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INTRODUCTION

The text thét you are about to teach from is the result of
a collaboration between university mathematicians and experilenced
high school teachers. The treatment of geometry in this book 1is
very different, especially in the first few chapters, from the
treatment that nearly everybody is.used to. There is no question
that every change in teaching has its price: 1t calls for a great
deal of preparation when a treatment which has become second nature
1s replaced by a treatment some of whose features are new to the
teacher as well as to the student. For this reason, we have made
changes only when we became convinced that they were worth the
price. It should be remembered also that while any change at all
creates some trouble for the teacher, simply because it 1s a
change, this principle does not apply to the student: for him
any formal treatment of geometry would be new,

This manual is intended to reduce your troubles to a minimum,
It consists of three parts. The main part is a running commentary,
referring to particular short passages of the text. In this part,
we try to explain what we are driving at, and to warn of possible
difficulties. (As of the Fall of 1960, the text has been revised
after use in over one hundred classrooms, but it is natural to
expect that there will still be difficulties that haven't been
. recognized and discussed.)

In a very large number of cases, we had trouble deciding
what to put into the running commentary and what to leave out.

We decided at length that when in doubt we should put things 1in.
Thus we have no doubt included many explanations which are un-
necessary. These, however, should be easy to skip.

Obviously, in a tenth-grade textbook many of the discussions
have to be logically incomplete. We have cut some corners,
expecting the student's intuition to take over, and we believe
that this 1s as it should be. All sorts of questions can come
up in class, however, and the chances are that this book will
provoke some questions that students don't usually ask in the
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traditional courses. The running commentary is designed to help
you to be one up when this happens. We have also indicated, at
some points, the things we think should be emphasized and the
general style of presentation that we had in mind.

There are some topics that can't conveniently be dealt with
in connection with a particular Passage of the text. Some of these
topics cut across several chapters. We have therefore added a
serles of essays, under the general title, Talks to Teachers. These
include, in our opinion, some of the most iImportant parts of the
commentary. (These will be referred to, hereafter in this manual,
simply as the Talks.) .

The first of the Talks, entitled Facts and Theories, we
believe you will want to read right now and at least once more
after you have read well into the text.

Finally, to save you spade-work we have gilven answers to all
problems and solutions to all but the simplest. These are inter-
spersed in the running commentary at the appropriate pPlaces.
Answers have often been given in simplified radical form or as
multiples of 7 rather than in the form of decimal approximations.
We believe this policy should be encouraged, but that the student
should be able to supply a decimal approximation on demand.

In addition to the Teacher!s Commentary you should have
available a copy of Studies in Mathematics, Volume II, Euclidean
Geometry Based on Ruler and Protractor Axioms, by C. W, Curtis,

P, H. Daus, and R. J. Walker. This contalns, especially in the
first chapters, much material that could have been put in the

Talks to Teachers. It also contains detailed proofs of basic
theorems that are not mentioned in the text. The pProperties stated
in these theorems are intuitively obvious and are generally accepted
by students without comment. A completely logical development of
geometry must, nevertheless, contain proofs of these theorems, and
SO they are included here for whatever use you wish to make of them.
I'his book willl be referred to frequently in this manual. When we

do so we will speak of it as "Studies II."



Some teachers may enjoy referring to a lighter presentation
of some geometric ideas. To them we suggest Studies 1n Mathematics,

Volume V, Concepts of Informal Geometry.

Although we felt it unwise to make our text logically complete
in its proofs we did attempt to give a complete foundation of
postulates and definitions. On such a foundation a student can
bulld as elaborate and complete a structure as his capabilities
permit, with the help of his teacher and of supplementary reading.
The only difficulty apt to be met in laying this foundation is an
apparent slowness of the text in coming to grips with really
Interesting geometric problems., However, you willl find that the
postulates, definitions and simple theorems in Chapters 2,3 and
4k, although not particularly interesting when you first study
them, will be of great value in the later chapters. Moreover,
seen from the perspective of the later chapters the basic material
of the early chapters takes on a more Iinteresting appearance as
its importance to geometry becomes appreclated. If a student is
to understand a complicated geometric sltuation he must first
have a clear plcture of the fundamentals,

Obviously you are going to like some features of this text
better than others. In any case, we ask that you teach each
chapter of this book as if you had faith in the presentation. If
some features of 1t don't work, we want to know it, but we can't
find out, one way or the other, unless they are given a fair try.
A half-hearted experiment 1in the classroom has some of the dis-
advantages of a half-hearted back flip 1n a gymnasium.
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USING THE TIME AVAILABLE

This text was written so that very good classes will have
enough material to challenge them for a year. It follows, then,
that some classes will not be able to cover all the material.

You may prefer not to rush through important topiecs Jjust to cover
pages, so this note will suggest the kind of choices that you can
make. The choices mentioned are only samples, however, and you
will find variations that fit the needs of your own class.

A full course includes all exposition, and a substantial
number of problems from each set. Few, 1f any, students will
solve all the problems. An approximation to time allotment for
classes which study every topic is given in this table. The
names of chapters are topical and are not necessarily the actual
chapter titles.

Chapter . Days| Chapter Days
1. Introduction, 3|10, Parallels in Space 6
2. Sets, Numbers, Lines. 10 | 11. Area, Pythag. Theorem 10
3. Lines, Planes. 6 |12. Similarity 15
4, Angles, Triangles 6 |13. Cirecles, Spheres 13
5. Congruences. 20 {14, Characterizations of
6. A Closer Look at Proof 6 Sets. Constructions. 10
7. Inequalities 8 15. Area of Circles
8. Perpendiculars in Space 9 16. Volumes
9. Parallels in Plane 17 17. Coordinate Geometry 20

Total 85 —g;

The 1list of days must include time used for chapter reviews
and tests. Though such work is important, a practical observation
is in order: A class that uses two days per chapter for reviewing
and testing uses more than one-sixth of the year in that way, and
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must plan accordingly.

We believe that every course should include careful treatment
of the first volume, regardless of the preceding table., This does
not mean that proofs of theorems should be memorized or that all
problems should be done, however. Selection of material, if
necessary, can beglin with Volume 2.

The table above shows that 1f you are not into Chapter 10 by
the end of the first semester, and many classes will not be, you
will want to plan ahead so that you can study the chapters and
topics most important for your students.

For example, you may declde to omit some material in order
to devote sufficlent time to the chapter on coordinate geometry.

A way to do this 1is to omit Chapter 10 and cover the ideas of
Chapters 14, 15 and 16 intuitively while dolng selected problems.
You may also decide to take up Chapter 17 immediately after
Chapter 12.

Or you may decide to teach Chapters 8 and 10 largely on an
intuitive basis, using problems to develop major concepts.
Similarly for Chapters 14 and 15. Then omit Chapter 16 and treat
most of Chapter 17.

Certainly numerous such plans are possible, Ideally, the
one basic plan 1s to cover all material. Realistically, due to
factors of time and of individual and group differences, several
alternative plans must be considered, evaluated, and reviewed
constantly.

We 1list here what can be omitted, in the order, very roughly,
of preference in omission, the last item being the one you should
least consider omitting. Chapter 17 1is not 1included in the list,
partly because its place in such a 1list is highly controversial
and partly because a reason for omitting other toplcs 1s to assure
adequate coverage of coordinate geometry.

Proofs in Section 6-5 and in Chapters 16, 14, 10,

8, 15, 7, 13 (after Theorem 13-5), 12,

All text material (except for formulas) in Chapters

16, 14, 15, 13 (after definition of intercepted arc), 10,
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We are not proposing that anyone omit anything unnecessarily,
for 211 the material is worthwhile. We are merely proposing that,
if pressed for time, you not rush through too much material with
your students but instead select the material best suited to
their needs.
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A WORD ABOUT THE PROBLEM SETS

The problém sets in this book are an extremely important
part of the course. Many concepts are developed and expanded
there. Careful assignment of the problems 1s essential so as
not to exclude some of the important topics in the development.

Each problem set begins with some simple exercises. Some
of the more difficult problems, not necessarily to be found at
the end of the set, are starred.

It is hoped that the teacher will read all of the problems
in a set before making an assignment. In some cases &4 sequence
of problems builds an important concept, and an assignment should
contain all the problems that develop the concept. 1In some
instances a special comment about a problem occurs with the answer
to the problem.

We hope that teachers will use thelr own judgment about the
number of problems to assign. It is likely that no student will
work all the problems. Certainly most students can be expected
to do only some of the large number provided. You have a good
chance to allow for individual differences in your assignments,

Proofs, and reasons within proofs, are given in varied form
to suggest to the teacher that general understanding of the
problems is more important than a rigid form of presentation,
(This applies especially to Chapter 5 and the following chapters,
in which many of the problems call for proofs of theorems.) The
solutions given are not always the only possible solutions, and
good original reasoning by students should be encouraged and
commended.

The fact that we give a proof, in our solutions, in para-
graph form for convenience and brevity does not mean that we
believe that every student should give it in this form. The
teacher can decide which form has the most educational value for
his students at the given time.

On occasion, students should be asked to suggest and solve
problems not in the text.
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A GUIDE TO THE SELECTION OF PROBLEMS

Following is a tabulation of the problems in this text. It
will be noted that the problems are arranged into three sets, I,
II, and III. At first glance, one might think that these are in
order of difficulty.
THIS IS NOT THE MANNER IN WHICH THE PROBLEMS ARE GROUPED!!!!

Before explaining the grouping, it should be mentioned that
i1t 1s understood that a teacher will select from all of the
problems those which he or she feels are best for a particular

class. However, careful attention should be given to the comments
‘on the problems in A Word About the Problem Sets.
Group I contains problems that relate directly to the

material presented in the text.

Group II contains two types of problems: (1) some that are
similar to those of Group I, and (2) some that are just a little
more difficult than those in Group I. A teacher may use this
group for two purposes: (1) for additional drill material, if
needed, and (2) for problems a bit more challenging than those in
Group I, that could be used by a better class.

Group ITI contains problems that develop an idea, using the
information glven in the text as a starting point. Many of these
problems are easy, interesting and challenging. The student may
find them more stimulating than the problems in Groups I or II.
However, if time is a factor, a student can very well not do any
of them and still completely understand the material in the text.
These are enrichment problems.

It is assumed that a4 teacher will not feel that he or she
must assign all of the problems in any set, or all parts of any
one problem, It is hoped that this listing will be helpful to
you in assigning problems for your students.
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We have included in the problem sets results of theorems of
the text which are important principles in their own right. 1In
thils respect we follow the precedent of most geometry texts.
However, all essential and fundamental theorems are in the text
proper. The fact that many important and delightful theorems are
to be found in the problem sets is very desirable as enrichment,

While no theorem stated in a problem set is used to prove
any theorem in the text proper, they are used in solving numerical
problems and other theorems in the problem sets. This seems to be
a perfectly normal procedure. The difficulty (or danger), as most
teachers define 1t, is in allowing the result of an intuitive type
problem, or a problem whose hypothesis assumes too much, to be
used as a convincing argument for a theorem. The easiest and
surest way to handle the situation is to make a blanket rule for-
bidding the use of any problem result to prove another. Such a
rule, however, tends to overlook the economy of time and, often,
the chance to foster the creative spirit of the student. 1In this
text we have tried to establish a flexible pattern which will
allow a teacher and class to set their own policy.
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Chapter 1
COMMON SENSE AND ORGANIZED KNOWLEDGE

This chapter should be treated as an introduction. It is
not a review of algebra or of the Pythagorean relation. The
algebraic problems and the Pythagorean relation are introduced
to illustrate mathematical method, not to provide items for
forgetful students to relearn during the first week of a new
course.

In this chapter it 1s desired first that the students see
the distinction between a problem with an obvious solution and
one that requires thought and skill in its solution. Later the
need for exact reasoning on the basis of previously defined or
accepted information is illustrated. What should be impressed
upon the student is the fact that once we establish our basic
information we intend to remain within the framework of our
system to do the remainder of our work. We have our postulates
(which contain undefined terms), and our definitions. On the
basis of these (and these alone), we will build up a body of
geometrical information by the application of logical reasoning.

As pointed out in the text, it is impossible to define all
terms, so we have to begin with some undefined terms. Defini-
tions are just agreements that we make to allow us to substitute
a word, phrase or symbol for other phrases that are, in general,
longer and more tedious to write out. A definition may be
thought of as an abbreviation for a longer phrase or group of
phrases. If P and Q represent phrases such that Q is
taken as an abbreviation for P, then the abbreviated form Q
may be substituted for P 1in any discussion and the sense of
the discussion remains the same. This also works in the reverse
order. The expanded form P may replace the abbreviated form Q.
For example, consider the definition: A parallelogram is a
quadrilateral whose opposite sides are parallel. If we know
that the quadrilateral ABCD has AB||CD and AD||BC, then
we can abbreviate this by saying that ABCD 1is a parallelogram.



N

On the other hand, if we know that ARBCD 1is a parallelogram,
then we can assert what this phrase stands for, namely: ABCD
is a quadrilateral such that AB||CD and ZD||EC ,

C D

B A

So we see that the phrase, "ABCD is a parallelogram" and the
phrase, "ABCD is a quadrilateral and AB|[CD and AD||BC "
can be used interchangeably. Since definitions are agreements

that a simple phrase means the same as a more complicated phrase,
there 1s no question about ever trying to prove a definition.

Only a very remarkable student will fully understand the
paragraphs about theorems, postulates, proofs and undefined
terms, when he first studies this chapter. These ideas will
come into sharp focus in the student's mind only when he has
had some experience with them. Chapter 1 is designed merely to
give the student a sufficiently good idea of what is going on so
that he will be better prepared for what follows. For this
purpose, short and simple statements to the class are probably
best. For example, if a student asks what a proof is, a good
answer 1s that a proof is a complete explanatidn of why a state-
ment is true. (Later the student will learn, by experience, the
way all of us did, what sort of proof is acceptable in mathe-
matics.) In the same spirit, a definition 1s simply an exact
explanation of what a word or phrase means.

The explanation of the meaning of postulates has deliber-
ately been made a little ambiguous. There are two possible
viewpoints:

1. Until about 1800, everybody believed that the postul-
ates of geometry were "self-evident truths", and that the
theorems proved from them were statements of fact about the
outside world, learned by pure reason.



2. Since the discovery of non-Euclidean geometry, it has
been plain that the postulates of ordinary geometry are not
"self-evident truths". There are many kinds of geometry; all
of them are equally valid mathematically; some of the very
"peculiar" ones are useful in physics; and each of them is des-
cribed by its own set of postulates. Postulates, therefore,
are simply descriptions of the kind of geometrical theory that
we propose to investigate at a ‘given time. And when we prove a
theorem, we are not showing that the theorem is "true" in the
sense that it fits the facts of the outside world. When we
prove a theorem, we are merely showing that the theorem holds
true in the mathematical system described by our postulates.

(See the remarks on non-Euclidian geometry in the chapter on
parallels, and the Talks on Miniature Geometries and Non-Euclid-
ean Geometry.)

It does not seem to us that this second viewpoint is suit-
able for presentation in the second week of the tenth grade.
The student would probably be completely bewildered, and he
might get the idea that Euclidean geometry is Just words, words,
words. In Chapter 1 we have therefore been treading a rather
fine line, explaining to the student approximately as much as we
think that he can understand, and being careful in the process
not to make any statements that will have to be corrected later.

What needs to be emphasized, at the start, is that postu-
lates are not just pulled out of the air to satisfy somebody's
whim. The space of Euclidean geometry is an extremely good
approximation to physical space. This is why it got invented,
and this is the most effective way to think about it. We can
and we should use our intuition of physical space to help us
guess what can be proved and how we can prove it. The proof
itself, when we get it, should be logically based on the postu-
lates. A mathematical system, like the geometry we are develop-
ing, that consists of postulates and theorems involving undefined
and defined terms is called a deductive theory. This theory



itself is given meaning and content by exhibiting an interpre-
tation of the undefined terms. When we give the usual inter-
pretation of point, line, and plane from physical space we get
our physical geometry, which is an approximate model of our
deductive theory. Other interpretations of the undefined terms
lead to different models. A further discussion of mathematical
models and how they work is given in the Talks.

It might be well to return to the latter part of this
chapter after the student has had a fair amount of experience
wlth the concepts which we have been trying to explain. After
the class has finished Chapter 5, the ideas of postulate,
theorem, proof and undefined term should have become entirely

comprehensible. Chapter 6 will clarify some of the more trouble-
some problems involved in some types of proofs.

The numbers in the left-hand margin refer to the pages in
the text that are being commented upon.

Some students may not remember how to solve simultaneous
equations. The thing to do here, as far as the class as a whole
is concerned, is to provide enough reminders so that the class
understands the solution offered by the book.

Notice the manner in which the lengths of the sides of the
rectangles are discussed. The sides of the rectangles are merely
line segments, and each segment has a length that is a number of
inches. Note that we write x =8 and not x = 8 inches. There
are times when we want to talk about x2 and we square numbers,
for example, (8)2, but we do not square 8 inches. The problem
here is simply to keep the units of measure out of the mathema-
tical operations and use them in the interpretation of the re-
sults of these operations., The lower case letters, x, y, are
used to stand only for numbers which are lengths of the sides
in some unit, for example: If a rectangle is 8 inches long
and x stands for the length, then x = 8.

[pages 1-2]




Admittedly, this is a fine point, but we have been very
careful about it in the text, and it will be easier on the
students if you back us up by being equally careful about it in
the classroom.

The usage that we are following is different from that of
physics and chemistry courses. Physicists have developed, to a
fine point, the art of handling unit signs as 1f they were
algebraic symbols. A simple example of this is

6 ft. x 6 ft. = 36 sq. ft. = 36 ft.
From here they move on to measure accelerations in ft./sec.2 and

2

perform cancellations between such expressions according to the
ordinary laws governing fractions. We are not claiming for a
moment that there is anything wrong with this. It is not only
very right, but very useful. It is not, however, part of the
natural subjJect matter of this course, and so we are taking the
more elementary viewpoint that the things we know how to add and
multiply are numbefs. This will be quite adequate for our pur-
poses, and the art of handling units algebraically can best be
learned in courses where it is needed.

You may have a student who will enjoy making apparatus to
illustrate the Egyptian method for constructing a right angle.
First he needs to tie eleven knots in a piece of cord so tnat
twelve equal lengths result. Then he needs a board and two
tacks. Students can manipulate this simple apparatus to get a
feeling for the operation the Egyptians went through.

