines
through corresponding points; that is, points with the same
coordinates. For example, see Figure A.

If you put in enough lines, the figure should appear to
iInclude a nearly smooth curve. Experiment with this con-
struction, trying different pairs of lines and different
coordinate systems.

The construction is quite general, but some cholces of co-
ordinate systems on the two lines will lead to more satis-

fying results on your paper than others.
L

[sec. 14-2]
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11. What is the set of points in a plane at a given distance
from a square of side 2 in the plane? Consider the three
cases d>1, d=1, 4 < 1.

*12, F and G are two points in a plane E. FG = 4. Sketch
the set of those points P of E, such that PF + PG = 5.

Another characterization you can include in the above list
is the following theorem:

Theorem 1l4-1. The bisector of an angle, minus its end-point,
is the set of points in the interior of the angle equidistant from
the sides of the angle.

Restatement: Let AD bisect / BAC.

—>»
(1) If P is on AD but P #Z A, then P is in the

Interior of é BAC and the distance from P to
> <>
AB equals the distance from P to AC.

(2) If P 1is in the interior of / BAC and the
<>
" distance from P to AB equals the distance
from P to AC, then P 1ies on AD and

P #A.

[sec. 14-2]
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(1) Given: P is on AD, P #A, PM | #B, PN | AC.

To prove: P 1is in the interior of Z_BAC; PM = PN.

—>
1. P is in the interior 1. P is on AD, P # A, and
definition of .bisector of
Bt é BAC. an angle.
2. AP = AP. 2. Segment is congruent to
itself.
3. [/ PAM & / PAN. 3. Definition of bisector.
4., / PMA = / PNA. 4., Right angles are congruent.
5. A PMA & APNA. 5. S.A.A. Theorem.
6. PM = PN. 6. Corresponding parts.
B
\
\
,ﬁp
//
— I
| ]
A -—i >
Cc N
e
(2) Given: P 1is in the interior of / BAC, PM | AB,
e
PN | AC, PM = PN.
i
To prove: P # A; P 1lies on AD.
1. P #A 1. Definition of interior of
an angle.
2 PM & PN 2. Definition of congruent
segments.
3. PA & PA 3. Segment is congruent to
itself.
4. /PMA and / PNA are 4.  Given.
right angles.
5. A PMA = A PNA. 5. Hypotenuse-Leg Theorem.
6. / PAM = / PAN. 6. Corresponding parts.
7. P 1lies on AD. 7. Definition of bisector of

[sec. 14-2]

an angle.



469

As a first application of set characterization we will prove
three concurrence theorems analogous to Theorem 9-27 on con-
currence of medians.

Theorem 14-2. The perpendicular bisectors of the sides of a
triangle are concurrent in a point equidistant from the three
vertices of the triangle.

Proof: Let L L2 and L3 be the perpendicular bisectors

1’
of the three sides AB, AC and BC. If L, and L, were

<«>
parallel then AE and AC would be parallel. (Why?) Therefore,

Ll and L2 intersect in a point P.

A v a c

By Theorem 6-2, AP = BP, because P 1s on L,. And AP = CP,
because P 1is on L,. Therefore BP = CP. By Theorem 6-2,
this means that P 1s on L3. Therefore P 1s on all three of
the perpendicular bisectors and AP = BP = CP, which was to be
proved.

[see. 14-2]
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Corollary 14-2-1. There is one and only one circle through

three non-collinear points.

Corollary 14-2-2. Two distinct circles can intersect in at
most two points.

Suggestion for proof: If two circles could intersect in
three points, the three points could be either collinear or non-
collinear. Use Theorem 13-2 and Corollary 14-2-1 to show that
this 1s impossible in each case.

Theorem 14-3. The three altitudes of a triangle are con-
current.

Up to now, we have been using the word altitude mainly in
two senses: It means (1) the perpendicular segment from a vertex
of a triangle to the line containing the opposite side or (2) the
length of this perpendicular segment. In Theorem 14-3, we are
using the word altitude 1n a third sense: It means the line that
contains the perpendlcular segment.

Theorem 14-3 is easy to prove - if you go about it in exactly
the right way.

[sec. 14-2]




Al

Given A ABC, we draw through each vertex a line parallel to the
opposite side. These three lines determine a triangle A DEF.
Opposite sldes of a parallelogram are congruent.: Therefore

BC = AE and BC = DA. Therefore DA = AE. Therefore the altitude
from A, in A ABC, 1is the perpendicular bisector of DE. (This
is Ll in the figure.) For the same reasons, the other two
altitudes of A ABC are the perpendicular bisectors of the sides
of A DEF. Since the perpendicular bisectors are concurrent, so
also are the three altitudes.

Theorem 14-4., The angle bisectors of a triangle are con-
current in a point equidistant from the three sides.

Proof: Let P be the intersection of the bisectors 7ﬁ?

—> <> <>
and BE. By Theorem 14-1, P is equidistant from AB and AC,
becauQEQ.P is on the bisector of / A. And P 1s equidistant
from BA "and BC, because P 1is on the bisector of [/ B.

—3 e

Therefore P 1s equidistant from AC and BC. Therefore, by
Theorem 14-1, P 1is on the bisector of ‘é C. Therefore, the
three bisectors have the point P 1in common and P 1is equidistant

«— <> >
from AB, AC and BC, which was to be proved.

[sec. 14-2]
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Problem Set 14-2b

A line intersects the sides of / ABC in P and Q. Find
a point of PQ which is equally distant from the sides of

the angle.
D

Imagine this figure as a

city park. The park C
commission plans to place

a drinking fountain at a

point which shall be A

<>
equidistant from AB and
s

BC and also equidistant
from D and C. Explain
how to find this point.

Prove the following theorem:
Given [/ DAE and B, C
points on AD, KET between
A and D and A and E ~
respectively, then the
bisectors of the angles
BAC, DBC, BCE, are
concurrent. A

Given the three lines determined by the sides of a triangle,
show that there are exactly four points each of which is
equidistant from all three lines.

i - S — —— e S

Given / DAE and B, C Pl
—_—T —— o ™~
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B Mark points M and N 2 inches apart and draw circles with
radii -% inch, 1 inch, 2 1inches and 3 1inches using
both M and N as centers each time.

Note that some of the circles with center at M intersect
circles with center at N, but that there are two kinds of
situations in which they do not. Describe these two
situations.

6. Sketch several different quadrilaterals, and in each sketch
the bisectors of each of the four angles. From your sketches
does it appear that these angle bisectors are always con-
current? Can you think of any special type of quadrilateral
whose angle bisectors are concurrent? Can you think of a
general way of describing those quadrilaterals whose angle
bisectors are concurrent? (Hint: If the angle bisectors
are concurrent, the point of concurrency 1s equidistant from
all four sides.)

T« A quadrilateral 1s cyclic if its four vertices lie on a
circle. Prove that the perpendicular bisectors of the four
sides and the two dilagonals of a cyclic quadrilateral are
concurrent.

8. What is the set of points which are the vertices of right
triangles having a given segment AB as hypotenuse?

14-2, Intersection of Sets.

Consider the following problem: In a given plane E how
many points are there which are at a glven distance r from a
given point A of E and which are also equlidistant from two
given points B and C of E?

Such a polnt P 18 required to satisfy two condit;ons;

(1) AP = r, (2) BP = CP.

Consider these conditions one at a time. If P satisfles (1)
then P can be anywhere on the circle with center A and radius
r. In other words, the set of points satisfying (1) 1s this circle.

[seec. 14-3]
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Similarly, by Theorem 6-2, the set of points satisfying (2) is a
line, the perpendicular bisector of BC. If P is to satisfy
both conditions it must lle on both sets; that is, P must be a
point of the intersection of the two sets. Since the intersection
of a line and a circle can be two points, one point, or no points,
the answer to our problem is two, one, or none, depending on the
relative positions of A, B and C and the value of r. The
method illustrated here is a very useful one, since 1t enables us
to conslider a complicated preblem a piece at a time and then put
the pieces together as a final step. If you refer to the proofs
of Theorems 14-2 and 14-4 you will see that this was the basic
method of the proof. In Theorem l4-2, for example, we found the
point P as the intersection of the set L defined by PA = PB
and the set L2 defined by PA = PC.

Mos . of the constructlions which are to be discussed in the
next sections are based on the method of intersection of sets.

1

Problem Set 14-3

1. AB 1is a segment 6 1inches long in a plane E. Describe
the location of points P in E, 4 inches from A, and
5 1inches from B.

2. AB 1s a segment 4 inches long in a plane E. C and D
are points of E such that D 1s on E, Eﬁ-l?&—ﬁ and
CD is 3 1inches long. Describe the set of points P which
are equidistant from A and B, and 5 inches from C.

*3. On a circular lake there are
three docks, A, B, C. ¢
Draw a diagram indicating
those ‘points on the lake
which are closer to A
than to B or C.

.. 1)

[sec. 14-3]
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L, Are there any points in a plane that satisfy the following
conditions? If there are, tell how many such points and how

each 1s determined. Make a sketch to 1llustrate your answer.
Given BC = 6 inches.
a. 4 inches from and 3 inches from C.
b. 10 inches from and 10 inches from C.

c. 10 inches from and equidistant from C and B.

W W W w

d. 2 dinches from and 4 inches from C.

14-4, Constructions with Straight-edge and Compass.

A practical problem of some importance 1s that of drawing a
figure with accuracy. This 1is the Job of a draftsman, and he uses
many instruments to facllitate his work, such as rulers, compasses,
dividers, triangles, T-squares, and a host of other devices.

The corresponding geometric process 1ls generally called
"eonstructing" rather than "drawing", but the idea is the same.

We allow ourselves the use of certalin instruments, and the basic
problem is to show how, with these instruments, we can construct

various figures.

Of course our constructions will depend on the instruments
we use., Thus far in our text we have been considering the ruler
and the protractor as our fundamental instruments, although we
would have had to introduce a compass in Chapter 13 to construct
circles. Various other combinations of instruments have beén
considered, but the most Interesting is si{ill the combination
used by the ancient Greeks, the straight-edge and compass. We
shall devote the rest of this chapter to constructions with these
instruments.

A straight-edge is simply a device to draw lines. It has no
marks on 1ts edge and so we cannot measure distances with 1t.
With a compass we can draw a circle with a given center and a
given radius. We have no means of measuring angles.

[sec. 14-14]
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Most of our constructions will depend on the intersection
properties of two lines, of a line and a circle, or of two circles.
The first of these three cases has been considered in such places
as Theorem 3-1, the Plane Separation Postulate and the Parallel
Postulate. The case of a line and circle was taken care of by
Theorem 13-2. But we still have the case of two circles to
consider. As might be expected this 1s the most complicated of
the lot, both to state and to prove. In fact, the proof is so
complicated that we do not give it here at all, but put it in
Appendix IX. Here is the theorem:

Theorem 14-5. (The Two Circle Theorem.) If two circles have
radil a and b, and if ¢ 1s the distance between their centers,
then the circles intersect in two points, one on each silde of the
line of centers, provided each one of a, b, ¢ 1is less than
the sum of the other two.

Some of the situatlons in which the lnequalities stated in
the theorem are all satisfied and the circles intersect are
illustrated below:

1%\ (&

[sec. 14-4]
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That the inequality condition imposed on a, b, ¢ 1s important
is shown by these cases in which one of the lnequalities stated
in the theorem 1s not satisfied and the circles do not intersect:

N g
a b b :c‘
c>a+b b>a+c a>b+ec,.

14-5. Elementary Constructions.

In this section we show how to do various simple constructions
which will be needed as steps 1n the more difficult ones. All
these constructions will be in a given plane. Constructions will
be numbered in the same way as theorems.

Construction 14-6. To copy a gilven triangle.

Suppose we have given A ABC. We want to construct a tri-
angle A DEF, congruent to A ABC, with the side DF lying on
a given ray with D as end-point.

[sec. 14-5]

these constructions will be in a given plane. Constructions will
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Step 1. With the compass, construct a circle with center at
D and radius AC. This intersects the given ray in a point F,
and DF = AC. In the figure, we show only a short arc of the

circle.

\
\

cﬂ

Step 2. With the compass, construct a circle with center
at D and radius AB.

Step 3. Construct a circle with center at F and radius
BC.

[sec. 14-5]
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These two circles seem to Intersect; and by the Two Circle
Theorem they must intersect, because each of the numbers AC, AB,
and BC 1s less than the sum of the other two, by Theorem 7-7.

Either of the points E, E' will do as the third vertex of
our triangle. We draw the sides with our straight-edge, and we
know by the S.S.S. Theorem that A DEF & A ABC.

You may remember that in proving the S.S.S. Theorem we had
the problem of copying a triangle. It is worth while to review
the old method and compare it with the new one. (In the proof
of the S.S.S. Theorem we copled the triangle with ruler and
protractor, using the S.A.S. Postulate to verify that the con-
struction really worked.)

Construction 14-7. To copy a given angle.

E

EI

Here we have given an angle with vertex at A, and we have
given a ray with end-point at D. We want to construct the two
angles, having the given ray as a side, congruent to the given
angle.

With A as center, we construct an arc of a circle inter-
secting the sides of the angle in polnts B and C. With D as
center construct a sufficiently large arc of a circle of the same
radius, Intersecting the given ray in F. With F as center and
BC as radius construct arcs of a circle, intersecting the circle
with center D In E and E!'. Construct ray 'EE? and ray BE?.
By S.S5.S. Theorem A DEF & A ABC, and hence / EDF & / BAC.
Similarly, / E'DF & é BAC.

[sec. 14-5]
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Problem Set 1l4-5a

For your convenience, we give AB 9 cm. long.

Al | | | | | | | ] IB

Construct a triangle wlth sides of the following lengths:

a. 5 cm., 6 cm., 8 cm.
b. T eme, 5 em., 3 em.
c. 3 em., 3 cm., 3 cm.
d. 4 em., 7 em., 3 cm.

Make a triangle ABC on your paper and construct A AB!C
congruent to A ABC wusing AC as a side in each and the
A.S.A. Theorem as your method.

Draw on your paper a triangle ABC and a segment MH about
twice as long as AB. With M as vertex construct
/ HMQ = / A. With H as vertex construct / QHM & / B.

ZQ= . m"—' =
a. Prove that 1t is always possible to construct an

equilateral triangle having a given segment as one of
its sides.

|- I Under what conditions 1s it possible to construct an
isosceles triangle having one given segment as 1lts side
and another given segment as its base?

a. Construct an equilateral
triangle with x as the X
o— —9
length of one side.
b. Construct an isosceles y
—— ¢

triangle with y as

the length of the base

and x as the length

of one of the congruent sides.

[sec. 14-5]
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Construction 14-8. To construct the perpendicular bisector
of a given segment.

Given a segment AB.

\ /
s

~N
-

O\

Step 1. Using an appropriate radius r, construct a circle
with center at A and a circle with center at B. If r 1is
chosen in a suitable way, these two circles will intersect in
two points P and Q, 1lylng on opposite sides of 7@;

(Question: What condition should r satisfy, to ensure that
the circles will intersect 1n this way? Can you think of a
particular value of r that 1s sure to work? Of course, only
one value of r 1s needed for the construction.)

Step 2. Construct the line ﬁii intersecting 7&? at R.
We need to show that this line is the perpendicular bisector of
AB. By Theorem 6-2, R and S, Dbeilng each equidistant from A
and B 1lie on the perpen%igylar bisector of AB. Since two
points determine a line, PQ 1s the perpendicular bisector.

Corollary 14-8-1. To bisect a given segment.

[sec. 14-5]
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Construction 14-9. To construct a perpendicular to a given

line through a given polint.

( . |
R & ¢ 5"

Step 1. Given P and L. Let Q Dbe any point of L.
Draw a circle with center P and radius r, where r 1s greater
than PQ. L then contains a point of the interior of the circle
(namely, Q) and by Corollary 13-2-6 intersects the circle in
two points R and S.

f |
‘R‘ aﬂp ’s'L

X

v

Step 2. With R as center and radius greater than -% RS
construct a suitable arc of a circle. With S as a center and
the same radius, construct an arc of a circle intersecting this
in T. Then, as in Construction 14-8, P and T are each
equidistant from R and S, and hence, ﬁ??_[?ﬁ?.

[sec. 14-5]
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Problem Set 14-5b

Construct an isosceles right triangle.

Construct a square in which

a diagonal is congruent to
AC.

Construct a rhombus whose
dliagonals are congruent
to AB and CD.

Construct a triangle given
any altitude h and the
segments d and e of
the side 1t intersects.

Construct a parallelogram
whose diagonals are con-
gruent to AB and CD
and which determine a 60°
angle. ‘

A 1C
C iD
At —iB
L h —
d :
. —
Al —8
CH— Y

Construct a segment whose length is the geometric mean of

Kﬁ' and Eﬁi in Problem 5.
Problem Set 13-4a.)

[sec.

whose diagonals are con-

o TR - AD PR | fabat

(Hint:

Refer to Problem 10 of

14-5]
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Construction 14-10. To construct a parallel to a given line,

through a given external point.

Step 1. Take any point Q of the line, and join P to Q
by a line.

P

Step 2. Now construct / QPS, congruent to / PQR, with
S and R on opposite si@zi of Fﬁ: Step 2 %za?n example of
Construction 14-7. Then PS 1s parallel to QR, as desired.

Construction 14-11. To divide a segment into a given number

of congruent segments.

Y d .~ P R R VAR Ve ] P T T S AT e 2.1
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Given KE; we want to divide AB into n congruent segments.
(In the figure, we show the case n = 5.)

Step 1. Draw any ray starting at A, not on the line AB.

Starting at A, 1lay off n congruent segments APl, 5152, s wy

Pn _ an, end to end, on the ray. (The length does not matter,

as long as they have the same length; we simply choose Pl at

random, and then use the compass to lay off P1P2 = APl, and so
on.)

Step 2. Join Pn to B by a line. Through the other
<>
polnts Pl’ P2, . Pn -1 construct lines parallel to PnB.
(This can be done; it is Construction 14-10.)
o
These lines intersect AB 1n polints Ql, Q2, e 3 Qn -1
The points Q, Q, ..., @ _ 1 divide ‘AB into n congruent

segments. (See Corollary 9-26-1.)

Problem Set 14-5¢

1. Construct a parallelogram A i -
with two sides and included '
angle congruent to AB, FH, F! i H
and / Q.

Q —>
[sec. 14-5]
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This drawing shows how Bob

Langford used a sheet of
ruled paper to divide a
segment AO in 9 parts

of equal length. Explain
how he could have divided

it into other numbers of

congruent parts. (Assume

that the lines of paper
are evenly spaced.)

This figure illustrates
still another method for
dividing a segment into
any number of congruent
parts. Here 7&? is any
ﬁgpvenient line, and

BD 1is drawn parallel to
iﬁi The same number of
congruent segments is
marked off on each, and
the corresponding points
are jolned. Prove that
the method 1is correct.

If the length of AB is
the perimeter of an
equilateral triangle,
construct the triangle.

[sec. 14-5]
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Given Kﬁ; construct an
isosceles triangle in which
AB 1s the perimeter and

in which the length of

one of the congruent

sides 1s twice the length
of the base.

This figure illustrates
another method of making
one line parallel to

N

another which is useful
in outdoor work. Explain
the method and show that
it 1s correct.

N
v

Divide a given line segment
AB  into two segments whose
ratio is that of two given b
segments of lengths a and
b. (Hint: Use a construction Al 48
similar to that of Construction

14-11.)

|

Construct a triangle ABC,
given the lengths of KE;
XE; and the median from
A to Eii

Given: Lengths c¢, b, m. y T

To construct: A ABC so
that AB = c, AC = b, A b
median AT = m.

(@]

[sec. 14-5]
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*¥9, Given x as the median to
one of the congruent sides
of an isosceles triangle in

-

which the medians to these
sides are perpendicular to
each other. Construct the
triangle.

*¥10. Given a circle C tangent
to a 1line m at K.
Construct a circle tangent c
to C and also tangent to
m at a given point M.
(Hint: Analyze the diagram
below 1n which P 1is the
center of the required

circle, N the point of «
>

tangency and LN the

common tangent at N.)

x.l.

[sec. 14-5]



*11 .,
®l12.

*#13 .

*1h,

489

Construct a common external tangent to two given circles.

Given a triangle ABC 1n which each angle has measure less
than 120, construct a point P 1in the plane of the triangle

such that m/ APB = m/ BPC = m/ APC.

The figure shows how a segment can be bisected using a line
parallel to it, by ﬁeans of a stralght-edge only. That is,
_— <>
given line m || BC, take Q as any point not on BC or m,
and draw 7&? and 55 meeting m at A and D. Then draw
<
(B_ﬁ and Aa, which meet at P. Then ‘Q-? bisects BC at

M. Prove this.

A
3
>
2
o

v

AN
@
<
O

A 4

(Hint: The proof will include these three proportions:
MB_ND MB _MC ., MB_NC,

MC ~ NA NA ND MC ~— MB

Given two parallel lines m and n, at a distance d from
each other, find the set of all points P such that the
distance from P to m 1s k +times the distance from P
to n, where k 1s a given positive number.

[sec. 14-5]
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14-6. Inscribed and Circumscribed Circles.

Definitions: A circle is 1nscribed 1n a triangle, or the
triangle 1is circumscribed about the circle, if each side of the
triangle 1s tangent to the circle. A circle 1s circumscribed

about a triangle, or the triangle 1s inscribed in the circle if

each vertex of the triangle lies on the circle.
L 4

In this figure A ABC is inscribed in C
about Cl‘ C
about A ABC.

In this section we will learn how to construct with straight-

edge and compass the inscribed circle and the circumscribed

5 and cifcumscribed

1 is inscribed in A ABC and -02 is circumscribed

circle, for any triangle.

[sec. 14-6]
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Construction 14-12. To circumscribe a circle about a given

triangle. -

Step 1. Construct the perpendicular bisectors of two sides
of the triangle. This can be done by two applications of
Construction 14-8. The two lines meet at a point P. By
Theorem 14-2, P also lies on the perpendicular bisector of the
third side. By Theorem 6-2, this means that P 1s equidistant
from the three vertices A, B, and C, +that is, AP = BP = CP.
Construct the circle with center at P, passing through A.
Then the circle also passes through B and C.

Construction 14-13. To bisect a given angle.

A Ic —
Step 1. Construct any circle with center at A, 1intersecting
the sides of the glven angle in points B and C. Then AB = AC.

[sec. 14-6]
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Step 2. Construct circles with centers at B and at C,
and with the same radius r, where r > %-BC. By the Two-Circle
Theorem these circles intersect in two points, one on each side of
Eﬁi Let P Dbe the point on the side opposite to A.

Step 3. Construct the ray 7&? By the S.S.S. Theorem,
A BAP =A CAP. Therefore / BAP & / CAP, as desired.

Construction 14-14. To inscribe a circle in a given triangle.

Step 1. Bisect / A and / B, and let P be the point
where the bisectors intersect. By Theorem 14-4, P also lies
on the bisector of / C.

Step 2. Construct a perpendicular -55; from P to BC.
Construct a circle with center at P, passing through D. We
need to show that the circle 1s tangent to all three sides of
A ABC.

(1) The circle is tangent to BC, because BC 1is per-
pendicular to the radius PD. (See Corollary 13-2-2.)

[sec. 14-6]
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(2) By Theorem 14-1, P is equidistant from AB and BC.
Therefore the circle contains the point E which is the foot of
the perpendicular from P to AB. Therefore the circle is
tangent to KE.

The proof of tangency for the third side is exactly the same.

Notice that if all you want 1is a fairly convincing drawing
you can merely construct the two bisectors, put the point of the
compass at P, and then adjust the compass so that its pencil-
point will barely reach BC. You have to drop the perpendicular
55; however, to get a construction which is theoretically exact.

14-7. The Impossible Construction Problems of Antiquity.

The ancient Greeks disrovered all of the straight-edge-and-
compass constructions that you have studied so far, together with
a large number of more difficult ones. There were some con-
struction problems, however, which they tried long and hard to
solve, with no success whatever.

(1) The angle-trisection problem.

. >
A c
—>
Given an angle / BAC, we want to construct two rays AD
—>
and AE (with points D and E 1in the interior of / BAC)

which trisect / BAC. That i1s, we want / BAD = / DAE = / EAC.

[sec. 14-7]
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Nobody has found a way to do this with straight-edge and
compass. The first thing that most people try is to take AB = AC,
draw BC, and then trisect BC with points D and E.

But this doesn't work; 1n fact, nothing has been found that
works.

(2) The duplication of the cube. A cube of edge a has

volume a3.

V = a3.

Suppose we have given a segment of length a. We want to con-

struct a segment of length b, such that a cube of edge b has

exactly twice the volume of a cube of edge a.

(Algebraically, of course, this means that pS = 2a3, or §'= %f—ﬁi
Thils problem was attacked, over a long period, by the best

mathematicians in Greece, who were very brilliant men indeed, but

none of them had any success with this problem.

[sec. 14-7]
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There 1s a curlous myth in connection with this problem.
A plague threatened the population of a certain Greek town,
and the 1nhabitants consulted the oracle at Delﬁhi to find out
which god was angry and why. The answer they got from the oracle
was that Apollo was angry. There was an altar to Apollo, in the
town, consisting of a cube of solid gold, and Apollo wanted his
altar to be exactly twice as blg. The people went home from
Delphl and bullt a new altar, twice as long along an edge as the
old one. The plague then got worse instead of better. The people
thought again, and realized that the new altar was elght times as
big as the old one, that is, 1t had eight times as much volume.
This ralsed the problem of the duplication of the cube, but the
local mathematicians were unable to solve the problem. Thus the
first attempt to apply mathematics to public health was a total
failure.

(3) Squaring the circle. Suppose we have given a circle.

We want to construct a square whose area is exactly the same as
that of the circle.

A = Waa A = b2

Algebraically, this means that b = a, /7.

[sec. 14-7]
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496

These three problems occupied many people for more than two
thousand years. Various attempts were made to solve them with
straight-edge and compass constructions. Finally it was dis-
covered, in modern times, that all three of these problems are
impossible. Impossibility 1n mathematlics does not mean the same
thing as "impossibility" in every day life, and so it calls for
some explanation.

Ordinarily, when we say that something is "impossible,'
mean merely that it is extremely difficult,.or that we don't
happen to see how it can be done, or that nobody has found a way
to do it -- so far. Thus people used to say that it was
"{mpossible" to build a flying machine, and people didn't stop
this until the first airplane was bullt. It 1s supposed to be
"impossible" to find a needle in a haystack, and so on.

Mathematlical impossibility 1s not like this. In mathematics,
there are some things that really cantt be done, and 1t is
possible to prove that they can't be done.

' we

(1) A very simple example is this: No matter how clever
and persistent you may be, you can't find a whole
number between 2 and 3, because there isn't any
such whole number.

(2) 1If the above example seems too trivial to take seriously,
consider the following situation. We start with the
integers, positive, negative and 0. We are allowed to
perform additlions, subtractions, multiplications, and
divisions. A number is called constructible if we can
get to it, starting from the integers, by a finlte
number of such steps. For example, the following number
is constructible:

2-3F 7+

3 4 7 9 _ 37

TY3 To-T7

To get to it requires 15 steps.

[sec. 14-T7]
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Now suppose that the problem before us 1s to construct the
number %f§i This problem is impossible of solutlon Jjust as the
0ld Greek problems are. The point is, the numbers that can be
constructed according to the rules that we have agreed to are all
rational numbers. And %fE’ Just isn't this kXind of a number.
There 1s no use in hunting for it among the constructible numbers,
because that isn't where it is.

Problems of constructibility wlth stralght-edge and compass
are closely analogous to this second illustration. Starting with
the integers, there are certain numbers that we can "construct" by
elementary arithmetic, but these numbers do not happen to include
N

Starting with a segment, AB, there are certain figures that
we can construct with straight-edge and compass, but these figures
do not happen to include any segment CD for which CD3 = 2 -AB3.
This is what we mean when we say that the duplication of the cube
with straight-edge and compass is impossible of solution.

The angle-trisection problem deserves some further discussion.

(1) Some angles can be trisected with straight-edge and
compass. For example, a right angle can be so trisected.
When we say that the angle-trisection problem is 1impossi-
ble of solution, we mean that there are some angles for
which no trisecting rays can be constructed.

(2) The angle-trisection problem becomes solvable if we
change the construction rules very slightly, by allowing
ourselves to make two marks on the straight-edge. Once
the two marks are made, we proceed as follows:

[sec. 14-7]
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Given an angle with vertex B, we draw a circle with center at

B and radius 1r equal to the distance between the two marks on
the straight-edge. The circle intersects the slides of the given
angle in points A and C. We want to construct an angle whose
measure 1is %(mé ABC).

Place the stralght-edge so that (1) it passes through C.
Now manipulate the straight-edge by sliding and rotating it about
C so that (2) one marked point Q 1lies on the circle %Eﬁ (3)
the other marked point P 1lies on the ray opposite to BA. We
will show that m/ BPC =-%(mé ABC). In terms of the angle-
measures indicated in the figure, the main steps in the proof are
as follows; you should find the reasons in each case:

(1) v = u.

(2) w=u+v=2u.

(3) x=w=2 u.

(4) z=x+u=3u.

Equation (4) is, of course, what we wanted to prove. Once we
have Z BPC, 1t 1s easy to draw the trisecting rays in the
interior of / ABC, by two applications of Construction 14-7.

[sec. 14-7]
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Problem Set 14-7

Find the set of points which are the intersections of the
bisectors of the base angles of parallelograms that have a
fixed segment as base.

Explain how to construct an angle of

a. 450; e. 1200;

b. 30°%; . 75°;
(o]

c. 285 ; g. 105°%;
o) lo

da. 135°%; n. 675 -

Mention three other angles you could construct.

In dealing with triangles it is helpful to be able to
designate the parts by brief symbols. A notation frequently
used is as follows:

A, B, C, for the three vertices;

a, b, ¢, for the lengths of the qgggsite sides;

«—> <>
ha’ hb’ hc for the altitudes to BC, CA, AB;

t tB’ tC for bisectors of angles A, B, C;

a" «“—>» <> <>

m,, My, m, for medians to sides BC, CA, AB.
In each of the following problems, we wish to construct a
triangle satisfying certain conditions. For example, we
might glve two segments RS and TQ and an angle, say /X,
and require that a triangle ABC be constructed

so that AB RS, BC ®TQ, and /B & /X.