Other students may enjoy supplementary reading, for example,
an encyclopedia account of the Egyptian pyramids.

Your students may insist that they do not have to try "all"
cases to be sure of getting a right angle when a2 + b2 = 02.
You will find it hard to argue against the principle of reason-
ing they are using as long as you restrict discussion to this
one case where the mathematical fact is correct in spite of the
reasoning. But try such a thing as the "formula" for primes

P = n® - n+ 41

[pages 2-3]



when n=1, p=4
n=2,p=2143
n=3, p=47
n=2=4 p=53
n=25,p-=6l1
n=6, p=71

The first six values for n, and many more, yield prime numbers
for p. Your students may believe that this is true for all
values of n. If your class does not have anyone who hits upon
the revealing number, 41, for which P 18 not a prime, you can
propose this value yourself.

Or, on a different level, mention the rich child who be-
lieves -~ because of several observations -- that every family
has a Cadillac.

Problem Set 1-1

2. a. 1. b, 2]1352790

67,895

3. a. 30 mi.
b. Let d be the number of miles between the cities.

a-= % a+ 7.
3d = d + 21.
24 = 21.
d = 10 3. The distance is 10 % mi.

5 *4, a. 4 in., 1 in.

b. ILet n be the number of inches in the shorter plece and
5 - n the number of inches in the longer piece.
Then ‘% i1s the number of inches in the sides of the
smaller square, and :Li%ll is the number of inches in
the side of ths large square. The problem then requires
that (292 )" = 4 to5

25 - 10n + n° _ 4n°
i6 - 16 -

0 = 3n° + 10a - 25.

0= (3n - 5) (n+ 5).

3n - 5=0, or n+ 5=0,
[pages 3-5]
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10.

11.

3n = 5, or n = -5 (which is meaningless here).
n=1 %,

5-n=3 %-.

The pieces are 1 % and 3 % in. long.

This is a right triangle because (5)2 + (12)2 = (13)2.
Reason (d) is 1ikely. Reason (b) would account for large
errors. Reason (a) is unlikely.

Since 1% - 2.1 + 2 = 1 the equation is true if n = 1.
Yes. No. No.

a. The remainder 1is one.

b. All of them.

Comment: Each odd integer can be represented by 2n + 1

for some integer n. If we expand (2n + 1)2 and divide by
b, the integral part of the quotient is n2 + n and the
remainder is 1. Hence, if 4 is divided into the square

of any odd integer, the remainder is 1.

There are 31 (or in special cases, 30) regions formed, never
32. Thils problem illustrates the danger of jumping to hasty
conclusions.

a, Yes. Db. Yes. c¢. The areas are equal. d. The lengths
are equal.

The area of the rectangle is 63 while the sum of the areas
of the pieces is 64. The fallacy is that if the other
measurements are correct, the small triangles should have
heights of 3 % rather than 4. This can be shown by using
similar triangles.

The total time for the trip is the distance, 60, divided by
the average speed, 60, and is therefore 1 hour. Since
this hour is used up travelling the first 30 miles at 30
miles per hour, our answer must be that the average speed

of 60 m.p.h. is then impossible to achieve.

[pages 5-T]



8-10 This is a description of what is involved in setting up a
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mathematical theory. It took the human race a long time to
perfect this idea. You cannot expect your students to grasp it
from an abstract description. The understanding of what is
involved in logical reasoning will grow throughout the course
as students actively engage in logical reasoning. Nobody can
learn logical reasoning in a vacuum.

The 1dea the student needs to get here is that point, line
and plane are basic terms in our system and that we define more
complex terms like triangle, parallelogram, etc., in terms of
point, line and plane.

You can draw dots of different sizes on the blackboard to
help get at the idea of point. Or you can mention a star,
thousands of times as large as the earth, that is barely visible.
Seen up close it is tremendous. Seen from farther and farther
away it approximates more and more closely the idea of a point.

It may be necessary to point out repeatedly that a line
"does not stop".

The plane 1is the most difficult of the three terms for some
students to understand. This is revealed by such incorrect
language as "rectangular plane" or "circular plane". A plane is
suggested by such convenient objects as the classroom floor, the
top of the teacher's desk, and a sheet of paper. Emphasize,
whenever you use these objects for illustrative purposes, that
a mathematical plane "keeps on going", and move your hand in
appropriate directions.

It may help the student if you occasionally, during the
first months, suggest that they reread the third paragraph of
page 11.

[pages 8-11]
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a.
b.

Problem Set 1-2

measurement, size, dimension.
dimension, measurement, extent, size.

plan, houses, churches, schools.

plane, bounded by, parallelogram, rectangle, space.

a.

Defining a term usually involves placing it in a class
and distinguishing it from other members 6f the class.
The term "something" is an unnecessarily large class
into which to place squares. The phrase "that 1s not
round”" does not distinguish it from other "somethings".
(One satisfactory definition at this point: A square
is a rectangle whose sides have the same length.)

Only one of the angles has a measure of 900 in a
right triangle. (A right triangle is a triangle with
one right angle.)

"When" refers to time, not to geometric figures. A
triangle is not a period of time. (An equilateral

triangle is a triangle whose three sides are equal in

length.)

"Where" denotes a place. "Perimeter" is not a place.

(The perimeter of a rectangle is a number equal to the
sum of the lengths of its sides.)

This is a true statement, but it states a process for

computing circumference rather than stating what circum-
ference is. (The circumference of a circle is a number
which indicates its length.)

False B. True C. PFalse D. True

[pages 12-14)






Chapter 2
SETS, REAL NUMBERS AND LINES

Some of the ways in which the material of this chapter
differs from that of a traditional text are: (1) sets are in-
troduced and (2) the real numbers, and thereby arithmetic and
algebra, are brought into the course in a fundamental way. The
reason for including sets becomes evident when you realize that
every geometric figure is most simply studied as a set of points
This book does not treat the theory of sets as an end in itself
but introduces its ideas and terminology to the extent that they
contribute to the geometry course.

The real numbers are needed in geometry for the measurement
of segments, angles, areas and volumes. We introduce them ex-
plicitly, rather than use them without any explanation.

The immediate reason for introducing the real numbers in
this chapter is that they are needed for the statement of
Postulates 2, 3, and 4. These postulates guarantee in effect
that lengths of segments are expressible as real numbers, and
have the familiar properties that we expect. One important
advantage of introducing real numbers so early 1s that we can
use them to define betweenness for points on a line. Then we
can define segment, one of the most important geometric figures,
in terms of between.

Seeing numbers so strongly emphasized in a geometry course
will seem strange at first. At the time when Euclid wrote,
algebra hardly existed, except insofar as it was implicit 1n
geometry. In the following two thousand years or so algebra
developed to a high degree, but the teaching of elementary
geometry has made rather light use of 1it.

In this book, algebra is used in two important ways. In
the first place, it is used in the postulates to make them
easier to apply. If we take for granted that the real numbers
are known, then it is possible to give a logically complete set
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of postulates, adequate for proving the theorems, avoiding some
of the complications and difficulties involved in, say,
Hilbert's Foundations of Geometry. We will see also, as we go

along, that a great deal of the traditional material of geometry
was really algebraic all along, and is much easier to handle
when it is described algebraically. (This is especially true
in the chapter on proportion.)

We believe that for your students these simplifications
are. genuine simplifications, and will make geometry easier for
them to understand in the long run. But the algebraic apparatus
used in this chapter and later may very well call for more care-
ful preparation than you have ever given before to an early
chapter of a textbook.

In the form in which we have presented it, the discussion
of sets 1s not really a mathematical theory but simply an ex-
planation of the language in which we propose to talk. As the
"homely examples" in this section show, all of the basic ideas
about sets -- with the sole exception of the empty set -- are
already familiar. Only some of the words in which we talk
about them are new.

The standard notation of a set theory is described in
Apprendix I, entitled A Convenient Shorthand. This is intended
to be strictly optional and the title of the appendix is meant
to suggest the spirit in which the notation was to be regarded.

There is a serious danger in talking too much, and too fancily,
about sets, at the high school level: the impression may be
conveyed that writing things like AN BCC is a loftier occu-
pation than proving meaty theorems and solving hard problems

in geometry and algebra. This would be sad. We therefore
believe that the language of sets should be introduced matter-
of-factly without fanfare, and that the notation of set theory
should be taught to a given student only if and when the student
is prepared to think of it as a matter of convenience.

[page 15]
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As a matter of convenlence, however, the language of sets
is going to be used continually. For example, an angle will be
defined as the union of two non-collinear rays. Two lincs in
the same plane are parallel if they do not intersect, and this
means that the lines, considered as sets of points, have no
member in common.

Notice that we are referring to the rectangles as the
union of the four line segments, not the line segments plus
the region enclosed by them. Later we shall be concerned with
the interior of geometric figures.

"

Such a statement as "...each of the two lines is a set of

' seems to say something specific about "line", which is

points.'
to be one of our undefined terms. This should not be cause for
trouble, however, for the material here is informal and explan-

atory. It is not part of our formal system of geometry.

Problem Set 2-1

1. The intersection is (5, 9, 11]}.
The union is {3, 4, 5, 6, 7, 9, 10, 11, 12}.
2. a. Sl and S2; S1 and S3; Sl and S5; 82 and 85 if you are
a boy, but S3 and S5 if you are a girl.
b. Sl.
Sl'
The set consisting of all members of faculty and
students of your school.
e. Sl, Sg, S3, SS.
3. The set {A}.
The set {B,C}.
The empty set.
4., a. Three committees: {A,B}, (A,C}, (B,C]}.
b. {A,B)} and {A,C} have A in common. (A,B} and {B,C}
have B in common. {A,C} and {B,C} have C 1in
common. "Intersect" means "have a member in common".

[pages 15-20]
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The set of all positive integers.

(o))

The empty set. Or, the sets have no common member.

7. The intersection is the segment BC. The union is the

triangle ABC.

8. The set consisting of the one pair (2,1).
21 9. The set consisting of the one pair (4,3).

10. The empty set. Or, there are no common elements.

11. a. The set of all positive integers divisible by 6 (i.e.,
by both 2 and 3) -- {6, 12, 18, 24,...}.
6n, where n 1is a positive integer.
The set of all positive integers divisible by either
2 or 3, {2, 3, 4, 6, 8, 9, 10, 12,...}.

12. a. 1. b. 3. e. 6, 10. 4. %n (n - 1).

21 The material in this section, too, is informal. This
intuitive development is intended to convince the student that
to each point on a line there corresponds a real number, and
to each real number there corresponds a point on the line.

The feeling for the arrangement of these real numbers on a line
1s important to the student at this time.

Pages 23 to 28 point out the properties of real numbers
concerning inequalities and absolute values, and show their
geometric interpretation on a line.

23 Proof of the fact that between any two rational numbers
there is a third one is simple, and interesting to some. In-
tuitively, the "average" seems to be such a number. The fol-
lowing argument justifies this intuitive notion.

1. Let a be the larger and b be the smaller of any

two rational numbers. We show that 3;%—2- is
between a and b.

_ 1 1 L 1 1 o,
2 a = 5 a + 5 ac< 5 a + 5 b < 5 b + 5 b =b,
1 1
3 ac< 5 a + 5 b < b,
¥, ac<?2 Z L < b.

[pages 20-23]
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5. Hence & ; L is between a and b.
6. Furthermore, = ; P is rational.

For a more detailed discussion of irrational numbers see
Appendix III, and also Chapter 4 of Studies II.

We introduce here symbols that might be new to some
students, namely <, meaning less than, >, meaning greater
than, < , meaning less than or equal to, and > , meaning
greater than or equal to. To say that an inequality can be
written in reverse means, for example, that if 7 < 9, then
9 > 7. This is a statement in the form if x < y, then y > x.
We also have inequalities of the form x {y, or y > X.

These could be illustrated in the following manner: To say
that x ¢ 8, means that x can be either less than 8 or equal
to 8, for example x can be -12, -m, 0, 3, 7.999 or 8 itself.
For a more detailed treatment of inequalities see Chapter 4, of
Studies II. There will also be some discussion of inequalities
in Chapter 7 of the text.

While the basic algebraic postulates are put 1n Appendix
II for completeness, the postulates (laws) for inequalities
are included in the text proper, for many students are not
acqualnted with them.

Some students may be so used to saying "The square root of
9 is plus or minus 3" meaning that O has two square roots,

3 and -3, that it will be hard to convince them that the written
statement "/3 = T 3" is incorrect. We know of no patent medi-
cine to prescribe. Simply explain, move ahead, and remind
later as necessary.

Problem Set 2-2

1, All four are true.
2. a. AB 1is less than CD.
b. x 1s greater than Jy.

[pages 23-26]
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c. XY 1s greater than or equal to YZ.

d. n 1s less than or equal to 3.

e. O 1is less than 1 and 1 1is less than 2.

f. 5 1is greater than or equal to x and x is greater
than or equal to -5, or x lies between 5 and -5
inclusive,

g. X 1s positive or x 1is greater than O.

3. a. k > 0. e. 2<g«<a3.

b. r<O0 f. 2 << w(3.

c. t<O. g. a<w<hb.

d. s > 0. or b <w<a.

4, a, ¢, 4, £, h.
a. 3.009, 3.05, 3.1.

3, -2.5, -1.5.
3 .12 5
5 83’ 3

5 5
d. -1 8 s 1 '—5- ’ 3- .

c. 1

27 *6. a. T. Db. T. e. N. d. S. e. 8

27

28

*

(Note to teacher. Parts (d) and (e) are true for r >s > 0
but are not always true for certain negative values.)
7. a. S. b. T. c. 3. d. T. e. T.

Most students learn what "absolute value" means by looking
at several examples. The method of "defining by pointing"
helps the student to grasp the concept, but it certainly is not
a mathematical method. Assure your students that their notion
of absolute value will serve them satisfactorily in geometry.
Point out that thils particular definition 1s not intended to
be explanatory in the ordinary sense of the word. Awkward
though the definition may appear to be, it does pin the idea
down and 1s technically correct, whereas superficially stated
"definitions" that sound good often fail to hold up under

close inspection.

[pages 26-28]
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Problem Set 2-3

1. a, c, d.,

*2, b, ¢, d.

3. a. r. b, -r, c. O.
4, Drawings are omitted.
The set of points to the left of the zero mark.
One polnt, a unit to the right of O.
The set of points to the right of 1.
The part of the line to the left of and including 1.
Two points.
The part of the line between 1 and -1 inclusive.
The union of the part of the line to the left of -1
and the part to the right of 1.
The entire line.
5. a. The first set includes O; the second does not.
b. The first set includes O and 1; the second does not.

o = 0O o 0 T O

Throughout this book, when we speak of "two points", we
really mean two. That is, if A and B are two points, then
A and B are different. The phrases "three points", "two
lines", and so on, are used in the same way. On the other hand,
if we say merely that A and B are points of the line L,
this allows the possibility that A and B are the same; 1if
we mean that they are different, we either say explicitly that
they are different or we say explicitly that there are two of
them.,

Some usages are matters of convention, and there is not
unanimous agreement on them in the mathematical literature.
(For example, most algebra textbooks say that every quadratic
equation has two roots; and thus the equation x2 -2x+1=20
has "two roots", which happen to be the "two numbers" 1 and 1.)
We have therefore attempted to write this text in such a way

[pages 29-30]
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that the reader will understand what we mean without having to,
pay undue attention to the conventions that we are following.

Sometimes we shall use the phrase "two different points"
for emphasis -- even when the word "different" is not necessary
logically. Postulate 1, for example, uses "different" in this
way.

If you want to acquaint yourself in advance with the nota-
tions that are adopted in the text, see the index of symbols at
the end of the volume.

32 Problem Set 2-U4
1 1
l. a. %’ I8 *
1
b. 54,15.
c. 2, 2,
2 a. 50, 0.5 .
b. 325, 0.325 .
c. 7320, 732..
3. a. The numerical value of the length would be 11 divided
by 8 % =1 f% or approximately 1.3; that of the width
would be 1.
b. The numerical value of the width would be 8 % divided
by 11 = l% or approximately O.77; that of the length
would be 1.
b, 36° + 182 - 60° = 3600. e
1
= &H o = =L!~' = et
a. P h.u8 192. b. P ;§ 3 6.
_ 2 _ 2 _ 16
A = 48° = 2304. A—(-3-)—9.
3 56, 1. a® + b2 = . 1. Given
2. a2 + QE = 02 . 2. By division.
2 2 2
n n n ,
a2 By 2 2 *
3. (H) + (H) = (H) . 3. Another form of Step 2.

[pages 30-33]
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*7,. If the length of any side of the square is s units, it
is given that

32 = bLg
from which 32 ~lds =0
or s(s - 4)= 0.

The only meaningful solution to this equation is s = 4. Area
and perimeter will be numerically equal only if a side is 4
units long, whatever the unit may be. Since any change in
unit will change the % to something else, the area and peri-
meter will no longer be numerically equal.

(Note to teacher: Be ready to commend other correct proofs
students may give. The concept of generalization in mathe-
matics is an important one.)

Section 2-5 begins by appealing to the student's knowledge.
It then "describes this situation" formally, in Postulate 2.
The postulate is not a casually chosen group of words to use in
playing a game. It is on the contrary a carefully chosen state-
ment that gives one of the basic properties of points; it form-
alizes something with which the student is already familiar at
an informal or intuitive level. Later postulates will continue
the process of characterizing point, line, and plane by formal-
izing properties which are intuitively familiar or which have
been suggested by physical experience.

Notice how the first strictly geometric definition is set
off. This particular definition does not lend itself to a
discussion of the nature of mathematical definition as well as
some later ones do, so the text postpones such a discussion
until a more suitable example appears.

Postulate 2 and the definition of "distance" use some
words such as "any", "different", "unique" which have not been
defined, and this may bother very dutiful students who are try-
ing to be precise. You can simply say that we are using the

[pages 33-3%4]
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English language in the course, assuming that the meanings of
all simple non-geometric terms are known. Such terms are used
with their usual meanings. In other words, the language of
ordinary speech is assumed. Geometric terms, words with tech-
nical meanings, are the ones that are treated carefully within
the system of geometry.