[sec. 14-7]
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For brevity, we shall state such a problem in the form,
"Construct a triangle given two sides and the included angle"
or "Construct A ABC, given c¢, a, and / B." The student
should do several problems of this type, rephrasing them in
the more exact language used above, until he is sure that he
understands the meaning of the shorter statement.

Construct A ABC having given:

a. a, m, / B. e. m, h, / B.
b. a, b, and /X £f. n, /B, [/C.
such that
mé,A + m/ B =m/X. g LCs hys .

c. a, b, h h. /A, Db, t_.

b*
d. ¢, /A, 7%
(Suggestion: Each time begin by sketching a figure showlng
the relationship of the given parts to help you in your
analysis of the problem.)

Given a square ABCD with

M and N the mid-points of ‘ 8 M c
E and CD. If AM and e

AN meet the diagonal BD Q AN
at P and Q, prove that

P and Q trisect ED, A D

but that m/ BAM # 5 - 90.

[Sec . 1“--,7]
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o Show that the anglg—trisection method mentioned in the text
on page 504 never works, by using one of the following methods:

a. Suppose that for some
angle it did work. Then
in the diagram,

AD 1s both the angle-
bisector and the median
from A in A BAE.
The triangle is then
isosceles and AB = AE
(Why?). But AB = AC by construction, so the circle
with centgza?t A and radius AB 1s intersected by
the line BC in three points. This is impossible.

b. Suppose it did work.
Then in the dlagram,

let the circle with
center A and radius
fgi 1ntep§gpt rays

AD and AE 1in R
and S. Then D and E will be inside the circle.
(Why?) Now RS || BC. (Consider the bisector of

/ RAS.) Also RS > DE (Why?) Triangles ABD, ADE,
and AEC all have the same area. (Why?) Now compare
the areas of BDR, DRSE, and SEC to arrive at a
contradiction.

[sec. 14-7]
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6. We hereby define a geometer's square as an instrument, made
of a flat plece of cardboard or similar material, of the
following shape.

E A

The angles are all right angles and EF = CD = % AB.

To trisect angle PQR with a geometer's square one first
uses the long side to

Y o

— —
construct ST || QP at distance EF. Then place the
geometer s square so that fﬁﬁ? passes through Q, A lies
on ST, and B 1lies on Q,R Then m/ PQA = -B-(ml PQR) .
Prove this.
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Review Problems

For what integral values of x 1s there a triangle whose
sides have lengths 4, 6, x?

Construct a rhombus in which the perimeter has a given
length AB and one angle has measure 45,

a. Glven KE; construct the set of points P in the plane
such that m/ APB = 90.

B Prove that the set you have constructed fulfills the

conditions.
4

Given line L and point P in plane E. Describe the set
of points in E which are a glven distance 4d from L and
a given distance r from P.

Sketch several quadrilaterals and, 1n each, sketch the
perpendicular bisectors of the four sides. In general,
you will find that these do not appear to be concurrent.
If you can think of any special quadrilaterals whose per-
pendicular bisectors are concurrent, list them. Think of
some general way of describing the set of quadrilaterals
with this property.

A
By construction find the center
of the circle of which ﬁﬁ is
an arc.

Given a segment representing the difference between the
diagonal and side of a square. Construct the square.

(< BJ.Vull. MLV vallv o L 4 L Wik &L e

Sketch several duadrilaterals and. In each. sketch the
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10.

*11.,

Let A Dbe the center of a circle of radius a, and B the
center of a circle of radius b. If a + b > AB, do circles
A and B always intersect?

ABCD 1is a parallelogram in a plane E. P 1is a point of E
which is equidistant from A, B, C, and D. Prove that the
parallelogram is a rectangle.

ABCD 1s a trapezoild with KE | 65. Under what circumstances
wlll there be a point P, 1in the plane of the trapezoid,
equidistant from A, B, C, D? Can there ever be more than
one such point?

Given two parallel lines .2 and m and a transversal n,
are there any points which are equidistant from ,Q, m and n?
Prove that your answer 1s correct.




Chapter 15
AREAS OF CIRCLES AND SECTORS

15-1. Polygons.
A polygon 1is a figure like this:

/N [

s

Al
X

The 1dea of a polygon can be defined more precisely as follows:

Suppose that we have given a sequence

P P P

L? g =% n

of distinct points in a plane. We join each point to the next one
by a segment, and finally we Join Pn to Pl'

|1
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Ph-l

In the figure, the dots 1ndicate other possible points and
segments; because we don't know how large n 1s. Notice that
the point just before P is P as it should be.

n n-1°
Definitions: Let Pl’ P2, P3, i F 5 Pn -1’ Pn be n
distinet points in a plane (n > 3). Let the n segments
P1P2, P2,P3, s Pn-—an’ PnP1 have the properties:

(1) No two segments intersect except at their end-points,
as specified; -

(2) No two segments with a common end-point are collinear.

Then the union of the n segments is a polygon.

The n given points are vertices of the polygon, the n
segments are sides of the polygon. By (2), any two segments with
a common vertex determine an angle, which is called an angle of
the polygon.

[seec. 15-1]
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Notice that triangles are polygons of 3 vertices and 3
sides, and quadrilaterals are polygons of 4 vertices and &4
sides. Polygons of n vertices and n sides are sometimes
called n-gons. Thus a triangle is a 3-gon and a quadrilateral
1s a l4-gon (although the terms 3-gon and A4-gon are almost
never used.) 5-gons are called pentagons, 6-gons are hexagons .
8-gons are octagons, and 10-gons are decagons. The other
n-gons, for reasonably small numbers n, also have special names
taken from the Greek, but the rest of these special names are not
very commonly used.

Each side of a polygon lies in a line, which separates the
plane into two half-planes. If, for each side, the rest of the
polygon lies entirely in one of the half-planes having that side
on its edge, then the polygon is called a convex polygon.

Below is a convex polygon, with the lines drawn in to indicate

why it 1is convex:

PI ," N P2
- - — - >
|
’ /
® /
N \P3
\ \\
PG,/ \\
»’/ .
* -- -\ —————
% ¥ /4
/
b »
[seec. 15-1]
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This is a natural term to use, because if a polygon is convex, it
turns out that the polygon plus 1ts interior forms a convex set
in the sense that we defined long ago in Chapter 3. Just before
the definition of a polygon, there are five examples of polygons.
You should check that the first, second and fourth of these
examples are convex polygons, but the third and fifth are not.
You should check also that in the first, second and fourth cases,
the polygon plus its interior forms a convex set, but that in the
third and fifth cases this is not so.

In this chapter we shall use polygons in the study of circles,
to learn to calculate circumferences and areas. In the next

chapter we shall calculate the volumes of prisms, pyramids, cones,
and spheres. The basic procedure consists in approximating
lengths and areas of curved figures with lengths and areas of
polygonal figures, and seeing what happens as the approximations
become better and better. A complete treatment of this last
stage of the process is well beyond the subject matter of this
course, but we wlll explaln the logic of the situation as clearly
as we can, and as completely as seems practical.

Problem Set 15-1

1. In the figure at the right,
no three end-points are
collinear and no two segments
intersect except at their
end-points. Nevertheless
the figure is not a polygon.
Why not?

[sec. 15-1]



*3 .

Is the figure at the right

a polygon? How many sides

has 1it? How many vertices?
What can you say about the
relative lengths of the sides?

509

About the measures of the

angles?

a.

State a definition of the interior of a convex polygon.
(Hint: Consider the definition of the interior of a
triangle.)

Make a sketch to illustrate that the union of a convex
polygon and its interior is a polygonal region. (See
definition of polygonal region in Chapter 11.)

A segment connecting two vertices of a polygon which are not
end-points of the same side 1s a diagonal of the polygon.

a.

How many diagonals has a polygon with 3 sides?
4 sides? 5 sides? 6 sides? 103 sides? n sides?

Sketch a pentagon for which only two of the diagonals
pass through its interior.

Use the figure at the right
to show that the sum of the
measures of the angles of a
convex polygon of n sides

is

S = (n - 2)180.

Verify the statement in the
preceding problem, using this E D
figure.

[sec. 15-1]
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15-2. Regular Polygons.

Suppose we start with a circle, with center @Q and radius
r, and divide the circle into n congruent arcs, end to end.

The figure shows the case n = 8.
P

E%
For each little arc, we draw the corresponding chord. This gives
a polygon with vertices Pl’ P2, .o s Pn. The arcs are
congruent, and so the chords (which are the sides of the polygon)
are also congruent. If we draw segments from Q to each vertex
of the polygon, we get a set of n 1isosceles triangles. In each

360 360
n

triangle, mé Q = === because is the measure of the

intercepted arc in each case. Therefore all of the 1isosceles
triangles are congruent. It follows that all of the angles of
the polygon are congruent; the measure of an angle of the polygon
is twice the measure of any base angle of any one of the isosceles
triangles.

Thus the polygon has all of its sides congruent and all of
its angles congruent.

[sec. 15-2]
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Definitions: A convex polygon is regular if all its sides
are congruent and all its angles are congruent. A polygon is
inscribed in a circle if all of its vertices lie on the circle.

It 18 a fact that every regular polygon can be inscribed in
a circle, but we will not stop to prove this, because we will not
need it. We willl be using regular polygons only in the study of
circles, and all of the regular polygons that we will be talking
about will be inscribed in circles by the method we have Just
described.

Ir Pl’ P2, ooy Pn is a regular polygon inscribed in a
circle, then the triangles A PlQP2’ A P2QP3, ceey are all
congruent and they have the same base e and the same altitude
a. These are shown, in the figure below, for A P3QP4.

The area of each trlangle is %ae, and therefore the total area

of the regular n-gon 1is
= v 1 o
A =n §ae = —anze.
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Definition: The number a 1is called the apothem of the
polygon. The sum of the lengths of the sides 1s called the

Qerimeter.

We denote the perimeter by p. Thus, for a regular polygon,
we have

P=n-e.
In this notation, the area formula becomes

1
An=§a-p.

Problem Set 15-2

1. What is the ratlio of the apothem of a square to 1ts perimeter?

2 a. What size angle would be determined by drawing radiil to
the end-points of a side of a regular inscribed octagon?

b. Use protractor and ruler to construct a regular octagon.
(J Use compass and straight-edge to construct a regular
octagon.
3 Use protractor and ruler to construct a regular pentagon.

b, A formula for the sum of the measures of the angles of any
convex polygon of n sides is (n - 2)180. (See Problem 5
of Problem Set 15-1.) What would be a formula for the measure
of each angle of a regular n-gon?

Be Is the polygon of Problem 2 in Problem Set 15-1 a regular
12-gon? Justify your answer.

[seec. 15-2]

(J Use compass and straight-edge to construct a regular
octagon.
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The figure represents part of a regular polygon of which
AB and BC are sides, and R 1s the center of the circle

in which the polygon is inscribed. Copy and complete the

table:
m/ARB | m/ABR
number or or
of sides | m/BRC | m/CBR | m/ABC
3 —_ _ — A
)+ —— ——— e
5
6 — I __-— B
_ 45 - —_
9 ko 70 140
_ . . 144
12 _ _ _
15 ____ . _ R
18 - - .
20 _ . _
24 .___ . .
A plane can be covered by
congruent square regions
placed four at a vertex
as shown. o

a. How many equilateral

triangles must be

placed at a vertex to
cover a plane?

b. What other class of regular polygonal regions can be
used to cover a plane? How many would be needed at
a vertex?

[see. 15-2]
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*9.

8.

-d.

Two regular octagons and one
square will completely cover / \
the part of a plane around a

point without any overlappings, éﬁ
as shown. What other combl- Ggo>
nations of three regular poly- Oo
gons (two of which are alike)

will do this?

(Hint: Consider possible
angle measures such as those
listed in the last column of
your table for Problem 6.
Find solutions of the equation 2x + y = 360 where x
and y are angle measures for regular polygons having
different numbers of sides. In the i1llustration

x =135 and y = 90.)

(

2 +135 + 90 = 360

Investigate the possiblility of other coverings of a
plane around a point by regular polygons.

Show that the sum of the
measures of the exterior

angles of any convex

polygon is 360.

(Hint: Count the supplements
of the interior angles.)

a.

A convex polygon of n sides (n 1s a positive even
integer greater than 3) can be separated into how
many quadrilateral regions by drawing diagonals from a
given vertex?

Derive a formula for the sum of the measures of the
angles of a convex polygon from your answer to part (a).

[sec. 15-2]
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Let S be the sum of the measures of the angles of a polygon
with n sides. If the polygon 1s convex, then

S = (n - 2)180. 1In the following three figures, which are
not convex, show that the formula is still correct 1f we
regard S as the sum of the measures of the angles of the
triangles into which each can be divided, assuming that no
new vertices are introduced.

/\_

(a) () (c)

Show that in any polygon if an

"artificial vertex" is inserted ‘A E
on one of the sides as shown so / \
that the number of "sides" is .
increased by one, the formula ¢
for the angle sum still holds.

The sides of a regular hexagon are each 2 units long. If
it is inscribed in a circle, find the radius of the circle
and the apothem of the hexagon.

A regular octagon with sides 1 unit long 1s inscribed 1n a
circle. Find the radius of the circle.

[sec. 15-2]
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15-3. The Circumference of a Circle. The Number .

In this section and the next one we shall consider regular
n-gons for various values of n. As usual, we denote the side,
apothem, perimeter, etc. of a regular n-gon inscribed in a
circle of radius r by e, a, p, ete.

Let C Dbe the circumference of the circle that we have been
discussing. It seems reasonable to suppose that if you want to
measure C approximately, you can do it by inscribing a regular
polygon with a large number of sides and then measuring the
perimeter of the polygon. That is, the perimeter p ought to be
a good approximation of C when n 1s large. Putting it another
way, 1f we decide how close we want p to be to C, we ought to
be able to get p to be this close to C merely by making n
large enough. We describe this situation in symbols by writing

p—>C,
and we say that p approaches C as a limit.

We cannot prove this, however; and the reason why we cannot
prove 1t 1s rather unekpected. The reason is that so far, we have
no mathematical definition of what is meant by the circumference
of a circle. (We can't get the circumference merely by adding the
lengths of certain segments, the way we did to get the perimeter
of a polygon, because a circle doesn't contain any segments.

Every arc of a circle, no matter how short you take the arc, is
curved at least slightly.) But the remedy is easy: we take the
statement

p—>C
as our definition of C, thus:

Definition: The circumference of a circle is the limit of
the perimeters of the inscribed regular polygons.

[sec. 15-3]
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We would now like to go on, in the usual way, to define the
nunber 7 as the ratio of the circumference of a circle to its
dlameter. But to make sure that this definition makes good sense,
we first need to know that the ratio é% is the same for all
circles, regardless of thelr size. Thus we need to prove the
following.

Theorem 15-1. The ratio %%, of the circumference to the
diameter, 1s the same for all circles.

The proof 18 by similar triangles. Given a circle with
center Q and radius r, and another circle, with center Q!
and radius r', we inscribe a regular n-gon in each of them.
(The same value of n must be used in each circle.)

g
B
A

Al

In the figure we show only one side of each n-gon, with the
assoclated isosceles triangle. Now / AQB = / A'Q'B', because
each of these angles has measure égg. Therefore, since the
adjacent sides are proportional,

A AQB ~ A A'Q'B!
by the S.A.S. Similarity Theorem. Therefore,

e_¢
r o'’
and so
1
25
[seec. 15-3]
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where p 1is the perimeter ne of the first n-gon, and p!' is

the perimeter ne' of the second n-gon. Let C and C!
the circumferences of the two circles. Then p—>C, by
definition, and p'— C', by definition. Therefore

c_¢C'
r !
and
c _ ¢
2r = 2r'’

which was to be proved.

The number EL, which 1s the same for all circles, is

or

be

deslgnated by w. We can therefore express the conclusion of

Theorem 15-1 in the well-known form,
C = 2mr.

m 1s an irrational number and cannot be represented exactly

in fractional form. It can however, be approximated as closely

as we please by rational numbers. Some rational approximations

to w are

3, 3.14, %@ 3.1416, %, 3.14159265358979.

Problem Set 15-3

) [ A regular polygon 1s inscribed in a circle, then another with
one more side than the first 1s inscribed, and so on endless-

ly, each time increasing the number of sildes by one.
a. What is the limit of the length of the apothem?
b. What 1is the limit of the length of a side?

€. What is the 1limit of the measure of an angle?

d. What 1s the limit of the perimeter of the polygon?

2. A certain tall person takes steps a yard long. He walks
around a circular pond close to the edge taking 628 steps.
What 1is the approximate radius of the pond? (Use 3.14

for w.)

[sec. 15-3]



*7

519

Which is the closer approximation to w, 3.14 or E?h

The moon is about 240,000 miles from the earth, and its
Find the cir-
cumference of the circle which the moon describes every month.

path around the earth is nearly circular.

The earth is about 93,000,000 miles from the sun. The path
Find how far
What 1is our speed in this

of the earth around the sun 1s nearly circular.
we travel every year "in orbit".
orbit in miles per hour.

12 inches.
Of its circumscri%sd circle?

The side of a square is What 1s the clrcumference

of its inscribed circle?

In the figure, square XYZW

is inscribed in circle O,

and square ABCD 1is cir-
cumscribed about the circle. A
The diagonals of both squares

lie in ‘AI)) and (ﬁ) Given

PQRS 1is

formed when the mid-points

P, Q, R and S of AX, BY, CZ, and DW are joined, is
the perimeter of this square equal to, greater than, or less
than the circumference of circle O0? Let OX =1 and
Justify your answer by computation.

that a square

The radius of a circle is 10 feet.
circumference changed if its radius is increased by 1 foot?
If the radius were originally 1000 feet, what would be the
change in the circumference when the radius is increased by

1 foot?

By how much is 1ts

[sec. 15-3]

PQRS is
formed when the mid-points

that a square
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15-4%. Area of a Circle.

In Chapter 11 we consldered areas of polygonal regions,
defined in terms of a basic region, the triangular region, which
is the union of a triangle and its interior. In talking about
areas assoclated with a circle we make a similar basic definition.

Definition: A circular region is the union of a circle and

its interior.

In speaking of "the area of a triangular region" we found
it convenient to abbreviate this phrase to "the area of a triangle".
Similarly, we shall usually say "the area of a circle" as an
abbreviation of "the area of a circular region'".

We shall now get a formula for the area of a circle. We
already have a formula for the area of an inscribed regular
n-gon; this is

A, =% ap

where a 1s the apothem and p is the perimeter.

[sec. 15-4]
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In this situation there are three quantities involved, each
depending on n. These are p, a and An. To get our formula
for the area of a circle, we need to find out what limits these
quantities approach as n becomes very large.

(1) Wwhat happens to A . A, 1s always slightly less than

the area A of the circle, because there are always some points
that lie inside the circle but outside the regular n-gon. But
the difference between An and A 1s very small when n 1is
very large, because when n 18 very large the polygon almost
fills up the interior of the circle. Thus, we expect that

An 'qAQ

But Just as in the case of the circumference of the circle, this
can never be proved, since we have not yet giJen any definition
of the area of a circle. Here also, the way out 1is easy:

Definition: The area of a circle 1s the limit of the areas
of the inscribed regular polygons.

Thus, An-——>A by definition.

(2) What happens to a. The apothem a 1s always slightly
less than 1r, Dbecause either leg of a right trlangle 1s shorter
than the hypotenuse. But the difference between a and r 1s
very small when n 1is very large. Thus,

a —r.

(3) What happens to p. By definition of C, we have
p —C.

Fitting together the results in (2) and (3), we get
%ap-——>%rc.
1
Therefore An-——>§rc.

But we knew from (1) that A, —>A. Therefore

A = %rc.

[sec. 15-4]

Thus, An-——>A by definition.
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Combining this with the formula C = 2mr gives

A = wrz.

Thus the formula that you have known for years finally
becomes a theorem:

Theorem 15-2. The area of a circle of radius r 1is wrz.

Problem Set 15-4

1. Find the cilrcumference and area of a circle with radius
a. 5. b. 10.

2; Find the circumference and area of a circle with radius

a. n. b. 10n.

3. a. Find the area of one face
of this iron washer if 1its
diameter is 4 centimeters
and the diameter of the
hole 1s 2 centimeters.

b. Would the area be changed
if the two circles were
not concentric?

y, The radius of the larger of two circles is three times the
radius of the smaller. Compare the area of the first to
that of the second.

B The cilrcumference of a circle and the perimeter of a square
are each equal to 20 1inches. Which has the greater area?
How much greater is 1it?

6. Given a square whose side is 10 1inches, what 1s the area
between its circumscribed and inscribed circles?

[sec. 15-4]
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T. An equilateral triangle is inscribed in a circle. If the
side of the triangle is 12 1inches, what is the radius of
the circle? The circumference? The area?

8. The cross inside the circle
is divisible into 5 squares.
Find the area which is inside
the circle and outside the
cross.

9. Given: Two concentric circles ;,1' 73;
with center P, AC is a A - ¢
chord of the larger and is

tangent to the smaller at B. P
®
Prove: The area of the ring
(annulus) 1is 7BCZ.
.~ —_—

10. In a sphere whose radius is
10 1inches, sections are made ﬁ
by planes 3 1inches and 5
inches from the center. Which
section will be the larger?
Prove that your answer is
correct.

*¥]11. In the figure, ABCD 1s a
square in which E, F, G
are mid-points of 'KB; KE,
and EE, respectively. i
and ﬁa are circular arcs
with centers E and G
respectively. If the side
of the square is s, find

the area of the shaded portion. A
[sec. 15-14]
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*12.

*13.

14,

— —
OM and PN are parallel.

In the figure, semi-circles
are drawn with each side of
right triangle ABC as
diameter. Areas of each
region in the figure are
indicated by lower case
letters.

Prove: r + s = t.

A speclal archery target,
with which an amateur can
be expected to hit the
bulls-eye as often as any
ring, is constructed in
the followlng way. Rays

A circle with center O
and radius r equal to the
distance between the rays,
is drawn intersecting Bﬁf
at Q. QA anﬁz. Then a
circle with center 0 and
radius OA, or ry is drawn. This process is repeated by
drawing perpendiculars at R and at S, and circles with
radii OB and OC. Note that we arbitrarily stop at four
concentric circles.

a. Find Ty r2, r3 in terms of r.

- Show that the areas of the inner circle and the three
"rings", represented by a, b, ¢, and d, are equal.

An isosceles trapezoid whose bases are 2 inches and 6
inches is circumscribed about a circle. Find the area of
the portion of the trapezoid which lies outslide the circle.

[sec. 15-14]
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15-5. Lengths of Arcs. Areas of Sectors.

Just as we define the circumference of a circle as the limit
of the perimeters of inscribed regular polygons, so we can define
the length of a circular arc as a suitable limit.

If AB 1is an arc of a circle with center Q, we take points

P P

P oy e n.-1 on 2B so that each of the n angles ZAQPl,

1’
7~~~

/ PiQPss  «ees / P, _ ;9B has measure %mAB

Definition: The length of arc AB 1s the limit of
APy + P4P, + ... + P _ B as we take n larger and larger.

It is convenient, in discussing lengths of arcs, to consider
an entire circle as an arc of measure 360. Any point of the
circle can be consldered as the coincident end-points of the arc.
The circumference of a circle can then be considered to be simply
the length of an arc of measure 360.

The basic theorem on arc length i1s the following:

[sec. 15-5]
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Theorem 15-3. If two arcs have equal radil, then their

lengths are proportional to their measures.

8 B'
r
r
Q
g r
A A
. 7~
length AB _ length A'B!
P - N °
mAB mA'B!

The proof of this theorem 1s very hard, and quite unsuitable
for a beginning geometry course. We make no attempt to prove 1t
here, but, like Theorem 13-6 (to which it is closely related),
treat 1t as if it were a new postulate.

Theorems 15-1 and 15-3 can be combined to give a general
formula for the length of an arc.

Theorem 15-4. An arc of measure q and radius r has

length Tgaqr.
Proof: If C 18 the circumference of a circle of radius r

we have, by Theorem 15-3,

L_.¢C

q ~ 360"
By Theorem 15-1, C = 27r. Substituting this value of C above
and solving for L gives

T
L = 1809

[see. 15-5]
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treat 1t as if it were a new postulate.
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A sector of a circle 1is a reglon bounded by two radii and
an arc, like this: B

More precisely:

Definitions: If AB 1is an arc of a circle with center Q
and radius r, then the union of all segments af, where P 1is
any point of Kﬁ, is a sector. Kﬁ is the arc of the sector
and r 1is the radius of the sector.

The following theorem 1s proved just like Theorem 15-2.

Theorem 15-5. The area of a sector i1s half the product of
its radius by the length of 1its arc.

Combined with Theorem 15-4, we get

Theorem 15-6. The area of a sector of radius r and arc

measure q 1is 3%6 qr2.

Problem Set 15-5

1. The radius of a circle is 15 1nches. What 1s the length
of an arc of 60°? of 90°? of 72% of 36°°

2. The radius of a circle is 6. What is the area of a sector
with an arc of 90°? of 192

3. If the length of a 60° arc 1s one centimeter, find the
radius of the arc. Also find the length of the chord of
the arc.

[sec. 15-5]
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4, In a circle of radius 2, a sector has area w. What is
the measure of 1ts arc?

5. A segment of a circle 1s the
region bounded by a chord
and an arc of the circle.
The area of a segment is found
by subtracting the area of the
triangle formed by the chord
and the radii to its end-points
from the area of the sector.
In the figure, m/ APB = 90. If PB = 6, then

Area of sector PAB = %m"62 = Or.
Area of trlangle PAB = %-'62 = 18.

Area of segment = 97 - 18 or approx. 10.26.
Find the area of the segment 1if:

a. m/ APB = 60; r = 12.

b. m/ APB = 120; r = 6.
c. m/ APB = i45; r = 8.
6. If a wheel of radius 10 inches rotates through an angle of
36°,
a. how many inches does a point on the rim of the wheel
move?

b. how many inches does a point on the wheel &5 inches
from the center move?

[sec. 15-5]
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T. A continuous belt runs around two wheels of radius 6 inches
and 30 1inches. The centers of the wheels are 48 1inches
apart. Find the length of the belt.

8. In this figure ABCD 1is a
square whose side is 8
inches. With the mid-points
of the sldes of the square
as centers, arcs are drawn
tangent to the diagonals.
Find the area enclosed by
the four arcs.

[sec. 15-5]
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Review Problems

1. Which of the figures below are polygons? Which ones are
convex polygons?

~ 0\ NA

2. Does every regular polygon have

a. each side congruent to every other side?
b. each angle congruent to every other angle?
Ce at least two sides parallel?
3 What 1s the measure of an angle of a regular
a. pentagon? c. octagon?
= i hexagon? d. decagon?
by, If the measure of an angle of a regular polygon is 150, -

how many vertices does the polygon have?

5 a. If both a square and a regular octagon are inscribed in
the same circle, which has the greater apothem?
the greater perimeter?

b. Answer the same questlons for circumscribed figures.

6. From what formula relating to regular polygons 1s the formula
for the area of a circle derived?

7. If C 1is the clrcumference of a circle and r 1is its radilus,
what 1s the value of %?

e WV L v VIt W AlMw Mld Ul

3. What is the measure of an angle of a regular
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1.

12.

13.

14,

15.

16.

*1f .

18.

14,
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If the circumference of a circle is 12 inches, the length
of 1ts radius will lie between what two consecutlve integers?

Find the measure of an exterior angle of
a. a regular pentagon. b. a regular n-gon.

What 1is the radius of a cirecle if its clrcumference is equal
to 1ts area?

If the radius of one circle is 10 times the radius of
another, give the ratio of

a. thelr dilameters. c. thelr areas.
b. thelr circumferences.

If a regular hexagon is inscribed in a circle of radius 5,
what 1s the length of each side? What is the length of the
arc of each slde?

Show that the area of a circle is given by the formula

A = %Wdz, where d 1is the dliameter of the circle.

A wheel has a 20 1inch diameter. How far will it roll if
1t turns 270°?

The angle of a sector is 10° and its radius is 12 1inches.

Find the area of the sector and the length of 1ts arc.

Prove that the area of an equilateral triangle circumscribed
about a circle 1s four times the area of an equilateral
triangle inscribed in the circle.

This problem came up In a college zoology course: Two
woodchucks dig burrows at a distance 1r from each other,
and each of them is the nearest neighbor of the other. If
a third woodchuck moves into the region, how large is the
area in which he can settle so that he will become the
nearest neighbor of each of the original woodchucks?

One regular 7-sided polygon has area 8 and another
regular 7-sided polygon has area 18. What is the ratio
of a side of the smaller to a side of the larger?

A wheel has a 20 1inch diameter. How far will it roll if

e &2 N f\ﬂf\oﬂ







Chapter 16
VOLUMES OF SOLIDS

16-1. Prisms.
Here are some pictures of prisms:

A prism can be thought of as the solid swept out in moving a
polygonal reglon parallel to itself from one position to another.
In this process each point of the region describes a line segment,
and these segments are all parallel to one another. The prism
itself can be thought of as Jjust the set of all such line segments,
as 1f it were made up of a bundle of parallel wires.

These considerations lead us to the following precise
definition.

i
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Definitions. Let E1 and E2 be two parallel planes, L
a transversal, and K a polygonal region in El which does not
Intersect L. For each point P of K let PP' Dbe a segment
parallel to L with P' in Eg. The union of all such segments
1s called a prism.

[sec. 16-1]
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Definitions. The polygonal region K 1s called the lower
base, or Jjust the base, of the prism. The set of all the points
P', that is, the part of the prism that lies in EE’ is called
the upper base. The distance h Dbetween E1 and E2 is the
altitude of the prism. If L 1s perpendicular to El and E2
the prism is called a right prism.

Prisms are classifled according to thelr bases: a triangular
prism 1s one whose base is a triangular region, a rectangular
prism is one whose base is a rectangular region, and so on.

Definition. A cross-section of a prism is its intersection
with a plane parallel to its base, provided this intersection is

not empty.

Theorem 16-1. All cross-sections of a triangular prism are
congruent to the base.

Proof: Let the triangular region ABC be the base of a
prism, and let a cross-section plane intersect AA', BB', CC!
in D, E and F. AD ||BE by definition of a prism, and
AB 1 DE by Theorem 10-1. Hence, ABED 1s a parallelogram,
and so DE = AB, because opposite sides of a parallelogram are
congruent. Similarly, DF = AC and EF = BC. By the S.S.S.
Theorem, A DEF & A ABC.

[sec. 16-1]
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Corollary 16-1-1. The upper and lower bases of a triangular
prism are congruent.

Theorem 16-2. (Prism Cross-Section Theorem.) All cross-
sections of a prism have the same area.

Proof: By definition of a polygonal region, the base can be
cut up into triangular regions. Thus the prism is cut up into
triangular prisms whose bases are the triangular regions.

By Theorem 16-1, each triangle in the base 1s congruent to
the corresponding triangle in the cross-section. (Thus, in the
figure, A PAB & A P'A'B', A PBC & AP'B'C', and so on.) The
area of the base 1s the sum of the areas of the trlangular
regions in the base; and the area of the cross-section is the sum
of the areas of the corresponding triangular regions in the cross-
section. Since congruent triangles have the same area, the
theorem follows.

[sec. 16-1]

Proof: By definition of a polygonal region, the base can be
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Corollary 16-2-1. The two bases of a prism have equal areas.

(Note: Since we have not defined congruence for figures more
complicated than triangles, Theorem 16-2, while intuitively clear,
must be proved using our avallable definitions. However, 1t 1is
evident that with any reasonable general definition of congruence
between geometric figures the theorem should hold for any prism.
In Appendix VIII such a definition of congruence 1s given, and
then the proof of Theorem 16-1 needs only a slight modification
to prove that a cross-sectlion of any prism is congruent to the
base.)

Ordinarily we are concerned only with convex prisms, that is,
prisms whose bases are convex polygonal regions. We can therefore
speak of a "side" or a "vertex" of the base.

In the following definitions the notation is the same as that
for the original definition of a prism.

Definitions: A lateral edge of a prism is a segment KX‘,
where A 1s a vertex of the base of the prism. A lateral face
is the union of all segments PP' for which P 1is a point in a
glven side of the base. The lateral surface of a prism is the
union of its lateral faces. The total surface of a prism 1s the
union of 1ts lateral surface and its bases.

Theorem 16-3. The lateral faces of a prism are parallelogram
regions, and the lateral faces of a right prism are rectangular
regions.

A formal proof involves a discussion of separatlon properties
and is rather long and tedious. While you may want to work out a
formal proof, you can convince yourself of the correctness of the
theorem by applying the definitions of prism and lateral face to
the diagram for Theorem 16-1 or 16-2.

[sec. 16-1]
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Definitions: A parallelepiped i1s a prism whose base 1s a
parallelogram region. A rectangular parallelepiped 1s a right

rectangular prism.

A 1
\\
\ |
\\ |
s e ———— - -
/ P
Parallelepiped Rectangular Parallelepiped

Note: While in the preceding theorem and definitions we
have been careful to refer to the base and the cross-section of a
prism as reglons, we will often use base and cross-section to mean
the polygon which bounds the region and conversely, the context
will make clear the intended use.

Problem Set 16-1

1. Prove that two non-adjacent
lateral edges of a prism are
coplanar, and that the inter-
section of thelr plane and
the prism is a parallelogram.
(Hint: For the figure shown,
prove ABFH 1s a parallelo-
gram. )

[sec. 16-1]
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Find the area of the lateral surface of a right prism whose
altitude is 10 1if the sides of the pentagonal base are

3, 4, 5, 7, 2.

Find the area of the total surface of a right triangular

prism if the base is an equilateral triangle 8 inches
on a side and the height of the prism is 10 inches.

Prove that the lateral area (area of the lateral surface)
of a right prism is the product of the perimeter of its base
and the length of a lateral edge.

If the sides of a cross-section of a triangular prism are
3, 6, and 343, then any other cross-section will be a

triangle whose sldes are P , and ,
whose angles measure 3 5 , and whose
area is ‘

The length of a lateral edge of a right prism is 10 inches
and its lateral area is 52 square inches. What 1s the
perimeter of 1ts base?

[sec. 16-1]
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16-2. Pyramids. .
Pyramids are quite similar to prisms 1iIn some respects. In

particular many of the terms carry over, and we shall use sbme of
them without formal definition.

Definitions: Let K be a polygonal region in a plane E,
and V a point not in E. For each point P in K there is a
segment PV. The union of all such segments 1is called a pyramid
with base K and vertex V. The distance h from V to E is
the altitude of the pyramid.

The next two theorems are analogous to Theorems 16-1 and
16-2.

Theorem 16-4., A cross-section of a triangular pyramid, by a
plane between the vertex and the base, is a triangular region
similar to the base. If the distance from the vertex to the
cross-section plane is k and the altitude is h, then the
ratio of the area of the cross-section to the area of the base

1s (%)2.

Restatement: Let A ABC be in plane E and point V a
distance h from E. Let plane E', parallel to E and at
distance k from V, intersect VA, VB, VC in A', B', C(C'.
Then A A'B'C' ~ A ABC, and

area A A'B'C' _ (k)2
area A ABC - ‘h

[sec. 16-2]
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B
Proof: Let VP | E and let VP intersect E' in P!,

Then h = VP, k = VP!,

(1) AP || A'P' Dby Theorem 10-1.
A VA'P' ~ A VAP Dby Corollary 12-3-2.
%%L = %;L == %' by definition of similar triangles.
(2) A'B' || AB by Theorem 10-1.
' A VA'B' ~ A VAB by Corollary 12-3-2.
!
A%gl = %%—-: %- by (1) and definition.
(3) Similarly,
B!'C' _k C'A' _k
B "R CA " h
(4) From (2) and (3)
A'B' _ B'C' _C'A' _k
"AB " "BC T CA " h
Therefore A A'B'C' ~ A ABC by the S.S.S. Similarity Theorem,

2
area A A'B'C! Kk
and area A ABC = (H) by Theorem 12-7.

[sec. 16-2]
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Theorem 16-5. In any pyramid, the ratio Qf the area of a
cross-section and the area of the base is (%) , where h is
the altitude of the pyramid and k 1s the distance from the
vertex to the plane of the cross-section.

Proof: Let us cut up the base into triangular regions with
areas Ay, Ay, ... , Al. (In the figure, n = 4.) Let
Al', A2', ovd An' be the areas of the corresponding trilangular

regions 1in the cross-section. Let A be the area of the base,
and let A!' be the area of the cross-section. Then

A = Al + A2 + ... + An R
and

A'=A1'+A2‘+Ol0 +An'.
By the result which we have Jjust proved for triangular pyramids,
2 2
we know that A,' = (%) Ay, At o= (%) Ay, and so on. Therefore
Ky 2
A' = (f) (A + A5 + .o A)

(%)2 A.

[sec. 16-2]




543

2
Therefore %L = (%) R which was to be proved.

Theorem 16-5 has the following consequence.

Theorem 16-6. (The Pyramid Cross-Section Theorem.) Given
two pyramids with the same altitude. If the bases have the same
area, then cross-sections equidistant from the bases also have

\J

the same area.

A Ay

In the figure, for the sake of simplicity, we show triangular
pyramids, but the proof does not depend on the shape of the base.

Let A be the area of each of the bases, and let Al and
A2 be the areas of the cross-sections. Let 'h be the altitude
of each of the pyramlds, and let d be the distance between each
cross-section and the corresponding base. Then the vertices of
the two pyramids are at the same distance k = h - d from the
planes of the cross-sections. Therefore

Ry (2 _ Ay
= ® =1

by the previous theorem. Since the denominators on the left and
right are equal, so also are the numerators. Therefore, A1 = A2,
which was to be proved.

[sec. 16-2]
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Problem Set 16-2

If the base of a pyramid is a square, each cross-section will
be a . If the base of a pyramid is an equilateral
triangle whose side is 9, each cross-section will be

and the length of a side of the cross-section

one-third of the distance from the vertex to the base will
be

Given two pyramlds, one triangular, one hexagonal, with equal
base areas. In each the altitude is 6 1inches. The area

of a cross-section of the triangular pyramid, 2 inches from
the base, 1s 25 square inches. What is the area of a
cross-section 2 1Inches from the base of the hexagonal
pyramid?

A regular pyramid 1s a pyramid whose base 1is a regular
polygonal region having for 1its center the foot of the

perpendicular from the vertex to the base.
Prove that the lateral faces of a regular pyramid are
bounded by congruent isosceles triangles.

Gilven a triangular pyramid with vertex V and base ABC,
find a plane whose intersection with the pyramid is a
parallelogram.

Show that the lateral area of a regular pyramid is given by

A =-% ap in which p 1s the perimeter of the base and a

is the altitude of a lateral face.

[sec. 16-2]
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FGHJK is parallel to base
ABCDE in the pyramid shown
here, with altitude VS =7
inches and altitude VR = 4
inches. If the area of
ABCDE is 336 square
inches, what is the area

of FGHJK?

A regular pyramid has a square base,

545

10 inches on a side,

and 1s one foot tall. Find the lateral area of the pyramid

and the area of the cross-section 3

Prove: 1In any pyramid, the
ratio of the area of a
cross-sectlion to the area

a 2
of the base is (5) "

where a 1s the length of
a lateral edge of the
smaller pyramid and b 1is
the corresponding lateral
edge of the larger pyramid.
(Hint: Draw altitude PS.)

[sec. 16-2]
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16-3. Volumes of Prisms and Pyramids, Cavalieri's Principle.

A vigorous treatment of volumes requires a careful definition
of something analogous to polygonal regions in a plane (polyhedral
regions is the name) and the introduction of postulates similar
to the four area postulates. We will not give such a treatment,
but instead will rely on your intultion to a considerable extent,
particularly when it comes to cutting up solids or fitting them
together. However, we will state explicitly the two numerical
postulates we need. One of them is the analog of Postulate 20,
which gave the area of a rectangle.

Postulate 21. The volume of a rectangular
parallelepiped is the product of the altitude and the
area of the base.

To understand what is going on in our next postulate, let us
first think of a physical model. We can make an approximate model
of a square pyramld by forming a stack of thin cards, cut to the
proper size, like this:

The figure on the left represents the exact pyramid, and the
figure on the right 1s the approximate model made from cards.

[sec. 16-3]
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Now suppose we drill a narrow hole in the model, from the top
to some point of the base, and insert a thin rod so that it goes
through every card in the model. We can then tilt the rod in any
way we want, keeping 1ts bottom end fixed on the base. The shape
of the model then changes, but its volume does not change. The
reason is that its volume 1s simply the total volume of the cards;
and this total volume does not change as the cards slide along
each other.

The same principle applies more generally. Suppose we have
two solids with bases in a plane which we shall think of as
horizontal. If all horizontal cross-sections of the two solids
at the same level have the same area then the two solids have the
same volume.

A=A

The reason 1is that if we make a card-model of each of the solids,
then each card in the first model has exactly the same volume as
the corresponding card in the second model. Therefore the volumes
of the two models are exactly the same. The approximation given
by the models 1s as close as we please, 1f only the cards are thin
enough. Therefore the volumes of the two solids that we started
with are the same.

[sec. 16-3]
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The principle involved here is called Cavalieri's Principle.
We haven't proved it; we have merely been explaining why 1t is
reasonable. Let us therefore state it in the form of a postulate:

Postulate 22. (Cavalieri's Principle.) Given
two solids and a plane. If for every plane which
intersects the solids and is parallel to the given
plane the two intersections have equal areas, then
the two solids have the same volume.

Cavalieri's Principle is the key to the calculation of
volumes, as we shall soon see.

Theorem 16-7. The volume of any prism is the product of
the altitude and the area of the base.

TN |
!
|
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Proof: ILet h and A be the altitude and the base area of
the given prism. Consider a rectangular parallelepiped with the
same altitude h and the base area A, and with its base in the
same plane as the base of the given prism. We know by the Prism
Cross-Section Theorem that all cross-sections, for both prisms,
have the same area A. By Cavalieri's Principle, this means that
they have the same volume. Since the volume of the rectangular
parallelepiped is Ah by Postulate 21, the theorem follows.

Theorem 16-8. If two pyramids have the same altitude and the
same base area, then they have the same volume.

Proof: By the Pyramid Cross-Section Theorem, corresponding
cross-sections of the two pyramids have the same area. By
Cavalieri's Principle, this means that the volumes are the
same.

[sec. 16-3]
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Theorem 16-9. The volume of a triangular pyramid is one-
third the product of its altitude and its base area.

Proof: Gilven a triangular pyramid with base PQR and vertex
S, we take a triangular prism PQRTSU with the same base and
altitude, like this:
T U

S S

Q Q

We next cut the prism into three triangular pyramids, one of
them being the original one, like this:

U S

Think of pyramids I and II as having bases PTU and PRU,
and common vertex S. The two triangles A PTU and A PRU 1lie

in the same plane and are congruent, since they are the two
triangles into which the parallelogram PTUR 1is separated by the
diagonal UP. Hence pyramids I and II have the same base area
and the same altitude (the distance from S to plane PTUR),

[sec. 16-3]
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and so by Theorem 16-8 they have the same volume. In the same
way, thinking of pyramids II and III as having bases SUR and
SQR and common vertex P, we see that II and III have the same
volume. Therefore the volume of all three pyramids is the same
number, V, and the volume of the prism is 3V. If

area A PQR = A and the altitude of SPQR = h, then

3V = Ah,
whence v ='% Ah which was to be proved.

The same result holds for pyramids in general:

Theorem 16-10. The volume of a pyramid is one-third the
product of its altitude and its base area.

i’

V=%‘-Ah.

Proof: Given a pyramid of altitude h and base area A.
Take a triangular pyramid of the same altitude and base area, with
its base in the same plane. By the Pyramid Cross-Section Theorem,
cross-sections at the same level have the same area. Therefore,
by Cavalieri's Principle, the two pyramids have the same volume.
Therefore the volume of each of them is %-Ah, which was to be
proved.

[seec. 16-3]
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Problem Set 16-3

A rectangular tank 5' x 4' is filled with water to a depth
of 9". How many cubic feet of water are in the tank? How
many gallons? (1 gallon = 231 cubic inches.)

A lump of metal submerged in a rectangular tank of water 20
inches long and 8 inches wide raises the level of the water
4.6 inches. What is the volume of the metal?

If one fish requires a gallon of water for good health, how
many fish can be kept in an aquarium 2 feet long, l%
feet wide, and l% feet deep? C

1

If one edge of the base of a

regular hexagonal pyramid is

12 1nches and the altitude

of the pyramid is 9 1inches,

what is the lateral area? ' B
What 1is the volume?

&

The volume of a pyramidal tent with a square base is 1836
cubic feet. If the side of the base 1s 18 feet, find the
height of the tent.

A plane bisects the altitude
of a pyramid and is parallel
to its base. What 1s the
ratio of the volumes of the
sollids above and below the
plane?

[see. 16-3]
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L A monument has the shape of an
obelisk -- a square pyramid cut
off at a certaln height and
capped with a second square
pyramid. The vertex of the
small pyramid is 2 feet
above 1its base and 32 feet
above the ground. If the base
pyramid had been continued to
its vertex 1t would have been
60 feet tall. Find the volume
of the obelisk 1f each side of
the base, at the ground, is 4

feet long.

*8, State and illustrate a principle, corresponding to Cavalieri's
Principle, having the conclusion that two plane regions have
equal areas.

16-4. Cylinders and Cones.

Note that in the definition of a prism, and of associated
terms in Section 16-1, it is not necessary to restrict K to be a
polygonal region. K could in fact be any point set in El'

Such tremendous generality 1s not needed, but we certainly can
consider the case in which K 1is a c¢ircular region, the union

of a circle and its interior. 1In this case we call the resulting
solid a circular cylinder. You should write out a definition of
a circular cylinder for yourself. You can use the following
figure to help you.

[sec. 16-4]
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We can have cylinders with other kinds of bases, such as
elliptic cylinders, but the circular cylinder is by far the most
common and the only one considered in elementary geometry.

Just as the definition of a circular cylinder is analogous
to that of a prism, the definition of a circular cone 1s analogous
to the definition of a pyramid. Check your understanding of this
by writing out a definition of a circular cone. You can use the
notation of the following figure to help you.

[sec. 16-4]
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Definition: If the center of the base circle is the foot of
the perpendicular from V to E, the cone is called a right
clrcular cone.

The following analogs of the theorems on prisms and pyramlds
are provable by the same general methods. We omit the details.

Theorem 16-11, A cross-section of a circular cylinder is a

circular region congruent to the base.

L
Idea of proof: Let C be the center and r the radius of
the base. Then, by parallelograms, P1C1 = PC = r.

Theorem 16-12. The area of a cross-section of a circular
cylinder is equal to the area of the base.

Theorem 16-13. A cross-section of a cone of altitude h,
made by a plane at a distance k from the vertex, 1s a circular
region whose area has a ratio to the area of the base of (%)2.

[sec. 16-4]
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Idea of proof: Let VU = h.
(1) A VQT ~ A VPU.

VQ _k
P " h
(2) A VQR ~A VPW.
QR _ k
PW " he
k
(3) QR =HPW'

Since PW has a constant value, regardless of the
position of W, then QR has a constant value. Thus, all
polnts R 1lie on a circle. The corresponding circular
region is the cross-section.

(1) 2area of circle with center Q _ (k)2
area of circle with center P  ‘h’ °

[sec. 16-4]
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We can now use Cavalieri's Principle to find the volumes of

cylinders and cones.

Theorem 16-14. The volume of a circular cylinder is the

product of the altitude and the area of the base.

Proof like that of Theorem 16-7.

Theorem 16-15. The volume of a circular cone is one-third

the product of the altitude and the area of the base.

Proof like that of Theorem 16-10.

Problem Set 16-4

Find the volume of this right
circular cone.

Find the number of gallons of water which a conical tank will
hold if it is 30 1inches deep and the radius of the circular
top i1s 14 1inches. (There are 231 cubic inches in a

gallon. Use ~%£ as an approximation of w. Why 1s %2
a more convenient approximation than 3.14 1in problems

containing the number 2317)

A drainage tile is a cylindrical shell 16 inches long.
The inside and outside diameters are 5 inches, and 5.6
inches. Find the volume of clay necessary to make the tile.

A certain cone has a volume of

27 cubic inches. Its height 4
1s 5 1nches. A second cone is

cut from the first by a plane

parallel to the base and two

inches below the vertex. Find

the volume of the second cone.

[sec. 16-4]
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On a shelf in the supermarket stand two cans of imported
olives. The first is twice as tall as the second, but the
second has a dlameter twice that of the first. If the second
costs twice as much as the first, which is the better buy?

In this figure we are looking
down upon a pyramid, whose base
is a square, 1lnscribed in a
right circular cone. If the
altitude of the cone or

pyramid is 36 and a base

edge of the pyramid is 20,
find the volume of each.

Flgure 1 represents a cone
in a cylinder and Figure 2,

two congruent cones in a //’———\\\
cylinder. If the cylinders

are the same size, compare

the volume of the cone in

Figure 1 with the volume of

the two cones in Figure 2.

Would your conclusion be

changed if the cones in

Figure 2 were not congruent?

Fig. 1. Fig. 2.

A right circular cone stands inside a right circular cylinder
of same base and height. Write a formula for the volume of
the space between the cylinder and the cone.

[sec. 16-14]
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*9. If a plane parallel to the base
of a cone (or pyramid) cuts
off another cone (or pyramid)
then the so0lid between the
parallel plane and the base
is called a frustum.

A frustum of a cone has a
lower radius of 6 inches,
an upper radius of &4
inches and a height of 8
inches. Find 1its volume.

16-5. Spheres; Volume and Area.

By the volume of a sphere we mean the volume of the solid
which is the union of the sphere and its interior.

Theorem 16-16, The volume of a sphere of radius r 1is

Proof: Given a sphere of radius r, let E be a tangent
plane. In E take a circle of radius r and consider a right
cylinder with this circle as base, altitude 2r, and lying on
the same side of E as the sphere.

h=2r

[sec. 16-5]
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Finally, consider two cones, with the two bases of the cylinder as
their bases, and thelr common vertex V at the mid-point of the
axis of the cylinder.

Take a cross-section of each solid by a plane parallel to E
and at a distance s from V. The cross-sections will look like
this:

The area of the section of the sphere is
Ay = 12 = 7(r° - s2)

by the Pythagorean Theorem. We wish to compare this with the

section of the solid lying between the cones and the cylinder,

that 1s, outside the cones, but inside the cylinder. This section

1s a circular ring, whose outer radius 1is r and whose inner

radius 1s s. (Why?) Hence, its area is

2 2

A, = mrc - w8 = m(re - 32).

Thus , A1 = A2, and by Cavalieri's Principle the volume of the

sphere 1s equal to the volume between the cones and the cylinder.
Therefore the volume of the sphere 1s the difference of the
volume of the cylinder and twice the volume of one cone, that is,

vreo 2r - 2 -%mrz- r = %er.

[sec. 16-5]
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Using the formula for the volume of a sphere, we can get a
formula for the area of the surface of a sphere. Given a sphere
of radius r, form a slightly larger sphere, of radius »r + h.
The solid lying between the two spherical surfaces 1s called a
spherical shell, and looks like this:

Let the surface area of the inner sphere be S. The volume V of
the shell 1s then approximately hS. Thus, approximately, S = %u
As the shell gets thinner, the approximation gets better and

better. Thus, as h gets smaller and smaller, we have

;g—->s.

But we can calculate %- exactly, and see what 1t approaches

when h Dbecomes smaller and smaller. This will tell us what S
is. The volume V 18 the difference of the volumes of the two
spheres. Therefore:

V = %w(r +n)d - %wr
= gw[(r + h)3 - r3]

3

= %rn-[:c'3 + 3r°h + 3rh® + h3 - I'3]

2 3].

= Yar®h 4 3rh2 + n
po il

(You should check, by multiplication, that (r + h)S

= r° + 3r°h + 3rh® + ho.)
Therefore %'= %qr[Sr2 + 3rh + h2]

b + h{lmr + gwh].

Here the entire second term approaches zero, because h—>0.

Therefore %_—a-hvrz, and so S = ere. Thus we have the theorem:

[sec. 16-5]
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Theorem 16-17. The surface area of a sphere of radius r is

S = uwre.

Thus we end this chapter with the Iinteresting fact that the
surface area of a sphere of radius r is hvre. Have you noticed
that the surface area is exactly U4 times as great as the area
of a great circle of the sphere?

Problem Set 16-5

L Compute the surface area and the volume of a sphere having
diameter 8.

2. The radius of one sphere 1is twice as great as the radius of a
second sphere. State a ratio expressing a comparison of their
surface areas; their volumes. If the radius of one sphere is
three times as great as the radius of another sphere, compare
theilr surface areas; their volumes.

3. A spherical storage tank has a radius of 7 feet. How many
gallons will it hold? (Use T = -2.'72-.)

-

4, A large storage shed is in the
shape of a hemisphere. The
shed is to be painted. If the
floor of the shed required 17
gallons of paint, how much
paint will be needed to cover
the exterior of the shed?

5. It was shown by Archimedes (287-212 B.C.) that the volume of
a sphere 1is ~§ that of the smallest right circular cylinder
which can contain it. Verify this.

6. An ice cream cone 5 1inches deep and 2 1inches in top
diameter has placed on top of it two hemispherical scoops of
ice cream also of 2 1inch dilameter. If the ice cream melts
into the cone, will it overflow?

[sec. 16-5]
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a. Show that if the length of a slide of one cube is four
times that of another cube the ratio of thelr volumes
is 64 to 1.

b. The moon has a dlameter about -% that of the earth.
How do their volumes compare?

In the figure, the sphere, with
radius r, 1s inscribed in the
cone. The measure of the angles
between the altitude and the
radii to points of tangency are
as shown. Find the volume of
the cone in terms of r.

The city engineer who was six feet tall walked up to inspect
the new spherical water tank. When he had walked to a place
18 feet from the point where the tank rested on the ground
he bumped his head on the tank. Knowing that the city used
10,000 gallons of water per hour, he immedilately figured
how many hours one tank full would last. How did he do it
and what was his result?

Half the air 1s let out of a rubber balloon. If it continues
to be spherical in shape how does the resulting radius
compare with the original radius?

Use the method by which Theorem

16-17 was derived to show that (:Eiii;;;i:::
the lateral area of a right |
circular cylinder is 2mwra |’—___:ﬂ h F

where a 1s its altitude and /L/—\\T\
r the radius of 1ts base. k\;::::::i//

«— 90 >

[sec. 16-5]
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Review Problems

If the base of a pyramid is a region whose boundary is a
rhombus with side 16 and an angle whose measure is 120,
then

a. any cross-section is a region whose boundary 1s a
and whose angles measure and .

-b. the length of a side of a cross-section midway between

the vertex and the base is .

c. the area of a cross-section midway between the vertex
and the base is

A spherical ball of dlameter 5 has a hollow center of
dlameter 2. Find the approximate volume of the shell.

Find the altitude of a cone whose radius is 5 and whose
volume 1is 500.

A pyramid has an altitude of 12 inches and volume of 432
cubic inches. What is the area of a cross-section U4 inches
above the base?

Given two cones such that the altitude of the first is twice
the altitude of the second and the radius of the base of the
first 1s half the radius of the base of the second. How do
the volumes compare?

A cylindrical can with radius 12 and height 20 1is full of
water. If a sphere of radius 10 1s lowered into the can
and then removed, what volume of water will remain in the
can?

A sphere 1is inscribed in a right circular cylinder, so that
1t is tangent to both bases. What 1s the ratio of the volume
of the sphere to the volume of the cylinder?
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*8., The altitude of a right circular
cone is 15 and the radius of
its base is 8. A cylindrical -
hole of diameter 6 is drilled
through the cone with the center
of the drill following the axis
of the cone, leaving a solid as
shown in the figure. What is
the volume of this so01id?

9. Prove: If the base of a pyramid is a parallelogram region,
the plane determined by the vertex of the pyramid and a
diagonal of the base divides the pyramid into two pyramids
of equal volume.

*10. Prove that a sphere can be circumscribed about a rectangular
parallelepiped.






Chapter 17
PLANE COORDINATE GEOMETRY

17-1. Introduction.
Mathematics 1s the only scilence in which practically nothing

ever has to be thrown away. Of course, mathematicians are people,
and being people, they make mistakes. But these mistakes usually
get caught pretty quickly. Therefore, when one generation has
learned something about mathematics, the next generation can go on
to learn some more, without having to stop to correct serious
errors 1n the work that was supposed to have been done already.

One symptom of this situation is the fact that nearly every-
thing that you have been learning about geometry, so far in this
course, was known to the ancient Greeks, over two thousand years
ago.

The first really big step forward in geometry, after the
Greeks, was in the seventeenth century. This was the discovery
of a new method, called coordinate geometry, by Rene Descartes
(1596-1650). In this chapter we will give a short introduction
to coordinate geometry ~- Just about enough to give you an idea
of what 1t is like and how it works.

17-2. Coordinate Systems in a Plane.
In Chapter 2 we learned how to set up coordinate systems on

a line.

N
N

u [ —
q—._

Once we have set up a coordinate system, every number describes
a point, and every point P 1is determined when its coordinate x
is named.

Ol a new method, called coordainate geometry, Ly Hene bDescartes
(1596-1650). 1In this chapter we will give a short introduction
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In coordinate geometry, we do the same sort of thing in a
plane, except that in a plane a point 1s described not by a single
number, but by a palr of numbers. The scheme works like this:

aAY

2T

X

-14

-24

First we take a line X 1in the plane, and set up a coordinate
system on X. This line will be called the x-axis. In a figure
we usually use an arrow-head to emphé%ize the positive direction
on the x-axis.

Next we let Y Dbe the perpendicular to the x-axis through
the point O whose coordinate 1s zero, and we set up a coordinate
system on Y. By the Ruler Placement Postulate thls can be done
so that polnt O also has coordinate zero on Y. Y will be
called the y-axis. As before, we indicate the positive direction
by an arrow-head. The intersection 0 of the two axes is called
the origin.

We can now descrilbe any point in the plane by a pair of
numbers. The scheme 1is this. Glven a point P, we drop a
perpendicular to the x-axls, ending at a point M, with co-
ordinate x. We drop a perpendicular to the y-axis, ending at
a point N, with coordinate y. (In accord with Section 10-3
we can call M and N the projections of P into X and Y.)

[sec. 17-2]
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Definitions: The numbers x and y are called the
coordinates of the point P; x 1is the x-coordinate and y
is the y-coordinate.

Y
A
3L
ye N _Ply)
2--
14
IM
: : ; — : &
3 -2 < I X 2 3 A
-1 4
-2-.
-34
In the figure x = 1% and y = 2% The point P therefore

has coordinates l% and 2%. We write these coordinates 1in the

form (l%,aé), glving the x-coordinate first. To indicate
that point P has these coordinates we write P(l%,zé) or

P:(l%,aé-).

[sec. 17-2]
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Let us look at some more examples.

q1
A
3|r 3

1

: Zi———vpz

! l

|
- — el ,P
T T
| i | |
| | | |
— : + — e t + +——t——» X
-5 -4 -3 :-2 -1 | }2 3 {4 5
| | I
| -7 | I
| | :
: ol ipg i
I l
| |
|
et ——————— -1P.,

We read off the coordinates of the points by following the dotted
lines. Thus the coordinates, in each case, are as follows:

' P1(2,l)
P2(1,2)
P3(-l,3)
P,(-3,1)
PS(-2,-3)
Pg(2,-2)
P7(u,-u)

[sec. 17-2]
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Notlice that the order in which the coordinates are written
makes a difference. The point with coordinates (2,1) is not the
same as point (1,2). Thus, the coordinates of a point are really
an ordered pair of real numbers, and you can't tell where the

- point is unless you know the order in which the coordinates are
- given. The convention of having the first number of the ordered

- palr be the x-coordinate, and the second the y-coordinate, is

* highly important.