In Section 2-6 on the infinite ruler, we are trying to
prepare the student in an intuitive manner for Postulate 3
(The Ruler Postulate.) When investigating the general rule
that the distance between the point that corresponds to x and
the point that corresponds to y is |y - x| it might be well
to check the rule for some whole numbers first. There are only
three cases we have to consider: (1) both points correspond to
positive numbers, (2) one point corresponds to a positive num-
ber and the other corresponds to a negative number, and (3) both
points correspond to negative numbers. The case when one point
corresponds to zero has already been considered when discussing
absolute values.

| | ¢
Case 1 0 10 21
P Q
| | |
Case 2 -5 le) 6
P Q
Case 3 | | |
-21 -10 0

It is clear that the distance from P to Q, (which is the
same as the distance from Q to P,) is 11 in all three
cases above. Now let us check and see if the absolute value
of the difference of the corresponding numbers will give the
distance between these points regardless of the order in which

we take the numbers in the formula, PQ = |y - x|.

Case 1. PQ = |21 - 10] = 11, and |10 - 21| = 11.

Case 2. PQ = |6 - (-5)] = 11, and |-5 - (6)] = 11.

Case 3. PQ = |-10 -(-21)| = 11, and |(-21) - (-10)| = 11.

[pages 34-35]
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Now the Ruler Postulate seems reasonable, because we have
seen that it will give us the results that we would expect from
the previous discussion. We now have a coordinate system on a
line; the number corresponding to a point is the coordinate of
that point.

Though the book mentioned previously that a line is a set
of points, there was no formal statement about how many points
a line contains., Postulate 3 gives us infinitely many points
on every line. This is so because we have assumed the real
number system and are now postulating a one-to-one correspond-
ence between the set of points on a line and the set of real
numbers. (The text will use the phrase "one-to-one correspond-
ence" formally in Chapter 5.)

When we say that the points on a line are in a one-to-one
correspondence with the real numbers, we mean: (1) to each
point of the line there corresponds exactly one real number and
(2) to each real number there corresponds exactly one point of
the line. One-to-one correspondences are not unique to mathe-
matics. For instance, how many times have you taken attendance
in your class by looking to see if each assigned seat in the
classroom is filled? What you have done is to establish a
one-to-one correspondence between assigned seats in your class-
room and students in your class. If you can match up a seat
with each student, you know that all of the students are present.

Postulate 3 is a very powerful tool. Part (3) guarantees
that distances on a line behave in a way that we would normally
expect them to behave in. It would not be sufficient to post-
ulate just the existence of a one-to-one correspondence. We
cannot have anything like this:

-+

because such an "undesirable" ruler does not satisfy Part (3)
of Postulate 3.
[page 37]
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If you are familiar with the foundations of geometry you
may find Postulates 3 and 4, with their strong emphasis on
algebra, rather strange. We have introduced real numbers in
Postulates 2, 3, 4 as a pedagogical device at the tenth grade
level to avoid very subtle and difficult discussions on the
theory of measure of segments. (See the Talk on the Concept
of Congruence for an indication of this.) One should not
infer that we consider this the best treatment at higher levels.
In an advanced course in the foundations of geometry we would
prefer a treatment of the type given in Hilbert's Foundations
of Geometry or Veblen's Monograph on the Foundations of Geometry
(Monograph 1 in Monographs on Topics of Modern Mathematics,

edited by J. W. A. Young.) 1In such a treatment the postulates
would be more geometric, making no reference to algebraic en-
tities, and our Postulates 2, 3, 4 would appear as theorems --
indeed difficult ones to prove.

Note the contrast with the conventional treatment (and
with Euclid) where betweenness is not even mentioned and
betweenness relations are taken, when needed, intuitively from
pilctures. The early introduction of real numbers permits us
to define betweenness. The mathematical treatments of Hilbert
and Veblen take betweenness as undefined and characterize it by

postulates.
Problem Set 2-6
1 a. 3. d. 2.
b. 3. e. |ea] or 2]a].
c 3. f£f. O.
2. a. 12. f. 10.2
b. 12. g. /3 - J2
c. 12. h. [xl - x2| or'|x2 - xll.
a. 12. i. [8a] or 4|al.
e. 1 %-. j. |es| or 2|s].

[page 37]
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(Note to teacher: 1In (g) point out that v3 - V2 1is
exact, while 1.732 - 1.414 = 0.318 is an approximate

result.)
a.
' Q w P
Pete’3 4 =3 "2 7l 0] | 2 nS5 r-5
L 4 1 i i i ! } 3 ]
Jim o0 | 2 3 4 5 6 7 n r
b. |r - 3| by Jim's scale.
[(r - 58) - (-2)] = |r - 3| by Pete's scale.
c. |r - n| by Jim's scale.
|[(r - 5) - (n - 5)] = |r - n| by Pete's scale.

Subtract % from the value at Q.
a. Yes.
b, p+2 and q + 2.
c. The distance, by definition, is |p - q|. For the new
numbering
l(p+2) - (@+2)] =|p-al.
d. Yes.

Consider two points with coordinates n and r. After
renumbering the original scale, the coordinates will be
(-n) and (-r).

The distance between them is |n - r|.

It is also true that |(-n) - (-r)| = |r - n] = |n - r].
a. No. Gamma. ‘

b. 9 miles or 41 miles

Beta 16 Alpha 9 Gamma,
Alpha 10 Beta 25 Gamma

9 @

¢. Alpha,.

d. Alpha.

(Note to teacher: This problem is leading up to the
concept of betweenness.)

[pages 37-39]
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8. There are 2 possible arrangements,
B can be between A and C. % 10 ? 15 G

A can be between C and B. CgA o B

9. B 1s between A and C. 14,

The concept of betweenness, though intuitively natural, is
one that has rarely been formalized in high school treatments
of geometry. From the discussion in the text it can be seen
that this can be a very tricky concept if we consider the
problem on a closed curve. Fortunately, later discussions
and treatments in the text consider betweenness on a line only.

In connection with the idea of betweenness, it might be
worthwhile to propose the following problem to the class: 1In
how many ways can four round beads, of different colors, be
arranged in a string so as to make a four-bead necklace? The
answer 1s that there are only three different ways. The point
is that there is only one way for the first three beads, A,

B, C to be arranged in the necklace; the six orders ABC, ACB,
BAC, BCA, CAB, CBA all form the same necklace. The only real
choice is in the position of the fourth bead, D, and for this
there are three possibilities: D can be immediately between
A and B, or immediately between B and C, or immediately
between A and C.

The definition of "between" is followed by a discussion of
definitions in mathematics. A mathematical definition must be
distinguished from a dictionary definition which often gives
only a synonym or description of the term defined. A mathemat-
ical definition is, as this manual mentioned in Chapter 1, a
formal agreement to use -- when desired -- one phrase as an
abbreviation for another phrase.

[pages 39-41)



25

Notice that a definition is logically very different from
a theorem. A typical theorem is in the form, if A, then B,
where A and B are statements. It says that statement B
is deducible from statement A. For example, let A Dbe the
statement "a triangle has two congruent sides" and B the
statement "a triangle has two congruent angles." These state-
ments mean different things, and we have learned a geometric
fact when we prove that the second statement lnevitably fol-
lows from the first.

On the other hand a typical definition is of the form:

P stands for (or is an abbreviation of) Q, where P and Q

are phrases. For example (see Chapter 1, commentary) let P

be "parallelogram" and Q be "a quadrilateral whose opposite
sides are parallel." No implication is involved here -- P

and Q@ are not even statements. Rather we are making an agree-
ment, motivated by convenlence, that the short phrase P shall
stand for the long phrase Q. Sometimes, to avold awkwardness
of language, we state a definition in "if--then" form, for ex-
ample: 1if the opposite sides of a quadrilateral are parallel,
then we call the quadrilateral a parallelogram. Don't be mis-
led by this. No implication is involved. We are not stating

a geometric fact, but an agreement about how geometric termin-
ology shall be used,namely that the word "parallelogram" shall
stand for the phrase "a quadrilateral whose opposite sides are
parallel."

You can discuss definitions in such down-to-earth terms
as these: A mathematical definition is a convenient handle
for dealing with a mathematical idea just as the set of finger
holes in a bowling ball is a convenient handle to use when
rolling the ball.

You may want to present the idea of definition to your
class like this: Consider the following definition of "honor
student." "Students of East High with a deportment grade of A
and no academic grade below B are called honor students."

[pages 41-42)
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Knowledge that Cindy Marshall is an honor student at East High
is also knowledge that she has a deportment mark of A and has
no academic mark below B by definition of "honor student". On
the other hand, knowledge that Eric Hughes, a student at East
High, had A in deportment and no mark below B is knowledge that
he 1s an honor student -- again by definition. "Honor student"
is a convenient label that spares people all the words "a stu-
dent with a deportment mark of A and no academic mark below B".

A figure for Theorem 2-1 might lead the students to feel
that they can "see" that point B is between A and C. What must
be realized is that a figure is not sufficient justification of
a proof. To prove this theorem formally we must prove it on
the basis of the definition and not the configuration, for the
only formal knowledge we have of betweenness 1is that provided
by the definition.

You might wonder why we prove theorems like 2-1 at all;
they seem so obvious. Notice that according to our logical
program, as outlined in Section 1-2, every statement of our
geometry must be elther a theorem or a postulate. We could,
of course, take as postulates all statements as obvious as
Theorem 2-1, and some text-books do this. We choose, rather,
to use as few postulates as we feel are pedagogically necessary,
and prefer to give proofs of even the "obvious" theorems. This
does not mean that either you or your students need spend much
time on the proofs. We merely believe that it is good for the
students to know that some "obvious" things can be proved, and
that mature mathematicians do not regard it a waste of time to
devise such proofs (and some of them are unimaginably difficult.)

You will probably want to point out to your students that
they are not expected to "learn" the proofs of the theorems in
this chapter. The theorems may not seem meaty to beginning
geometry students, and the proofs are not at all typical of the
kind of geometric reasoning they will usually be doing. We do
not expect them to know how to write proofs of their own until
Chapter 5. The book gives proofs for the sake of completeness.

[page 42]
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Go through them once, and then go on. Assure the students that
the time for mastering simple geometric proofs will come, and
that the book will then help them get a start.

The statement that if x <y, then y - x 1s positive,
might require some amplification. We can illustrate this with
a specific example, letting x and y represent 2 and 7
respectively. If x < y, and we subtract the smaller number
from the larger,then it is certain that the difference will be
a positive number (y - x > 0). If, on the other hand, x <y,
and we subtract y from x, we would have x - y < 0. If we
subtract 7 from 2 we get a negative number, which is, of
course, less than O. In the theorem it is given that x < y.
Then y - X 1s positive and, by deflnition of absolute value,
ly - x| =y - x.

Problem Set 2-7a

1. a. 7. d. 8 % .
b. 6, e. 0.9.
z. 10, f. |xl - x2|.

2. It is only necessary to read a single positive number if
one uses the Ruler Placement Postulate. Neilther subtrac-
tion nor computing an absolute value is necessary.

RS + ST = RT.

The coordinate of A is -2; that of B is 14,

¢. See the Ruler Postulate and definition of between.
The point having coordinate x Theorem 2-1.

a. By the Ruler Postulate:

1°

~N OVl F W

AE = [0 - 3 r| = 3.

1 2 .1
EF=I§-I'—-3—I'I—-3I‘.
FB=|Er-r|=%r
AE = EF = FB.

[pages 42-143]



28

45

b. AF = |o-§-r|=§r.

- 1 L._2
AE + EF = AF since 3 r + 3 r = 3 T.

Therefore, E is between A and F.

*8,  The lnequality x >y > z can also be written z <y ¢ X,
in which case Yy -2, Xx -2z, and x - Yy are all positive.
Therefore, CB = y - z,

CA =x - z,
and AB = x - y,
From these three equations we observe that
CB+ BA=x -2 = CA,
Therefore, B is between A ang C. (Note: A brief
proof relates z <y < x to Theorem 2-1.)

The term "ray" might be new to students. The text makes
clear the distinction between ray and segment. What should be
pointed out to the students is that in the notation for a ray,
for instance Kfi the first letter is the end point and the
Second 1s one of the infinitely many points through which the
ray passes. It is not correct, therefore, to refer to the ray
ggpse end point is A ang whigg'passes through point F as
FA. The correct notation is AF.

Observe that in the figure for Theorem 2-4 the point P
need not, in spite or the diagram, 1ie to the right of point B.
P may be the same point as B, or P may be between A and
B. However, P cannot be at A, and A cannot be between P
and B, since x is a positive number.

Remarks on The Line Separation Theorem. The following
theorem is not stated in the text, but is of'ten used tacitly
later. It describes the separation of ga line by a point, and
is closely analogous to the later postulates in Chapter 3 deal-
ing with the Separation of a plane by a line and the Separation

of space by a plane.

(pages 143-146)



CEMREL - CSMP ||
103 s, \A"ASHINGTO!\? §¢RY
CARBONDALE, ILL. 2901 29

The Line Separation Theorem. Let P be a point of the

line L. Then L is the union of P and two sets Hl and

H2 not containing P, such that

(1) No point of L 1lies in both H, and H,.

(2) If two points Q and R are both in the same set,
H1 or H2, then P 1is not between Q and R, and
(3) 1f Q 4is in Hy then P 1is
between Q and R.
Proof: Let us set up a coordinate system on L such
that P corresponds to 0. Let H be the set of all points

1

of L with negative coordinates and let H2 be the set of

all points of L with positive coordinates. Then L is the

s, and R is in H2,

union of P, H and H2, because every real number is positive,

negative or zeio. P 1is not in either H1 or H2 because O
is neither positive nor negative. (1) holds because no number
is both positive and negative. It remains to verify (2) and
(3).

Let Q and R Dbe points with coordinates x and y.
Suppose that y 1is the larger; this is merely a choice of
notation. If Q and R are in Hl, then x <y < 0; by
Theorem 2-1, R 1s between Q and P; and so P 1is not
between Q and R. If Q@ and R are in H2, then 0 < x < y;
Q 1s between P and R; and so P 1is not between Q and R.
This verifies (2).

et Q, R, x and y be as before, with x < y. If Q
is in Hl and R is in He, then x <0 and y > 0. There-
fore, x < 0 < y; and therefore, P is between @ and R.

This verifies (3).

This theorem has been deliberately kept out of the text.
It is so obvious that students can be expected to use it tacitly
and its proof is not very interesting mathematically.

Of course, the half-lines Hl and H2 are analogous to
the half-planes and half-spaces to be discussed in the next
chapter. Notice that a half-line is different from a ray; a

ray contains its end-point, but a half-line does not.

[page 46)
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Notice that the Line Separation Theorem guarantees that

every ray has exactly one opposite ray.

*)

x5
*6,

Problem Set 2-7b

Two.

a. Theorem 2-1.

b. Theorem 2-3,

c. Definition of between,

a. Points X and Y and all points of §§' between X

and Y.
b. Points of X¥ and all points Z of YX¥ such that Y
1s between X and 2.
Case 1. If A is between B and C, then AB + AC = BRC.
Since AB = BC, this leads to the impossibility AC 0.

Case 2. If C- is between B and A, then BC + CA
This leads to the impossibility CA = Q.

BA.

Case 3. B 1is between A and C, by Theorem 2-2, is the
only remaining possibility and must be true.

(Note: A proof based on setting up a coordinate system
and using Theorem 2-1 is also possible.)

Theorem 2-%,
Proof. Statements: Reasons:
1. AB + BC = AC. Definition of between.
2. AC - AB = RC. Subtracting AB from each side.
3. BC > 0. Distance Postulate.
L AC > AB. If AC - AB > 0,
AC > AB.

a. 5&? contains points Y and R but XZ contains
neither points Y nor R. R belongs to XZ but
Y does not. YZ + ZR = YR.

b. Y X Z R or R Z X Y

[pages 46-48]
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Review Problems

Sl; Sug S3; S5; the empty set.

1; 2; no.
S Q R P T

a.\ T s 1 ] T T T >
-3 -2 -1 0 1 2 3 L

b. PQ =3, RT =4, TR = 4, PT = 2, QS = 2

a. Positive.
b, Between O and 2.
Negative.

a. AB + BC = AC.
b. AB = BC.
There are 12 possible orders. We picture the 6 in which B

1s to the right of A.
DA

Pl 3
€ +

- o

v

v

-

w)

J L m
Lt + a4+

L
-
o

v

Q
lw
4+ =
-

4+
A 2

4

- =
T U
+ o

v

A
40 4+ O

0\

-+ >
+w
o

A B D c

i L
Al >

P I
< ¥

AB + BC = AC. DB contains points A and C, but DB
contains neilther point A nor point C. A ©belongs to
DB but C does not.

x=9, y =54

[pages 48-49]
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10.
11.

12.

13.

14,

15.

16.

17.

Perhaps they live in the same house. However, since people
are not always precise in every day language usage, it may

be that they only live near each other -- as on opposite
sides of the street.

N -~ 2.

a. AF and E.

b. E and F.

c. Triangle AFE.

d. The empty set.

e. Triangle AEF.

a. 5. (ABCD, ABCE, ABDE, ACDE, BCDE. )

b. 10. (AB, AC, AD, AE, BC, BD, BE, CD, CE, DE.)
c. 10.

No. AC could only be 13 or 7.

h s 10 °

-t T ,_ 3 ® ,

«—f } t —>

a. F (Should be 6). e. T

b. T f. T

c. T g. T

d. T a. F (Should be 7).

Yes. Since y is larger than x, the value of y - X

will be the same as the value of |x - y|.

(b) is not a coordinate system because the numbers 4, 3, 2,
1 and O each correspond to more than one point. This is
not permissible according to Postulate 3.

(e) is not a coordinate system because the distance between
points with coordinates 2 and 1 1in the original numbering
is |2 - 1] or 1. 1In the numbering of (e) the distance
between the same two points is |2 - (-1)| or 3. By Postu-
late 2 the same two points can correspond to only one num-
ber indicating distance.

d; b, e; h; r.

[pages 50-51]
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Illustrative Test Items for Chapter 2

A suitable chapter test might be made by selecting prob-
lems from the following list. These have been grouped into
sets of problems that are similar with the idea that the
teacher may wish to make a test by choosing none or more from
each set.