Just as a single line separates the plane into two parts
(called half-planes) so the two axes separate the plane into four
parts, called quadrants. The quadrants are identified by number,

like this: y

4

» X

We have shown that any point of our plane determines an
ordered pair of numbers. Can we reverse the process? That is,
given a pair of numbers (a,b) can we find a point whose coordin-
ates are (a,b)? The answer is easily seen to be "yes". 1In fact,
there is exactly one such point, obtained as the intersection of
the line perpendicular to the x-axls at the point whose coordinate
is a and the line perpendicular to the y-axis at the point whose
coordinate is b.

Thus, we have a one-to-one correspondence between points in
the plane and ordered palrs of numbers. Such a correspondence 1is
called a coordinate system in the plane. A coordinate system is
specified by choosing a measure of distance, an x-axls, a y-axis
perpendicular to it and a positive direction on each. As long as

[sec. 17-2]
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we stick to a specific coordinate system, which will be the case
in all our problems in this book, each point P 1s associated
with exactly one number pair (a,b), and each number pair with
exactly one point. Hence, it will cause no confusion if we say
the number pair 1is the point, thus enabling us to use such con-
venient phrases as "the point (2,3)" or "P = (a,b)".

17-3. How to Plot Points on Graph Paper.

As a matter of convenience, we ordinarily use printed graph
paper for drawing figures in coordinate geometry. The horizontal
and vertical lines are printed; we have to draw everything else
for ourselves.

A
y
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In the figure above, the dotted lines represent the lines that are
already printed on the paper. The x-axis and the y-axis should be
drawn with a pen or a pencil. Notice that the x-axils is labeled
x rather than X; +this 1s customary. Here the symbol X is not
the name of anything, but merely a reminder that the coordinates
on this axis are going to be denoted by the letter x. Similarly,

[sec. 17-3]

I i i I i i i I | i I | I
I I I ! I I | I | I I I ! I
[ S TR U (VNN AN SUNN J ANV NN SN I SN RN S

_—



573

for the y-axis. Next, the points with coordinates (1,0) and

(0,1) must be labeled in order to indicate the unit to be used.
This is the usual way of preparing graph paper for plotting

points. We could have indicated a little less or a lot more.

For your own convenience, it is a good idea to show more than this.

But if you show less, then your work may be actually unintelligible.
Note that we could draw the axes 1n any of the following

positions:

Ay X

X¢———— y

v X
% y

and so on. There is nothing logically wrong with any of these
ways of drawing the axes. People find it easler to read each
other's graphs, however, 1f they agree at the outset that the
x-axis 1is to be horizontal, with coordinates increasing from

left to right, and the y-axis 1s to be vertical, with coordinates
increasing from bottom to top.

[sec. 17-3]
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Problem Set 17-3

Suggest why the kind of coordinate system used in this chapter
is sometimes called "Cartesian".

What are the coordinates of the origin?
What 1s the y-coordinate of the point (7,-3)?

Name the point which 1s the projection of (0,-%) into the
X-axis.

Which pair of points are closer together, (2,1) and (1,2)
or (2,1) and (2,0)?

In which quadrant is each of the followlng points?
a. (5:""3)' c. (5:3)'
b. ('5)3)° d. ('5,"3)'

What are the coordinates of a point which does not lie in
any quadrant?

The following points are projected into the x-axis. Write
them in such an order that their projections will be in
order from left to right.

A:(6,-3). B: (-2,5). Cc:(0,-4). D:(-5,0).

If the points in the previous problem are'projected into the
y-axis arrange them so their projections will be in order
from bottom to top.

If s 1s a negative number and r a positive number, in
what quadrant will each of the following points lie?

a. (s,r). e. (r,s).

b. (-s,r). f. (r,-s).
c. (-s,-r). & (-r,-s).
d. (s,-r). h. (-r,s).

[sec. 17-3]
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Set up a coordinate system on graph paper. Using segments
draw some simple pilcture on the paper. On a separate paper
list in pairs the coordinates of the end points of the
segments in your picture. Exchange your 1list of coordinates
with another student, and reproduce the picture suggested
by his 1list of coordinates.

A three dimensional coordinate system can be formed by
conslidering three mutually perpendicular axes as shown. The
y-axis, while drawn on this paper, represents a line per-
pendicular to the plane of the paper.

The negative portions of the AZ
X, y and 2z axes extend to
the left, to the rear, and
down respectively. Taken in
pairs the three axes determine
three planes called the yz-
plane, the xz-plane, and the
xy-plane. A point (x%,y,z)

is located by 1ts three co-

————— > X

ordinates: the x-coordinate y

1s the coordinate of its projection into the x-axis; the
y and 2z coordinates are defined in a corresponding manner.

a. On which axis will each of these points lie?
(0,5,0); (-1,0,0); (0,0.8) .

b. On which plane will each of these points lie?
(2,0,3); (0,5,-7); (1,1,0).

c. What is the distance of the point (3,-2,4) from the
xXy-plane? from the xz-plane? from the yz-plane?

[sec. 17-3]
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17-4. The Slope of a Non-Vertical Line.

The x-axis, and all lines parallel to it, are called
horizontal. The y-axis, and all lines parallel to it, are called
vertical. Notice that these terms are defined in terms of the
coordinate system that we have set up.

L B
TE:
<~ b *LI
0 ‘i o X

On the horizontal line Ll’ all points have the same y-coordinate
b, because the point (0,b) on the y-axis is the foot of all the
perpendiculars from points of Ll' For the same sort of reason,
all points of the vertical line L2 have the same x-coordinate
a. Of course, a segment is horizontal (or vertical) if the line
containing it is horizontal (or vertical).

Consider now a segment P,P,, where P, = (xl,yl) and

P, = (x2,y2), and suppose that P,P, 1s not vertical.

<
NAL
i
|
|
|
|
h—————}———-——-—

'F% (X2 ¥y)
I
|
|
l X
- t
0o X, Xo
[sec. 17-4]
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e Yo = ¥y
Definition: The slope of PlP2 is the number m = izr:—iz.

This really is a number: since the segment 1s not vertical,
Pl and P2 have different x-coordinates, and so the denominator
is not zero. Some things about the slope are easy to see.

(1) It is important that the order of naming the coordinates
is the same in the numerator as in the denominator. Thus, if we
wish to find the slope of PQ, where P = (1,3) and Q = (4,2)
we can either choose P1 = P, X, = 1, ¥y = 3 P2 = Q, Xy = y,

Yo = 2, glving slope of PQ = %—5-% =..%;

or Pl = Q, X, = L ¥y, =2, P2 = P, X, = 1, Yo = <

giving slope of PQ = %—:—12; -%.

I

What we cannot say is

slope of P_Q_=1?;——:—-% or ']2__:%
Notice that i1f the points are named in reverse order, the
slope is the same as before. Algebraically,
V3 = Yo Vo~ 3

X) - Xy Xy - Xy

Thus the value of m depends only on the segment, not on the order
in which the end-points are named.

(2) If m = 0, then the segment is horizontal. (Algebraical-
ly, a fraction is zero only if its numerator is zero, and this means
that y, = yl.)

(3) 1If the segment slopes upward from left to right, as in
the left hand figure on page 578, then m > 0, because the numerator
and denominator are both positive (or both negative, if we reverse
the order of the end-points.)

[sec. 17-4]

slope 1s the same as before. Algebraically,
Y1 - YQ YQ - y1
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(4) If the segment slopes upward from right to left as in
the right hand figure below, then m < O. Thils is because m
can be written as a fraction with a positive numerator Vo - 73
and a negative denominator Xo = Xq (or equivalently, a negative
numerator ¥ - Yo and a posltive denominator Xy - xe).

4y

y
& Pz(xz'yz)

P (x_,y, )
P x,,y,)

ﬂ(xpy|)
> X

(5) We do not try to write the slope of a vertical segment,
because the denominator would be zero, and so the fraction would

be meaningless.
In either of the two figures above, we can complete a right

triangle A PlPQR, by drawing horizontal and vertical lines

through P1 and P2, like this:

4y
yt———- P
2
l____RL____2> P
ﬁ i l'
| |
| I
| |
» X — + » X
X2 Xl
m>0 m<O0

Since opposite sides of a rectangle are congruent, it is easy to
see that

[seec. 17-4]

In either of the two figures above, we can complete a right

- S (= S g - - Py - = = % B a
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(1) if m > 0, then m=-P—§- and
1
RP,,
(2) if m< 0, then m = _Fzﬁ'

Once we know this much about slopes, 1t 1is easy to get our
first basic theorem.

Theorem 17-1. On a non-vertical line, all segments have the
same slope.

Proof: There are three cases to be considered.

Case (1): If the line is horizontal all segments on it have
slope zero.

Ty

»x
Case (2) Case (3) \\‘

In either of the other cases illustrated above, /a =/ a!',

and since the triangles are right triangles, this means that

A P1P2R ~ A Pl'PQ'R'.

Therefore, in either case,
RP2 R'P,!

P 2 -
PR AR
[sec. 17-4]
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In Case (2), these fractions are the slopes of fzf; and -51755'
and therefore the segments have the same slope. In Case (3), the
slopes are the negatives of the same fractions, and are therefore
equal.

Theorem 17-1 means that we can talk not only about the slopes
of segments but also about the slopes of lines: the slope of a
non-vertical line 1s the number m which 1s the slope of every
segment of the line.

Problem Set 17-4

1. Replace the "?" in such a way that the line through the two
points will be horizontal.

a. (5,7) and (-3,2).
b. (0,-1) and (4,2?).
c. (xl,yl) and  (x,,?).
2. Replace the "?" in such a way that the line through the two
points will be vertical.
a. (?,2) and (6,-4).
b. (-3,-1) and (2?2,0).
c. (xy,y;) and (?,yz).
3« By visualizing the points on a coordinate system in parts (a),
(b), and (c), give the distance between:
a. (5,0) and (7,0).
b. (5,1) and (7,1).
c. (-3,-4) and (-6,-4%).

d. What 1s alike about parts (a), (b) and (c)?

[sec. 17-4]
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State a rule giving an easy method for finding the
distance between such pairs of points.

Does your rule apply to the distance between (6,5) and
(3:‘5)?

By visualizing the points named in parts (a), (b), (c¢) and
(d) on a coordinate system, give the distance between the

points in each part.

al

b'

f.

With

(7,-3) and (7,0).

(-3,1) and (-3,-1).

(6,8) and (6,4).

(x1,y;) and (x,¥,).

What is alike about parts (a), (b), (c) and (d)?

State a rule giving an easy method for finding the
distance between such palrs of points.

perpendiculars drawn as shown below, what are the co-

ordinates of A, B and C?

P(2,5)

4 p\\\> 4 Q(3,2)
I /1
Al __NQ(4,3) 7 i

th

> Q-1,-2) > N '

Determine the distances from P and Q ¢to points A, B

and

C 1in Problem 5.

Compute the slope of _55- for each figure in Problem 5.

A road goes up 2 feet for every 30 feet of horizontal
distance. What 1s its slope?

[seec. 17-4]

ordinates of A, B and C?
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10.

*11.

12.

Determine the slope of the segment joining each of the follow- j
ing point pairs. '

a. (0,0) and (6,2).

b. (0,0) and (2,-6).

c. (3,5) and (7,12).
d. (0,0) and (-4,-3).
e. (-5,7) and (3,-8).
(33 = @3-
(-2.8,3.1) and (2.2,-1.9).

]

g
h. (s55,0) end (0,g5).

Replace the "?" by a number so that the line through the two
points will have the slope given. (Hint: Substitute in the
slope formula.)

a. (5,2) and (2,6). m=4,

1

5.

i L G

PA and PB are non-vertical lines. Prove that PA = PB

if and only if they have the same slope; and consequently
<> «—>

if PA and PB have different slopes, then P, A and B,

cannot be collinear.

it

b. (-3,1) and (4,?). m

a. Is the point B(4,13) on the line joining A(1,1) to
c(5,17)? (Hint: is the slope of AB the same as that
of BC?)

b. Is the point (2,-1) on the segment joining (-5,4)
to (6,-8)2

[sec. 17-4]
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Determine the slope of a segment joining:
a. (o,n) and (n,0).

b. (ed,-2d) and (0,d).

c. (a +b,a) and (a-Db,b).

Given A:(101,102), B:(5,6), éﬁ;('95"94)’ determine
whether or not lines AB and BC coincide.

Given A:(101,102), B:(5,6), €:(202,203), D:(203,204).
Are XB and ?ﬁ? parallel? Could they possibly coincide?

Draw the part of the first quadrant of a coordinate system
having coordinates less than or equal to 5. Draw a segment
through the origin which, if extended, would pass through
P(80000000,60000000) .

Parallel and Perpendicular Lines.

It 1s easy to see the algebraic condition for two non-vertical

lines to be parallel.

If the lines are parallel, then A PQR ~ A P'Q'R!',

4y

as in the proof of the preceding theorem, that they have the same
slope.

[sec. 17-5]
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Conversely, if two different lines have the same slope, then ;
they are parallel. We prove this By the method of contradiction.

A
y L2
y 3" ———————————————
L
] I P,
|
——————— |
Y ! :
ol : l
| ]
/ | |
| |
= — { X
X o]

Assume as 1n the figure above that Ll and L2 are not parallel.

If as shown in the figure P1 is their point of intersection,

and P2 and P3 have the same x-coordinate Xos the slope of
¥3 = V1

Mpy = e,
2 x2 - xl

y2-yl
EE—:ij, and the slope of LE

Since ¥3 # Yoo the fractions cannot be equal, and hence

L1 is ml = is

mq # My . Thus our initial assumption that the two lines L1

and L2 were not parallel has led us to a contradiction of the
hypothesis that my = m,. Hence the two lines Ll and L2 must
be parallel.

Thus we have the theorem:

Theorem 17-2. Two non-vertical lines are parallel if and
only 1if they have the same slope.

[sec. 17-5]
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Now turning to the condition for two lines to be perpendicular,
let us suppose that we have glven two perpendicular lines, neither
of which is vertical.

Ql

|
|
|
|
|
-
R

v
*

Let P be their point of intersection. As in the figure, let Q
be a point of one of the lines, lying above and to the right of
P. And let Q' be a point of the other line, lying above and to
the left of P, such that PQ' = PQ. We complete the right
triangles A PQR and A Q'PR' as indicated in the figure. Then

A PQR & A Q'PR!'. (Why?)
Therefore Q'R' = PR and R'P = RQ.
Q'R' _ PR
and hence -0 m.
<> <>
Let m be the slope of PQ, and let m' be the slope of PQ'.
- RQ
Then m = PR’
__Q'R' PR
and m! = W = m.
Therefore m' =- %

That i1s, the slopes of perpendicular lines are the negative
reciprocals of each other.

[sec. 17-5]

triangles A PQR and A Q'PR' as indicated in the figure. Then
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Suppose, conversely, that we know that m' =—~%. We then
construct A PQR as before, and we construct the right triangle
A Q'PR' making R'P = RQ. We can then prove that Q'R' = PR;
this gives the same congruence, A PQR & A Q'PR', as(_b)efo(_r_;e, and
it follows that / Q'PQ 1is a right angle and hence PQ | PQ'.

These two facts are stated together in the following theorem:

Theorem 17-3. Two non-vertical lines are perpendicular if
and only if their slopes are the negative reciprocals of each

other.

Notice that while Theorems 17-2 and 17-3 tell us nothing
about vertical lines, they don't really need to, because the whole
problem of parallelism and perpendicularity is trivial when one
of the lines 1s vertical. If L 1is vertical, then L' 1is parallel
to L if and only if L' is also vertical (and different from L.)
And if L 1is vertical, then L' 1is perpendicular to L 1if and
only if L' 1is horizontal.

Problem Set 17-5

1ls Four points taken in pairs determine s8ix segments. Which
pairs of segments determined by the following four points
are parallel? A(3,6); B(5,9); ¢(8,2); D(6,-1). (Caution:
Two segments are not necessarily parallel if they have the
same slope!)

2« Show by considering slopes that a parallelogram is formed by
drawing segments joining in order A(-1,5), B(5,1), C(6,-2)
and D(0,2). '

2 1
3. Lines Ll’ L L3 and Lh have slopes > -4, -yg

2,
and %- respectively. Which pairs of lines are perpendicular?

[sec. 17-5]
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It is asserted that both of the quadrilaterals whose vertices
are glven below are parallelograms. Without plotting the
points, determine whether or not this is true.

(1) A:(“5,‘2)’ B:('492): C:(4,6), D:(B:l)'
(2) P:(-2,-2), @Q:(4,2),  R:(9,1), 5:(3,-3).

The vertices of a triangle are A(16,0), B(9,2) and
c(0,0).

a. What are the slopes of its sides?
b. What are the slopes of its altitudes?

Show that the quadrilateral joining A(-2,2), B(2,-2),
c(4,2), and D(2,4) 1is a trapezoid with perpendicular
diagonals.

Show that a line through (3n,0) and (0O,n) is parallel to
a line through (6n,0) and (0,2n).

Show that a line through (0,0) and (a,b) 1s perpendicular
to a line through (0,0) and (-b,a).

Show that if a triangle has vertices X(r,s), Y(na+r,nb+s)
and Z(-mb+r,ma+s) it will have a right angle at X.

Given the points P(1,2), Q(5,-6) and R(b,b); determine
the value of b so that / PQR 1s a right angle.

P=(a,1), Q= (3,2), R = (b,1), S = (4,2). Prove that
<> , <> —_— —_—
PQ # RS, and that if PQ || RS then a =Db - 1.

[seec. 17-5]
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17-6. The Distance Formula.

If we know the coordlnates of two points Pl and P2 then
we know where the points are, and so the distance P1P2 is
determined. Let us now find out how the distance can be calculated.
What we want 1s a formula that gives PlP2 in terms of the co-
ordinates X15 Xos ¥y and Vo

Ay

Y.
2
N %

1M2

» X

Let the proJjections Ml’ M2, N1 and N2 be as in the figure.
By the Pythagorean Theorem, (P1P2)2 = (PlR)2 + (RP2)2.

also PlR = MlM2 and RP2 = N1N2,
because opposite sides of a rectangle are congruent.
Therefore (P1P2)2 = (M1M2)2 + (N1N2)2.

But we know that MM, = Ix2 - xll

and NiN, = |y2 -y,

Therefore (P1P2)2 = |x2 - xll2 + |y2 - ylla.

Of course, the square of the absolute value of a number is the
same as the square of the number itself.

[sec. 17-6]
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2 2 2
Therefore (P1P2) = (x5 = %9)° + (3, - yl) ,
and since P,P, > O, <thls means that

2 2
P,P, =-V/2x2 - xl) + (y2 - yl) .
This 1s the formula that we are looking for. Thus we have the
theorem:

Theorem 17-4. (The Distance Formula.) The distance between
the points (xl,yl) and (xg,ye) is equal to

-\/(XQ = X1)2 + (Y2 - yl? .

For example, take P = (-1,-3) and P, = (2,4).

By formula, PP, J(2+1)2 4+ (4 +3)2
v 9+ 19

~

iy
L
-~
S Ry S S R S S p——.
~

4

[sec. 17-6]
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Of course, if we plot the points, as abové, we can get the
same answer directly from the Pythagorean Theorem; the legs of
the right triangle A PlRP2 have lengths 3 and 7, 8o that

1

P P2 = o/ 32 + 72, as before. If we find the distance this way,

we are of course simply repeating the derivation of the distance

formula in a specific case.

Problem Set 17-6

1. a Without using the distance formula state the distance
between each pair of the points: A(0,3), B(1,3),
c(-3,3) and D(%.5,3).
- I Without using the distance formula state the distance
between each pair of the points: A(2,0), B(2,1),
c(2,-3) and D(2,4.5).
2s a. Write a simple formula for the distance between (xl,k)
and (x2,k). (Hint: The points would lie on a
horizontal line.)
b. Write a simple formula for the distance between (k,yl)
and (k,ye).
3 Use the distance formula to find the distance between:
a. (0,0) and (3,4). e. (3,8) and (-5,-T).
b. (0,0) and (3,-4). £f. (-2,3) and (-1,%).
c. (1,2) and (6,14). g. (10,1) and (49,81).
d. (8,11) and (15,35). h. (-6,3) and (4,-2).
y, a Write a formula for the square of the distance between
the points (xl,yl) and (x2,y2).
b. Using coordinates wrlte and simplify the statement:

The square of the distance between (0,0) and (x,y)
is 25.

[sec. 17-6]
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5. Show that the triangle with vertices R(0,0), S(3,4) and
T(-1,1) 1is isosceles by computing the lengths of its sides.

6. Using the converse of the Pythagorean Theorem show that the
triangle joining D(1,1), E(3,0) and F(4,7) 1is a right
triangle with a right angle at D.

7. Given the points A(-1,6), B(1,4)- and C(7,-2). Prove,
wlthout plotting the points, that B 1s between A and C.

8. Suppose the streets in a city form congruent square blocks
with avenues running.east—west and streets north-south.

a. If you follow the sidewalks, how far would you have to
walk from the corner of U4th avenue and 8th street to
the corner of Tth avenue and 12th street? (Use the
length of 1 block as your unit of length.)

b. What would be the distance "as the crow flies" between
the same two corners?

9. Vertices W, X and Z of rectangle WXYZ have coordinates
(0,0), (a,0) and (0,b) respectively.

a. What are the coordinates of Y?

b, Prove, using coordinates, that WY = XZ.

*10. a. Using 3-dimensional coordinates (see Problem 12 of
Problem Set 17-3), compute the distance between (0,0,0)
and (2,3,6).

b. Write a formula for the distance between (0,0,0) and
(x,y,2).

c. Wrlite a formula for the distance between Pl(xl,yl,zl)
and Pe(xg,ye,zz).

[sec. 17-6]

(0,0), (a,0) and (0,b) respectively.
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17-7. The Mid-Point Formula.

In Section 17-8 we will be proving geometric theorems by the
use of coordinate systems. In some of these proofs, we will need
to find the coordinates of the mid-point of a segment P1P2 in
terms of the coordinates of Pl and P2.

First let us take the case where P1 and P2 are on the
Xx-axis, with Xq < Xos like this:

1 >X

>T0
»x + 0
N

and P 1is the mid-point, with coordinate x. Since xq <xK< Xops
we know that PlP =X - X, and PP2 = X5 - X.

Since P 1s the mid-point, this gives
X - X =X, - X,

X, + Xy
or X=T.
In the same way, on the y-axils,
Y1 + 9o
y=—7
Now we can handle the general case easily:
Y P

2

i
| S —
1)

—————— *.___..___ I
| | 1
| | [
| | |
S
| | l
| | |

Tl J (8] I\ >X
X| X XZ
[see. 17-7]

In the same way, on the y-axils,

I . T
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Since P 1s the mid-point of P1P2, it follows by similar tri-
angles that R 1is the mid-point of PlS. Since opposite sides
of a rectangle are congruent, U 1s the mid-point of v,
Therefore X + X
1 2
x=—2——.

In the same way, projecting into the y-axis, we can show that
¥y + 9o
y=—7—"

Thus we have proved:

Theorem 17-5. (The Mid-Point Formula.) Let P, = (xl,yl)

and let P, = (xe,ye). Then the mid-point of P,P, 1s the point

xl + x2 yl + ya)

P=( > ’ () .

Problem Set 17-7

1 Visualize the points whose coordinates are listed below and
compute mentally the coordinates of the mid-point of the
segment Joining them.

a. (0,0) and (0,12).
b. (90,0) and (-5,0).
c. (1,0) and (3,0).

d. (0,-7) and (0,7).
e. (4,4) and (-4,-4).

2. Use the mid-point formula to compute the coordinates of the
mid-point of the segments jolning points with the following
coordinates.

a. (5,7) and (11,17).
b. (-9,3) and (-2,-6).
¢ (%,% and (%-,é) .

[sec. 17-7]
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a. (2.51,-1.33) and (0.65,3.55).
e. (a,0) and (b,c).
s (r+s,r-8) and (-r,s).

a. One end-point of a segment is (4,0); the mid-point
is (4,1). Visualize the location of these points and
state, without applying formulas, the coordinates of
the other end-point.

b. One end-point of a segment is (13,19). The mid-point
is (-9,30). Compute the x and y coordinates of
the other end-point by the appropriate formulas.

A quadrilateral is a square if its dliagonals are congruent,
perpendicular, and bisect each other. Show this to be the
case for the quadrilateral having vertices, A(2,1), B(7,4),
c(4,9), and D(-1,6).

If the vertices of a triangle are A(5,-1), B(1,5) and
¢(-3,1), what are the lengths of its medians?

Given the quadrilateral joining A(3,-2), B(-3,4), ¢(1,8)
and D(7,4), show that the quadrilateral formed by joining

its mid-points in order is a parallelogram. AY
0, 3a
Using coordinates, prove that !

two of the medians of the tri-
angle with vertices (a,0),
(-a,0) and (0,3a) are per-
pendicular to each other.

X
-0,0 0,0

Relocate point P in the figure precedlng Theorem 17-5, so
that PP1 = %Ple and find formulas for the coordinates of
P 1in terms of the coordinates of P; and P,. (p 1is
between P, and P,, and x,> xl.)

[sec. 17-7]
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*9. a. Prove: If P, = (xl,yl), P, = (x2,y2) and P = (x,y)
and if P 1is between P1 and P2 such that

ol o rX, + 8SX ry, + 8y
1l _r _ e 1 _Teg 1
Wg-g, then x = g and ¥ =g

b. Use the result of part (a) to find a point P on the
segment joining P1(5,11) and P2(25,36) such that

PP, 4
PP, - B

[

17-8. Proofs of Geometric Theorems.

Let us now put our coordinate systems to work in proving a
few geometric theorems. We start with a theorem that we have
already proved by other methods.

Theorem A. The segment between the mid-points of two sides
of a triangle is parallel to the third side and half as long.

Restatement: In A ABC let D and E be the mid-points of
AB and AC. Then DE || BC and DE = %BC.

A

VAN

Proof: The first step 1In using coordinates to prove a
theorem like this is to introduce a suitable coordinate system.
That is, we must decide which line is to be the x-axls, which the
y-axis, and which direction to take as positive along each axis.
We have many choices, and sometimes a clever cholce can greatly
simplify our woggé_ In the present case %E€§eems reasonably
simple to take BC as our x-axis, with BC as the positive
direction. The y-axis we take to pass through A, with Eﬂ? as
the positive direction, like this:

C

[sec. 17-8]

Restatement: In A ABC let D and E be the mld-points of
AB and AC. Then DE || BC and DE = %BC.
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The next step 1s to determine the coordinates of the various
points of the figure. The x-coordinate of A 1s zero; the
y-coordinate could be any positive number, so we write A = (0,p),
with the only restriction on p being p > 0. Similarly,

B =(q,0) and C = (r,0), with r > q. (Note that we might
have any of the cases < r<0, q<r=0, <0< r,
0O0=q<r, 0<q<r. Our figure illustrates the third case.)
The coordinates of D and E can now be found by the mid-point

r
D= (3B, E= (35
Therefore the slope of .BE is
5-%_ o _
r r -
z-2
(since q # r the denominator is not zero).
Likewise, the slope of BC 1is

formula. We get

0,

rogT o
2
and so DE || BC. Finally, by the distance formula,
2 2 -
e -/ (5- 97+ B-B° -39,
and BC =-V/(P = q)2 + (0 - 0)2 r -4,
80 that DE = %BC.

I

[sec. 17-8]

Therefore the slope of DE 1s
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(The coordinates (p + q,r) for C can be written down by
inspection if one is willing to assume earlier theorems about
parallelograms, for example, that ABCD 1s a parallelogram if
AB || CD and AB = CD.)

Now we finally put in the condition that AC = BD. Using
the distance formula, we get

Vip+ra-02+(r-02=(a-p?+(r-0)?>
Squaring glves

(p + @)% +r? = (q - p)% + r?,

2
E q2 - 2pq + p2 +r,

o.

p2 + 2pq + q2 +r

or ‘ bpq

Now 4 #0 and p # O; hence, q = 0. This means that D 1lies
on the y-axis, so that [ BAD 1is a right angle and ABCD 1is a
rectangle.

Problem Set 17-8

Prove the following theorems using coordinate geometry:

i 4 The diagonals of a rectangle have equal lengths.
(Hint: Place the axes as shown.)
o

D(0,b) C(a,b)

A10,0) B(a,0) "X
2. The mid-point of the hypotenuse of a right triangle 1is
equidistant from 1ts three vertices.

3 Every point on the perpendicular bisector of a segment 1is
equidistant from the ends of the segment. (Hint: Select
the axis in a position which will make the algebralc com-
putatlion as simple as possible.)

[sec. 17-8]
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Every point equidistant from the ends of a segment llies on

the perpendicular bisector of the segment.
F

The diagonals of a parallelo-
5 P Dibc)  Clothe)

gram bisect each other. (Hint:
Give the vertices of parallelo-
gram ABCD the coordinates
shown in the diagram. Show
that both dlagonals have the
same mid-point.)

Al(0,0) Blo,0) X

The line segment Jjoining the mid-points of the dlagonals of
a trapezoid 1s parallel to the bases and equal in length to
half the difference of their lengths.

In the figure R and S are mid-points of the diagonals
AC and BD of trapezoid ABCD.

F
/'y
D(b,c) C(d,c)
R S
» X
A(0,0) B8(a,0)

The segments joining mid-
points of opposite sides y C (4d, 2e)
of any quadrilateral bisect TD(4b'4c) T

each other. (The U4's in
the diagram are suggested
by the fact the mid-points S
of segments Jjolning mid-
points must be found.)

A|((0,0) R B (40,0)

[sec. 17-8] .
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y
8. The area of A ABC 1is 8(b,s)
a(t -s)+b(r-t) +c(s -r)
2 ’ cle,t)
where A = (a,r), B = (b,s) I
. A (g,r) |
and C = (c,t). (Hint: : i
Find three trapezoids in [% + rL
the figure.) X Y - R
9. Given: In A XY2, /X 1is 4 Z(b,c)
acute and ZR 1is an altitude. :
Prove: ZY°=XZ°+ XY° - 2XY - XR. |
[
[
!
X(00)| Yo RO

10. If ABCD 1is any quadrilateral with diagonals, AC and Eﬁ,
and if M and N are the mid-points of these diagonals,

2 2 2 2 2

then ABZ + BC® + CD° + DA® = ACZ + BD® + 4MN©.