In compiling this list and later lists, we generally have
omitted items specifically calling for statements of defini-
tions, postulates, theorems, and so on, in the belief that each
teacher on his own will draw on this wealth of test material,
as well as on his own ingenuity in constructing his own tests.
A. 1. a. Let A be the set of squares of the first eight

non-negative integers. List the members of this
set.

b. ILet B Dbe the set of the first eight even positive
integers. List the members of this set.

¢. What is the intersection of sets A and B?

d. What is the union of sets A and B?

2. Consider the set of all positive integers divisible by
5. Consider the set of all positive integers divisible
by 3. List the first five integers in the intersection
of these two sets.

3. The intersectlon of ray A —3 and ray B —K is . The
union of ray AB and ray BA is

B. 1. Arrange the five collinear polnts E, L. M, S, T in

proper order if IM + ME = LE; SE + ET = TS; LS + SM =ML,

2. A number scale is placed on line ?ﬁg with -5 falling
at R and 6 at S. 1If the Ruler Placement Postulate
is applied with O placed on R and a positive number
on S, what will be the coordinate of 82

3. Copy the following sentences and supply the appropriate
missing symbols over each letter pair.
a. AB has no end points.
b. The end points of MR are M and R.
¢. RQ has one endpoint, R.
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Three towns Lander, Manton and Amity are collinear but

not necessarily in that order. It is 9 miles from

Lander to Manton and 25 miles from Manton to Amity.

a. Is it possible to tell which town is between the
other two?

b. Which town is not between the other two?

¢. What may be the distance from Lander to Amity?

d. Illustrate with sketches.

Given A, B, and C are three collinear points with

AB =8 and CB =5, If, also, the coordinate of B

is -2, and the coordinate of A 1is less than that

of C, what are the coordinates of A and (2 Draw

two sketches giving different sets of answers,

A B F H T
-7 0 3 X vy
In the figure:
a. the length of AB is
b. the length of BAH is
c. the length of BT is
d. the length of FT is
e. the length of HT is or
It corresponds to O and B to 1 on a number

line, whaEe§et of numbers Sgrrespond to the points of
the ray AB? Of the ray BA?

a. |-7] + |3] =
b. |-7] - |3] =
c. |-7l - |-3] =
a. |-7-3]
e

f

g

|-7+3]
|-7-10] =
|-7+4] =
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a. How many square roots does the number 49 have?
JEG =
Write as an inequality: K 1s a negative number
greater than -10.

b. Restate the following in words: 20 > x > 10.

Make a true statement out of each of the following ex-

pressions by replacing each question mark by one of

the following symbols, <, >, =, <, > : [|3-6] 2 [6-3];
|-u-2] 2 -4} - |2|; Ix+y] 2 Ix] + |¥yl.
Answers
a. 0, 1, u’: 9: 16) 25: 36’ )4’9-
b. 2, 4, 6, 8, 10, 12, 14, 16,
c. U4, 16
a. o0, 1, 2, 4, 6, 8, 9, 10, 12, 14, 16, 25, 36, 49,
15’ 30) )45’ 60, 75’ 9O°
%B; RB.
L S M E ?

11.
a. AB.
b. HWR.
c. RQ.
a. No.
b. Amity.
¢c. 34 mi. or 16 mi.
d. L 9 M 25 A

[ | 4Jl
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A B¢
-10 -2 3
A ¢ B

-10 -7 -2

a. 7

b. x+ 7.

c. y.

d. y - 3.

e. y-xor |x-y|or|y-x|.

The set of numbers, x, such that x > 0. The set of
numbers, x, such that x < 1.

a 10
b. 4,
c I,
d. 10.
e b,
f 17.
g 3.
Two; 7.

a. -l0<K<O0, or 0>K> -10.
b. x 1is a number between 10 and 20.
=; > L.
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Chapter 3
LINES, PLANES AND SEPARATION

The material of this chapter differs from that of the
traditional text in several ways. First, some elementary solid
geometry is introduced, for the authors believe that there
should be no undue separation of solid geometry from plane
geometry.

Second, the important idea of convexity is introduced.
Most of the familiar geometric figures, such as triangular and
rectangular regions, or the interiors of circles and Spheres,
or rectangular solids and circular cones, are convex sets.

Finally, the separation of a plane by one of its lines
and the separation of space by a plane are studied. These ideas
are treated purely intuitively in most geometry texts as is
indicated by phrases such as "two points are on opposite sides
of a line."

The text description of the figure on page 5% asserts
that points A, B, C and E are coplanar. Actually, F is con-
tained in the same plane as A, B, C and E, and we can say that
A, B, C, E and F are coplanar.

Most students will not see readily that Postulate 5a
really does fill a plane with points. We do not believe that
you should press the matter, for most students will not be
interested in something so "obvious." You can show inquiring
students this by using Postulates 1, 6 and 3 along with
Postulate 5a as follows:

A plane has three non-collinear
points A, B, C by Postulate 5a.
Then by Postulate 1 there 1s a
line L determined by B and C.
The plane contains line L by
Postulate 6, Line L has
infinitely many points by
Postulate 3. Point A, in
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combination with these points individually, determines infi-
nitely many lines by Postulate 1. All of these lines (and
their infinitudes of points) lie in the plane by Postulate 6.

Postulate 6 assures us, as the text points out, that a
plane 1s flat. Your students can use a globe in the classroom
to see that is is not possible to find two points on a Sphere
such that the line determined by them lies on the sphere. A
sphere as a surface, then, does not satisfy Postulate 6. Other
surfaces, for example cylindrical ones, are trickier. Your
students can find points on a steam pipe in your room such that
the line determined by them lies on the pipe. Pupils should
readily see, however, that finding some such pairs of points
is not enough. The question remains: do 2ll pairs of points
on the pipe satisfy the requirement? Since the answer is no,
the cylindrical surface of the pipe does not satisfy Postulate
6.

A triangular region does not satisfy Postulate 6. Although
the region contains the segment AB joining its points A and B,
it does not contain the line AB which 1s determined by the
points.

Theorem 3-1 could be stated in the if-then form: If two
lines intersect, then they intersect in only one point. The
two statements are equivalent.

The students should be reminded of the fact that the "if

. then . . ."relationship is not unique to geometry or
mathematics. It is a cause and effect relationship common to
science and everyday life, for example: "If I do not sleep for
two consecutive nights, then I will be tired." Statements such
as this often occur in conversation. Full use of the exercise
material in recognizing the hypothesis and conclusion of
statements should be made when you reach Section 3-2.

Teachers will recognize the proof of Theorem 3-1 as being
indirect. The text does not wish to describe indirect proof at
this point, or even to describe proof at all. The thing to do,
we believe, 1s to go through the proof once with emphasis on

[pages 55-56]




56

39

understanding and then go on without asking students to learn
the proof. Theorem 3-1 and the method of indirect proof are
discussed in Chapter 6.

One of the problems in the teaching of geometry is that
of keeping emphasis on the ideas of proofs rather than on
rote memory. Teachers have their own ways of doing this, such
as changing the labels on figures, encouraging students to come
up with different proofs, golng from paragraph form to two-
column form and vice-versa. In other words, discourage mere
memorization of proofs. (Be careful not to discourage mental
effort, however.)

The discussion in the text of a way in which Theorem 3-2
could be proved suggests that you avoid a proof now--or at
least avoid emphasizing one. The proof goes: It is impossible
for a 1line and a plane not containing the line to intersect in
two different points because then the line, by Postulate 6,
would lie in the plane.

56-58 The text proves Theorems 3-2, 3-3, and 3-4 in Chapter 6.

57

53

Some time spent on the drawing of planes and lines in
three-space is recommended., Some very simple demonstrations
with a piece of cardboard (representing part of a plane) and a
pencil (representing part of a line) might be performed to
illustrate and clarify those postulates and theorems that make
reference to three-space.

You might ask questions designed to clarify some of the
postulates of this chapter: for example, for Postulate 7, "Why
does a stool with three legs tend to be more stable than a chair
with four legs?"

Problem Set 3-la

1. One.

Infinitely many lines can be drawn.
2. No.

Three .

[pages 53-58]
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Three
No end-points. Two end-points.

Problem Set 3-1b

P and Q are the same point by Theorem 3-1.
Infinitely many.
One.
None, if the points are non-collinear; one, if collinear.
Postulate 1.
a. One line, by Postulate 1.
B

-4 ——

b. Three lines if the points are non-collinear. There are
three pairs of points, and each pair determines a line,
by Postulate 1.

g

A B
ﬁ/' Ty

One line if the points are collinear.

A B ¢

€S & S & & <o
a. Six: AB, AC, AD, BC, BD, CD.
b. One if D is collinear with A, B, C.

© o e o
Four otherwise: AB, AD, BD, CD.

a. A set of points is collinear if there 1s a line such

that each point of the set lies on the line.

[pages 53-56]




58

ol

A set of points is coplanar if there is a plane such
that each point of the set lies in the plane.

b. For.each plane there are at least three non-colllnear
points which lie in this plane.

"Contains" form.

Given any two different points, they lie on exactly one

line.

Problem Set 3-lc

Infinitely many.

Infinitely many.

One, if the points are non-collinear; infinitely many, if
the points are collinear,

The ends of the three legs are always co-planar. The ends
of the four legs may not be coplanar.

Point.

Line.

No. Yes. Yes., Yes, if n > 2.

A set of three or more points is non-collinear if there is
no line which contains them all,.

Yes, if A, B, C are non-collinear.

No, if A, B, C are collinear.

a, A,
b. C.
c. E.
d. Non-collinear, or coplanar.
H G H G
] i
] F B F
| {
| |
I OR :
|
Db —— |- —c o —————4°
P /
”~ //
B A B

[pages 56-59]
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10.

60 11. a. An edge of the tetrahedron is the line segment

determined by two vertices.

b. Six: AB, AC, AD, BC, BD, TD.

c. Yes, for example, the edges BB and TD have no point
in common.

d. No. The faces can be paired six ways; each palr has
an edge in common.

12. Seven: ABC, ABE, BCE, CDE, ADE, ACE, BDE.

Problem Set 3-2

61 1. a. Hyp: John is il1l.
Concl: He should see 3z doctor.
b. Hyp: A person has red hair.

Concl: The person is nice to know.

¢c. Hyp: Four points lie on one line.
Concl: They are collinear.

d. Hyp: I do my homework well.
Concl: I will get a good grade.

e. Hyp: A set of points lies in one plane,
Conecl: The points are coplanar.

. Hyp: Two lines intersect.
Concl: They determine a plane.

2. a. If two lines are different, then they have at most one

point in common.

b. If a student is s geometry student, then he knows how
to add integers.

¢. If it rains, then it pours.

[pages 59-61]
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d. If a point is not on a line, then the point and the
line are contained in exactly one plane.

e. If d practice is dishonest, then it is unethical.

f. If two lines are parallel, then they determine a plane.

3. Postulate 1: If points P and Q are different, then there

is exactly one line which contains them.
Theorem 3-1: If lines L1 and L2 are different, they inter-
sect in at most one point.

4, a. No. The theorem places the intersection of two lines
as a condition for the conclusion while not asserting
that any two lines must intersect. The statement in
this problem asserts that two lines must always
intersect.

b. If two lines intersect in a point, then there is exactly
one plane containing them,

Before introducing the postulates on separation it may be
well to look back and re-examine the postulates we already have.
Postulates 1, 5, 6, 7, 8 are similar in that they are purely
geometric and describe how points, lines and planes lie on or
are "incident with" each other. They are called incidence
postulates. On the other hand, Postulates 2, 3, 4 involve
algebra; they are concerned with properties of measurement,
and so are called metrical postulates.

The incidence postulates are simple ones that logically
form a natural unit for beginning the course. But peda-
gogically this does not seem attractive, for two reasons. First,
the incidence postulates would confront the student with solid
geometry in his first approach to a new subject. Second, the
proofs of the basic incidence theorems (for example Theorems
3-1, . . . , 3-4) involve the indirect method, which causes
difficulty for many students.

To avoid these difficulties we have split off Postulate 1
from the incidence postulates and joined it to Postulates 2,

3, and 4 to form the basis of a beginning unit on measurement

[pages 61-62]
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in Chapter 2. This makes use of the student's knowledge of
algebra, and involves, geometrically, only sets of points
contained in a line. Then Chapter 3 discusses the incidence
properties of points, lines and planes and separation proper-
ties. These are non-metrical in character.

The discussion of the preceding three paragraphs suggests
a rather basic theoretical point, namely, the effect on a
mathematical theory of introducing new postulates. The next
few paragraphs use a miniature geometry to illustrate this
basic point of theory. We intend this as interesting background
material for its broad effect, rather than for any lmmediate
application to the text.

Examine Postulates 1, 5, 6, 7, 8. You see that they
include familiar determination and intersection properties of
points, lines and planes in Eucllidean solid geometry, and also,
in Postulate 5, a minimal indication of how numerous points
are. You probably have in mind, in any case, that a line and
a plane contain infinitely many points. But this can not be
proved on the basis of Postulates 1, 5, 6, 7, 8. We show this
by exhibiting an appropriate "model" for Postulates 1, 5, 6,

7, 8. The model is a concrete system of objects which satisfy
these postulates. Expressed differently, we get a model of our
mathematical theory by assigning specific meaning to the un-
defined terms "point," "line" and "plane," in such a way that
the postulates become true statements.

To construct our model, consider
a set of four distinct objects,

a, b, ¢, d. For example, we can

take four dots on a piece of /
paper as indicated in the /
diagram. We can think of b 4___ , N\ a
them if we wish as the ~ P -
vertices of a triangular ~d -
pyramid. Interpret "point"
to mean any one of the
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objects a, b, ¢, d; "line" to mean any pair of these objects;
"plane” to mean any triple of them. Then our postulates are

no longer statements involving undefined or uninterpreted terms,
but become definite statements (true or false) about the obJjects
a, b, ¢, d. Thus Postulate 1 now says: any two of the objects
a, b, ¢, d are contained in a unique pair of them. This is
trivially true. Similarly, Postulate 6 says that if a triple

of the objects contains two of them, then it contains the pair
composed of these two. This is also a trivial truth. Similarly
it can be shown that each of the Postulates 1, 5, 6, 7, 8 is
satisfied when point, line and plane are interpreted in the
given way. In virtue of this the system composed of the four
"points" a, b, ¢, d, the six "lines" (a, b), (a, c¢), (a, @),

(b, ¢), (b, a@), (¢, d) and the four planes (a, b, c¢), (a, b, d),
(a, ¢, d), (b, ¢, d) is called a model for postulates 1, 5, 6,
7, 8.

Since the model satisfies Postulates 1, 5, 6, 7, 8 1t must
satisfy the theorems which are deduced from these postulates
(using no others), for example, Theorems 3-1, 3-2, 3-3, 3-4,
This is easily verified. Now you can see that the principle
that a line contains infinitely many points can't be deduced as
& theorem from Postulates 1, 5, 6, 7, 8. For if this could be
done, our model would have to satisfy this principle -- and it
doesn't, since each of its lines contains exactly two points.

Now you can see the effect of introducing the metrical
postulates, in particular Postulate 4, the Ruler Postulate.

This guarantees that a line is rich in points, and that its
infinitude of points are arranged on the line and determine
distances in just the way we want for the kind of geometric
theory we are constructing. The introduction of the metric
postulates excludes finite models, of the type we have discussed,
which do satisfy the incidence postulates. This illustrates the
basic theoretical point we mentioned earlier: in general, as
new postulates are added in a mathematical theory, the scope of
its application, that is the family of models which satisfy

the postulates, is reduced. See the Talks: The Concept of




k6

62

63

66

66

Congruence and Miniature Geometries,

Notice that in sets D, E, F there are infinitely many
palrs of points such that the segments joining them are con-
tained in the set. The existence of a single pair of points
P, Q such that PQ does not lie in the set is sufficient to
eliminate the possibility of convexity. Thus the union of
the set of points in the interior of a circle and one point

outside the circle is not a convex set.

Separation properties are not expliclitly mentioned or ex-
plained in Euclid or in conventional texts. They appear in
geometry in statements such as, "Consider two triangles which
have the same base and a palr of vertices on opposite sides of
the base." They appear in everyday life when we say, for
example, that the town hall and the school are on the same side
of the main highway. Notice how the text uses the basic idea
of segment to give a precise statement of what is involved in
the separation of a plane by one of its lines. The intuitive
idea of two points being on the "same side" of line L is ex-
pressed precilsely by the condition that the segment joining
them does not intersect L. Notlice how the precise formulation
of the separatlion postulate agrees with our intuitive ideas
about separation.

Postulate 10, the Space Separatlion Postulate, is entirely
simllar to Postulate 9, the Plane Separation Postulate, The
corresponding result for a line can be proved from the Ruler
Placement Postulate, and was given at the end of Chapter 2 of
the Commentary.

Problem Set 3-3

l. a. Yes. The line segment joining any two points of the
line lies entirely in the 1line.
b. No. There is one segment joining the two points and it
does not lie in the two points.
c. Yes.
d. No. Any segment containing the removed point would not

[pages 62-66])
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lie entirely within the set even 1f its end-points were
within the set,

e. No. 'For any two polnts, R and S, of the set the
segment RS does not lie in the surface. (Ordinary
3-space 1s considered here.)

f. Yes.

g. No. No. Yes.

h, No. Yes. No,

i. No. Yes, Yes. No.

J. Two. Half-spaces.

No. It is necessary that for every two points, the entire

segment joining them lies in the set.

V only. V is the only set in which the segment between any

two points is contained in the set.

Yes. Take any two points P and Q in the plane. By

Postulate 6, we know that the line containing these points

lies in the plane. Hence PQ is contained in the plane,

making the set convex,.

a. Yes. For any points P and Q in the intersection:

b. No. Polnts P and Q may be selected as follows:

No. Any segment containing the removed point would not
lie entirely in the set even if its end-points were in
the set,

Yes.
[pages 66-67]
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8. Any figures of the following nature:

CONVEX NOT CONVEX
"9, Yes.
10. No.
11. a. No. The line separating the half-planes is not con-

12, a.

tained in the union.

No. A large region of the plane is still not covered,
as in the diagram,

Hy —
D

I

The Line Separation Statement: Given a point and a
line containing it. The points of the line different
from the given point form two sets such that (1) each
of the sets is convex and (2) if P is in one set and
Q is in the other, then the segment PQ contains the
given point.

\
\J\

—

1B
Ha
I

4

Two. Half lines.

68 13. A ray has an end-point, but a half-line has no end-point.