11. In A ABC, CM is a median to side AB.

>
Prove: ACS + BCZ = f‘%— + 2Mc2.

17-9. The Graph of a Condition.

By a graph we mean simply a figure 1in the plane, that 1s, a
set of points. For example, triangles, rays, lines and half-
planes are graph8. We can describe a graph by stating a condition
which 1s satisfled by all points of the graph, and by no other
points. Here are some examples showing a condition, a description
of the graph, and the figure for each:

‘[sec. 17-9]
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Condition Graph
1. Both of the coordinates 1. The first quadrant.
of the point P are
positive.
2. The dlstance OP 1is 2. 2 The circle with center at

the origin, and radius 2.

3. OP < 1. 3. The interior of the circle
with center at the origin
and radius 1.

L., x =0, 4.  The y-axis.
B y = 0. 5 . The x-axis.
—
6. x>0 and y = 0. 6. The ray OA, where
A = (1,0).
e
7. x=0 and y £ 0. Ts The ray OB, where
B = (0,-1).

The seven graphs look like this:

[sec. 17-9]




7. x>3 and y < -1.
8. a. x 1is a positive integer.
b. y 1s a positive integer.
C. Both x and y are positive integers.
9. x>0, y>0, and y > x.
10. 1 <x<3 and 1<Ly<L5.
*11. |x] < 4% and |y| < .
*12,  |x|] < % and |y| = b.
*13. y = |x].
14, x| = |yl.
*15. x| + |yl = 5.

17-10. How to Describe a Line by an Equation.

We are going to show that any line 1s the graph of a simple
type of equation. We start by considering the condition which
characterizes the line.

Consider a non-vertical line L, with slope m. Let P
be a point of L, with coordinates (xl,yl).

yd

[sec. 17-10]
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The algebra in this proof can be made even easler by a simple
device. Instead of setting A = (0,p), B = (q,0), C = (r,0) we
could just as well have put A = (0,2p), B = (2q,0), ¢C = (2r,0);
that 1is, take p, Q@ and r as half the coordinates of the points
A, B and C. If we do it this way, then no fractions arise when
we divide by 2 1n the mid-point formula. This sort of thing
happens fairly often; foresight at the beginning can take the place
of patience later on.

Theorem B. If the diagonals of a parallelogram are congruent,
the parallelogram is a rectangle.

Restatement: Let ABCD Dbe a parallelogram, and let AC = BD.
Then ABCD 1s a rectangle.

y 4D C

—P>X

A B
Proof: Let us take the axes as shown in the figure. Then
A = (0,0), and B = (p,0) with p > 0. If we assume nothing
about the figure except that ABCD 1is a parallelogram D could
be anywhere in the upper half-plane, so that D = (q,r) with
r > 0, but no other restriction on qQ or r. However, C 1s
now determined by the fact that ABCD 1is a parallelogram. It
is fairly obvious (see the preceding proof for details) that for
DC to be parallel to AB we must have C = (s,r). s can be
determined by the condition BC || AD, 1like this:

slope of .56.= slope of AD,

r-0_1r-0 _r
s-p q-0 °F s-p
rq = r(s - p),
Q=8 -p, (since r # 0)
s =p+ Q.
[sec. 17-8]
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z y
|
I
" |
=] o) - » X
-
3. 4,
X y
&
l‘ K
A
0. |. P X T)* T » x
5. 6.
'y
|
ol |
-|¢8B
7.
[sec. 17-9]
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You should check carefully, in each of these cases, that the graph
i1s really accurately described by the condition in the left-hand
column above. Notice that we use diagonal cross-hatching to
indicate a region.

If a graph 1s described by a certain condition, then the
graph is called the graph of that condition. For example, the
first quadrant 1s the graph of the condition x > 0 and y > 0;
the circle in Figure 2 is the graph of the condition OP = 2; the
y-axls 1s the graph of the condition x = 0; the x-axis 1s the
graph of the condition y = O0; and so on.

Very often the condition describing a graph will be stated in
the form of an equation. In these cases we naturally speak of the
graph of the given equation.

If you remember Chapter 14, you have probably noticed that
we are doing the same thing here that we did in Sections 14-1 and
14-2, namely, characterizing a set by a property of its points.
The fact that here we use the word "graph" instead of "set" is
not important; it is simply customary to use the word "graph"
when working with coordinate systems.

Problem Set 17-9

Sketch and describe the graphs of the conditions stated below:
l. a. x=25.
b. |x| = 5.
2. a. y> 3.
b. |y <3.
3. 0<Kx<Kza.
b, -1 < x<5.
5. =2<Ky<ea.
6 x<0 and y > 0.

[sec. 17-9]

when working with coordinate systems.
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Suppose that Q 1s some other point of L, with coordinates
(x,y). Since PQ 1lies in L the slope of PQ must be m,
and the coordinates of Q must satisfy the condition

y -5
X - xl = m.
1

Notice that this equation is not satisfied by the coordinates of
the point P, because when x = Xq and y = ¥q» the left-hand
side of the equation becomes the nonsensical expression ~g,

which is not equal to m (or to anything else, for that matter).
If we multiply both sides of this equation by x - Xq with

x #£ Xy, Wwe get Y-y = m(x - xl).

This equation is still satisfied for every point on the line
different from P. And it 1s also satisfied for the point P
itself, because when x = Xq and y = ¥y the equation takes
the form O = O, which 1s a true statement.

This is summarized in the following theorem:

Theorem 17-6. Let L be a non-vertical line with slope m,
and let P be a point of L, with coordinates (xl,yl). For
every point Q = (x,y) of L, the equation y - ¥y = m(x - xl)
i1s satisfied.

You might think at first that we have proved that the line
L 1s the graph of the equation y - y; = m(x - xl). But to know
that the latter i1s true we need to know that (compare with
Section 14-1):

(1) Every point on L satisfles the equation;

(2) Every point that satisfies the equation is on L.
We have only shown (1), so we have still to show (2). We shall
do this indirectly, by showing that if a point is not on L
then it does not satisfy the equation.

[sec. 17-10]



606

Suppose that Q = (x,y) 1s not on L. Then there is a
point Q' = (x,y') which is on L, with y' #y, 1like this:

0 X >
Y' -yl
By Theorem 17-1, _57773§I = m;
hence ' =y, + m(x - xl).

Since y' # y, this means that
¥ £y +mlx - x).
Therefore Y- # m(x - xl).
Therefore the equation is satisfied only by points of the line.

We have now proved the very important theorem:

Theorem 17-7. The graph of the equation
y -y, =mlx - x)

is the line that passes through the point (xl,yl) and has
slope m.

[see. 17-10]
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The equation given in Theorem 17-7 is called the point-slope

form of the equation of the line. Let us take an example:
'Y}

Here we have a line that passes through the points P = (1,2)
and Q = (4,6). The slope is

m = 6 -2 4
T -1 3
Using P = (1,2) as the fixed point, we get the equation
(1) y—2=§(X-l).
(Here ¥y =2 %X, =1, and m =1§.) In an equivalent form,
this becomes (2) 3y - 6 = 4x - 4, (How?)
or (3) Ix - 3y = -2.

Notice, however, that while Equation (3) i1s simpler to look at
if all we want to do is look at it, the Equation (1) 1s easier to
interpret geometrically. Theorem 17-7 tells us that the graph of
the Equation (1) is the line that passes through the point
P = (1,2) and has slope T

The student can readlly verify that we will get the same or

an equivalent equation i1f we had used Q as the fixed point
instead of P.

[sec. 17-10]



608

Given an equation in the point-slope form, 1t 1s easy to see
what the line is. For example, suppose that we have given the
equation vy -2=3(x-4).

The line contains the point (4,2), and has slope m = 3. To
draw a line on graph paper, we merely need to know the coordinates
of one more point. If x = 0, then
y - 2= <12,

and y = =10,
Therefore, the point (0,-10) 1s on the line, and we can complete
the graph:

4y

Logically speaking, this is all that we need. As a practical
matter, it is a very good idea to check the coordinates of one
more point. This point can be selected anywhere along the line,
but to serve as a good check it should not be too near the other
two points. If we take Xx = 2, we get

y-2==6, or y= -4,
As well as we can judge from the figure, the point (2,-4) 1lies
on the line.

[seec. 17-10]
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At the beginning of this section we promised to show that
any line 1is the graph of a simple type of equatlion. We have
shown this for any non-vertical line, but we must still consider
a vertical line. Suppose a vertical line crosses the x-axis at

the point with coordinates (a,0), as in the figure.

y
'y

(a,0)

» X

v

Since the vertical line is perpendicular to the x-axis, every
point of the line has its x-coordinate equal to a. Furthermore,
any point not on the line will have its x-coordinate not equal
to a. Hence, the condition which characterizes the vertical
line 18 x = a, certainly a very simple type of equation.

[sec. 17-10]

Since the vertical llne 1S perpenaicular to the x—axls,'every
point of the line has its x-coordinate equal to a. Furthermore,
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Problem Set 17-10

In each of the following problems, we have given the co-
ordinates of a point P and the value of the slope m. Write
the point-slope form of_the equation of the corresponding line,
and draw the graph. Check your work by checking the coordinates
of at least one point that was not used in plotting the line.

It is all right to draw several of these graphs on the same set
of axes, as long as the figures do not become too crowded.

1. P=(-1,2), m=14,

2. P=(1,-1), m= -1.
3. P =(0,5), n1=-%.
b, P = (-1,-4), n = %.

5. P=(3,-2), m=0.

By changing to a point-slope form where necessary, show that
the graph of each of the followlng equations 1s a line. Then
draw the graph and check, as in the preceding problems.

6. y-1=2(x-14).
7. y=2x-1T.

8, 2x-y-7T=0.
9. y+5= %{x + 3).‘

10. x - 3y = 12.
11. V=X

12. y = 2X.

13. y=2x - 6.
14, y = 2x + 5.
15. x =4,

16. x = 0.

17. y = 0.

[see. 17-10]
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draw the graph and check, as in the preceding problems.
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18. Thinking in three-dimensional coordinates, describe in words
the set of points represented by the following equations.
For example, y = 0 1is the equation of the xz-plane, that
is, the plane determined by the x and 2z- axes. (Refer
to Problem 12 of Problem Set 17-3.)

a. x =0, c. X =1,

b. z =0, da. y = 2.

17-11. Various Forms of the Equation of a Line.

We already know how to write an equation for a non-vertical
line if we know the slope m and the coordinates (xl,yl) of
one point of the line. In this case we know that the line is the
graph of the equation

y-¥ = m(x "xl):
in the point-slope form.

Definition: The point where the line crosses the y-axis is
called the y-intercept. If this is the point (0,b), then the
point-slope equation takes the form

y - b=m(x-0),
Yy =mx + b.

This is called the slope-intercept form. The number b 1s also
called the y-intercept of the line. (When we see the phrase
Y-intercept, we will have to tell from the context whether the
number b or the point (0,b) 1is meant.) Thus we have the
following theorem:

Theorem 17-8. The graph of the equation
y=mx +Db
1s the line with slope m and y-intercept b.

[sec. 17-11]



612

If we have an equation given in this form, then 1t 1s easy to
draw the graph. All we need to do 1s to give Xx any value other
than 0, and find the corresponding value of y. We then have
the coordinates of two points on the line, and can draw the line.
For example, suppose that we have glven

y=3x -4,
Obviously the point (0,-4) 1s on the graph. Setting x = 2,
we get y=6 14 =2,
Therefore the point (2,2) 1s on the line, and the line therefore
looks like this:

N+
w4
H

As a check, we find that for x = 1,
y=3-4=-1,
and the point (1,-1) 1lies on the graph, as well as we can Jjudge.

[see. 17-11]
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Notice that once we have Theorem 17-8, we can prove that
certain equations represent lines, by converting them to the
slope-intercept form. For example, suppose we have given

(1) 3x + 2y + 4 = 0.
This 1s algebraically equivalent to the equation
2y = -3x - 4,
or (2) vy =-3x - 2.

Being equivalent, Equations (1) and (2) have the same graph. The
graph of (2) 1s a line, namely, the line with slope m = -%- and
y-intercept b = -2. The graph of (1) is the same line.

17-12. The General Form of the Equation of a Line.

Theorem 17-8, of course, applies only to non-vertical lines,
because these are the ones that have slopes. Vertical lines are
very simple obJects, algebraically speaking, because they are the
graphs of simple equations, of the form

X = a.
Thus we have two kinds of equations (y = mx + b and x = a) for
non-vertical and vertical lines respectlively. We can tie all this
together, including both cases, in the following way.

Definition: By a linear equation in x and y we mean an
equation of the form

AX + By + C =0,
where A and B are not both zero.

The following two theorems describe the relation between
geometry and algebra, as far as lines are concerned:

Theorem 17-9. Every line in the plane is the graph of a
linear equation In x and Y.

Theorem 17-10. The graph of a linear equation in x and ¥y
is always a line.

Now that we have got this far, both of these theorems are
very easy to prove.

[see. 17-12]

Thus we have two kinds of equations (y = mx + b and x = a) for
non=vertical and vertical 1ines resnectively. We can tie all thias
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‘ Proof of Theorem 17-9: Let L be a line in the plane. If
L is vertical, then L 1is the graph of an equation
X = a,
or X -a=0,.,
This has the form Ax + By + C = 0, where A =1, B=0, C = -a.

A and B are not both zero, because A =1, and so the equation
is linear.

If L 1is not vertical, then L has a slope m and crosses
the y-axis at some point (O,b). Therefore L 1is the graph of
the equation y =mx + b,
or mx -y + b =0,

This has the form Ax+ By + C =0, where A =m, B= -1, C =D),

A and B are not both zero, because B = -1. Therefore the
equation 1s linear. (Notice that it can easily happen that m = O;
this holds true for aliwhorizontal lines. Notice also that the
equation is not unique: e.g. 2AX + 2By + 2C = O has the same
graph as Ax + By + C = 0.)

Proof of Theorem 17-10: Given the equation Ax + By + C =0
with A and B not both zero.

Case 1. If B = 0, then the equation has the form
sz-C.

Since B = 0, we know that A # 0. Therefore we can divide by
A, getting X = %u
The graph of this equation is a vertical line.

Case 2. Suppose that B # 0. Then we can divide by B,

getting %@ +y +-% =0,
or y =-%x - %u
The graph of this equation 1s a line, namely, the line with slope

m =-% and y-intercept b =—%.

To make sure that you understand what has been proved, in
Theorems 17-9 and 17-10, you should notice carefully a certain
thing that has not been proved. We have not proved that if a

[sec. 17-12]

Proof of Theorem 17-10: Given the equation Ax + By + C =0
with A and R not both zero.
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given equation has a line as 1ts graph, then the equation is
linear. And in fact this latter statement is not true. For
example, consider the equatlon

x2 = 0.

Now the only number whose square is zero is the number zero itself.
Therefore the equation x2 = 0 says the same thing as the equation
x = 0. Therefore the graph of the equation x2 = 0 1s the y-axis,
which is of course a line. Similarly, the graph of the equation

v =0

is the x-axis.
The same sort of thing can happen 1in cases where it is not so
easy to see what is golng on. For example, take the equation

x2 + y2 = 2Xy.
This can be written in the form
x2 - 22Xy + y2 = 0,
or (x - y)2 = 0.
The graph is the same as the graph of the equation
Xx-y=0,
or Yy = X.
The graph is a line. ¢

Notice that the proof of Theorem 17-10 gives us a practical
procedure for getting information about the line from the general
equation. If B = 0, then we have the vertical line given by

the equation X =—%.
Otherwise, we solve for y, getting
A C
y = "Fx = 7"
where the slope 1s m = —%
and the y-intercept is b ='-%u

[sec. 17-12]

The graph 18 The Same as the grapn o' the equation
X -y =0,
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10.
il.
12.

13.
14,
15.
16.
17
18.
19.
20.

Problem Set 17-12

Sketch the graphs of the following equations:

2x

1
§N

+ 5y =T7.
-2x + 3 =0,

x+u’=o.

v+ 4 =0.

Des

o -

0 .

%2
x2
Ske
3x
5x

(x

(y

cribe the graphs of the following equatilons:
X+ 0.y =0.

X+ 0.y =2,

* y2 = 0.

= -1,

tch the graphs of the followlng conditions:

+ 4y =0 and x £ O.

-2y=0 and 5<y < 10.
+ y)2 = 0.
- 1)%% - o. .

Find linear equations (Ax + By + C = 0) of which the

fol
B,

The
The
The
The
The
The
The

The
wit

lowing lines are the graphs. State the values for A,
C 1in your answer.

line through (1,2) with slope 3.

line through (1,0) and (0,1).

line with slope 2 and y-intercept -4.
x-axis.

y-axis.

horizontal line through (-5,-3).
vertical line through (-5,-3).

line through the origin and the mid-point of the segment
h end-points (3,2) and (7,0).
[sec. 17-12]
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17-13. Intersections of Lines.
Suppose that we have given the equations of two lines, like
this:

le

L2: X -y =-=1.

2X + y =4,

These lines are not parallel, because the slope of the first is

my = -2, and the slope of the second is My = 1. Therefore,

they intersect in some point P = (x,y). The pair of numbers

(x,y) must satisfy both equations. Therefore the geometric

problem of finding the point P 1s equivalent to the algebralc

problem of solving a system of two linear equations in two unknowns.
To solve the system is easy. Adding the two equations, we

get 3x = 3,

or x =1,

Substituting 1 for x 1n the second equation, we get y = 2.

The values x =1, y =2 will also satisfy the first equation.

Do they? .

Therefore P = (1,2). The graph makes this look plausible:

X

[seec. 17-13]
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This method always gives the answer to our problem, whenever
our problem has an answer, that 1s, whenever the graphs of the two
equations intersect. If the lines are parallel, then the corre-
sponding system df equations will be inconslstent, that is, the
solution of the system will be the empty set. This will be plain
enough when we try to solve the system.

Problem Set 17-13

L Find the common solution of the following pairs of equations
and draw thelr graphs.

a. y=2x and x+y=1"T.
b. y=2x and y - 2x = 3.
c. X+y=3 and 2y = 6 - 2x,

2. a. The graphs of which palrs of the equations listed below
would be parallel lines?

b Intersecting but not coincident lines?
C. Coincident lines?

The equations are

(1) y=3x+ 1.
(2) vy =14x+ 1.
(3) 2y = 6x + 2.
(4) y-3x=2.

. Suppose the unit in our coordinate system 1s 1 mile. How
many miles from the origin is the point where the line
y = Ié%ﬁx - 4 crosses the x-axis?

[sec. 17-13]

b. Intersecting but not coincident lines?
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Find the intersection of the
graphs of the following pairs
of conditions: y

4. (2,4)

i

a. y=2x and Yy
b. y=2x and y > 4.
c. y<2x and y> 4. X

da. What pair of conditions
will determine the
interior of the angle
shown in the figure?

a. Sketch the intersection of the graphs of all three
conditions x+y > 3, y< 4, x<2. Y,

b. State the three conditions
which would determine the
interior of the triangle (0,3)
shown.

—»X

(3,0)
?ind an equation for the perpendicular bisector of the
segment with end-points (3,%) and (5,8).

Find equations for the

perpendicular bisectors

of the sides of C(-1,10)
A (3,4) (5’8) ("1,10) ’

and show that they inter-
sect in a point.

[sec. 17-13]
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*8,

*g,

The following lnstructions were found on an ancient document.
"Start from the crossing of King's Road and Queen's Road.
Proceeding north on King's Road, find first a pine tree,
then a maple. Return to the crossing. West on Queen's Road
there is an elm and east on Queen's Road there 1s a spruce.
One magical point is where the elm-pine line meets the
maple-spruce line. The other magical point is where the
spruce-pine line meets the elm-maple line. The line Jjoining
the two magical points meets Queen's Road where the treasure
is buried."

A search party found the elm 4 miles from the crossing,
the spruce 2 miles from the crossing, and the pine 3 miles
from the crossing, but there was no trace of the maple.
Nevertheless they were able to find the ftreasure from the
instructions. Show how this was done.

One man in the party remarked on how fortunate they
were to have found the pine still standing. The leader
laughed and sald, "We didn't need the pine tree either."
Show that he was right.

One of the altitudes of the A ABC, where A = (-4,0),
B=(7,0), C=(0,8), is the y-axis. Why? Prove, using
coordinate methods, that the altitudes from A and B
meet on that axis. (Hint: Find the intersections of those
altitudes with the y-axis.)
Do the same for the triangle with vertices (a,0), (b,0),
(0,¢).

Y £¢(0,8)

N M

A(-4,0) B(7,00

[sec. 17-13]
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The centroid of a triangle is defined as the intersection of
the three medians. Prove that the coordinates of the
centroid are just the averages of the coordinates of the
vertices.

Find the distance from the point (1,2) to the line
x+3y+1=0.

Find the distance from the point (a,b) to the line y = x.

In the general case of the triangle of Problem 9, let H be
the point of concurrence of the altitudes, M the point of
concurrence of the medians, and D the point of concurrence
of the perpendicular bisectors of the sides. Prove, using
Problems 9 and 10 that these three points are collinear,

and that M divides DH in the ratio two to one (refer to
Problem 8 of Problem Set 17-T).

17-14%., Circles.

Conslder the circle with center at the origin and radius r.

Ay

P(x,y)

(-r,0) 0 (r,0), <

This figure is defined by the condition

OP = p.
[sec. 17-14]

Conslder the circle with center at the origin and radius r.
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Algebraically, in terms of the distance formula, this says that

«/(x -0)2 4+ (y-0°2=r,

or x° & y2 = r°,

That i1s, if P(x,y) 1is a point of the circle then x° =

+ y2 = r-,
We still have to show that if x2 + y2 - r2 then P(x,y) 1is a
point of the circle. This we do by reversing the algebraic steps:
1f x2 + y2 = r2
then \/,(x - 0)2 + (y - O)2 =r,
since r 1s a positive number. This equation says that OP = r,
and so P 1s a point of the circle.

Consider, more generally, the clircle with center at the point

Q = (a,b) and radius r.

TY
P(x,y)
> X
This is defined by the condition QP = r,
or Vix-a)Zs(y-n)F-r,
or (x - a)2 + (y - b)2 = r°,

In this case, also, the algebraic steps can be reversed, and so
we can say that

(x -a)2+ (y-1p)2 =1

is the equation of the circle.

[sec. 17-14]



623

This 1s the standard form of the equation of the circle, with
center (a,b) and radius r. For future reference, let us state
this result as a theorem.

Theorem 17-11. The graph of the equation

(x - a)2+ (y - b)2 = 77
is the circle with center at (a,b) and radius r.

If an equation is given in thilis form, we can read off
immediately the radius and the coordinates of the center. For
example, suppose that we have glven the equation

(x - 2)2+ (y + 3)% = &,
The center is the point (2,-3), the radius is 2, and the
circle looks like this:

AY

» X

So far, this 1s easy enough. But suppose that the standard
- form of the equation has fallen into the hands of someone who
likes to "simplify" formulas algebraically. He would have
"simplified" the equation like this:

x° - 4x + 4+ y2 +6y+9 =14

x° + y2 - Ux + 6y + 9 = 0.

[sec. 17-14]
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From his final form, it is not at all easy to see what the graph
is. Sometimes we will find equations gliven in forms like this.
Therefore we need to know how to "unsimplify" these forms so as
to get back the standard form

(x - a)2 + (y - b)2 = r°.
The procedure is this. First we group the terms in x together,
and the terms in y together, and write the equation with the
constant term on the right, like this:

x° - Ux + y2 + b6y = =9,
Then we see what constant should be added to the first two terms
to complete a perfect square. Recall that to find this constant
take half of the coefficient of x, and square the result. Here
we get 4. The same process, applied to the third and fourth
terms, shows that we should add 9 in order to make a perfect
square. Thus we are golng to add a total of 13 +to the left-
hand side of the equation. Therefore we must add 13 to the
right-hand side. Now our equation takes the equivalent form

x% - hx + 4 4+ y2 + 6y +9 = -9 + 13,
or (x - 2)2 + (y + 3)% = &,
as before.
If we multiply out and simplify in the standard form, we get

x2 A y2 - 2ax - 2by + a2 + b2 - r2 = 0,

This has the form
x° + y2 + AXx + By + C = 0.

Thus we have the theorem:

Theorem 17-12. Every circle 18 the graph of an equation of
the form

x° +y° + Ax + By + C = O.

It might seem reasonable to suppose that the converse 1is also
true. That 1s, we might think that every equation of the form
that we have been discussing has a circle as its graph. But this
is not true by any means. For example, consider the equation

x2 + y2 = 0.

[sec. 17-14]
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Here A, B and C are all zero. If x and y satisfy this
equation, then x and y are both zero. That 18, the graph of
the equation is a single point, namely, the origin.

Consider next the equation

x2 + y2 + 1 = 0.

Here A =B =0 and C = 1. This equation 1is not satisfied by
the coordinates of any point whatsoever. (Since x2 20 and
yz.z O and 1> 0, 1t follows that x + y + 1 > 0 for every
pair of real numbers x and y.) For this equation, the graph
has no points at all, and 1s therefore the empty set.

In fact, the only possibilities are the circle that we would
normally expect, plus the two unexpected possibilities that we

have just noted.

Theorem 17-13. Gliven the equation

x2 + y2 + AXx + By + C = 0.

The graph of this equation is (1) a circle, (2) a point or
(3) the empty set.

Proof: Let us complete the square for the terms in x, and

complete the square for the terms in y, Just as we did in the
particular case that we worked out above. This gives

2 2 e 2
x2+Ax+%—+y2+By+%—=-c+-%—-+%—,

2 B.2 2 2
or (x+5) + (y+3) =222 -
If the fraction on the right is positive, equal to r2 with

r > 0, then the graph is a circle with center at (-%,-g’-) and
radius »r. If the fraction on the right is zero, then the graph
is the single point 6—%5-g). If the fraction on the right is
negative, then the equation is never satisfled, and the graph
contains no points at all.

[sec. 17-14]
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Problem Set 17-14

The circle shown has a

radius of 5 units. Find
the value of':
2 2
a. Xq + vy -
2 2
b. Xo + Yo -
2 2 (x ,y)
c. Xg + y3 . 4’4
2 2
d. Xy + ¥y -
2 2

e. Xg~ +yg .

a.
are circles?
b,
G
origin?
(1) =2+ (y-1)%=09.
(2) y=x°.
(3) %%+ y%=T.
(4) 1 - x° = ye.
Determine the center and radius
circles.
a. x2 + y? = 32.
b. x%+ y2 = 100.
c. (x - 1)2 + y2 = 16,
d. x2 + y2 = s
e. y2 =4 - x°,

(5)
(6)
(7)
(8)

(x3,y3)

Which of the followlng eight equations have graphs which

Which of the circles would have centers at the origin?

Which would have centers on an axis, but not at the

(x - 2)% - (v - 9% = 16.

(x - 2)2 + (y - 3)2 = 16.

3x° + y2 = U4,

x2 + y2 = 0,

of each of the following

(x - )%+ (y - 3)2 = 36.

(x + 1)2 + (y + 5)2 = 49.

x2 - 2x + 1 + y° = 25.

x2 - 2x + y2 = 24,

x° + 6x + y2 - 4y = 12,
»

[seec. 17-14]
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A circle has the equation: x2 - 10x + y2 = 0.

a. Show algebraically that the points (0,0), (1,3) and
(2,4) all lie on the circle.

b. Find the center and radius of the circle.

c. Show that if (1,3) 1is Jjoined to the ends of the
dlameter on the x-axis, a right angle is formed with
vertex at (1,3).

2

a. Find the points where the circle (x - 3)2 +y° =25
is intersected by the x- and y-axes.
b. Considering portions of the x- and y-axes as chords

of the circle in part a., prove (as you should of course,
expect from Theorem 13-14) that the products of the
lengths of the parts into which each chord is divided

by the other, are equal.

Draw the four circles obtained by choosing the various
possible sign combinations in

(x + l)2 + (v + 1)2 = 1.
Then write the equations of the circle tangent to all four
and containing them. 1Is there another circle tangent to all
four. What is its radius?

Draw the 4 circles given by

x2 + y2 = +10x, x2 + y2 = +10y

and write the equation of a circle tangent to all of them.

2 2

Given the circle x“ + y° = 16 and the point K(-7,0).

a. Find the eguation (in point-slope form) of the line L,
with slope m passing through the point K.

b. Find the points (or point) of intersection of L, and
the circle.

C. For what values of m 1s there exactly one point of
intersection? Interpret this result geometrically.

[sec. 17-14]
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Find an equation for a circle tangent externally to the circle

x° 4+ y2 - 10x - 6y + 30 = O

and also tangent to the x- and y-axes.

REVIEW PROBLEMS

What are the coordinates of the projection into the x-axis
of the point (5,2)?

Three of the vertices of a rectangle are (-1,-1), (3,-1)
and (3,5). What is the fourth vertex?

An isosceles triangle has vertices (0,0), (%a,0) and
(2a,2b). What is the slope of the median from the origin?
of the median from (2a,2b)?

In Problem 3 what 1s the slope of the altitude which contains
the origin?

What 1s the length of each of the medians of the triangle in
Problem 37

What 1s the slope of a line that is parallel to a line which
passes through the origin and through (-2,3).

The vertices of a quadrilateral are (0,0), (5,5), (7,1)
and (1,7). What are the lengths of its ‘diagonals?

What are the coordinates of the mid-points of segments joining
the pairs of points in Problem 7%

The vertices of a square are labeled consecutlively, P, Q,
R and S. T is the mid-point of QR and U 1s the mid-
point of RS. PT intersects '55 at V.

a. Prove that PT & QU.
b. Prove that PT | QU.
*c, Prove that VS = PQ.