[pages 67-68]




14,

15.
16.
*17.

%18,

kg
No. Yes. Nox Yes. Yes.

(*Three lines can separate a plane into five regions if we
allow two parallels through a point to a line. This would

give:
I
T
JAVA

P
L

—

hvA

However, if we should assume only one parallel through a
point to a line, we could not get five regions.

Note that within our postulational system so far
developed we do not know which choice, if either, we will
accept, or which will be excluded.)

Four. Three.

Eight. PFour.

Conslder the segment PQ joining any two points P and Q of
the intersection. PQ is contained in the first set, since
it 1s convex. PQ is contained in the second set, since it
is convex. By the definition of intersection, the inter-
section contains all points common to the two sets. There-
fore, the intersection contains PQ, and the intersection

1s a convex set. E

Two possible figures:

H

[page 68]
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10.

Review Problems

Yes. No. They may intersect in a point (as the corner of
a room where two walls and the floor meet), Also, there
may be no point common to all three if there are three
lines each of which 1s the intersection of two of the
planes.
One plane.
a. If a zebra has polka dots, then it is dangerous.
b. If a rectangle has sides of equal lengths, then it is
a square.
¢. If Oklahoma wins, then there will be a celebration.
d. If two straight lines intersect, then they determine a
plane.
e. If a dog is a cocker spaniel, then it is sweet-tempered.
Each half-plane is convex. Yes.
From this statement one gets the impression that a plane has
boundaries. To have said, "The top of the table, if it
were absolutely flat and Smooth, would give a good idea of
a small part of a plane," would have been a better state-
ment.
Three non-collinear points.
A line and a point not on the line.
Two intersecting lines.
In the set.
Yes.
No. Since L2 lies entirely in plane E, if the two lines
were to intersect, L1 would have to contain some other
point of plane E. This is impossible by Theorem 3-2.
a. One line contains ail points of the set.
b. One plane contains all points of the set.
c. Yes.
d. Yes.
e Yes.
b No.
g Yes.

[pages 68-69]
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12.

Yes, by Postulate 7.
Yes.

Illustrative Test Items for Chapter 3

If two different lines intersect, their intersection is
If two different planes intersect, their

intersection 1is . If a plane and a line not

contained in the plane intersect, their intersection is

Which of these regions, if any, 1s not convex?

d. gz

Which, if any, of the following can separate a plane?
a. Segment b. Point ¢. Line d. Ray

51

Fill in the blanks in the statements below on the basis of
the figure shown. IMPORTANT: If none of the points given

satisfies the condition, write NONE in the blank space.

A
A
c
>P
D
B
/
Points A, P, and are collinear.
Points D, P, and are collinear.
Points P, D, B, and are coplanar.
Points C, A, B, and are coplanar.
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Write each of the following statements in "if-then" form:

a.

b.
Complete:
The set of all points in a plane which lie on one side

a.

Two different lines have at most one point in common.
Any three non-collinear points lie in exactly one plane.

of a given line of the plane is a
The two sets of points into which a separates
space are each called half spaces.

How many planes can contain one given peint? Two given

points?

Three non-collinear points?

Indicate whether True or False:

a.

o3

A 1line and a plane always have at most one
point in common.

Two lines always lie in the same plane.

There are lines which do not intersect each
other.

If three points are collinear they are coplanar.
A point and a line always lie in one and only
one plane.

Glven two different points A and B. There are
at least two different lines that contain both
A and B.

Every two points are collinear.

A line has two end-points.

There is a set of four points which lie in no
plane.

Given two points, there is more than one plane
containing themn.

State the Plane Separation Postulate in your own words.
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Answers

A point. A line. A point.

a, If Ll and L, are two different lines then they have
at most one point in common.

b. If A, B and C are three non-collinear points, then they
lie in exactly one plane.

a, Half-plane.

b. Plane.

Infinitely many. Infinitely many. One.

a. F; b, F; e¢. T; 4. T; e, F; £, F; g. T;

h, F; i, T35 J. T.






Chapter 4
ANGLES AND TRIANGLES

High school geometries usually take the notion of interior
for granted., A person 1is supposed to know from looking at a
figure when a point lies in the interior of an angle, for
example. Most things move along without undue difficulty un-
less somebody raises such a question as: But what reason can
you give to support your claim that point B 1lies 1in the in-
terior of angle AOC? Such a question can hardly be answered
when there is no formal knowledge from which to reason. This
book provides such formal knowledge by treating notions of
betweenness, order and interior.

Another way in which this book differs from almost every
other text is in its careful treatment of angles: thelr defi-
nition, their separation properties and their measure. This
last is done in a way to suggest an analogy with the measure of
distance presented in Chapter 2.

There is a clear-cut distinction in thls text between an
angle and the measure of an angle. An angle 1is a set of points;
its measure is a number. Such a distinction between the point
set and the number is usually not made in text books, the word
"angle" being used for both.

At the end of this chapter you will see the beginning of
something that may strike you as very peculiar. The use of the
words equal and congruent in this book is different from the
common usage, and you should have early advance warning of this,
so as to be ready for it. Near the end of this chapter, it is
explained that if mfLA = mLB, then the angles are called
congruent, and we write £ A = L B. 1In Chapter 5 we will give
a similar definition of congruence for segments. That is, if
AB = CD, then the segments AB and CD are called congruent,
and we write AB = CD.
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Th

(Many texts also say that two triangles are equal, as an
abbreviation of the statement that the areas of the triangles
are the same. In this book, this abbreviation will be avoided;
we shall simply say that the triangles have the same area.)

There is nothing complicated about our terminology, but
you may find it hard to get used to. To avoid trouble which
might otherwise start soon, we recommend that at the earliest
oprortunity you read the talk on Equality, Congruence, and

Equivalence in which we explain what we have on our minds, and

how and why we have departed from the traditional terminology.

In this chapter we have omitted -- rightly, we believe --
the proofs and even the statements of various simple and obvious
theorems of a foundational character. Some of these will be
discussed in Chapter 6, but for a thorough logical treatment of
the material of this chapter, see Chapter 5 of Studies II.

No matter what text is used, students must be cautivned
that when using three letters to denote an angle, they must
write the letter corresponding to the vertex between the other
two letters.

The three vertices of a triangle are the vertices of the
three angles of the triangle. To verify the statement that the
angles of A ABC- are not contained in the triangle, check to see
if the set of points in/Z ABC 1is contained in the set of points
of AABC. 1If we remember that the set of points in L ABC is
the union of two rays, each of which extends infinitely far in
one direction, and the set of points of A ABC is the union of
three segments, then we see that the triangle cannot possibly
contain its angles.

We could define the interior of LBAC as the intersection
of the set of points on that side of Kg' containing B with
the set of points on that side of K% containing C. This
intersection is diagrammed on page T4.

The interior of A ABC may also be defined as the inter-
section of three half-planes: (1) the side of i that con-
tains B, (2) the side of EE that contains A, and (3) the

[pages 71-T4)
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side of ﬁ that contains C. A cross hatching of the inter-
section of these half-planes will graphically illustrate that
this region'is the same set of points as indicated in the text.

w0 ~N oW

10.

11.

Problem Set 4-1

union, rays, line.

union, segments, non-collinear.

No. AC and AB are line segments, but the sides of LA
are rays.

No. Although the union contains the

C

triangle, the union also contains

the rest of the sides of the angles. B -
~% 5

Union of£ A and LB
Seven.
LNPR, L NPT, £ MPS, £ MPT.
L AEC, L CEB, L BED, L DEA,
Eight. £ A, £ C, L ABC, L ABD, L CBD,.L ADC,L ADB, L CDB.

(L AMB, L BMC, L CMD, L DME, L EMF, L FMA, £ AMC, L BMD,
L CME, L DMF, £ EMA, L FMB.

O ABC, A ABF, A BCF, A ACD, A FCD, A AFD, A AGD, & GFD,
A AED, A AEG, A EBD, A ABD, A BCD, A GDC.

a. D, F, M.

b. E, G, H.

[pages 74-76]
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12. No. No. It lies on the angle itself.

13. Yes. No. oF

14. No. lo oD

15. Yes. No. :

16. a. Yes. D is such a point. ] _
b. Yes. E is such a point. 7{/‘A B\\\

17. P 1s in the interior of A ARC.

18. a. Yes.
b. Not Egcessarily. P and C could be on opposite sides

of AB.
19. A and C are in opposite half-planes determined by line m.

Section 4-2 is not an

integral part of the course, and the

information presented in it will not be referred to again in

the text. The material is
whose teachers consider it
You may wonder, after
text uses AB 1instead of
does have the advantage of

this is to offset the advantages

of common usage. AB and

ferent entities.

made avalilable to those classes
appropriate in the local curriculum.
seeing the m LA notation, why the
mAB in Chapter 2. Actually mAB
consistency but we do not feel that
AB has: of convenience and
AB are different symbols for dif-

So arel. A and miA.

It will be noted that in this treatment of measurement of
angles, it 1s understood from the start that the unit of measure
This is implicit in Postulate 11, and in this
respect the Angle Measurement Postulate may seem more satisfy-

is the degree.

ing than Postulate 2 concerning distance, where a unit of
measure was chosen but left unspecified. There is nothing
especially logical, however, about the choice of degree measure
for angles: it merely happens to be customary and familiar.
You may notice a similarity between the Angle Construction
Postulate and the Ruler Postulate.

correspondence, this time between rays in a half-plane from a

We again have a one-to-one

point on the edge of the half-plane and the numbers between O

and 180.
[pages 76-81]
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Some additional mention of the use of the degree sign may
be necessary. When we label figures, as in the figure at the
top of page 80, the degree sign is used only to indicate that
the number appearing to the left of it is the degree measure
of the angle, to distinguish from the use of a lower case
letter to identify the angle. TFor example, we may have an
angle of ao, and we must distinguish this from the angle that
could be identified by the letter "a". We may speak of LQAB
as "a 40 degree angle" or we may say that L QAB is an "angle
whose measure (now understood to be degree measure) is 40."

One may ask, "Why even mention the degree once we have estab-
lished it as our unit of measure?" The reason is that the
degree 1s not the only unit by which we can measure angles.
There is, of course, the radian, which is fundamental to trig-
onometry, and we must be absolutely certain with what unit we
are working.

One difference 1n this treatment of geometry is that under
our definition of an angle there is no angle whose measure is
0, nor is there one whose measure 1is 180. Since the idea of a
"180° angle" or "a straight angle" has been used in geometry
for so long, it might be a little hard for us as teachers to
become accustomed to this usage. In thinking of angles as
point-sets it is apparent that an angle whose measure is O 1is
indistinguishable from a ray, and an angle whose measure 1s 180

"angles"

cannot be distinguished from a line. Hence, no such
appear in this treatment. Another reason for not allowing
these special angles 1is that it is impossible to determine the
interior of an angle of zero measure or of one whose measure

is 180. Incidentally, Euclid nevgf;used "straight angles."

79,80 Note carefully how the ray AC 1in the figure on page 79

corresponds to the number 180 and how this can be used to de-
termine the measures of ggper angles as illustrated on page 80.
Note also that the ray AB corresponds to O. Although we do
not allow the possibility of an angle of 1800, this does not
eliminate the possibility of two angles having the sum of their

[pages 80-82]
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measures equal to 180, and thus we do have supplementary angles.
(See Postulate 14.)

The phrase "linear pair" will probably be new to you. It
1s an easily remembered name that simplifies the statement of
Postulate 1% and some of the subsequent definitions and proofs.
On the other hand, we have not found it necessary to use the
phrase "adjacent angles". Linear pair is easily defined, for
it involves only the notion of opposite rays. The 1idea of
adjacent angles 1s more complicated, for it involves the idea
of separation in a plane. Two angles are adjacent if they
have a common side and their other two sides are contained in
the opposite half-planes determined by the line containing the
common side.

Problem Set 4-3

1. a. 60. g. 25,
b. 30. h. 70.
c. 30, i. T70.
d. 30. J. 90.
e. TO. k., 125.
£. 1s5. 1. 100.
2. a. p; b. m; c. Qq; d. n;

4. The remaining angle has a measure of 50.

5. a. BHG or GHB.
b. BFG or GFB.
6. a. XZY or YZX.
b. XZK or KZX.
¢c. KZY or YZK.
d. 180.
7. a = 52, b = 128, c = 52,
8. 70%; 90%; 144°; 164.5°; (180 - n)°, for 0 <'n < 180 ,

n®, for 0 < n < 180 , (90 + n)°, for 0 < |n| < 90.

[pages 82-85]
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9. 75, 105.
10. 120.
11. 36, 14k

12. a. One way by the Angle Construction Postulate.
b. Two ways. There are two half-planes in E whose edges
—>
contain AC.

Notice that the definition of right angle precedes any
mention of perpendicularity. Various approaches would have
been possible; the one used seems to be simplest logically, for
it permits lines, rays and segments to be included in one defi-
nition of perpendicular.

The text points out that a ray or a segment determines a
unique line which contains it. When two lines intersect, four
rays are determined. These rays in turn determine four angles.
Sometimes we refer to the angles as angles formed by the lines.
(A mathematical purist might want to replace the phrase "if the
two lines containing the two sets determine a right angle" by
"if the union of the two lines containing the two sets has a
right angle as a subset'.)

Theorem 4-4 could, with proper restatement, be taken as
the definition of right angles. In that case the definition
of right angle actually used in the text would be replaced by
a theorem.

Alternate proof for Theorem 4-T:

Given that KE' and KE are opposite rays, and Kg' and
KB are opposite rays so that L1 andlL 2 are vertical angles.
et mL 3 = r. Then by Postulate 1}, mf£ 1 must be 180-r, and
m/ 2 must also be 180-r. Therefore, mL 1 = mL 2, andL 1 Z£2,
which was to be proved.

[pages 85-88]
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1.

\"

10.

Problem Set 4-U4

a. Only one.

b. Infinitely many.

8§_l;§§. LRON and{ SON are supplementary and have equal
measures. Therefore, each has a measure of 90, making

& | 3.
a. XR and XS5
b. ¢ RXB and¢ SXA.
c. None occur.
d. L RXB and £LRXA.
£ SXA and £ SXB.

a. 80°. d. (90 - x)°, for 0 < x < 90.
b. 100. e. xo, for 0 € x < 90.
c. 145.5°, £. (x - 90)°, for 90 < x < 180.
a. 90.
b, U5,
a. Two pairs.
b. 70, 110, 110.
c. 90.
r, (180 - r), (180 - r).
m /L BGD = 90.
Proof: mLAGC + m£CGE = 180.

% mLAGC + £ mLCGE = 90.

mLBGC + meDGC = 90.

m LBGD = 90,

If either angle were not acute its measure would be greater
than or equal to 90. Then the sum of the two angles would
not be 90 so that they would not be complementary as given.
Hence, both angles must have measures less than 90 and by
definition be acute,.

Let the measure of each of the congruent angles be m.
Since they are also supplementary, m + m = 180, 2m = 180
and m = 90. Hence, each angle 1is a right angle.

[pages 89-90]
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11. m ¢£BGD = 90. (Definition of perpendicular.)
mLAGB + m£LBGD + m £DGE = 180. (The Angle Addition
Postulate and the Supplement Postulate.)
m £LAGB + m£DGE = 90. (Subtraction.)
Therefore, L AGB and £DGE are complementary. (Definition
of complementary.)
91 12. g = c. (Vertical angles have equal measures. )
b+ c+d=90. (Perpendicular lines form right angles.)
Therefore, b + g + d = 90. (Algebraic substitution of g
for c.)
a = 90. (Perpendicular lines form
right angles.)
Hence, b + g + d = a. (Algebraic substitution.)
13. a. False. An exception occurs if 5% lies in the ex-
terior of L AOC.
b. False. An exception occurs if 53 lies in the interior
of (L AOQC.
(Note to teacher: Point out that one exception is
sufficient to prove a statement false.)
14, 162,
91 15. a. b.

e e w— ——

[pages 90-91)
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Review Problems

Protractor,.
0, 180.
Acute.
Linear pair.
Complement.
Obtuse.
Congruent.
Right angle.
Congruent.

O 0O ~N OVUl &~ W N -

—
o

Acute.

=
oo

Union; rays.
Non-collinear; triangle.
X, T, ﬁg.
90, 180, supplementary.
93 15. Vertical.

16. a. 110, H
b. 70.
c. 110. <

R
= W

v

17. a. 130. b. 65. c. 50. d. 130.

18. 65, 115.

19. 15, T75.

20. 1If both are right angles.

21. Yes, any vertex of the triangle.

22. Not necessarily. The statement would not be true if the
sum were 180 or larger.

94 23. Yes. See figure on page 57.

[pages 92-94]
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2L,
25.
26.

27.
28.

29.

30.

31.
32.
33.

34,
35.

65

Yes.
Yes.
No.
12.
S and T are on opposite sides of

24

R and T are on opposite sides of
R and S are therefore on the same side of ﬁ?, so that
they are in the same half-plane. Since a half-plane is
convex RS does not intersect fﬁ?.

By the Supplement Postulate,, 2 is a supplement of L x
and £s 1s a supplement ofLy. L 2 2/, s because supple-
ments of congruent angles are congruent.

Supplements of congruent angles are congruent.

The measure must be between O and 180.

No. The point P must be limited to a half-plane with
the ray 36? on its edge.

a. Angle Addition Postulate. b. Supplement Postulate.
No. O may not be between C and D.

[pages 94-95]
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Illustrative Test Items for Chapter 4

Indicate whether each statement is true or false. —

a.

A point on the edge of a half-plane belongs to that
half-plane.

If two complementary angles are congruent, then each is
a right angle.

For every positive number r, there is an angle, (A,
such that msA = p.

If a point is in the exterior of any one of the angles
of a triangle, then it is in the exterior of the tri-
angle.

If D 1is in the interior of £ ABC, then m/ABD + m/DRC
= m£LABC.

If D 1is in the exterior of £ ABC, then mi DBA + mZABC
= m LDBC.

1t A8 and €D intersect at 0, then £ AOC =z BOD.

If m/lQ = 100, then/ZQ has no complement.

If a point is in the interior of an angle of a triangle,
it 1s in the interior of the triangle.

The intersection of two half-planes whose edges have
only one point in common is the interior of an angle.
The interior of an angle is a convex set.

If two angles have the same measure, then they are
vertical angles.