(Hint: Let P = (0,0) and Q = (2a,0).)

niiav Lo VIIT ATlIK UL VL Tavll vl VIIT UITWULAGLID V4 VIiIT VL1 LAllpLT Ll

Problem 37
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Use coordinate geometry to prove the theorem: The median of
a trapezoid bisects a diagonal.

What is the equation whose graph is the y-axis?

A rhombus ABCD has A at the origin and AB 1in the
positive x-axis. m/ A = 45, AB = 6. C 1is in the first
quadrant. What 1s the equation of ﬁ’ ‘B?? 63??

The coordinates of the vertices of a trapezold are, con-
secutively, (0,0), (a,0), (b,c) and (d,c). Find the
area of the trapezoild in terms of these coordinates.

The graphs of the equations y = %x and y = -2Xx + 5 are
perpendicular to each other at what point?

Name the set of points such that the sum of the squares of
the distances of each point from the two axes is 4.

Write the equation of the circle which has

a. its radius 7 and center at the origin.
b. its radius k and center at the origin.
e. 1its radius 3 and center at (1,2).

Prove that the 1line x + y = 2 1is tangent to the circle

x2 + y2 = 2,

b. its radius k and center at the origin.

o N R ~ . Y 2= A\

5
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Chapters 13 to 17
REVIEW EXERCISES

Write (1) if the statement is true and (0) if it is false.
Be able to explain why you mark a statement false.

1. If a line through the center of a circle is perpendicular to
a chord of that circle, it bisects the chord.

2. If AB 1is a radius of a circle and CB 1is tangent to the
circle, then ﬁlﬁ?

3 A line which bisects two chords of a circle is perpendicular
to both of them.

g, The Intersection of the interiors of two circles may be the
interior of a circle.

5. Every point in the interior of a circle is the mid-point of
exactly one chord of the circle.

6. The longer an arc 1is, the longer its chord is.

7. If a line intersects a circle, the intersection consists of
two points.

8. If a plane and a sphere intersect, and if the intersection
is not a cirecle, it is a point.

9. If a plane 1s tangent to a sphere, a line perpendicular to
the plane at the point of tangency contains the center of
the sphere.

10. On a given circle, mi? + ﬁ§2 = miE.
11. A 90° inscribed angle will always intercept a 45° arc.
12. Two angles which Intercept the same arc are congruent.

13, Congruent chords drawn in each of two concentric circles
have congruent arcs.
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If a triangle inscribed in a circle has no side intersecting
a glven diameter then the triangle contains an obtuse angle.

If two chords in a circle intersect, the ratio of the segments
of one chord is equal to the ratio of the segments of the
other chord.

e <>
If AB 1is tangent to a circle at B and if AC intersects
the circle at C and D, then ABZ = AC- AD.

In a plane, the set of points equldistant from the ends of a
segment 1s the perpendicular bisector of the segment.

The set of points one inch from a given line is a line
parallel to the given line.

Any point in the interior of an angle which 1is not equidistant
from the slides of the angle does not lle on the bisector of
the angle.

The three altitudes of any right triangle are concurrent.

Two circles Intersect if the distance between thelr centers
is less than the sum of thelr radii.

The three angle bisectors of a triangle are concurrent at a
point equidistant from the vertices of the triangle.

The perpendicular bilsectors of two sides of a triangle may
intersect outside the triangle.

Using straight-edge and compass, it is possible to trisect
a segment.

In bisecting a given angle by the method shown in the text,
it 1s necessary to draw at least four arcs.

The ratio of radius to circumference is the same for all
circles.

The area of a circle of diameter d 1is %wdg.
A plane section of a triangular prism may be a parallelogram.

A plane sectlion of a triangular pyramid may be a parallelogram.
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30. The volume of a triangular prism is half the product of the
area of its base and 1ts altitude.

31. In any pyramid a sectlon made by a plane which blsects the
altitude and is parallel to the base has half the area of
the base.

32. Two pyramids with the same volume and the same base area
have congruent altitudes.

33. The volume of a pyramid with a square base is equal to one-
third of its altitude multiplied by the square of a base
edge.

34. The area of the base of a cone can be found by dividing
three times the volume by the altitude.

35. The radius of the base of a circular cylinder is given the

formula q/‘#ﬁ, where V 1s the volume of the cylinder and
h 1ts altitude.

3

36. The volume of a sphere is given by the formula %wd where

d 1is 1ts diameter.

37. The slope of a segment depends on the quadrant or quadrants
in which the segment lies.

38. If two segments have the same slope they are parallel.

39. If the slopes of two lines are -2 and .5 the lines are
perpendicular. 1

40. 1If the coordinates of two points are (a,b) and (c,d), the
distance between them is (d - b) + (¢ - a).

41. If a segment joins (r,s) to (-r,-s), then its mid-point
is the origin.

42, The point (-2,-1) 1lies on the graph of Xy - 2Xx -y + 2 = 0.
43, The distance between (3,0) and (4,0) 1is 5.

44, If two vertices of a right triangle have coordinates (0,10)
and (8,0) the third vertex is at the origin.




45.

46.
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If three vertices of a rectangle have coordinates (O,m),
(r,0) and (r,m) the fourth vertex is at the origin.

The equation of a line with slope 2 and containing (3,%4)
is 4y + 3x = 2.

3x + 9 1is -=3.

1

The x-intercept of the graph of y

The intersection of the graphs of y=3x+2 and y =3x + 1
is a single point.

The graph of %2 4 y2 - 4 =0 18 a circle.

The graph of every condition is either a line or a curve.






Appendix VII
HOW ERATOSTHENES MEASURED THE EARTH

The circumference of the earth, at the equator, is about
40,000 kilometers, or about 24,900 miles. Christopher Columbus
appears to have thought that the earth was much smaller than this.
At any rate, the West Indles got thelr name, because when Columbus
reached them, he thought that he was already in India. His margin
of error, therefore, was somewhat greater than the width of the
Pacific Ocean.

In the third century B.C., however, the clrcumference of the
earth was measured, by a Greek mathematician, with an error of
only one or two per cent. The man was Eratosthenes, and his
method was as follows:
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It was observed that at Assuan on the Nile, at noon on the
Summer Solstice, the sun was exactly overhead. That is, at noon
of this particular day, a vertical pole cast no shadow at all,
and the bottom of a deep well was completely 1lit up.

In the figure, C 1s the center of the earth. At noon on
the Summer Solstice, in Alexandria, Eratosthenes measured the
angle marked a on the figure, that 1s, the angle between a
vertical pole and the line of its shadow. He found that this
angle was about 7012', or about é%- of a complete circumference.

Now the sun's rays, observed on earth, are very close to
being parallel. Assuming that they are actually parallel, it
follows when the lines Ll and L2 in the figure are cut by
a transversal, alternate interior angles are congruent. Therefore,
/ a =/ b. Therefore, the distance from Assuan to Alexandria must
be about é%- of the circumference of the earth.

The distance from Assuan to Alexandria was known to be about
5,000 Greek stadia. (A stadium was an ancient unit of distance.)
Eratosthenes concluded that the circumference of the earth must be
about 250,000 stadia. Converting to miles, according to what
ancient sources tell us about what Eratosthenes meant by a stadium,
we get 24,662 miles.

Thus Eratosthenes! error was well under two percent. Later,
he changed his estimate to an even closer one, 252,000 stadia,
but nobody seems to know on what basis he made the change. On
the basis of the evidence, some historians believe that he was
not only very clever and very careful, but also very lucky.

[A-VII]




Appendix VIII
RIGID MOTION

VIII-1. The General Idea of a Rigid Motion.

In Chapters 5 and 13 we have defined congruence in a number
of different ways, dealing with various kinds of figures. The
complete list looks like this:

(1) AB & CD 1if the two segments have the same length, that
is, if AB = CD.

() /A& /B if the two angles have the same measure,
that is, if m/ A = m/ B.

(3) A ABC 2 A DEF if, under the correspondence ABC<—> DEF,
every two corresponding sides are congruent and every two corre-
sponding angles are congruent.

(4) Two circles are congruent if they have the same radius.

(5) Two circular arcs 2B and CD are congruent if the
circles that contalin them are congruent and the two arcs have the

same degree measure.
The intultive idea of congruence is the same 1n all five of
these cases. In each case, roughly speaking, two figures are
congruent 1f one of them can be moved so as to coincide with the
other; and 1n the case of trlangles, a congruence 1s a way of
moving the first figure so as to make 1t coincide with the second.
At the beginning of our study of congruence, the scheme used
in Chapters 5 and 13 is the easiest and probably the best. It 1s
a pity, however, to have five different speclal ways of describ-
ing the same basic idea in five special cases. And, in a way, it
is a pity for this basic idea to be limited to these five speclal
cases. For example, as a matter of common sense it is plaln that
two'squares, each of edge 1, must be congruent in some valid
sense: ! C B! ) C'
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The same ought to be true for parallelograms, if corresponding
sides and angles are congruent, like this:

B b c 8 b c!
]
A b D A b D¢

It is plain, however, that none of our five special definitions of
congruence applles to either of these cases.

In this appendix, we shall explain the idea of a rigid motion.
This 1dea is defined in exactly the same way, regardless of the
type of figure to which we happen to be applying it. We shall
show that for segments, angles, trilangles, circles and arcs it

means exactly the same thing as congruence. Finally, we will
show that the squares and parallelograms in the figures above can
be made to coincide by rigid motion. Thus, first, the idea of
congruence will be unified, and second, the range of its appli-
cation will be extended.

Before we give the general definition of a rigid motion, let
us look at some simple examples. Consider two opposite sides of
a rectangle, like this:

. P Q )
| [ | I
| | | I
| I I
| | | |
| | | |
| | I |
Pl Ol
The vertlcal sides are dotted, because we will not be especially
concerned with them. For each point P, Q, ... and so on, of
the top edge let us drop a perpendicular to the bottom edge; and
let the foot of the perpendicular be P', Q' ... and so on.
[A-VIII]

cation will be extended.
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Under this procedure, to each point of the top edge there corre-
sponds exactly one point of the bottom edge. And conversely, to
each point of the bottom edge there corresponds exactly one point
of the top edge. We can't write down all of the matching pairs
P«<—P', Q&«>»Q', ... and so on, because there are infinitely
many of them. We can, however, give a general rule, explaining
what 1s to correspond to what; and in fact, this 1s what we have
done. Usually we will write down a typical pair

Pe—P!',

and explain the rule by which the pairs are to be formed.

Notice that the idea of a one-to-one correspondence is
exactly the same in this case as i1t was when we were using it for
triangles in Chapter 5. The only difference 1is that if we are
matching up the vertices of two triangles, we can write down all
of the matching pairs, because there are only three of them.

(ABC «—>DEF means that A<—>D, B<—>E and C<—>F.) At
present we are talking about exactly the same sort of things,
only there are too many of them to write down.

It 1s very easy to check that if P and Q are any two
points of the top edge, and P' and Q' are the corresponding
points of the bottom edge, then

PQ = P'Q'.
This 1s true because the segments PQ and E;7§; are opposite
sides of a rectangle. We express this fact by saying that the
correspondence P<«—>P' preserves distances.

The correspondence that we have just set up is our first and
simplest example of a rigid motion. To be exact:

Definition: Given two figures F‘ and F', a rigid motion
between F and F' 1s a one-to-one correspondence
P «—P!
between the points of F and the points of F!, vpreserving dis-
tances.

[A-VIII]

It 1s very easy to check that if P and Q are any two
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If the correspondence P<«—P' 1s a rigid motion between
F and F', then we shall write
Fx F'.
This notation is like the notation A ABC & A A'B'C' for con-
gruences between triangles. We can read F X F' as "F 1is
isometric to F'." ("Isometric" means "equal measure.")

Problem Set VIII-1

1. Consider triangles A ABC and A A'B'C', and suppose that
A ABC = A A'B'C'.
Let F Dbe the set consisting of the vertices of the first
triangle, and let F' be the set consisting of the vertices
of the second triangle. Show that there is a rigid motion
Fx F'.,

2. Let F be the set consisting of the vertices of a square of
edge 1, and let F' be the set consisting of the vertices
of another square of edge 1, as 1n the flgure at the
beginning of this Appendix. Show that there 1is a rigid
motion

FX F'.,
(First you have to explain what corresponds to what, and
second you have to verify that distances are preserved.)

3. Do the same for the vertices of the two parallelograms in the
figure at the start of this Appendix.

4, Show that if F consists of three collinear points, and F!
consists of three non-collinear points, then there is no
rigid motion between F and F'. (What you will have to do
is to assume that such a rigid motion exists, and then show
that this assumption leads to a contradiction.)

5. Show that there is never a rigid motion between two segments
of different lengths.

6. Show that there is never a rigid motion between a line and
an angle. (Hint: Apply Problem 4.)

[A-VIII]
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T Show that glven any two rays, there is a rigid motion between
them. (Hint: Use the Ruler Placement Postulate.)

8. Show that there i1s never a rigid motion between two circles
of different radius.

VIII-2. Rigld Motion of Segments.
Theorem VIII-1l. If AB = CD, then there 1s a rigid motion
AB X CD.

Proof: First we need to set up a correspondence P <«—P!
between AB and CD. Then we need to check that distances are
preserved.

By the Ruler Postulate, the points of the line ﬁﬁ?'can be
given coordinates in such a way that the distance between any two
points is the absolute value of the difference of the coordinates.
And by the Ruler Placement Postulate, this can be done in such a
way that A has coordinate zero and B the positive coordinate
AB. "’

Q B

Y AB

XpPU

A
0

In the figure, we have shown typical points P, Q with their
coordinates x and y.
In the same way, the points of CD can be given coordinates:

& P Q D

0 X y AB

Notice that D has the coordinate AB, because CD = AB.
It 1s now plain what rule we should use to set up the corre-

spondence
P «—>P'

[A-VIII]
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between the points of AB and the points of CD. The rule is that
P corresponds to P' 1f P and P' have the same coordinate.
(In particular, A<—>C because A and C have coordinate zero,
and B<—>D because B and D have coordinate AB.) ‘

It is easy to see that thils correspondence is a rigid motion.
If P«—>P' and Qe—>Q', and the coordinates are x and vy,
as iIn the figure, then PQ = P'Q', because

PQ = |y - x| = P'Q'.
We therefore have a rigid motion
AB % D,

v

and the theorem 1is proved.

Notice that this rigid motlion between the two segments is
completely described if we explain how the end-points are to be
matched up. We therefore will call it the rigid motion induced
by the correspondence

Ae—C
B<—D,

Theorem VIII-2. If there 1s a rigid motion AB % CD between
two segments, then AB = CD.

The proof is easy. (This theorem was Problem 5 in the pre-
vious Problem Set.)

Problem Set VIII-2

1. Show that there is another rigid motion between the congruent
segments AB and '55, induced by the correspondence
A<—>D

Be«—>C,.

2. Show that there are two rigid motions between a segment and
itself. (One of these, of course, 1s the identity corre-
spondence P<—> P', under which every point corresponds to
itself; this is a rigid motion because PQ = PQ for every
P and Q.)

[A-VIII]
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VIII-3. Rigld Motion of Rays, Angles and Triangles.
Theorem VIII-3. Given any two rays AB and CD, +there is
a rigid motion '

—»  —
AB ~ CD.
The proof of this theorem is quite similar to that of
Theorem VIII-1l, and the detalls are left to the reader.

Theorem VIII-4. If / ABC & / DEF, then there is a rigid
motion

/ ABC & / DEF
between these two angles.
Proof: We know that there are rigid motions
— —
BA ¥ ED
and
—p —
BC & EF
between the rays which form the sides of the two angles.

~,
L

B Cﬁ\ F
Let us agree that two points P and P' (or Q and Q') are
to correspond to one another if they correspond under one of these
two rigld motions. This gives us a one-to-one correspondence
between the two angles. What we need to show is that this corre-
spondence preserves distances.

Suppose that we have given two points P, Q of Z'ABC and
the corresponding points P', Q' of é DEF. If P and Q are
on the same side of é ABC, then obviously

P'Q' = PQ,

[A-VIII]
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because distances are preserved on each of the rays that form

/ ABC. Suppose, then, that P and Q are on different sides of
/ ABC, so that P' and’ Q' are on different sides of / DEF,
like this:

By the S.A.S. Postulate, we have
A PBQ & A P'EQ'.
Therefore PQ = P'Q', which was to be proved.
Next, we need to prove the analogous theorem for triangles:

Theorem VIII-5. If
A ABC & A A'B'C,
then there is a rigid motion
A ABC &% AA'B'C,
under which A, B and C correspond to A', B' and C'.

Proof: First we shall set up a one-to-one correspondence
between the points of A ABC and the points of A A'B'C'. We
have given a one-to-one correspondence

ABC€<—> A'B!'(C!
for the vertices. By Theorem VIII-1 this glves us the induced
rigid motions

AB % A'B',

AC R A'C'
and

BC X B'C'

between the sides of the triangles. These three rigid motions,
taken together, give us a one-to-one correspondence P<—>P!
between the points of the two triangles. We need to show that
this correspondence preserves dlistances.

[A-vIII]
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If P and Q are on the same slde of the triangle, then
we know already that
P'Q' = PQ.
Suppose, then, that P and Q are on different sides, say, Kﬁ
and KE: like this:

We know that

AP = A'P',
because AB & A'B' 1is a rigid motion. For the same reason,
AQ = A'Q',

and /AS /A", because A ABC ® AA'B'C'. By the S.A.S.
Postulate,
A PAQ & A P'A'Q'.
Therefore,
PQ = P'Q',

which was to be proved.

Notice that while the figure does not show the case P = B,
the proof takes care of this case. The proof is more important
than the figure, anyway.

Problem Set VIII-3

1. Let
ABC —> A'B!'C!
be a rigid motion, and suppose that A, B and C are
collinear. Show that 1f B 18 between A and C, then
B' is between A' and C'. '

[A-vIII]
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2. Given a rigid motion
FXF'.
Let A and B be points of F, and suppose that F
contains the segment AB. Show that F' contains the

segment A'B'.

3 Given a rigid motion
F R F'.
Show that if F 1is convex, then so also 1s F!'.
b, Given a rigid motion
FXF'.
Show that if F 1s a segment, then so also is F!'.

5 » Given a rigid motion F & F'. Show that if F 1is a ray,
then so also 1s F'.

6. Show that there is no rigid motion between a segment and a
circular arc (no matter how short both of them may be).

VIII-4, Rigld Motion of Circles and Arcs.
Theorem VIII-6. Let C and C' be circles of the same
radius r. Then there 1s a rigid motion
CxCC

between C and C!'.

[A-VIII]
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Proof: Let the centers of the circles be P and P!'. Let
KE be a dlameter of the first circle, and let A'B' be a dlameter
of the squfg. Let H1 and H2 be the half-planes determined by
the line AB; andnéfi; }P]_ and H! be the half-planes deter-
mined by the line A'B!'.

2

We can now set up our one-to-one correspondence Q€«—>Q', in
the following way: (1) Let A' and B' correspond to A and
B, respectively. (2) If Q; 1is a point of C, lying in Hy»

let Q'l be the point of C', 1lying in H‘l, such that
[ Q',P'B' = / QPB.
(3) 1r Q, 1s a point of C, 1lying in H,, let Q', be the

point of 02, lying in H'e, such that
o L Q12PIBV & A Q2PB.
We need to check that this correspondence preserves distances.

Ql

Thus, for every two points Q, R of C, we must have
’ Q'R' = QR.

If Q@ and R are the end-points of a diameter, then so are Q'
and R', and Q'R' = QR = 2r. Otherwise, we always have
A QPR & A Q'P'R', so that Q'R' = QR. (Proof? There are two
cases to conslider, according as B 1s in the interior or the
exterior of / QPR.)

You should prove the following two theorems for yourself.
They are not hard, once we have gone this far.

[A-vIII]
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Theorem VIII-7. Let C and C' be circles with the same
radius, as in Theorem VIII-6., Let / XPB and / X'P'B' be
congruent central angles of C and C', respectively.

X X!

Then a rigid motion C ® C' can be chosen in such a way that
~
Be«—>B', X<—>X', and BX % B'X'.

Theorem VIII-8. Gilven any two congruent arcs, there is a
rigid motion between them. The proof 1s left to the reader.

VIII-5. Reflections.

The definition of rigid motion given in Section VIII-1 is a
perfectly good mathematical definition, but we might claim that
from an intuitive viewpoint it does not convey any idea cof "motion".
We will devote this section to showing how a plane figure can be
"moved" into coincidence with any isometric figure in the same
plane.

Throughout this section all figures will be considered as
lying in a fixed plane.

[A-VIII]
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Definitions. A one-to-one correspondence between two filgures
is a reflection if there 1s a line L, such that for any pair of
corresponding points P and P', either (1) P = P' and lies
on L or (2) L 1s the perpendicular bisector of PP'. L is
called the axls of reflection, and each figure is sald to be the
reflection, or the image, of the other figure in L.

In the pictures below are shown some examples of reflections

of simple figures.

Theorem VIII-9. A reflection is a rigid motion.

Proof: We must show that 1f P and Q are any two points,
and P' and Q' their images in a line L, then PQ = P'Q'.
There are four cases to consider.

[A-VIII]
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Case 1. P and Q are on the same side of L. Let PP
intersect L at A and 557 intersect L at B. By the
definition of reflection PP' | L and PA = P'A, and Q' | L
and QB = Q'B. Hence A PAB & A P'AB, and PB = P'B,

/ PBA & / P'BA. By subtraction, / PBQ & / PBQ'. We then have
(by S.A.8.) A PBQ & AP'BQ', and so PQ = P'Q'.

Case 2. The proof 1s the same, except that in proving
/ PBQ & / PBQ' we add angle measures instead of subtracting.

Case 3. Q 1is on L. Then Q =Q' and PQ = P'Q' since
Q 1is on the perpendicular bisector of PP'. The case P on L
and Q not o L 1is Just the same.

Case 4., P and Q bothon L. Since P =P' and Q = Q'
we certainly have PQ = P'Q'. :

Starting with a figure F we can reflect it in some line to
get a figure Fl, Fl can be reflected in some line to get a
figure F2, and 8o on. If we end up with a figure F!' after
n such steps we shall say that F has been carried into F!
by a chain of n reflections.

Corollary VIII-9-1. A chain of reflections carrying F into
F' determines a rigid motion between F and F!'.

Coming back to our opening discussion in this section, a
reflection can be thought of as a physical motion, obtained ¥y
rotating the whole plane through 180° about the axis of re-
flection. The above corollary says that a certain type of rigid
motion, namely, those obtainable as a chain of reflections, can
be gilven a physical interpretation. What we shall now show 1s
that every riglid motion is of this type.

The proof will be given in two stages, the first stage in-
volving only a very simple figure. For convenience we will use
the notation F | F' if F and F' are reflections of each
other in some axils.

[A-VIII]
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Theorem VIII-10., ILet A, B, C, A', B', C' Dbe six points
such that AB = A'B', AC = A'C', BC = B'C'. Then there is a
chain of at most three reflections that carries A, B, C 1into
A', B', C'.

Proof:
Step 1.
B
Let L2 be the perpendicular bisector of KKT, and let B2 and
02 be the reflections of B' and C' in L2. Then A, B2,C2 |

A',B',C',
Step 2.

Let L1 be the perpendicular bilsector of Eﬁé. Since AB = A'B!
and since by Theorem VIII-G, A'B!' = AB2, it follows that

AB = AB2. Therefore A 1lies on L1 and is its own image in the
reflection in L. Thus, the image of A, B2, 02 in L1 is

A, B, Cl.

[A-VIII]
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Step 3.

By arguments similar to the one above we see that AC = ACl and
BC = BC,. Hence, %8 1s the perpendicular bisector of '351,
and the image A, B, C; in AB is A, B, C.

We thus have,

A,B,C | A,B,C, | A,B C, | av,B',C',

2’
as was deslred.

Any one or two of the three steps may be unnecessary if the
pair of points we are working on (A 1in step 1, B 1in step 2,
C in step 3) happen to coincide.

We are now ready for the final stage of the proof.

Theorem VIII-1l. Any rigid motion i1s the result of a chain
of at most three reflections.

Proof: We are given a rigid motion F X F'. Let A, B, C
be three non-collinear points in F, and A', B!, C' the corre-
sponding points in F'.

(If all points of F are collinear a separate, but simpler,
proof is needed. The details of this are left to the student.)
By Theorem VIII-1O0 we can pass from A', B', C* to A, B, C
by a chain of at most three reflections. By Corollary VIII-9-1
this chain determines a rigid motion F' ® F'', and by the con-
struction of the reflections we have A'' = A, B'!' = B and
C'' = C. Schematlically the situation is something like this:

[A-VIII]
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We shall show that for every point P of F we have P'' = P.
This will show that F!'' coincides with F, and that the given
rigid motion F R F' 1is identical with the one determined by the
chaln of reflections.

Let us consider, then, any point P of F, 1its corre-
sponding point P' in F' determined by the rigid motion
FX F', and the point P'' in F'*' determlned from P' by
the chain of reflections. We recall that A'' = A, B'* =B,
Ct' = C,

Since all our relationships are rigid motions we have

AP'' = A'P' = AP. Similarly, BP'' = BP and CP'' = CP. From
the first two of these, and AB = AB, we get that
AABP = A ABP'', and so / BAP = / BAP''. If P and P'' are

i

on the same side of AB then by the Angle Construction Postulate
e

AP = AP'', and since AP = AP'' 1t follows from the Point

Plotting Theorem that P = P'', which is what we wanted to prove.

[A-VITI]
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Suppose then that P and P'' 1lle on opposite sides of

Pll
Since PA = P''"A and PB = P''B it follows that A and B 1lie

on the perpendicular bisector of PP''. Since PC = PG, €
also lies on this line, contrary to the choice of A, B and C
as non-collinear. Hence, this case does not arise, and we are -
left with P = P'', +thus proving the theorem.

Problem Set VIII-H5

L In each of the following construct, with any instruments
you find convenient, the image of the given figure in the

line L.

L L C

2. Find a chain of three or fewer reflections that will carry
ABCD 1into A'B'C'D!'.
B

[A-VIII]
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a. Carry A ABC through the chain of four reflections in
the axes Ll’ L2, L3, Lh‘

Ls
A Ln
Lg L4

b. Find a shorter chain that will give the same rigid
motion.

Definitions: A figure is symmetric if it is its own image in

some axis. Such an axis 1s called an axis of symmetry of the

figure.
i, Show that an isosceles triangle is symmetric. What is the
axis?
o P A figure may have more than one axis of symmetry. How many
do each of the following filgures have?
a. A rhombus.
b. A rectangle.
c. A square.
d. An equilateral triangle.
e. A circle.
6. The rigid motion defined by a chain of two reflections in

parallel axes has the property that 1f P«—>P' then PP!
has a fixed length (twice the distance between the axes)
and direction (perpendicular to the axes). Prove this.
Such a motion 1s called a translation.

[A-VIII]




The rigid motion defined by a chaln of two reflections in
axes which intersect at Q has the property that if P<—P!
then Z_PQP' has a fixed measure (twice the measure of the
acute angle between the axes). Prove this.

Such a motion is called a rotation about Q.

Show how by using the results of Problems 6 and 7 the
Fundamental Theorem VIII-11l can be restated in the following
form:

Any rigid motion in a plane 1s either a reflection, a trans-
lation, a rotation, a translation followed by a reflection,
or a rotation followed by a reflection.

[A-VIII]




Appendix IX
PROOF OF THE TWO-CIRCLE THEOREM

The validity of the Two Circle Theorem, stated in Chapter 14,
rests on the existence of a certain triangle, and the proof is
easier to follow if we establish this first.

Triangle Exlstence Theorem. If a, b, ¢ are positive
numbers, each of which 1is less than the sum of the other two,
then there 1s a triangle whose sides have lengths a, b, c.

Proof: The hard part of the proof is algebralic rather than
geometric. First, let us suppose, as a matter of notation, that
the three numbers a, b, ¢ are written in order of magnitude, so
that

a<b<ec.
Let us start with a segment Kﬁ; with AB = c¢. Our problem is
to find a triangle A ABC, with BC =a and AC = b, 1like
this:

A

In a sense we are golng to tackle this problem backwards. That
1s, we are going to start off by assuming that there is such a
triangle. On the basis of this assumption, we will find out
exactly where the third vertex C must be. This procedure in
itself will not, of course, prove that the above statement is
true, because we started by assuming the very thing that we are
supposed to be proving. But once we have found the exact location
of the points that might work, it willl be very easy to check that
these points really do work. (Of course, there are two possible
places for C, on the two sides of the line ' AB.)

AN
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(This procedure is just what we use in solving equations.

To solve 3x - 7 =Xx+ 3 we first assume that there is an x
which satisfies this equation. For this x we find successively
that

3x = x + 10,

2x = 10,

x = 5.
Then we reverse our steps and show that 5 actually does satisfy
the given equation.)

Suppose, then, that there is a triangle A ABC of the sort
that we are looking for. Let us drop a perpendicular from C to
fﬁi and let D be the foot of the perpendicular. Then D 1is
between A and B, because AD< b <c and BD<a(<c.

et y =CD, and let x = AD, as in the figure. Then DB = c¢- X,
as Indicated. We want to find out what x and y are equal to,
in terms of a, b and c.

By the Pythagorean Theorem, we have

(1) x° + y° = b°
and
(2) y2 + (¢ - x)2 = a°,
Therefore
y2 _ b2 _ x2
and

y2 a? (¢ - x)2.

[A-1X]
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Equating the two expressions for y2 we see that
b - x° = a® - (c - x)e,

b2 - x2 = a2 - 02 + 2¢xX - x2,
2¢x = b2 + 02 - a2,
and
(3) x_b2+02-8.2
- 2c *

What we have found, so far, is that if x and y satisfy
(1) and (2), then x satisfies (3). We shall check, conversely,
that if x and y satisfy (1) and (3), then x and y also
satisfy (2). For if (1) and (3) hold, then we have from (1) that

52 - b2 _ 2.
Adding (c - x)2 to both sides we get

(6% - %) + (c - x)°

y2 + (¢ - x)2'

= b2 - x2 + c2 - 2¢x + x2
= b2 + 02 - 2c¢X.
Substituting for x from (3) gives

2 2

v° + (¢ - x)2 =b“ + ¢ £ 2)

- (b2 + ¢ -a

= 8.2,
so that (2) holds.

Now that we know what triangle to look for, let us start all
over agaln. We have three positive numbers, a, b, ¢. Each of
them is less than the sum of the other two, and a < b < c. Let

o b2 + c2 - a2
2c
Then x > 0, Dbecause b2 Z,ae and 02 > 0. We want to set

vy = b2 - xe,
2 2 2

so that x™ + y~ = b=, but to do this we must first make sure
that x < b, that is, that b - x > 0. We have

(A-IX]
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2 2 2

b~ + ¢~ - a
_ 2bc - b2 - c2 + a2
- 2c
N 4° = (02 - 2be + b2)
R 2¢
_82 - (¢ -b)?
- 2c

Now we are glven that ¢ < a + b. Hence, ¢ - b < a and so

(e - b)2 < a®. Tt follows from the equation above that
b-x>0, or x<b.

We are now ready to construct our triangle. Let AB be a
segment of length c.

C
b a
y
X c-X
A 0 B
L g
ol
c
_ 2 2 2
Let D Dbe a point on AB such that AD = x = b +22 =

Such a point exists since we know x < b c. Let C be a point
on the perpendicular to AB through D, such that

DC =y = b™ - x™.

Then

A02 = x2 + y2 = b™,
and

BCF = y2 + (e - x)2 = a°,

Therefore AC = b and BC = a, which is what we wanted. %

The proof of the Two Circle Theorem is now fairly easy. E
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Theorem 14-5. (The Two Circle Theorem.)

If two circles have radil a and b, and if c¢ 1is the
distance between their centers, then the two circles intersect
in two points, one on each side of the line of centers, provided
each one of a, b, ¢ 1is less than the sum of the other two.

Proof: Let cl, the circle with radius b, have center A,
and 02’ the circle with radius a have center B. Then AB = C.

C,

We know by the Triangle Existence Theorem that there is a
triangle A XYZ whose sides have lengths a, b, and ¢, 1like
this:
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Using the S.A.S. Postu{ng, we are going to copy this triangle on
each side of the line AB, in the following way. On each side of
753' we take a ray starting at A, 1in such a way that the angles
formed are congruent to angle X.

P

Q
On these rays we take points P and Q, such that AP = AQ = Db.

Therefore circle C1 passes through P and Q. By the S.A.S.
Postulate,

A APB = A XYZ = A AQB.
Therefore PB = a = QB, and hence circle 02 passes through P
and Q.

This shows that P and Q are at least part of the inter-
section of C; and C,. To show that they are the intersection
we must prove that no third point, R, can lle on both C; and
02. If there were such a point R we would have, by the S.S.S.
Theorem

A ABR & A ABP, and so, m/ BAR = m/ BAP,
But in the given plane there are only two such angles, one on
each side of (E and hence, either ﬁ:? or W-—-A_Q> Since
AR = AP = AQ = b this means that elther R=P or R =Q, and

so there can be no third point on both Cl and 02.

[A-IX]




Appendix X
TRIGONOMETRY

X-1l. Trigonometric Ratios.
The elementary study of trigonometry is based on the follow-
ing theorem.

Theorem X-1. If an acute angle of one right triangle is
congruent to an acute angle of another right triangle, then the
two triangles are similar.

Proof: In A ABC and A A'B'C' let /C and / C' be
right angles and let m/ A =m/ A'. Then A ABC ~ A A'B'C' by
A.A. Similarity Corollary 12-3-1.

We apply thils theorem as follows: Let r be any number
between O and 90, and let A ABC Dbe a right triangle with
m/ C =90 and m/ A = r. For convenience set

AB=c¢, AC=Db, BC = a.

(The Pythagorean Theorem then tells us that c2 = a2 + b2.)

B
c
a
ro ~
A 5 C

If we consider another such triangle A A'B'C' with
m/ C' =90 and m/ A' = r, we get three corresponding numbers
a', b', ¢', which would generally be different from a, b, c.
However, we always have

a' _a
er ~ ¢
To see thils, note that it follows from Theorem X-1 that
al _ Cl
a ¢

If we multiply both sides of this equation by i—, we get the

desired result.
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Thus the ratio '% does not depend on the particular triangle
we use, but only on the measure 1r of the acute angle. The value
of this ratio 1s called the sine of r°, written sin r° for
short. The reason we specify that we are using degree measure is
that in more advanced aspects of trigonometry a different measure
of angle, radian measure, is common. B

Let us see what we can say
about sin 30°., We know from

Theorem 11-9 that in this case c a
if ¢ =1, then a =-%. Hence,

o_2a_\1 0°
s8in 30 —0—5. A b C

It is evident that the ratio
can be treated in the same way
s 2. The ratio %- is called
the coslne of r°, written ’
cos r°., From the Pythagorean Theorem we see that if a =-% and

c=1l, then b = ‘/%_ Hence, cos 30° ='/%_.

o

oo

Of the four other possible ratios of the three sides of the

triangle, we shall use only one, %u This is called the tangent

of r° written tan r°. We see that tan 30° = i, (This use

3
of the word "tangent" has only an unimportant historical connection

with its use with relation to a line and a circle.)
These three quantitlies are called trigonometric ratios.
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Problem Set X-1

In each of the following give the required information in
terms of the indicated lengths of the sides.

a. sin A = ?, cos A =29, tan A = 2.

S
3

A3

(V)

= ?o
ro
13

?, tanQ=?o

P
15
12 Q
=
B
,//’/Z////Wx

b. sinr =%, cos r ?, tan r

c. sin P = ?, cos P

d. sin A = 2, sin B = 2?2,

tan A ?, tan B = ?.

In each of the following find the correct numerical value
for x.

a. cos P = X. - l////,/’/,////’]1
P 2
ji""i
10

b. tan a~ = X.

[A-X]
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3. Find: sin 60°, cos 60°, tan 60°.
L, Find: sin 45°, cos 450, tan 45°.

50 By making careful drawings with ruler and protractor
determine by measuring

a. sin 20°, cos 20°, tan 200;

b. sin 53°, cos 530, tan 53°.

X-2. Trigonometric Tables and Applications.

Although the trigonometric ratios can be computed exactly
for a few angles, such as 30°, 60° and h5°, in most cases we
have to be content with approximate values. These can be worked
out by various advanced methods, and at the end of this Appendix
we glve a table of the values of the three trigonometric ratios

correct to three decimal places.

Having a "trig table", and a device for measuring angles,
such as a surveyor's transit (or strings and a protractor) one
can solve various practical problems.

Example X-1. From a point 100 feet from the base of a
flag pole the angle between the
horizontal and a line to the top
of the pole is found to be 23°,
Let x Dbe the height of the X
pole. Then 23° 100°

X o
m = tan 23" = .425.

Hence, x = 42,5 feet. An angle like the one used in this example
1s frequently called the angle of elevation of the object.

[A-X]
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Example X-2. In a circle of radius 8 ecm. a chord AB  has
length 10 cm. What is the measure of an angle inscribed in the
major arc AB? We have AC = 8,
AQ = 310 = 5. Hence,

sin / ACQ = % = 625, )
m/ ACQ = 39°,
m(minor arc AB) = m/ ACB = Q
2(m/ AcqQ) = 78°. P
1 ~
Hence, m/ APB = zm(arc AB) = A

39° to the nearest degree.

Problem Set X-2.

1. From the table find: sin 17°, cos 46°, tan 82°, cos 33°,
sin 60°. Does the last value agree with the one found in
Problem 3 of Set X-1?

2 From the table find x to the nearest degree in each of the

following cases:
cos x = .731, sin x = .390, tan x = ,300
sin x = .413, tan x = 2, cosS X = %u

3. A hiker climbs for a half mile up a slope whose inclination
is 17°. How much altitude does he gain?

y, When a six-foot pole casts a four-foot shadow what is the
angle of elevation of the sun?

Byw An isosceles triangle has a base of 6 inches and an
opposite angle of 30°. Pind:

a. The altitude of the triangle.
b. The lengths of the altitudes to the equal sides.

c. The angles these altitudes make with the base.
a. The point of intersection of the altitudes.

[A-X]

following cases:
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6. A regular decagon (10 sides) is inscribed in a circle of
radius 12. Find the length of a side, the apothem, and the
area of the decagon. D '

7. Given, m/ A = 26°, m/ CBD = u42°,
BC = 50; find AD and AB.

X-3. Relations Among the Trigonometrlic Ratios.

Theorem X-2. For any acute / A, sin A< 1, cos A < 1.

Proof: In the right triangle A ABC of Section X-1,
a<c and b < c. Dividing each of these inequalities by ¢

gives

b
%<l’ E<l:

which is what we wanted to prove.

Theorem X-3. For any acute angle A,

8in A _ tan A, and (sin .ﬂ\)2 + (cos A)2 =1.

cos A
Proof': a
sin A _ ¢ _a _
cosA"I_)_—b“tanA'
c

(sin A)Z + (cos A)°

|
mmomlmm

+
U‘momlo‘m

[A-X]

Theorem X-3. For any acute angle A,

R em A ~ ~




A-63

Theorem X-4. If /A and / B are complementary acute
1

angles, then sin A = cos B cos A =s8in B and ftan A = .
’ ’ el Tan B

Proof: In the notation of the figure we have

sin A = cos B,

=
2

cos A =‘% = s8in B,
X

Problem Set X-3

Do the following problems without using the tables.

1. If sin A =-§ what 1s the value of cos A? What is the
value of tan A? (Use Theorem X-3.)

2. With ruler and compass construct ‘é A, 1if possible, in each
of the followlng. You are allowed to use the results of
earlier parts to simplify later ones.

a. cos A - o8|
AQ

\

(A-X]

Do the following problems without using the tables.
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Solution: Take AC any convenient segment and construct
C_Q)_[_ AC. With center A and radius 2C construct an arc inter-
secting CQ at B. Then cos(/ BAC) = .8.

b. cos A = %
c. cos A = %

d. sin A = .8.
e. sin A = .7.

£. tan A =-§.
3
2

g. tan A =

[A-X]




Table of Trigonometric Ratios
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Tan- Tan-
Angle Sine Cosine gent Angle Sine Cosine gent
o} 0.000 1.000 0.000
1 .017 1.000 .017 46 0.719 0.695 1.036
2 .035 0.999 .035 W7 .731 .682 1.072
3 .052 .999 .052 48 .T43 .669 1.111
i} .070 .998 .070 49 -T755 .656 1.150
5 .087 .996 .087 50 .T766 .643 1.192
6 .105 .995 .105 51 .755 .629 1.235
7 122 .993 .123 52 T .616 1.280
8 .139 .990 141 53 .799 .602 1.327
9 .156 .088 .158 54 .809 .588 1.376
10 174 .985 .176 55 .819 574 1.428
11 .191 .982 .194 56 .829 .559 1.483
12 .208 .978 .213 5 .839 .545 1.540
13 .225 .OT4 .231 5 .848 .530 1.600
14 242 .970 .249 59 .857 .515 1.664
15 .259 .966 .268 60 .866 .500 1.732
16 276 .961 .287 61 .855 .485 1.804
1 .292 .956 .306 62 .883 .469 1.881
1 .309 .951 .325 63 .891 Jush 1.963
19 .326 .946 344 64 .899 .438 2.050
20 .342 .940 .364 65 .906 L1423 2.145
21 .358 .934 .384 66 .914 Lot 2.246
22 .375 .927 404 67 .921 .391 2.356
23 .391 .921 Lok 68 927 375 2,475
24 L4077 .914 RIPE 69 .934 .358 2.605
25 23 .906 466 70 .94%0 342 2,747
26 .438 .899 .488 71 .946 .326 2.904
27 Ry .891 .510 72 .951 .309 3.078
28 469 .883 .532 73 .956 .292 3.271
29 .485 .875 .554 T4 .961 276 3.487
30 . 500 .866 5TT 75 .966 .259 3.732
31 .515 857 .601 76 .970 242 4,011
32 .530 .848 .625 77 974 .225 4,331
33 .545 .839 .649 78 .978 .208 4,705
34 .559 .829 675 79 .982 .191 5.145
35 574 .819 .700 80 .985 L1Th 5.671
36 .588 .809 727 81 .988 .156 6.314
3 .602 .799 .75k 82 .990 .139 7.115
3 .616 .788 781 83 . .993 122 8.144
39 .629 77 .810 84 .995 .105 9.514
40 .643 .766 .839 85 .996 .087 11.43
41 .656 755 .869 86 .998 .070 14.30
4o .669 .T43 .900 87 .999 .052 19.08
43 .682 .731 .933 88 .999 .035 28.64
uy .69 .719 .966 89 1.000 017 57.29
4y .70 707 1.000 90 1.000 .000
[A-X]
20 .342 .940 .36l 65 .906 .423 2.145
21 .358 .934 .384 66 .91k R Yoy 2.246
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Solutions to Appendix
Problem Set X-1

3 y 3
1. a 'g, -g, T
b 5 12 5
13> TI3° T2
s, 2 4 4
. 5, 5’ '3'
X s X 7
d. Yy ¥ z I
2 12
2. a. — b. .
S5 5
V31
3- ‘é‘, E, ﬁ.
1 1
)'l'. iy ) S— 1.
JE ST
5. a. .34, 9L, .36.
b. .80, .60, 1.33.

Problem Set X-2

o, 3%, 23°, 17°, 21°, 63°, 71°.

3. sin 17° = ——— X = .292 - 2640 = 771 feet,

4, tan x = -16r =1.5. x = 56°.

5. m/A=230, m/B=m/C=75".
a. %% = tan C. AD = 3.732 +3 = 11.196.

b. g£E=sinB. CE= .966:6 = 5.796.
c. m/ ECB=190° -m/B=15°.

DF o
d. gp=tan 15°. DF = .268 - 3 = .804.

[A-X]




6.

= =5

36 12 o

- T.42 < 11.41 = 423,

CD

AC

AD

45.0.

92.2, AB = 42,2,

103.

Problem Set X-3

(sin A)2 + (cos A)2 =1, %-+ (cos A)2 =1,
cos A =¢(§-=,2%£§. 1
tan A o B3nA_ 3 1
cos A 2~[§ 0 /Z
==

(¢) 1is impossible.

(d) A here is congruent to B of part (a).

(g) A here is the complement of the A of part (f).

cos A =J(§.= E;¥Z§.

[A-X]






Appendix XTI
REGULAR POLYHEDRA

A polyhedron is a solid whose boundary consists of planar
regions -- called faces -- which are polygonal regions. The sides
and vertices of the polygons are called the edges and vertices of
the polyhedron. Prisms and pyramids are examples of special kinds
of polyhedrons. A regular polyhedron is a convex polyhedron (see
Section 3-3 for definition of convexity) whose faces are bounded
by regular polygons all with the same number of sides and such
that there are the same number of faces (and edges) at each vertex.
We shall determine all the regular polyhedra, using Euler's famous
formula connecting the number of vertices, edges, and faces of a
convex polyhedron (more generally, one without any holes). An
excellent exposition of this formula can be found in Rademacher
and Toeplitz, "The Enjoyment of Mathematics." Strictly speaking,
we show that there are only five possibilitles for the numbers of
vertices, edges, and faces, but omit the proof that each of these
possibilities 1s realized in essentially one and only one way by
a regular polyhedron.

Suppose we have a regular polyhedron with V vertices, E
edges and F faces, and with r faces about each vertex and n
sides (and vertices) for each face. If the E edges were all
shrunk slightly, so as to pull away from the vertices, we would
have E segments, each with two end-points, and so 2E end-
points altogether. Now there are r of these end-points near
each of the V vertices, and hence rV end-points in all. We
must therefore have the relation rV = 2E, or

_2E
-2

Similarly, imagine each face shrunk and count the resulting
sides of the polygonal regions. There are 2 sides near each
edge, and so 2E sides. There are n sides on each face, and
so nF sides. Thus nF = 2E, or

2E
(2) - F=2E

(1) \
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Now Euler's formula tells us that
V-E+F=2,

Substituting for E and F from Equations (1) and (2),

we get
2E

2E
—r-E+—ﬁ——2.
Dividing by 2E gilves
1 1,1 _ 1
- (3) TTIYRCE
Hence
1 1 1
T3+t >0
or
1 1 1
rtn’ 3
: 1 1 1 1 1 1 1 1
Now r > 3, 80 Z<T §O5-F25-F=%

so n< 6. Thus, n=3, 4, or 5, and the only possibilities
for the faces are triangles, squares, or regular pentagons. By
the same argument we see that r =3, 4, or 5 are the only
possibilities. E can be found from (3), and then V and F
from Equations (1) and (2).

For n = 3, r=3, weget V=4 E=6, F=21,4,

For n = 3, r=4, weget V=6, E=12, F = 8.

For n = 3, r we get V=12, E = 30, F = 20.

Trying n = 4, we see that the only possibility for r is
3, in which case V=8, E =12, F = 6. Finally, for n = 5,
the only possibility is r = 3, which yields V = 20, E = 30,

F = 12.

These five possibilities are realized in essentially one way
for each choice of F, E, and V (more precisely, two regular
polyhedra with the same values for F, E, and V are "similar"),
although we do not prove this. They are exhibited in the follow-
ing table:

It

L]
192
-

[A-XT]

from Equations (1) and (2).
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Number of
Boundary | Number | Number Number Faces (or
Regular of of of of Edges) at
Polyhedron Face Faces Edges Vertices a Vertex
Tetrahedron |Triangle L 6 Y 3
Octahedron |Triangle 8 12 6 Y
Icosahedron |Triangle 20 30 12 5
Cube Square 6 12 8 3
(Hexahedron)
Dodecahedron|Pentagon 12 30 20 3
Tetrahedron Hexahedron Octahedron

Dodecahedron Icosahedron

We observe a curious duality between the octahedron and the
cube and between the icosahedron and the dodecahedron, obtalned by
interchanging F and V, n and r, and leaving E unchanged.
The tetrahedron 1s self-dual. This duallity can be established by
starting with one of the so0lids and forming a new one whose
vertices are the centers of the faces of the original one, and
whose edges are the segments connecting the centers of adjacent
faces. These and other relations among the regular polyhedra and
related semi-regular polyhedra are discussed in various books;
for example, "Mathematical Snapshots," by Steinhaus; "Mathematical
Models," by Cundy and Rollett.

[A-XT]






The Meanling and Use of Symbols

General.

. A =B can be read as “A equals B", "A is equal to B",
"A equal B" (as in "Let A = B"), and possibly other
ways to fit the structure of the sentence in which the

symbol appears. However, we should not use the symbol,
]

=, in such forms as "A and B are =*; 1ts proper use 1s

between two expressions. If two expressions are connected
by "=" 1it 1is to be understood that these two expressions
stand for the same mathematical entity, in our case either

a real number or a point set.

# . "Not equal to". A # B means that A and B do not
represent the same entity. The same variations and
cautions apply to the use of # as to the use of =,

Algebraic.

+, *y =, +. These famillar algebraic symbols for operating with
real numbers need no comment. The basic postulates about
them are presented in Appendix II.

<, >y £, 2. Like = , these can be read in various ways in
sentences, and A < B may stand for the underlined part
of "If A is less than B", "Let A be less than B",
"A less than B 1implies", etc. Similarly for the other
three symbols, read "greater than", "less than or equal
to", "greater than or equal to". These inequalities apply
only to real numbers., Their properties are mentioned
briefly in Section 2-2, and in more detail in Section 7-2.
NA, |A|. "Square root of A" and "absolute value of A". Discussed
in Sections 2-2 and 2-3 and Appendix IV.

Geometric.

Point Sets. A single letter may stand for any sultably described
point set. Thus we may speak of a point P, a line m, a
half-plane H, a circle C, an angle x, a segment b, etec.

them are presented in Appendix II.

& - ] - P Y = = el



The line containing the two points A and B (P. 30).
The segment having A and B as end-points (P.45).
The ray with A as 1ts end-point and containing
point B (P. 45).
/ABC The angle having B as vertex and BA and BC as

sides (P. 71).
. /\ABC. The triangle having A, B a.ng_> C as vertices (P. 72).
[ A-BC-D. The dihedral angle having BC as edge and with sides
containing A and D (P. 299).

5.5 Bl

Real Numbers.

AB., The positive number which 1s the distance between the two
points A and B, and also the length of the segment AB
(p. 34).

m/ABC. The real number between O and 180 which is the
degree measure of /ABC (P. 80).

Area R. The positive number which 1s the area of the polygonal
region R (P. 320).

Relations.

ne

; Congruence, A = B 1is read "A is congruent to B", but
with the same possible variations and restrictions as
A =B. In the text A and B may be two (not necessarily
different) segments (P. 109), angles (P. 109), or
triangles (P. 111).
1. Perpendicular. A | B 1s read "A 1is perpendicular to B",
with the same comment as for =. A and B may be elther
two lines (P. 86), two planes (P. 301), or a line and a
plane (P. 229).
|| . Parallel. A || B is read "A 1is parallel to B", with the
same comment as for =, A and B may be either two lines
(P. 241), two planes (P. 291) or a line and a plane
(p. 291).

b o v I TN RS



List of Postulates

Postulate 1. (P. 30) Given any two different points, there
is exactly one line which contains both of them.

Postulate 2. (P. 34) (The Distance Postulate.) To every
pair of different points there corresponds a unique positive
number,

Postulate 3. (P. 36) (The Ruler Postulate.) The points
of a line can be placed in correspondence with the real numbers
in such a way that
(1) To every point of the line there corresponds exactly
one real number,
(2) To every real number there corresponds exactly one point
of the line, and
(3) The distance between two points is the absolute value
of the difference of the corresponding numbers.

Postulate 4. (P. 40) (The Ruler Placement Postulate.)
Given two points P and Q of a line, the coordinate system
can be chosen in such a way that the coordinate of P 1is zero
and the coordinate of Q 1s positive.

Postulate 5. (P. 54) (a) Every plane contains at least
three non-collinear points.
(b) Space contains at least four non-coplanar points.

Postulate 6. (P. 56) If two points lie in a plane, then
the line containing these points lies in the same place.

Postulate 7. (P. 57) Any three points 1lie in at least one
plane, and any three non-collinear points llie 1in exactly one
plane. More briefly, any three points are coplanar, and any
three non-collinear points determine a plane.

Postulate 8. (P. 58) 1If two different planes intersect,
then theilr intersectlon 1s a line.

c

Given two points P and Q of a line, the coordinate system
can be chosen in such a way that the coordinate of P 1s zero



Postulate 9. (P. 64) (The Plane Separation Postulate.)
Given a line and a plane containing it, the points of the plane
that do not lie on the line form two sets such that

(1) each of the sets is convex and

(2) if P 1is in one set and Q is in the other then the
segment 56 intersects the line.

Postulate 10. (P. 66) (The Space Separation Postulate.)
The points of space that do not lle in a given plane form two
sets such that

(1) each of the sets is convex and

(2) 4if P 1is in one set and Q 1is in the other then
the segment PQ intersects the plane.

Postulate 11. (P. 80) (The Angle Measurement Postulate.)
To every angle ZBAC there corresponds a real number between
0 and 180.

Postulate 12. (P. 81) (The Angle Construction Postulate.)
Let ig be a ray on the edge of the half-plane H. For evg;y
number r Dbetween O and 180 there is exactly one ray AP,
with P in H, such that m/PAB = r.

Postulate 13. (P. 81) (The Angle Addition Postulate.)
If D 1s a point in the interlor of /BAC, then

m/BAC = m/BAD + m[DAC.
Postulate 14%. (P. 82) (The Supplement Postulate.) If two
angles form a linear palr, then they are supplementary.

Postulate 15. (P. 115) (The S.A,S. Postulate.) Given a
correspondence between two triangles (or between a triangle
and itself). If two sides and the included angle of the first
triangle are congruent to the corresponding parts of the second
trlangle, then the correspondence 1is a congruence.

Postulate 16. (P. 252) (The Parallel Postulate .) Through
a glven external point there 1is at most one line parallel to a
given line,

Postulate 17. (P. 320) To every polygonal region there

corresponds a unlique positive number.
d




Postulate 18. (P. 320) If two triangles are congruent,
then the trilangular regions have the same area.

Postulate 19. (P. 320) Suppose that the region R 1is the
union of two regions R1 and R2 . Suppose that Rl and R2
intersect at most in a finite number of segments and points.
Then the area of R 1s the sum of the areas of R1 and R2.

Postulate 20. (P. 322) The area of a rectangle is the
product of the length of 1ts base and the length of 1ts altitude.

Postulate 21. (P. 546) The volume of a rectangular
paralleleplped 1s the product of the altitude and the area of
the base.

Postulate 22. (P. 548) (Cavalieri's Principle.) Given two
sollids and a plane. If for every plane which intersects the
solids and 1s parallel to the given plane the two intersections
have equal areas, then the two sollids have the same volume.







List of Theorems and Corollaries

Theorem 2-1. (P. 42) Let A, B, C be three points of a
line, with coordinates x, y, z. If x <y <z, then B is
between A and C.

Theorem 2-2. (P. 43) Of any three different points on the
same line, one 1s between the other two.

Theorem 2-3. (P. 44) Of three different points on the same
line, only one is between the other two.

Theorem 2-4. (P. 46) (The Point Plotting Theorem) Let AB
be a ray, and let x be a positive number. Then there 1is exactly
one point P of B such that AP = x.

Theorem 2-5. (P. 47) Every segment has exactly one
mid-point.

Theorem 3-1. (P. 55) Two different lines intersect in at
most one point.

Theorem 3-2. (P. 56) If a line intersects a plane not
containing it, then the intersection 1s a single point.

Theorem 3-3. (P. 57) Given a line and a point not on the
line, there 1s exactly one plane centaining both of them.

Theorem 3-4, (P, 58) Given two intersecting lines, there
is exactly one plane containing them.

Theorem 4-1. (P. 87) If two angles are complementary, then
both of them are acute,

Theorem 4-2. (P. 87) Every angle is congruent to itself.

Theorem 4-3. (P. 87) Any two right angles are congruent.

Theorem 4-4. (P. 87) If two angles are both congruent and
supplementary, then each of them 1s a right angle.

Theorem 4-5. (P. 87) Supplements of congruent angles are
congruent.

g

Theorem 3-2. (P. 56) If a line intersects a plane not
contadnine 41t. +then the interaection 4 a sdnclie noint .




Theorem 4-6. (P. 88) Complements of congruent angles are
congruent.

Theorem 4-7., (P. 88) Vertical angles are congruent.

Theorem 4-8. (P. 89) If two intersecting lines form one
right angle, then they form four right angles.

Theorem 5-1. (P. 109) Every segment is congruent to itself.

Theorem 5-2. (P. 127) If two sides of a triangle are
congruent, then the angles opposite these sides are congruent.

Corollary 5-2-1., (P. 128) Every equilateral triangle is
equiangular.

Theorem 5-3. (P. 129) Every angle has exactly one bisector.

Theorem 5-4. (P. 132) (The A,S.A, Theorem.) Given a
correspondence between two triangles (or between a triangle and
itself). If two angles and the included side of the first
triangle are congruent to the corresponding parts of the second
triangle, then the correspondence is a congruence.

Theorem 5-5. (P. 133) If two angles of a triangle are
congruent, the sldes opposite these angles are congruent.

Corollary 5-5-1, (P. 133) An equiangular triangle is
equllateral.

Theorem 5-6. (P. 137) (The S.S.S. Theorem.) Given a
correspondence between two triangles (or between a triangle and
itself). If all three pairs of corresponding sides are congruent,
then the correspondence 1s a congruence,

Theorem 6-1. (P. 167) 1In a given plane, through a given
point of a given line of the plane, there passes one and only one
line perpendicular to the given line.

Theorem 6-2. (P. 169)_ The perpendicular bisector of a
segment, in a plane, is the set of all points of the plane that
are equidistant from the end-points of the segment.

Theorem 5-5. (P. 133) If two angles of a triangle are




Theorem 6-3. (P. 171) Through a given external point there
is at most one line perpendicular to a glven line.

Corollary 6-3-1. (P. 172) At most one angle of a triangle
can be a right angle.

Theorem 6-4. (P. 172) Through a given external point there
is at least one line perpendicular to a given line.

Theorem 6-5. (P. 183) If M 1is between A and C on a
line L, then M and A are on the same side of any other line
that contains C.

Theorem 6-6. (P. 183) If M is between A and C, and
>
B 1is any point not on line AC, then M 1s in the interior of
/ ABC.

Theorem 7-1. (P. 193) (The Exterior Angle Theorem.) An
exterlor angle of a triangle 1ls larger than either remote
interior angle.

Corollary 7-1-1. (P. 196) 1If a triangle has a right angle,
then the other two angles are acute.

Theorem 7-2. (P. 197) (The S.A.A. Theorem.) Given a
correspondence between two trlangles. If two angles and a side
opposite one of them 1n one trilangle are congruent to the
corresponding parts of the second triangle, then the correspon-
dence 1s a congruence.

Theorem 7-3. (P. 198 (The Hypotenuse - Leg Theorem.)
Given a correspondence between two right trlangles. If the
hypotenuse and one leg of one trlangle are congruent to the
corresponding parts of the second triangle, then the correspondence
is a congruence.

Theorem 7-4. (P.200) If two sides of a triangle are not
congruent, then the angles opposite these two sldes are not
congruent, and the larger angle 1s opposite the longer side.

then the other two angles are acute.



Theorem 7-5. (P. 201) If two angles of a triangle are not
congruent, then the sides opposite them are not congruent, and
the longer slde 1s opposite the larger angle.

Theorem 7-6. (P. 206) The shortest segment joining a point
to a line 1s the perpendicular segment.

Theorem 7-7. (P. 206) (The Triangle Inequality.) The sum
of the lengths of any two sides of a trilangle 1s greater than
the length of the third side.

Theorem 7-8. (P. 210) If two sides of one triangle are
congruent respectively to two sides of a second trlangle, and
the included angle of the first triangle is larger than the
included angle of the second, then the opposite side of the
first triangle 1s longer than the opposite slde of the second.

Theorem 7-9. (P. 211) 1If two sides of one triangle are
congruent respectively to two sides of a second triangle, and
the third side of the first triangle is longer than the third
side of the second, then the lincluded angle of the first
triangle ir larger than the included angle of the second.