The supplement of (90 - x)° is (x + 90)°.

Every angle is congruent to itself.

Vertical angles are never supplementary.
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a. In the figure below, there are a number of triangles.
Five of these triangles have been listed below. Use
the remaining space to list all of the other triangles
you can find in the figure.

B A BAF,
A BFG.
A& BCG.
C A AEF,

A GCD.

b. List all of the angles in the figure below.
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State the number of different
angles in the given planar
figure.

How many different angles

are there if the three lines
are not coplanar?

How many linear pairs of angles
are in the figure?

Multiple Choice. Select the one correct answer.

a.

Which of these points is not in the interior of any
angle? S
L, P, H, M, none of these.

Which of these 1s determined
by Eg and E%?
LRST, L TRS,A SRT, L RTS,
none of these. R
Which point 1s in the exterior G P
of ARST?

G, R, H; J, none of these.
L TOP and £ ROS are:
supplementary angles,

perpendicular,

complementary angles,
vertical angles,

none of these.

£LQOR andZ ROS are: T <
supplementary angles,

perpendicular,
complementary angles,
vertical angles,

none cf these.

Probs. d - g.




£ Q0S8 is:

a right angle, an acute angle,

a vertical angle, none of these.

__>
0Q is perpendicular to:
<>
ﬁ?ﬁ 63; ?%, MN, none of these.

1t A8 | N3,
mi MAN =
m L MAN
m £ MAN
m{L MAN =

then:

mi BAT,
mL TAS,
m [ BAM,
m £ BAN,

none of these,

ir Eﬁ_J_‘l\r_s),

because:
they are
they are

then . NAB ¥/ SAB

both acute,
complements of

congruent angles,

they both have the same Ne

measure,
they are

vertical angles,

none of these.
mL MAT equals:

180 - 2r,

180 - r,

2r,
180,

none of these.

B

A
M
r
/

1 A
r

0

Probs. h - j.
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MATCHING.

Below are a number of statements or phrases in

one column and a list of words or expressions in the other.
Complete each statement by selecting the proper word or
expression from the right-hand column.

a.

o
.

An angle with measure less than 90 is prerpendicular
. obtuse
The supplement of a 60° angle has right
measure . 90
The number of degrees in a right acute
angle is . 120
Ir LABC is a righ’c angle, then triangle
rays AB and BC are complement
Angles with the same measure are congruent
. 30
The complement of a 60° angle has n
measure complementary
If the sum of the measures of two supplementary

angles is 90, the angles are

An angle with a measure of more than
90 is .

The supplement of a right angle has

measure
Complements of congruent angles are

If mf ABC + m£LRST = 90, then L ABC is
the of LRST.

ggg supplgggnt of an acute angle is

AB and AC are opposite rays. Ray Kﬁ
is situated so that m{L CAE = mL BAE.
LCAE is a
The measure of an angle that is twlce its

angle.

supplement is

The measure of an angle whose measure 1s,
half that of its complement is




5.

T1

—> —>
XA and XB are opposite rays on the edge of half-plane H.
S and R are polnts of H such that m/ RXB = 35,
m/L RXS = 90. Make a sketch and answer the following:

a.
b.

e.
f.

Name a pair of perpendicular lines in H, if any occur.
Name a pair of complementary angles in the sketch, if
any occur.

Name a palr of vertical angles in H, if any occur.
Name two pairs of supplementary angles in the sketch,
if two pairs occur.

Name two acute angles in the sketch if any occur.

Name two obtuse angles in the sketch if any occur.

Find mLB 1in each of the following, where LB is the
supplement of L A.

a,.
d.

miL A =30. b, mlLA =n. c. mlA = 45-n,
m/l A = 120.

Find mlL B 1in each of the following, where LB is the com-
plement of £ A.

a.
d.
a.

mlL A = 38. b. mL A = 49, c. mlA=n

mlL A = n+25,

If one of a pair of vertical angles has a measure of x,
write the formulas for the measures of the other three
angles formed.

If three rays have a common endpoint and two of them
are opposite rays, what is the sum of the measures of
the angles in the resulting figure?

H is a point in the interior of L RST. m/l HST = 10 and
m, RST = 30. What is the value of mL/L HSR?

If two congruent angles are supplementary, what kind of
angles are they?

If each of two vertical angles has measure 1, what 1is
the measure of each of the other vertical angles in

the figure?

If the difference between the measures of two complemen-
tary angles is 8, what is the measure of each angle?
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10.

11.

a. ©Sketch two angles such that their intersection is a set
of three points.
b. 1Is every point in the interior of an angle a point of
the angle?
c. Given A RST and a point P. P and R are on the
same side of E%. P and S are on the same side of
&t
Is P in the interior of L RTS?
Is P 1_n> the interior of A RST? -
a. If the ray AC 1lies in a plane, how many rays AB
are there in the plane such that m/L BAC = 110? Draw
a sketch.
b. In the planar figure 1t is given Q R 3
that AR_| BT and that mL QAR =
mi SAR.
Prove: LPAQ =L SAT,
p< A > T
In the figure KELl_E?. For each
of the congruences below state the
theorem which Justifies it.
a. LAOB =L DOE. AC
b. LDOF = L BOF. b
c. LDOC T L FOG. ol B
<E 0] ;
£l
v
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Answers to Illustrative Test Items for Chapter 1

a. False. h True.
b. False. i False,
c. False. J True.
d. True, k. True.
e. True. 1 False.
f. False, m True.
g. False. (0 may not be between n. True.
C and D.) o. False.
a. AABE, ABED, ABCD, AABC, ABAG, A BFC.
b. LX,LY, LZ, LZKN, L ZNK, L XKN, LYNK,
c. 12, 12, 12.
a. P. f. a right angle.
b. L TRS. £. ?E,
c. G. h. None of these.
d. Vertical angles. 1. They both have the
e. Complementary angles. same measure.
j. 180-2r.
a. Acute. £. 30. k. Complement.
b. 120. g. Complementary. 1. Obtuse.
c. 90. h. Obtuse. m. Right.
d. Perpendicular. 1. 90. n. 120,
e. Congruent. j. Congruent (or o. 30.
acute).

a. None occur in H.
b LBXR and LSXA.
¢. None occur in H.
d LRXA and LRXB,

LBXS and LAXS.
e. LSAX and LRXB.
f. LSXB and LRXA.

a. 150. b. 180 - n. c. (135 +n). d. 60.

a. 52. b. 41, c. (90 -n). d. (65 - n).
a. x, 180 - x, 180 - x. b. 180. c. 20.

d. Right. e. 1769. f. 41,49,
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10, a.

11. a.

|\

No; no point in the interior is a point of the angle.
Yes, Not necessarily.

Two. B,

\4

B

LPAR and LTAR are right angles, by the definition
of perpendicular.

LPAQ and LSAT are complements of congruent angles,
LQAR and Ll SAR.

L PAL gl.SAT, because complements of congruent angles
are congruent.

Complements of congruent angles are congruent.
Supplements of congruent angles are congruent.
Vertical angles are congruent.




Chapter 5
CONGRUENCES

The treatment of congruence in this chapter will seem un-
familiar to many teachers, but the two Talks, Equality, Con-
gruence, and Equivalence and The Concept of Congruence, should
be helpful to them. The difference in treatment lies chiefly
in the fact that congruence is regarded here as a special kind

of one-to-one correspondence. Our notation was chosen to show
how the corresponding parts of two triangles are paired with-
out referring to a diagram. Correct use of this symbolism
should eliminate confusion about what the corresponding parts
are in any particular problem.

We have included problems to famillarize students with
the new terminology; the rest of the problems in the chapter
are familiar in type. 1In this book, as in most books, the
students are expected to develop a working knowledge of proof
by working with congruence of triangles.

Students should show progress, while studying this chapten
in their ability to recognize different proofs of a theorem.
The tendency for them to think that a mathematical problem has
only one method of solution should be replaced gradually by
the practice of examining each proof as an example of correct
logical reasoning.

The extent to which a proof 1s detailed is mainly a
matter between the teacher and student. We believe it desir-
able to develop flexibility of methods dependent upon the
problem at hand and the mathematical maturity of the students
involved. As the student progresses he should be encouraged
to omit minor steps where understanding is not impaired and
convenlence results. For example, if the hypothesis of a
theorem says that M is the midpoint of AB, the teacher may
require in the first proofs the student does that AM = MB be
Justified in two steps:
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98

97

99

100

1. M 1is the midpoint of ®&AB. 1. Hypothesis.
2. AM = MB. 2. Definition of
midpoint.

As he learns, the student should be permitted to telescope
this into one step by saying AM = MB, by definition of mid-
point (or even, by hypothesis). The important thing is to
advance the student's growth in the direction of appreciating
and understanding proof.

A«—>D can be read: Points A and D correspond to
each other, or A corresponds to D.

ABC<>DEF can be read: The points A, B, and C and the
points D, E and F correspond to each other in the order
named, or briefly, A, B, C correspond to D, E, F.

In this introduction we first develop the intuitive idea
of a congruence between two geometric figures. A congruence
means intuiltively that there is a particular way of moving one
figure so that it coincides with another. We proceed, as
quickly as possible, to the idea that a congruence can be des-
cribed by explaining where each point in a certain finite set
of points is golng to go. The idea behind this treatment is
to get the student accustomed to writing down the sets of
matching pairs, so as to prepare the way for the formal mathe-
matical treatment of congruences between triangles.

Two figures are congruent if there is a congruence between
them; that is, speaking informally, if one of them can be moved
so as to coincide with the other. In this chapter, however,
heavy stress 1s given to the idea of a congruence between two
figures, for there may be more than one congruence possible
between the two. This stress should begin at the very begin-
ning of the chapter. 1In this spirit, it should be made plain
that a problem based on this section is not to be considered
solved 1f the student has merely determined that two figures
are congruent. The problem is solved only when a particular
congruence between the two figures is exhibited.

For some palrs of triangles there is a unique one-to-one
correspondence between vertices that is a congruence. However,

[pages 98-100]




7

in the case of a palr of isosceles or equilateral triangles,
if there exists a congruence between them, then there is more
than one congruence between them.

Problem Set 5-1

100

101

102

103
104

105

(o)}

ABC «> QPR.
DEF <« SUT,
DFE «» TSU.
EDF <> EFD,
UST <> UTS.
KLNO < 1JGH,

RFH <> ACB,
MXPQ<> LEKW.
DZG €> TYL.

ABC < PNQ.
KXY <> THJ,
GDEF > WRIM,

AFEG <> WTSX.
HIJK <> NRPQ.
CLM <> CIML,
UZY <> UYZ.
CLM <> UYZ,
CLM <> UZY.

a, d.

b, ¢, e, g, h.

ABC <> AEC.
ABC <> BAC.,
ABC <> CAB.

ABCD <> ABCD,
ABCD <> BCDA,
ABCD <> CDAB,
ABCD<> DAEC.

ABC > ACB.
ABC <> BCA.,
ABC <> CBA.

ABCD «» ADCB.
ABCD <> DCBA,
ABCD «> CBAD,
ABCD & BADC.

[pages 100-105]
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9. a. Yes. b, Yes. c¢. No. d. Yes. e. Yes. f. Yes.
g. Not always.
10. (a,d), (c,e).
106 11. ABCD <> ARCD,
ABCD € BADC.
ABCD <> DCBA.
ABCD <> CDAB,

12. a. Slide the line to the right or rotate about the point
halfway between A and B. The first of these
motions takes B to C ©but the second does not.
Rotate the line in the plane (or in space) about B.
If they have the same length.

If they have the same measure.

13.

Always.

If they have the same radius.

If their edges have the same length.
Always.

Always.

107 14, Rotate the circle about its center.

TR H OO 0 T T

Turn the circle over in space, leaving the diameter
containing B fixed.

15. a. Slide the frieze horizontally. There are infinitely
many translations of this type that result in con-
gruences.,

Using the line of the frieze as an axls, rotate the
frieze a half-turn about this axis and then translate
the frieze horizontally. There are infinitely many
motions of this type that result in congruences.

b. Translate horizontally. Infinitely many. Rotate in
the plane through 180° about a point on the line half-
way between two successive intersections.

Infinitely many.

(pages 105-107]
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108 16. (a) and (e). A turn-over is needed.

109

(b) and (¢). No turn-over is necessary.
(d) and (f). No turn-over is necessary.

17. ABCDE <> ABCDE. ABCDE <> AEDCB.
ABCDE <> BCDEA, ABCDE <> EDCBA,
ABCDE <> CDEAB, ABCDE €> DCBAE,
ABCDE <> DEAEBC. ABCDE > CBAED,
ABCDE € EABCD, ABCDE €> BAEDC,

We now begin to talk about congruence in a careful way in
terms of distance and angular measure. It may be helpful to
restate the definition on this page using symbols:

Definition: Consider angles JZA and £B,
LA = 4B if mLA = m<B.
Consider segments AB and CD,
AB = TD 4f AB = CD.

Since any definition 1is an agreement that one expression is an
abbreviation for another, the sentence "ZA = ZB" may be re-
placed by the sentence "m<ZA = mZB" and the sentence

"mZA = mZB" may be replaced by the sentence " ZA = L B".
A related thing holds for segments. The sentence "AB = CTD"
may be replaced by the sentence "AB = CD" and the sentence
"AB = CD" may be replaced by the sentence "AB = TD".

The questlon may very well arise as to why we have two
different ways of writing exactly the same thing. If AB = TD
means that AB = CD, why bother to introduce the notation
AB = CD? This would be a valid objection if we were talking
about congruence of segments only. But we will be talking
about congruence of segments, angles and triangles; and while
the technical definitions of congruence are different for
these three cases, the basic intuitive idea is the same. The
basic intuitive idea is that two figures (of any sort whatever)
are congruent if one can be moved so as to coincide with the

other. In the Appendix on Rigid Notion (in volume II) this

[pages 108-109]
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basic unity of the idea of congruence is described in an ex-
act mathematical form. 1In the meantime, it seems worthwhile
to emphasize this unity by using the same word, congruence,
and the same symbol, 3, whenever the idea occurs. Notice
that in the definition of congruent angles and segments the
idea of a one-to-one correspondence does not occur, as it does
in the development of the basic idea of a congruence between
two triangles. The idea does appear, however, in the general
definition of congruence given in the Appendix on Rigid Motion.
In the table on Page 109 of the text note that the ex-
pressions on the left and right in each line are interchange-
able, but this does not say that we can use the symbols " = "

and 1] = 1"

interchangeably.

To help make this clear let us skip ahead and examine
Postulate ‘15 (The S. A. S. Postulate). "Given a correspondence
between two triangles (or between a triangle and itself). If
two sides and the included angse of the first are congruent to
the corresponding parts of the second triangle, then the cor-
respondence is a congruence." Let us consider the word
"congruent" that is underlined above. This may not be replaced
by "equals", since "equals" means "is the same as", and we
would not be able to talk about two different triangles being
congruent. Using "equals" we would be able to talk only about
the identity congruence, which is rather uninteresting. 1In
the statement of the above postulate it is possible to replace
the phrase, "are congruent to" by the phrase, "have the same
measure as."

In the definition of a congruence between two triangles
we see that we must have a one-to-one correspondende between
the vertices of the triangles such that (1) each pair of
corresponding sides are congruent and (2) each pair of corres-
ponding angles are congruent. Conditions (1) and (2) might be
stated in this alternate manner: (1!') each pair of correspond-
ing sides have the same length and (2') each pair of corres-
ponding angles have the same measure.

[pages 109-111]
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The text shows how to mark diagrams to indicate which
parts of figures that are known to be congruent in the state-
ment of a problem. Students should be encouraged to mark the
figures they draw for themselves when thils practice 1is not
continued in the text. They will soon see that this is a very
convenient method of translating the written information to
thelr figures. As a student's analysis of a particular prob-
lem develops, he may wish to mark additional elements, the
congruence of which he has established by using the glven data.
For example, suppose that it is given for the following figure
that AE = FB, AD = BC, and mZA = mZB. The figure is marked
accordingly:

Suppose 1t is required to prove that AEXF 1s isosceles.
After the student has proved that AADF = OABCE and that
ZCEB 24£DFA, he can put a palr of appropriate marks on these
angles and show visually how much he has accompllshed.

In answer to the question in the text, "Would it be
correct to write AB = DE or ZA = <£D? Why or why not?"
(Refer to the figure above the question in the text.)

AB Z DE 1s incorrect because AB and DE are numbers and
we should speak of them as being equal rather than congruent.
AB = DE 1is correct. If we'wish to emphasize the 1ldea of a
congruence, we can write a different correct statement,

AB = DE. <A =<D 1is incorrect in this case because LA 1is
not the same angle as £ZD, but ZA 1is congruent to £ZD and we
should write ZA = ZD or else m<£A = mZD.

[page 112]
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The text emphasizes the fact that we may use the expres-
sions "AB = DE" and "AB = DE"; " ZA T /D" and "m4A = m<ZD",
interchangeably. You may decide for yourself which notation
is easier for you to use in a particular problem.

Let us once again, before reaching the S.A.S. Postulate,
remind the teacher of the careful use of the correspondence
idea 1n making statements about congruence in this text. You
often hear people say that two triangles are congruent with-
out indicating the particular correspondence between the ver-
tices needed to prove the triangles congruent. Thus the state-
ment that AABC and ADEF are congruent is abbreviated --
without regard to the order in which letters are written --
as OABC £ ADEF, or AABC = AFED, or AABC ¥ ADFE, and so
on. These statements about congruence are treated in some
courses as different correct ways of saying the same thing.

This 1s the idea of congruence that is explained in some
conventional texts, but it is not the idea that gets used.
Every time we seem to be using the idea that two triangles are
congruent, 1t soon becomes clear that what we are really using
is the fact that they are congruent in a particular way; that
is, under a particular correspondence. For example, if we go
on to infer that "corresponding sides have the same length",
then we are claiming to know which side corresponds to which
slde. That 1s, what is being used is a correspondence between
the triangles. The treatment in this text is based on the
idea that we should talk explicitly about the ideas that we
are really using. The unfamlliarity of thls treatment may
make it hard for us as teachers to get used to it. But the
student, at this point, is not used to any formal mathematical
treatment of congruence, and it ought to be easier to teach
him to read what is written on the lines than to teach him to
read between them. As a practical matter, the.conventions of

this chapter for the expression
OABC £ ADEF

[page 112]
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seem to be efficient. It is very easy to read off which
sides and angles are congruent, instead of having to remember
the correspondence without benefit of concise memoranda.
(Refer to the discussion on page 111 in the text.)