Theorem 8-1. (P. 222) If each of two points of a line is
equidistant from two given points, then every point of the line
is equidistant from the given points.

Theorem 8-2. (P. 225) 1If each of three non-collinear
polints of a plane 1is equidistant from two points, then every
point of the plane 1s equidistant from these two points.

Theorem 8-3. (P. 226) If a line 1s perpendicular to each
of two 1ntersecting lines at their point of intersection, then
it 1s perpendicular to the plane of these lines.

Theorem 8-4, (P. 230) Through a given point on a given
line there passes a plane perpendicular to the line.

Theorem 8-5. (P. 231) If a line and a plane are perpen-
dicular, then the plane contains every line perpendicular to the
glven line at its point of intersection with the given plane.

———— - — -—_—— —_——————— -——_——— —mm— e e = g p— — - P

triangle ir larger than the included angle of the second.



Theorem 8-6. (P. 232) Through a glven point on a given
line there 1s at most one plane perpendicular to the line.

Theorem 8-7. (P. 232) The perpendicular bisecting plane of
a segment is the set of all points equidistant from the end-points
of the segment.

Theorem 8-8. (P. 234) Two lines perpendicular to the same
plane are coplanar.

Theorem 8-9. (P. 235) Through a given point there passes
one and only one plane perpendicular to a given line.

Theorem 8-10., (P. 235) Through a given point there passes
one and only one line perpendicular to a given plane.

Theorem 8-11, (P. 235) The shortest segment to a plane
from an external point is the perpendicular segment.

Theorem 9-1. (P. 242) Two parallel lines lie in exactly
one plane.

Theorem 9-2. (P. 242) Two lines in a plane are parallel
if they are both perpendicular to the same line.

Theorem 9-3., (P. 244) Let L be a line, and let P be a
point not on L. Then there is at least one line through P,
parallel to L.

Theorem 9-4. (P. 246) 1If two lines are cut by a transversal,
and 1f one palr of alternate interior angles are congruent, then
the other palr of alternate interior angles are also congruent.

Theorem 9-5. (P. 246) If two lines are cut by a transverasl,
and if a palr of alternate lnterlor angles are congruent, then
the lines are parallel.

Theorem 9-6. ' (P. 252) If two lines are cut by a transversal,
and if one pair of corresponding angles are congruent, then the
other three palrs of corresponding angles have the same property.

Theorem 9-7. (P. 252) 1If two lines are cut by a transversal,
and if a pair of corresponding angles are congruent, then the
lines are parallel.
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if they are both perpendicular to the same line.




Theorem 9-8, (P. 253) If two parallel lines are cut by
a transversal, then alternate interior angles are congruent.

Theorem 9-9. (P. 254) If two parallel lines are cut by a
transversal, each pair of corresponding angles are congruent.

Theorem 9-10. (P. 254) If two parallel lines are cut by a
transversal, interior angles on the same side of the transversal

are supplementary.

Theorem 9-11. (P. 255) In a plane, two lines parallel to
the same line are parallel to each other.

Theorem 9-12. (P. 255) 1In a plane, if a line is
perpendicular to one of two parallel lines it 1s perpendicular
to the other.

Theorem 9-13, (P. 258) The sum of the measures of the
angles of a triangle is 180.

Corollary 9-13-1. (P. 259) Given a correspondence between
two triangles. If two palrs of corresponding angles are congruent,
then the third pair of corresponding angles are also congruent.

Corollary 9-13-2. (P. 260) The acute angles of a right
triangle are complementary.

Corollary 9-13-3. (P. 260) For any triangle, the measure
of an exterlor angle is the sum of the measures of the two
remote interior angles.

Theorem 9-14%. (P. 265) Either diagonal divides a
parallelogram into two congruent triangles.

Theorem 9-15. (P. 265) 1In a parallelogram, any two
opposite slides are congruent.

Corollary 9-15-1. (P. 266) If I, || L, and if P and Q
are any two points on L then the distances of P and Q
from L2 are equal.

l,

Theorem 9-16. (P. 266) 1In a parallelogram, any two
opposite angles are congruent.

then the third pair of corresponding angles are also congruent.

L . o D L y o % . N o o



Theorem 9-17. (P. 266) In a parallelogram, any two
consecutive angles are supplementary.

Theorem 9-18. (P. 266) The diagonals of a parallelogram
bisect each other.

Theorem 9-19. (P. 266) Given a quadrilateral in which both
palrs of opposite sides are congruent. Then the quadrilateral
is a parallelogram.

Theorem 9-20. (P. 266) If two sides of a quadrilateral are
parallel and congruent, then the quadrilateral is a parallelogram.

Theorem 9-21. (P. 266) If the diagonals of a quadrilateral
bisect each other, then the quadrilateral 1s a parallelogram.

Theorem 9-22. (P. 267) The segment between the mid-points
of two sides of a triangle 1s a parallel to the third side and
half as long as the third side.

Theorem 9-23. (P. 268) If a parallelogram has one right
angle, then it has four right angles, and the parallelogram
1s a rectangle.

Theorem 9-24%. (P. 268) 1In a rhombus, the diagonals are
perpendicular to one another.

Theorem 9-25. (P. 268) If the diagonals of a quadrilateral
bisect each other and are perpendicular, then the quadrilateral
1s a rhombus.

Theorem 9-26. (P. 276) If three parallel lines intercept
congruent segments on one transversal, then they intercept
congruent segments on any other transversal.

Corollary 9-26-1. (P. 277) 1If three or more parallel lines
intercept congruent segments on one transversal, then they
intercept congruent segments on any other transversal.

Theorem 9-27. (P. 279) The medians of a triangle are
concurrent in a point two-thirds the way from any vertex to
the mid-polnt of the opposite side.

1s a rectangle.
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Theorem 10-1. (P. 292) If a plane intersects two parallel
planes, then it intersects them 1n two parallel lines.

Theorem 10-2. (P. 292) If a line is perpendicular to one
of two parallel planes it 1s perpendicular to the other.

Theorem 10-3. (P. 293) Two planes perpendicular to the
same line are parallel.

Corollary 10-3-1. (P. 294) If two planes are each parallel
to a third plane, they are parallel to each other.

Theorem 10-4. (P. 294) Two lines perpendicular to the
same plane are parallel.

Corollary 10-4-1. (P, 294) A plane perpendicular to one
of two parallel lines is perpendicular to the other.

Corollary 10-4-2. (P. 294) If two lines are each parallel
to a third they are parallel to each other.

Theorem 10-5. (P. 295) Two parallel planes are everywhere
equidistant.

Theorem 10-6. (P. 301) Any two plane angles of a given
dihedral angle are congruent.

Corollary 10-6-1. (P. 302) If a line is perpendicular to
a plane, then any plane containing this line is perpendicular
to the given plane.

Corollary 10-6-2. (P. 302) If two planes are perpendicular,
then any line in one of them perpendicular to their line of
intersection 1s perpendicular to the other plane.

Theorem 10-7. (P. 307) The projection of a line into a
plane 1is a line, unless the line and the plane are perpendicular,

Theorem 11-1. (P. 328) The area of a right triangle is
half the product of 1ts legs.

Theorem 11-2. (P. 328) The area of a triangle is half the
product of any base and the altitude to that base.
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Theorem 11-3. (P. 330) The area of a parallelogram 1s the

product of any base and the corresponding altitude.

Theorem 11-4. (P. 331) The area of a trapezoid is half the
product of its altitude and the sum of 1its bases.

Theorem 11-5. (P. 332) If two triangles have the same
altitude, then the ratio of their areas is equal to the ratio
of their bases.

Theorem 11-6. (P. 332) If two triangles have equal
altitudes and equal bases, then they have equal areas.

Theorem 11-7. (P. 339) (The Pythagorean Theorem.) In a
right trliangle, the square of the hypotenuse 1s equal to the sum
of the squares of the legs.

Theorem 11-8. (P. 340) If the square of one side of a
triangle is equal to the sum of the squares of the other two,
then the trlangle is a right triangle, with a right angle
opposite the first silde.

Theorem 11-9. (P. 346) (The 30 - 60 Triangle Theorem.)
The hypotenuse of a right triangle is twice as long as the
shorter leg if and only if the acute angles are 30° and 60°.

Theorem 11-10. (P. 346) (The Isosceles Right Triangle
Theorem.) A right triangle is isosceles if and only if the
hypotenuse is W/é times as long as a leg.

Theorem 12-1. (P. 368) (The Basic Proportionality Theorem.)
If a line parallel to one side of a triangle intersects the other
two sides 1in distinct polints, then it cuts off segments which are
proportional to these sides.

Theorem 12-2. (P. 369) If a line intersects two sides of
a triangle, and cuts off segments proportional to these two
sides, then it 1s parallel to the thlird side.




Theorem 12-3. (P. 374) (The A.A.A. Similarity Theorem.)
Gilven a correspondence between two triangles. If corresponding
angles are congruent, then the correspondence is a similarity.

Corollary 12-3-1. (P. 376)_  (The A.A. Corollary.) Given
a correspondence between two trlangles. If two pairs of
corresponding angles are congruent, then the correspondence is
a similarity.

Corollary 12-3-2, (P. 376) 1If a line parallel to one side
of a triangle intersects the other two sides in distinct points,
then it cuts off a triangle similar to the given triangle.

Theorem 12-4. (P. 376) (The S.A.S. Similarity Theorem.)
Glven a correspondence between two triangles. If two
corresponding angles are congruent, and the including sides are
proportional, then the correspondence 1is a similarity.

Theorem 12-5. (P. 378) (The S.S.S. Similarity Theorem.)
Given a correspondence between two triangles. If corresponding
sides are proportional, then the correspondence is a similarity.

Theorem 12-6. (P. 391) 1In any right triangle, the altitude
to the hypotenuse separates the triangle 1lnto two triangles which
are similar both to each other and to the original triangle.

Corollary 12-6-1. (P. 392) Given a right triangle and the
altitude from the right angle to the hypotenuse:

(1) The altitude is the geometric mean of the segments
into which it separates the hypotenuse.

(2) Either leg is the geometric mean of the hypotenuse
and the segment of the hypotenuse adjacent to the leg.

Theorem 12-7. (P. 395) The ratio of the areas of two
similar triangles is the square of the ratio of any two
corresponding sides.

Theorem 13-1. (P. 410) The intersection of a sphere with
a plane through 1ts center 1s a circle with the same center and
radlus.

Theorem 12-6. (P. 391) 1In any right triangle, the altitude




Theorem 13-2. (P. 414) Given a line and a circle in the
same plane. Let P be the center of the circle, and let F Dbe
the foot of the perpendicular from P to the line. Then either

(1) Every point of the line is outside the circle, or

(2) F 4is on the circle, and the line is tangent to the
circle at F, or :

(3) F 4is inside the circle, and the line intersects the
circle In exactly two points, which are equidistant from F.

Corollary 13-2-1. (P. 416) Every line tangent to C 1is
perpendlcular to the radius drawn to the point of contact.

Corollary 13-2-2, (P. 416) Any line in E, perpendicular
to a radius at its outer end, is tangent to the circle.

Corollary 13-2-3. (P. 416) Any perpendicular from the
center of C to a chord bisects the chord.

Corollary 13-2-4., (P. 416) The segment joining the center
of C to the mid-point of a chord is perpendicular to the chord.

Corollary 13-2-5. (P. 416) 1In the plane of a circle, the
perpendicular bisector of a chord passes through the center of
the circle. ’

Corollary 13-2-6 (P. 417) If a line in the plane of a
circle intersects the interlior of the circle, then it intersects
the circle in exactly two points.

Theorem 13-3. (P. 417) 1In the same circle or in congruent
circles, chords equidilistant from the center are congruent.

Theorem 13-4. (P. 417) 1In the same circle or in congruent
circles, any two congruent chords are equidistant from the center.

Theorem 13-5. (P. 424) Given a plane E and a sphere S
with center P. Let F be the foot of the perpendicular segment
from P to E. Then either

(1) Every point of E 1is outside S, or

(2) F ison S, and E 1is tangent to S at F, or

(3) F 1is inside S, and E intersects S 1in a circle
with center F,

Loro.Llary ils-¢=o. (F. 410} 1N Tne piLane oI a circle, tne
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Corollary 13-5-1, (P. 426) A plane tangent to S 1is
perpendicular to the radius drawn to the point of contact.

Corollary 13-5-2, (P. 426) A plane perpendicular to a
radius at its outer end is tangent to S.

Corollary 13-5-3. (P. 426) A perpendicular from P to a
chord of S bisects the chord.

Corollary 13-5-4, (P. 426) The segment Jjoining the center
of S to the mldpoint of a chord 1s perpendicular to the chord.

Theorem 13-6. (P. 431) If AB and BC are arcs of the
same circle having only the point B 1n common, and if their
— — ~~

union is an arc AC, then mAB + mﬁa = mAC.

Theorem 13-7. (P. 434) The measure of an inscribed angle
is half the measure of its intercepted arc.

Corollaryﬁ;S-T-l. (p. 437) An angle inscribed in a semi-
circle 1s a right angle.

Corollary 13-7-2. (P. 437) Angles inscribed in the same
arc are congruent.

Theorem 13-8. (P. 441) 1In the same circle or in congruent
circles, if two chords are congruent, then so also are the

corresponding minor arcs.

Theorem 13-9. (P. 441) In the same circle or in congruent
circles, if two arcs are congruent, then so are the corresponding

chords.

Theorem 13-10. (P. 442) Given an angle with vertex on the
circle formed by a secant ray and a tangent ray. The measure of

the angle 1s half the measure of the intercepted arc.

Theorem 13-11. (P. 448) The two tangent segments to a circle
from an external point are congruent, and form congruent angles
with the llne Jjolning the external point to the center of the
circle.

arc are congruent.



Theorem 13-12. (P. 449) Given a circle C and an external
point Q, let Ll be a secant line through Q, 1intersecting C
in points R and S; and let L2 be another secant line through
Q, dintersecting C 1n points T and U. Then QR . QS = QU -« QT.

Theorem 13-13. (P. 450) Given a tangent segment QT to a
circle, and a secant 1ine through Q, 1intersecting the circle in
points R and S. Then QR . QS = QTE.

Theorem 13-14. (P. 451) If two chords intersect within a
circle, the product of the lengths of the segments of one equals
the product of the lengths of the segments of the other.

Theorem 14-1. (P. 467) The bisector of an angle, minus its
end-point, 1s the set of points 1In the interilor of the angle
equidistant from the sides of the angle.

Theoprem 14-2. (P. 469) The perpendicular bisectors of the
sides of a triangle are concurrent in a point equidistant from
the three vertices of the triangle.

Corollary 14-2-1, (P. 470) There is one and only one circle
through three non-collinear points.

Corollary 14-2-2, (P. 470) Two distinct circles can
intersect in at most two points.

Theorem 14-3. (P. 470) The three altitudes of a triangle
are concurrent.

Theorem 14-4. (P. 471) The angle bisectors of a triangle
are concurrent in a point equidistant from the three sides.

Theorem 14-5. (P. 476) (The Two Circle Theorem.,) If two
circles have radli a and b, and i1If c¢ 1is the distance
between their centers, then the circles intersect in two points,
one on each side of the line of centers, provided each one of a,
b, ¢ 1s less than the sum of the other two.

Construction 14-6. (P. 477) To copy a given triangle.

Construction 14-7. (P. 479) To copy a glven angle.




Construction 14-8. (P. 481) To construct the perpendicular
bisector of a glven segment.

Corollary 14-8-1. (P. 48l) To bisect a given segment.

Construction 14%-9. (P. 482) To construct a perpendicular
to a given line through a given point.

Construction 14-10. (P. 484%) To construct a parallel to a
given line, through a given external point.

Construction 14-11. (P. 484) To divide a segment into a
glven number of congruent segments.

Construction 14-12. (P. 491) To circumscribe a circle about
a given triangle.

Construction 14-13. (P. 491) To bisect a given angle.

Construction 14-14%. (P. 492) To inscribe a circle in a
given triangle.

Theorem 15-1. (P. 517) The ratio é% , of the circum-
ference to the dlameter, is the same for all circles.

Theorem 15-2. (P. 522) The area of a circle of radius r
is wr

Theorem 15-3. (P. 526) If two arcs have equal radii, their
lengths are proportional to their measures.

Theorem 15-4%. (P, 526) An arc of measure q and radius r
has length Tgﬁqr .

Theorem 15-5. (P. 527) The area of a sector is half the
product of 1ts radius by the length of its arec.

Theorem 15-6. (P. 527) The area of a sector of radius r
and arc measure q 1is ggaqrz .

Theorem 16-1. (P. 535) All cross-sections of a triangular
prism are congruent to the base.

Corollary 16-1-1. (P. 536) The upper and lower bases of

a triangular prism are congruent.
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Theorem 15-2. (P. 522) The area of a circle of radius r



Theorem 16-2. (P. 536) (Prism Cross-Section Theorem.) All
cross-sections of a prism have the same area.

Corollary 16-2-1. (P. 537) The two bases of a prism have
equal areas.

Theorem 16-3. (P. 537) The lateral faces of a prism are
parallelogram regions, and the lateral faces of a right prism
are rectangular regions.

Theorem 16-4. (P. 540) A cross-section of a triangular
pyramid, by a plane between the vertex and the base, 1is a
triangular region similar to the base. If the distance from the
vertex to the cross-section plane is k and the altitude is h,
then the ratio of the area of the cross-section to the area of
the base 1s (¥) .

Theorem 16-5. (P. 542) 1In any pyramid, the ratio Qf the
area of a cross-sectlon and the area of the base is (%) s Where
h 1is the altlitude of the pyramid and k 1s the distance from
the vertex to the plane of the cross-section.

Theorem 16-6. (P. 543 ) (The Pyramid Cross-Section Theorem.)
Given two pyramids with the same altitude. If the bases have the
same area, then cross-sectlions equidistant from the bases also
have the same area.

Theorem 16-7. (P. 548) The volume of any prism 1s the
product of the altitude and the area of the base.

Theorem 16-8. (P. 549) If two pyramids have the same alti-
tude and the same base area, then they have the same volume.

Theorem 16-9. (P. 550) The volume of a triangular pyramid
is one-third the product of its altitude and its base area.

Theorem 16-10. (P. 551) The volume of a pyramid is one-third
the product of its altitude and its base area.

Theorem 16-11. (P.555) A cross-section of a circular
cylinder is a circular region congruent to the base.
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Theorem 16-6. (P. 543) (The Pyramid Cross-Section Theoremn. )



Theorem 16-12. (P. 555) The area of a cross-section of a
circular cylinder 1s equal to the area of the base.

Theorem 16-13. (P. 555) A cross-section of a cone of
altitude h, made by a plane at a distance k from the vertex,
is a circulag reglon whose area has a ratio to the area of the
base of (%) .

Theorem 16-14. (P. 557) The volume of a circular cylinder
is the product of the altitude and the area of the base,

Theorem 16-15. (P. 557) The volume of a circular cone 1is
one-third the product of the altitude and the area of the base.

Theorem 16-16. (P. 559) The volume of a sphere of radius r
is %wrg.

Theorem 16-17. (P. 562) The surface area of a sphere of
radius r 1s S = 4gre.

Theorem 17-1. (P. 579) On a non-vertical line, all segments
have the same slope.

Theorem 17-2. (P. 584) Two non-vertical lines are parallel
if and only if they have the same slope.

Theorem 17~3. (P. 586) Two non-vertical lines are perpen-
dicular if and only if thelr slopes are the negative reciprocals
of each other.

Theorem 17-4. (P. 583) (The Distance Formula.) The
distance between the points (xl,yl) and (Xg:yg) 1s equal to

’\/(X2 - X1)2 * (yg - Y1)2 .

Theorem 17-5. (P. 593) (The Mid-Point Formula.)
Let Py = (xl,yl) and let P, = (x2,y2). Then the mid-point

X tX ¥ty
1 1 2
of PP, 1is the point P = ( > s 5 )




Theorem 17-6. (P. 605) Let L be a non-vertical line
with slope m, and let P be a point of L, with coordinates
(xl,yl). For every point Q = (x,y) of L, the equation
Yy -y, = m(x - xl) is satisfied.

Theorem 17-7. (P. 606) The graph of the equation
y -y = m(x - xl) is the line that passes through the point
(xl,yl) and has slope m.

Theorem 17-8. (P. 611) The graph of the equation y = mx + b
is the line with slope m and y-intercept b.

Theorem 17-9. (P. 613) Every line in the plane is the graph
of a linear equation in x and Y.

Theorem 17-10. (P. 613) The graph of a linear equation
in x and y is always a line.

Theorem 17-11. (P. 623) The graph of the equation

)2 = r° 1s the circle with center at (a,b)

(x -a)° +(y - b
and radius r.

Theorem 17-12. (P. 624) Every circle is the graph of an
equation of the form x° + y° + Ax + By + C = O.

Theorem 17-13. (P. 625) Given the equation

x2 + y2 + Ax + By + C = 0. The graph of this equation is

(1) a circle, (2) a point or (3) the empty set.

Theorem 17-12. (P. 624) Every circle is the graph of an







Index of Definitlions

For precisely defined geometric terms the reference is to
the formal definition. For other terms the reference is to an
informal definition or to the most prominent discussion.

absolute value, 27
acute angles,
alternate interior angles, 245
altitude
of prism, 535
of pyramid, 540
of triangle, 214, 215
angle(s), 71
acute, 86
alternate interior, 245
bisector of, 129
central, 429
complementarg, 86
congruent, 6, 109
consecutive, 264
corresponding, 251
dihedral, 299
exterior, 193
exterior of, 73
inscribed, 432
intercepts an arc, U433
interior of, 73
measure of, 79, 80
obtuse,
of polygon, 506
opposite, 26k

reflex, 78
remote interior, 193
right, 85

right dihedral, 301
sides of, 71
straight, 78
supplementary, 82
vertex of, 71
vertical, 88
apothem, 512
arc(s), 429
center of, U437
congruent, 441
degree measure of, 430
end-points of, 429
length of, 525
major, UuU29
minor, 429
of sector, 527

intercepts an arc, 433
interior of, 73
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area, 320

circle, 521, 522

parallelogram, 330

polygonal region, 320

rectangle, 322

right triangle, 328

sphere, 562

trapezoid, 331

triangle, 328

unit of, 321
arithmetic mean, 364
auxiliary sets, 176
base of pyramid, 540
between, 41, 182
bisector of an angle, 129
bisector of a segment, 169
bisects, 47, 129
Cavalieri's Principle, 548
center of

arc, 437

circle, 409

sphere, 409
central angle, 429
centroid, 280, 621
chord, 510
circle(s), 409

area of, 521, 522

circumference of, 516

congruent, 17

equation of, 623, 624, 625

exterior of, Uul2

great, 410

interior of, U412

segment of, 528

tangent, ﬁl?
circular

cone, 554

cylinder, 553

reasoning, 119

region, 520

area of, 521

circumference, 516
circumscribed

circle, U490

triangle 430
collinear, 55
complement, 86
complementary angles, 86
concentric

circles, 409

spheres, 409
conclusion, 60




concurrent sets, 278, 469
cone,

circular, 554

right circular, 555

volume of, 557
congruence, 97
congruent,

angles, 86, 109

arcs, 441

circles, U417

segments, 109

triangles, 98, 111
consecutive angles, 264
consecutive sides, 264
constructions, 477
converse, 202
convex polygon, 507
convex sets, 62
coordinate system, 37, 571
coordinates of a:point, 37, 569
co-planar, 54
corollary, 128
correspondence, 97
corresponding angles, 251
cross-section

of a prism, 535

of a pyramid, 540
cube, 229
cylinder

circular, 553

volume of, 557
diagonal, 264, 509
diameter, 410
dihedral angle, 299

edge of, 299

face of, 299

measure of, 301

plane angle of, 300
distance, 34
distance between

a point and a 1line, 206

a point and a plane, .235

two parallel lines, 266
distance formula, 589
edge of half-plane, 64
end-point(s)

of arc, 429

of ray, U6

of segment, 45
empty set, 18

o a pyramid, 540
cube, 229
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equation

of circle, 623

of line, 605, 611
equiangular triangle, 128
equilateral triangle, 128
Euler, 327
existence proofs, 165
exterior angle, 193
exterior

of an angle, 73

of a circle, U112

of a triangle, T4
face of half-space,
frustum, 559
Garfield's Proof, 344
geometric mean, 361
graph, 600
great circle, 410
half-plane, 64

edge of, 64
half-space,

face of, 66
horizontal lines, 576
hypotenuse, 172
hypothesis, 60
identity congruence, 100, 109
if and only if, 203
if-then, 60 |
inconsistent equations, 618
indirect proof, 160
inequalities, 24
infinite ruler, 37
inscribed

angle, 432

measure of, U434

circle, 490

polygon, 51l

quadrilateral, 438

triangle, 490
integers, 22
intercept, 275, 433
interior

of angle, 73

of circle, 412

of triangle, T4
intersect, 1
intersection of sets, 16, 18, 473
irrational numbers, 23
isosceles triangle, 127, 128
kite, 272
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inconsistent equations, 618
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lateral
edge, 537
face, 537
surface, 537
lemma, 196
length
of arc, 525
of segment, 45
linear equation, 613
linear pair, 82
line(s), 10
oblique, 216
parallel, 24l
perpendicular, 86
skew, 241
transversal, 244
major arc, 429
mean
arithmetic, 364
geometric, 361
measure
of angle, 79, 80
of dihedral angle, 301
of distance, 30, 34, 36
median
of trapezoid, 272
of triangle, 130
mid-point, 47
formula of, 593
minor arc, U429
Non-Euclidean geometries, 253
negative real numbers, 191
numbers
irrational, 23
negative, 191
positive, 191
rational, 22
real, 23
whole, 22
oblique lines, 216
obtuse angle, 86
on opposite sides, 64
on the same side, 64
one-to-one correspondence, 97
opposite

angles, 264

rays,

sides, 264
order, 24

order postulates, 191, 192
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mid-psint, 7
formula of, 593



ordered pair, 571
origin, 568
parallel
lines, 241
slopes of, 584
lines and planes, 291
planes, 291
parallelepiped, 538
parallelogram, 265
area of, 330
perimeter '
of triangle, 287
of polygon, 512
perpendicular
lines, 86
slopes of, 586
line and plane, 219
planes, 301
perpendicular bisector, 169
pi, T, 518
plane(s), 10
parallel, 291
perpendicular, 301
plane angle, 300
point, 10
point-slope form, 605
point of tangency
of circles, 413
of spheres, 423
polygon, 506
angle of, 506
apothem of, 512
convex, 507
diagonal of, 509
inscribed, 511
perimeter of, 512
regular, 511
sides of, 506
vertices of, 506
polygonal region, 317
polyhedral regions, 6546
positive real numbers, 191
postulate(s), 9
of order, 191, 192
power of a point, 450
prism, 534
altitude of, 535
cross-section of, 535
lateral edge, 537
lateral face, 537
lateral surface, 537
lower base, 535
rectangular, 535
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of circles, 413
of spheres, 423



prism (Continued)
right, 535
total surface, 537
triangular, 535
upper base, 535
projection
of a line, 306
of a point, 306
proof
converse, 202
double-column form of, 118
existence, 165
indirect, 160
uniqueness, 165
writing of, 117
proportional sequences, 360
pyramid, 540
altitude of, 540
base of, 540
regular, 544
vertex of, 540
volume of, 551
Pythagorean Theorem, 339
quadrant, 571
quadrilateral, 263
consecutive angles of, 264
consecutive sides of, 264
cyclic, 473
diagonal of, 264
inscribed, 438
opposite angles of, 264
radius, 409, 410
of sector, 527
rational numbers, 22
ray, 46
end-point of, u46
opposite, 46
real numbers 23
rectangle, 268
area of, 322
rectangular parallelepiped, 538
reflex angle, 78
region
circular, 520
polygonal, 317
polyhedral, 546
trlangular, 317
regular
polygon, 511
pyramid, 544
remote interior angle, 193
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cyclic, 473
diagonal of, 264




rhombus, 268
right angle, 85
right dihedral angle, 301
right prism, 535
right triangle, 172
scalene triangle, 128
sector, 5K2o7
arc of, 527
radius of, 527
segment(s), 45
bisector, 169
congruent, 109
segment of a circle, 528
semi-circle, 429
separation, 182
set(s), 15
auxiliary, 176
concurrent, 278
convex, 62
element of, 15
empty, 18
intersection of, 16, 473
member of, 15
union of, 17
sifle(s)
consecutive, 264
of angle, 71
of dihedral angle, 299
of polygon, 506
of triangle, 72
opposite, 264
similarity, 365
skew lines, 241
slope, 577
of parallel lines, 584
of perpendicular lines, 586
slope-intercept form, 611
space, 53
sphere, 409
exterior of, 423
interior of, 423
surface area of, 562
volume of, 559
square, 26
square root, 25
straight angle, 78
subset, 15
supplement, 82
supplementary angles, 82

of dihedral angle, 299
of polygon, 506



tangent
circles, 417
common external, U5}
common internal, 454
externally, U417
internally, 417
line and circle, 413
plane and sphere, 423
segment, U4u48
theorem, 9
total surface of a prism, 537
transversal, 244
trapezoid, 265
area of, 331
triangle(s), 72
altitude of, 214
angle bisector of, 130
area of, 328
centroid of, 280
congruent, 98, 111
equiangular, 128
equilateral, 128
exterior of, T4
interior of, T4
isosceles, 127, 128, 346
median of, 130
overlapping, 123
perimeter of, 287
right, 172
scalene, 128
sides of, T2
similar, 365
300-60°, 346
vertex of, 72
triangular region, 317
undefined terms, 9, 10
union of sets, 17
uniqueness proofs, 165
vertex
of angle, 71
of polygon, 506
of pyramid, 540
of triangle, 72
vertical angles,
vertical line, 576
volume
of cone, 557
of cylinder, 557
of prism, 548
of pyramid, 551
of sphere, 559
whole numbers, 22
x-axis, 568
y-axis, 568
y-intercept, 611
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perimeter of, 287
right, 172 _
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