Problem Set 5-2

1. M. F. R.
ZR MR.
ZQ. QR.
2. BA = FF. ZA = LF.
RA = FRF. ZABR = /FER.
RB = RB. ZARB = /FRB.
3. <M 2/ZF. MR = FH.
ZR = /H. MK = FW.
ZK T LM, RK = HW.
4L, /R Z LA, RQ = EB.
4Q = £B. RF = AX.
LF = /X QF = BX.
5. <A T /B. iZ = BZ.
ZAWZ = ZBWZ. AW = BW
ZAZW = £BZW. WZ = ZW.
6. AABW = AMKF.
7. OABC = ADEF.

Two triangles congruent to the same triangle are congruent
to each other.
(The student may be permitted to generalize the situation
still more by substituting "figure" for "triangle" in this
statement.)

8. a. The triangles are the same size and shape.
b. The triangles are the same size and shape.
¢. The triangles vary in size and shape.
d. A possible idea 1s the statement of Postulate 15.

[pages 111-114)
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9. a. 3 Ty Ty = ) or =, =.
b. The sixth.

e

4
e
ne

From the pictures and intuitive development, it seems
very likely that AABC ¥ ADEF under the stated conditions,
and we make this intuitively reasonable 1dea our Postulate 15.
The usual proof of this statement (S.A.S.) involves the
superimposing of one triangle upon the other. This method of
proof is not valid under our postulates. It is a fact that
the S.A.S. Postulate cannot be proved on the basis of the
preceding postulates.

Here we give the student an example of an "original"
theorem, and explaln how one might think of a proof and write
it out. It 1s well known to mathematlcians that proofs must
not depend on information taken from figures. It may seem
odd, therefore, that the examples of proof in Section 5-4
appear to depend on the figures that are given. This is not
really true; the use of the figures is merely a matter of
convenience, and they have been used because at this rather
difficult stage of his development the student badly needs all
the help he can get.

All valid geometric proofs are independent of figures in
precisely this way. In Studies II, this fact is dramatized by
the total omlssion of all figures. But such a treatment in
the tenth grade would be more than flesh and blood could stand.
And over and above this fact, the use of figures to aid intul-
tion and stimulate the imagination is one of the most import-
ant things that we are trying to teach. Not even the best and
most mature matrematiclans have found a way to live by logic
alone. ,

In the proof of Example 1 the reason column contains
three definitions, one theorem, and one postulate. There 1is
an implied use 1in Step 1 of the fact that BHE is given

[pages 115-118]
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bisected by BAR. Actually some people would write "Given" as
the reason for Step 1. Others, wishing to avoid any telescop-
ing of steps early in the year, might prefer two steps:

BH bisects &R at F. Given.
AF = RF Definition of bisect.

A 1ist of acceptable reasons for two-column proofs

follows:
Glven.
Definitions.
Postulates already set down.
Previously proved theorems or corollaries.
Principles of algebra or elementary logic.
119 The blanks in the proof of Example 2 can be filled in
with:
2. £AHB = ZFHB. .
4, AAHB = AFHB. By the S.A.S. Postulate.
5. By the definition of congruence

between triangles.

Problem Set 5-4

120 1. a, ¢, e, £, g, h.

121 2.
1. AC = DC. 1. Given.
2. BC = EC. 2. Given.
3. <ACB = ZICE. 3. Vertical angles are congruent.
4, AACB T ADCE. 4, S.A.S. [The teacher may

prefer a full statement of
the postulate at this stage.]

5. 4B = LE. 5. Definition of a congruence
between triangles.

[pages 118-121])
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1. RB = HB. 1. Given.

2. <4x =ly. 2. Given.

3. AB = FB. 3. From the definition of
midpoint.

4., AABR = AFBH. 4, S.A.S.

5. <R = (H. 5. Corresponding parts of
congruent triangles are
congruent.,

a. 1, AD = EBC. 1. Sides of a square have the
same length.

2. AR = BR. 2. Definition of a midpoint.

3. <A Z ¢B. 3. Each angle of a square is
a right angle. All right
angles are congruent.

4, AARD £ ABRC. 4., S.A.S.

5. RD = RC. Definition of congruent
triangles.

b. ZADR = ZBCR, ZARD = ZBRC (corresponding parts of
congruent triangles) and <ZRDC = ZRCD (complements of
congruent angles are congruent).

1. AB = FH. 1. Given.

2. mdx =mclg. 2. Gilven.

3. BH = HB. 3. Identity.

4, AABH = AFIB, 4., S.A.s.

5. m4A =mdPF. 5. Corresponding parts of con-
gruent triangles are
congruent.

1. AB = FB. 1. Given.

2. mZABH = mZ FBH. 2. Gilven.

3. BH = BH. 3. Identity.

4,  AABH T AFBH. 4. S.A.S.

5. AH = FH. 5. Definition of congruent
triangles.

[page 121]



Given: AH and RB bisect each A

other at point F.

87

N\
N

To prove: AFAB = AFHR. B
1. AF 2 HF. 1. Definition of bisect.
FB = FR.
2. ZAFB & /HFR. 2. Vertical angles are
congruent.
3. OAFB = OQHFR. 3. S.A.s,
1. AE = DE. 1. Definition of bisect.
CE = BE.
2. JCED = (BEA, 2. Vertical angles are
congruent.
3. OCED £ ABEA. 3. S.A.S.
4, CD = BA. 4, Definition of a congruence
between triangles.
Similar proof for AC = DB.
a. 1. AD = EC. 1. Sides of a square are
congruent.
2. DF = CQ. 2. Given.
3. AD - DF = BC - CQ. 3. Subtraction.
4, AF + FD = AD. 4, Definition of between.
5. AF = AD - FD. 5. Subtracting FD from both
sides of Step 4.
6. BQ + QC = BC. 6. Definition of between.
7. BQ = BC - QC. 7. Subtracting QC from both
sides of Step 6.
8. AF = EKQ. 8. From Steps 3, 5 and 7.
9. AR = BR. 9. Definition of midpoint.
10. <ZA = £B. 10. All angles of a square are
right angles and all right
angles are congruent.
11. AOARF = ABRQ. | 11. S.A.S.
12. RF = RQ. 12. Corresponding parts.
[page 122}
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b. Yes, many possible pairs,
F' and Q' will be two points of DC such that DF!' = CQ'
There are also possibilities on AB.

10.
1. AH = AB. 1. Given.
2. ZHAF = £BAF, 2. Definition of bisect.
3. AF = AF. 3. Identity.
4.  AABF = AAHF. 4., S.A.S.
5. FH = FB. 5. Definition of congruent
triangles.

When dealing with overlapping triangles a person can, as
the text says, avoid getting mixed up by writing congruences
down in standard form. Another policy many teachers recommend
1s that of redrawing figures on scratch paper, separating the
triangles. Thus a person can see the crucial triangles more
clearly if he draws this figure to assist him in dealing with
the figure on page 123.

A

In the last paragraph of Section 5-5 we explicitly state
the conventions about the information a student ma& and may
not draw from a figure in solving problems.

A reminder, particularly pertinent in this chapter which
contains so many problems: Most students should attempt only
a reasonable sampling of the problems provided. The generous
array is provided so that you may select according to your
class and your own preferences, and so that the very best
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student will not want for opportunity to test his ability and
to discover interesting mathematical relationships.

Problem Set 5-5

125 1.
1. AC = DB. 1. Given.
ZACF = £ DEBE.
FC = EB.
2. AOACF T ADEE. 2. S.A.S.
3. AF = DE. 3. Corresponding parts of
congruent triangles.

2. 4, Given.

. Given.
6. S.A.S.
126 3.

1. HA = FB. 1. The sides of a square are
equal in length.

2. AB = BA. 2. Identity.

3. ZHAB = ZFBA. 3. Each is a right angle.

4, AHAB = AFBA. 4., S.A.S.

5. AF = BH. 5. Corresponding parts of
congruent triangles.

4, No. We do have BF = HF (Definition of midpoint) and
since J/ABW = ZRHQ we also know that ZWBF = ZQHF
(Supplements of congruent angles are congruent), but these

facts are not enough to prove the triangles congruent.

5.
a. 1. AX ¥ BY. 1. Given.
2. AB = AB. 2. Identity.
3. JZXAB = ZLYBA. 3. Each is a right angle.
4.  AXAB T AYBA. 4, S.A.S.
5. AY = BX 5. Corresponding parts of
congruent triangles.
b. No.
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6.
1. r = m. 1. Given.
X =Y.
2. r+xX=m-+Yy. 2. Addition from Step 1.
3. mJHAB = r + X. 3. Angle Addition Postulate.
mLFBA = m + y.

4, mZHAB = mZFBA. 4, Steps 2 and 3.

5. AB = BA. 5. Identity.

6. AH = BF. 6. Gilven.

7. AHAB = AFBA, 7. S.A.S,

7.

1. AR_| TRX, BR_| F¥. 1. Given.

2. mMZARX = m£YRB = 90. 2. Definition of right angle.

3. mZXRB = mZXRB. 3. Identity.

4y, mZARB = m<ZXRY. 4, Addition from Steps 2 and 3,
and the Angle Additilon
Postulate.

5. AR = RX, BR = RY. 5. Given.

6. AARB = AXRY. 6. S.A.S.

7. AB T XV. 7. Definition of congruent
triangles.

127 Here is a striking example of the use of a particular

correspondence to establish a congruence. We merely show that
an isosceles triangle is congruent to itself under a corres-
pondence which interchanges the vertices at the ends of the
base. This is considerably simpler than the traditional
proof.
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Proof of Corollary 5-2-1
Every equilateral triangle is equiangular.
Given: AMABC such that AC = BC = AB.
To prove: JZA = 4B = £C.
The general procedure is to make successive applications of
Theorem 5-1.
Proof: _ : C

If AC = BC then, by

Theorem 5-1 we have

mZA = m£B.

If AB = AC then, by

Theorem 5-1 we have

m£B = m4C.

Therefore, mZA = mZC and, A B

mZA =mdB =m4LC or

LA 2 LB FLC.

In the Angle Bisector Theorem the points B and C, the
auxiliary segment BC and the point D are introduced into
the figure as a part of the proof. We believe their use is
natural at this point. Later, in Chapter 6, we elaborate on

such auxiliary sets. You may want to mention that dotted
segments are often used for auxiliary segments and should

not be confused with dotted segments used to indicate segments
hidden by a plane in figures involving three dimensions.

You may have noticed that the proof of Theorem 5-3 is
not complete: we have not shown that D is in the interior
of 4BAC, as required by the definition of a bisector. This
omission was deliberate, and similar ones will occur in some
later proofs. Most such omissions willl be concerned with
separation properties; that is, with showing that certain
points lie on the same or on opposite sides of certain lines
or planes, or with showing that a certain point lies between
two others on a line. These things are all "obvious" from
plctures, and their proofs are often long, difficult and un-
interesting. We therefore feel that they should be omitted
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from the exposition in the text. You will find problems in
Section 6-5 to take care of these betweenness matters which
- should seem interesting and worthwhile to your strongest
students.

In the case of Theorem 5-3, the omitted proof depends on
the following two theorems which are reproduced from
Section 6-5, of the text. We suggest that you wait until
Chapter 6 to discuss this with your students.

Theorem 6-5. If M 1is between A and C on a line L
then M and A are on the same side of any other line that
contains C.

Ar

|
I
|
I
|
\

Proof: The proof will be indirect. If M and A are on
opposite sides of L' (in the plane that contains I and L')
then some point D of L' 1ies on the segment 7M. Therefore,
D 1s between A and M, by definition of a segment. But D
lies on both L and L'. Therefore, D = C. Therefore, C
1s between A and M. This is impossible, because M is
between A and C. (See Theorem 2-3).

[page 130]
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Theorem 6-6. If M iz)between A and C, and B 1is
any point not on the line AC, then M 1is in the interior of
ZABC. ’

Proof: By the preceggng theorem, we know that M and A
are on the same side of BC. By another application of the
preceding theorem (interchanging A and C) we know that M
and C are on the same side of EE. By definition of the
interior of an angle, these two statements tell us that M 1s
in the interior of ZABC, which was to be proved.

Problem Set 5-6

130 1.
1. Base angles of an isosceles triangle are congruent.
2. The Supplement Postulate.
3. Supplements of congruent angles are congruent.
131 2.
1. FA = FD. 1. Given.
2. LA ZLD. 2. Base angles of an 1sosceles
triangle are congruent.
3. AB = DC. 3. Given.
4.  AAFB = ADFC. L, S.A.S.
5. ZABF = ZICF. 5. Corresponding parts of
congruent triangles.
6. LFBC = (FCB. 6. Supplements of congruent
angles are congruent.
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1. LEBC = LECB. 1. Base angles of an isosceles
triangle are congruent.

2. ZABE 1s supplementary
to ZERC. ZDCE 1s 2. The Supplement Postulate.
supplementary to <ZECB.

3. ZEBA = [ECD. 3. Supplements of congruent

angles are congruent,

1. mZABC = m£ ACB. 1. Base angles of an isosceles
mZDBC = m £DCB. triangle are congruent.

2. mLABC + mZDBC = 2. Addition, from Step 1.
mZACB + m £DCB.

3. mZABD = mZARBC + 3. Angle Addition Postulate.
m £ DEC.
mZACD = m LACB +
m< DCB.

4. £ ABD = ZACB. 4, Steps 2 and 3.

1. mZACB = mZ ARC. 1. Base angles of an isosceles
mZDCB = mZDEBC. triangle are congruent.

2. mZLACB - m£DCB = 2. Subtraction, from Step 1.
mZABC - mZDBEC.

3. mLACD = mZACB - 3. From the Angle Addition
m < DCB. Postulate.
mZABD = mZABC -
m £ DBC,

4, m<ZACD = m< ABD. 4, Steps 2 and 3.

Since CA = CB, L CA = % CB. As X 1is the midpoint of

AC, CX = 2 AC. Similarly, CY = % CB. It follows that

CX = CY. Then ACXY 1is an isosceles triangle with base
angles £ZCXY and £CYX. Theorem 5-2 tells us that these
base angles are congruent.
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C
Given: AABC with AB = BC = CA.
To prove: ZA = /B = £C.
A B
1. CA = CB. 1. Given.
2. <A = B. 2. Base angles of an isosceles
triangle are congruent,
3. AB = BC. 3. Given.
4, /A = ZcC. 4, Base angles of an isosceles
triangle.
5. (A T4LBELC. 5. Steps 2 and 4.
Given: AABC with AB = BC = CA, and P, Q, R the mid-

points of AC, AB and EC.

To prove: PR = RQ = QP.
1. AC = CB = BA. 1. Given.
2. ZAC=%CB=%BA. | 2. Multiplication, from Step 1.
3. CR =RB-= %-CB, 3. Definition of midpoint.
BQ = QA = 3 AB,
CP = PA =  CA.
4, CR=RB =R = QA = Y Steps 2 and 3.
AP = PC.
5. £C = £B = LA. 5. Every equllateral triangle
is equiangular.
6. OCRP = OABRR T AAPQ. 6. S.A.S.
T. PR = RQ = QP. 7. Corresponding parts of
congruent triangles.
Given: TQ is a median of AFAB., FQ | AB, F
Prove: AFAB is isosceles.
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1. 4Q = BQ. 1. Definition of median of a
triangle.

2. ZFQA and £ZFQB are 2. Definition of perpendicular.

right angles.

3. (LFQA T /FQB. 3. All right angles are
congruent.

L, FQ = M. 4. 1Identity.

5. AFQA T AFQB. 5. S.A.S.

6. FA = FB, 6. Corresponding parts.

7 AFAB is isosceles. 7. Definition of isosceles
triangle.

In Theorem 5-4%, the point F' is shown between D and
F, the figure could just as well be drawn so that F is
between D and F!',

Proof of Theorem 5-5.

If two angles of a triangle are congruent, then the sides
opposite these angles are congruent.
Given:  AABC with ZA T /B.
To prove: AC = BC.
The general procedure is to set up a one-to-one correspondence
between the triangle and itself, indicated by ABC «<—> BAC,

and to use the A.S.A. Theoremn.

In the correspondence CAB<—> CBA c
we see that LA <— /B,
AB <— Ej,
B <> /A.
A B

Thus two angles and the included side of ACAB are congruent
to the parts that correspond to them. By the A.S.A. Theorem
this means that

OCAB = ACBA.
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By the definition of a congruence all pairs of corresponding
parts are congruent. Therefore,

’ iC = .
From the definition of isosceles triangle, AABC is 1sosceles.

Proof of Corollary 5-5-1
An equiangular triangle is equilateral.

Given: AABC such that ZA =£B =£C.
To prove: iB = = AiC.
The general procedure is to make successive applications of
Theorem 5-5. Of course, you could set up a one-to-one corres-
pondence and use the A.S,A. Theorem if you wished,
Since ZA = /B, we have from <
Theorem 5-5 AC = BC, and
since 4C = 4B, we have from
Theorem 5-5 &AC =

Therefore, AB EE

C.

e
e -

A B
Problem Set 5-7
1. a. Need Za = Zb. (S.A.8.). e. Need IR = MR. (A.S.A.).
b. Need HF X BF. (S.A.S.), f. Need XF = KF. (s.A.8.),
or Za 2 /b. (A.S.A.). or ZXYF SZKYF. (A.S.A.).
c. A.S.A. g. Need JXFY =ZKFY. (A.S.A.),
d. Need QR = WR. (S.A.S.), or XY = KY. (s.A.S.).
or ZA =ZM. (A.S.A.).
2. a. /AHB.
b. <AHB, ZABH.
c. BF.
d. «F, FH or £HBF, HB.
3. a. </AFB, ZB.
b. AR, RF.
c. £&B, ER.
d. £R.
e. RF.
f.  ZAFB.

[pages 133-13%4]



98

135

b,

a., HB, BF.

b. £ AHB, /HBA,

c. Z HBF,

d. /ZHBF, /F.

e. ZA.

1. GE = FE. 1. Definition of bisect.
2. La = /b, 2. Given.

3. ZCEG = /EFF, 3. Vertical angles.

4, ACGE = ABFE. 4, A.S.A.

5. CE = BE. 5. Corresponding parts.
6. GF bisects EC. 6. Definition of bisect.
1. <£B=/cC. 1. Given.

2. BC = CB. 2. Identity.

3. «£C = £B. 3. Given.

4, AABC T AACB. 4, S.A.S.

5. AB = AC. 5. Corresponding parts of

congruent triangle: .

Given: AABC with ZA = ZB = /C.

To prove: AB = BC = AC.

Proof: The sides opposite ZA and /B

are congruent by Theorem 5-5. Hence,

BC = AC. Considering «£C and ZA 1in

a similar fashion, we find that AB = BC. B C

Therefore, AB = BC = AC.

Given: AABC with AB = BC = TA.

To prove: AABC = ACAB.

1. EBZTAK and BC = AB.| 1. Given. A B

2. ZB = LA, 2. An equillateral triangle is
equiangular.

3. AABC = ACAB. 3. S.A.S.

(This could also be proved using A.S.A.)
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G
9. Given: UK bisects /FGH.
GK_ | FH at K.
To prove: AFGH 1is isosceles.
F K H

1. ZFGK = ZHGK. 1. Definition of bisects.

2. ©K 2 CK. 2. Identity.

3. £GKF and ZGKH are 3. Definition of perpendicular.

right angles.

4. LGKF = /GKH. 4, All right angles are
congruent.

5. AGKF = AGKH. 5. A.S.A.

6. FG = HG. 6. Corresponding parts.

7. AFGH is isosceles. 7. Definition of isosceles
triangle.

10.

1 ZFBH = ZRMH. 1., Supplements of congruent
angles are congruent.

2 ZFHB = ¢£RHM, 2. Vertical angles are
congruent.

3. HB = HM. 3. Given.

4,  ABFH = AMRH, 4., A.S.A.

5, HF = HR. 5. Corresponding parts.

136 11. Yes.

1. ZRWM = ZSWM, 1. Supplements of congruent
angles are congruent.

2 MW = MW, 2 Identity.

3. ZRMW = ZSMW, 3. Definition of bisect.

4 ARWM = ASWM. 4, A,S.A.

5. <R = 8. 5. Corresponding parts.

12.
1 AF = RB. 1 Given.
BF = FB. 2 Identity.

3. AB = RF. 3 Subtraction, from Steps 1
and 2.

%, /A = /R. 4, Given.

5. <x =/y. 5. Given.

6 LABN = ARFH 6. A.S.A.

7. AN = RH. 7. Corresponding parts.
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*13. a. 1. mZAXR = mZBXF. | 1. Given.
2. mZRXF = m£FXR. 2. Identity.
3. mZAXF = m £BXR. 3. Steps 1 and 2 and the
Angle Addition Postulate.
L, X = EX. 4. Definition of midpoint.
5. ZA = /B. 5. Given.
6. AAXF = ABXR. 6. A.S.A.
7. AF = ER. 7. Corresponding parts.
b No.
14,
1. mla = mlb, 1. Given.
2. mdw = msXx. 2. Gilven.
3. mda +mlw = 3. Addition,.
mdb + mls.
L, m<dMKH = m£a + mZw.| 4. Angle Addition Postulate.
5. m£MRG = m£b + mds.| 5. Angle Addition Postulate.
6. m<ZMKH = m< MRG. 6. Steps 2, 3, and 1.
7. MK = MR. 7. Theorem 5-5.
8. «M =M. 8. Identity.
9. AOMKH = AMRG. 9. A.S.A.
10. KH = GR. 10. Definition of a congruence

between triangles.
15. No. Neither S.A.S. nor A,S.A. apply.

*16,
1. mdB=mndT. 1. Given.
2. mZQ = mLS. 2. Given.
3. BQ = TS. 3. Given.
4.  OBRQ T ATRS. 4, A.S.A.
5. QR = SR. 5. Corresponding parts.
6. <JXRQ =ZYRS. 6. Vertical angles.
7. OXRQ = AYRS. 7. Steps 2, 5, 6, and A.S.A.
8. RX = RY. 8. Corresponding parts.
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137 In Steps 9 and 10 of the proof of Theorem 5-6 we tacitly
assume that H 1lies in the interior of Z ABC and the interior
of ZAE'C. 'This is justified by Theorem 6-6, the proof of
which appears above.

Problem Set 5-8

139 1.

1. BH = EB. 1. Given.

2. HF = FF. 2. Given.

3. EF Z 7F. 3. Identity.

L, OAABF T AAHF. 4. s.s.s.

5. £BAF = ZHAF, 5. Corresponding parts.

2.
1. AB T FH. 1. Given.
EH = TFB.

2. &F = FA. 2. Identity.

3. AABF = AFHA. 3. 8.s.s.

L, 4r = s. L, Corresponding parts.

3.
1. BH = ER. 1. Given.
BH = IR.

2. &B ¥ BR. 2. Identity.

3. AABR = ABAH. 3. 8.s.s.

L. ZH = £R. 4, Corresponding parts.
140 4. a. S.A.S.
' b. Cannot be proved congruent.

c. S.A.S.

d. S.S.S.

e. Cannot be proved congruent.

f. S.A.S.

g. S.A.S.

h., 8S.S.S.

i. S.A.S.

J. S.A.S.
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5. He can specify the lengths of three sides, or the lengths
of two sides and the measure of the included angle, or
the length of one side and the measure of the two angles
including it.

6. It is given that AC = BC and ZACH ¥ /BCH, by Theorem
5-2, LA 2 /B, so that AACH £ ABCH by A.S.A. Then JZAHC
and £BHC are right angles, and, by definition, CH_| AB.

7. Let AABC be isosceles with AC = BC, and let CD be the
median to the base. Prove: ZACD % £BCD.

right angles.
FH_| AB. 8. Definition of perpendicular.
(An A.S.A, proof is also possible.)
To the Teacher: It seems improbable that any student will
question as to whether the bilsector of (ZAFB will in fact
intersect the base AB. If this guestion does arise, point
out that in the preceding exercise it was shown that in an
isosceles triangle the median to the base bisects the vertex
angle. Hence, we know that the bisector of the vertex angle
does intersect the base as the figure indicates. General
questions of this sort are discussed in Section 6-4 of
Studies II.

1. AC = BC. 1. Given.

2. CD = CD. 2. Identity.

3. DA = DB. 3. Definition of median of
a triangle.

4, OACD 2 ABCD. 4, s.Ss.S.

5. ZACD £ /BCD, 5. Definition of congruent
triangles.

(An alternate proof using S.A.S. is also possible.)

8.

1. AF = BF. 1. Gdiven.

2. /AFH = /BFH. 2. Definition of bisector.

3. FH = FH. 3. Identity.

L, AAHF = OQFBHF, 4., S.A.S.

5. AH T HB. 5. Corresponding parts.

6. ZAHF = (ZEBHF. 6. Corresponding parts.

7. ZAHF and JZBHF are 7. Deflnition of right angle.

8.
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142

9.
a. 1. AF = TR. 1. Given.
2, AR Y FBF. 2. Given.
3. RF = TR. 3. Identity.
4,  AAFR T AFRF. 4. S.s.s.
5. ZARF = /BFR. 5. Corresponding parts.
b No.
10.
a. 1 AB = FH 1. Given.
2 AH = FB 2. Gilven.
3 HB = BH 3. Identity.
b, AABH = AFHB. 4, s.s.s.
5. LFHB = /ABH. 5. Corresponding parts.
6. HK = BK. 6. Definition of bisects.
7. JHKR = (/BKQ. 7. Vertical angles.
8. AHKR ¥ ABKQ. 8. A.S.A.
9. QK = RK. 9. Corresponding parts.
b. Yes. The Intersecting lines ﬁ% and ﬁa determine a
plane in which the other segments and points must lie.
11.
1. AASP Z ABPQ ¥ 1. S.A.s.
ACQR = ADRS.
2. SP = QR. 2. Corresponding parts.
PQ = RS.
3. QS = SQ. 3. Identity.
4, APQS = ARSQ. 4, 8.8.8.
143

12. The S.S.S. theorem was used as a reason in the proof of
the theorem. However, the very same theorem we are
proving (The base angles of an lsosceles triangle are
congruent.) was used in the proof of the S.S.S. theorem.
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143,43

W54y

15.

The A,A.A, theorem was given as a reason in Step 7. But
in the proof of A.S.A. (Theorem 5-14), the reason for
Step 2 was given as the S.A,S. postulate, which is what
we are trying to prove now. Thus, our reasoning looks
like this:

Y
Jy
- %
~
4 Z
o) LJ
>
b= 0)
v 0
1. Za = <£b. 1 Gilven.
2. ZARH = ZARB 2. Supplements of congruent
angles.
3. &R = ER. 3. Identity.
L Zm = 2Zw. 4, Given.
5 AARH = AARB. 5. A.S.A.
6. RH = RB. 6. Corresponding parts.
7. RF = RF. 7. Identity.
8 ARHF = ARBF. 8. S.A.S.
9. ZHFR = £BFR. 9. Corresponding parts.
10. 'ZHFR and ZBFR are| 10. Definition of right angles.
right angles.
11. AF | BH. 11, Definition of perpendicular.

Although a lengthy indirect proof is possible, it should
not be expected at this point. After we have proved that
the sum of the measures of the angles of a triangle is 180,
this can be done easily by A.S.A.

[pages 143,145]



105
16,
’ 1. AW = AB. 1. Given.
. ZA = LA, 2. Identity.
3. HB_| AF. 3. Given.
4, mZAWF = m<Z ABH. 4, Definition of perpendicular
and of right angle.

5. AAWF T AABH. 5. A.S.A,

6. FW = HB. 6. Corresponding parts.
17.

1. ZAWF Z £RQF 1. Given.

2. mZa = mZAQF. 2. Definition of bisect.

mZb = % mZRQF.

3. msa = mdb. 3. Steps 1 and 2.

4. FQ_| AR. 4. Given.

5. m<ZBFQ = m£HFQ. 5. Definition of perpendicular

and of right angle.

6. FQ = FQ. 6. Identity.

7. ABFQ = AHFQ. 7. A.S.A.

8. B = WM. 8. Corresponding parts.
*18. On AF take A' such that AF - A'F.

Thus A CFA'* = A BFA by S.A.S. Hence A'C = AB and
m / CA'F = m / BAF. Similarly, taking H' on Ea such
that H'Q = HQ, A WQH' ¥ A RQH, so that WH' - HR and
m/WH'Q =m /RHQ. But HR = AB, so WH' = A'C. Since
AC = WH and AA' = HH' we get A ACA' ¥ A HWH' by
S.S8.S. This gives m / CAF =m / WHQ and m / CA'F =

m / WH'Q, so that m / FAB = m / QdR. By addition,
m/CAB=m/WHR. Thus A ABC X A HRW by S.A.S.
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*19.

*20.

*21.

*22.

OBDC = AEDF,
Hence, BC = ED.

Yes.

since CD = FD, BD
AEFG

Therefore,

1. BC = RW. 1. Given.
2. RQ =3 RW. 2. Definition of median of a
1 triangle.
| BF = 5 BC.
3. RQ = BF. 3. Steps 1 and 2.
4, AF = HQ. 4. Given.
5. AB = CR. 5. Given.
6. AABF = AHRQ. 6. S.s.S.
7. £B 2R, 7. Corresponding parts.
8.  OABC = AHRW. 8. Steps 1, 5, 7 and S.A.S.
a. One figure is: A R S C
B D
1. AR = CS. 1. Given.
2. AR + RS = CS + SR. 2. Addition.
3. AR + RS = AS. 3. Definition of betweenness.
CS + SR = CR,
4, AS = CR 4. Steps 2 and 3.
5. AB = CD 5. Given.
BS = DR.
6. OAABS = ACDR 6. S.s.S.
7. £BSA = ZDRC 7. Definition of congruence
between triangles.
b. No.
AADB = AGDE, by S.A.S. since AD = GD, BD = ED, and
m<ZADB = m £LGDE.
Hence, AB = GE.
ACAD = AFGD, since AD = GD, CD = FD, m £CDA = m<Z FDG.
Hence, AC = GF.

ED, m £BDC = mZ EDF.
ABCA by S.S.S.

He it

[page 146]
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*25.

26.
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= W N

W 00~ O WU

m<ZRQA = mZ SQA. 1. Definition of perpendicular
and of right angle.
RQ T Q. 2. Given.
AQ = AQ. 3. Identity.
" ARQA T ASQA. 4, S.A.S.
RA = SA 5. Definition of congruent
triangles.
AC = AC. 6. 1Identity.
RC = SC. 7. Gilven.
ARAC = ASAC. 8. S.S.S.
ZRCA = Z£SCA. 9, Definition of congruent
triangles.

Nothing about the distances. Since AVAB is isosceles,
ZVAB = ZVBA; and similarly for the other two pairs.
In this case AAVB = ABVC = AAVC. Therefore,

AB = BC = AC, so that AABC is equilateral, and the
six indicated angles are congruent.

OAMB £ ARMQ by given data, vertical angles, and the
S.A.S. Postulate. Hence, AB = RQ. AQ = RB
similarly, using AAMQ = ARMB,.

Six pairs. (AB = RQ, AQ = RB, AC = RX, QC = BX,

BC = QX, AX = RC.) .
Still true if figure is not planar.

Twelve.

Yes, all four faces are congruent by S.S.S.

Prove

Four.

Equilateral triangles.

[pages 146-147]
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Review Problems

148 1. congruent; sides; congruence.
2. (a) S.A.s.
(b) A.S.A., S.A.S.
3. RTS<—> STR, RTS<—>RTS.
4, S.A.S., A.S.A.

5.
1. AR = RH. 1. Given.
2. (LA =/H. 2. Base angles of an isosceles
triangle are congruent.
3. AF = BH. 3. Given.
4.  OAFR T AHBR. L, S.A.S.
5. RB = RF. 5. Definition of congruence
of triangles.
6.
1. RB = RF. 1. Given.
Z RBF = /RFB. 2. Base angles of an isosceles
triangle are congruent.
3. ZABR £ (HFR. 3. Supplements of congruent
angles are congruent.
4L, AB = HF. L. Given.
5.  QOABR = AHFR. 5. S.A.S.
6. AR = RH. 6. Definition of congruence
of triangles.

149 7. K. A.S.A,
8. Yes, approximately.

~

AABC = AABC!.

A.S.A.
150 9. £3%XQ 1s the angle.
1. SX £ SR. 1. Given.
2. 58 bisects ZRSX, or| 2. Definition of angle
mZRSQ = mZXSQ. bisector.

3. SR /. 3. Identity.

4.  ORSQ T AXxsa. 4, S.A.S.

5. ZR = £8XQ. 5. Corresponding angles of con-
gruent triangles are
congruent.

[pages 148-150]
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10.

11,

12.

13.
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1. ZLABF and ZRHF are 1. If two segments are per-
right angles. pendicular to each other,

the angle determined is a
right angle.

2. Zx =/.y. 2. Given.

3. J4FBQ = /FHW. 3. Complements of congruent
angles are congruent.

4, QB = WH. 4., Given.

5. FB = FH. 5. Definition of midpoint.

6. ABFQ T AHFW. 6. S.A.S.

1. ZBAH = ZRAH. 1. Given.

2. AB = AR. 2. Given.

3. AF = AF, 3. Identity.

L. AABF = AARF. 4. S.A.S.

5. FB = FR. 5. Definition of congruence.

1. RB = RF. 1. Given.

2. mZRBF = m<£RFB. 2. Base angles of an isosceles
triangle are congruent.

3. BF = I'B. 3. Identity.

4L, AB = HF. 4, Given.

5. AB + BF = HF + FB, 5. Addition, Steps 3 and L.

6. AB + BF = AF. 6. Definition of between.

HF + FB = HB.

7. AF = HB. 7. Steps 5 and 6.

8. " AFR = AHEBR. 8. S.A.S.

In /8\ ABM and FER,

1. AB = FB. 1 Given.

2. MB = RB. 2. Given,

3. /wmBA % /RBF. 3. Vertical angles,

4, A\ABM YAFER. %, S.A.S.

5. AM = PR, 5. Corresponding parts.

[pages 150-151]
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In A,AQR and FQM,
6. LA Z/F and 6. Corresponding parts.
ZAMB = ZFRB.
7. <£ARQ = ZFMQ. 7. Supplements of congruent
angles are congruent.
8. AR = FM. 8. Addition from Steps 1 and 2.
9. AAQR ¥ AFQM. 9. A.S.A,
14,
1. AF - HB, 1. §aH =2 an
2. <4A Z/£H. 2. Given.
3. AR = HQ. 3. Given.
4.  AAFR T AHRQ. 4. S.A.S.
5. ZRFA = ZQBH, 5. Definition of congruence.
6. BW = FW. 6. Theorem 5-5.
15.
1. HA = HB. 1. Given.
2. mZHAB = mZ HBA. 2. Theorem 5-2.
3. % m<ZHAB = %- m< HBA. 3. Multiplication, from Step 2.
4. mZFAB = 2 mZHAB. 4. Definition of bisect.
mZ£FBA = £ m£ HBA.
5. mZFAB = mZ FBA. 5. Steps 3, 4.
6. FA = FB. 6. Theorem 5-5.
16.
1 AE = BC. 1. Given.
ED '-‘——'N'Cﬁ.
LE = £C
2 AAED = ARCD. 2. S.A.S.
3. 4D Z BD. 3. Definition of congruent
triangles.
L, ZDAB = (DBA. L. Theorem 5-2.

[page 151}
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C 111

Given: AABC with
median AX_| BC and Y X
median BY_| 7AC.

Prove: AABC is equilateral.

A B
1.  £AXB and ZAXC are | 1. Perpendicular lines
right angles. determine right angles.

2. ZAXB = LAXC. 2. Right angles are congruent.

3. BX = CX. 3. Definition of median.

4, AX = AX. 4, Identity.

5. OAAXB = AAXC. 5. S.A.S,

6. AB = AC 6. Definition of congruent
triangles.

7. BR T &C. 7. Proof similar to Steps 1
through 6

8. AC = BC = &B. 8. Steps 6 and 7.

9. AABC 1is equilateral.l 9. Definition of equilateral
triangle.

1. 7AB = HB. 1. Given.

2 ZABR = (ZHBF. 2. Vertical angles are con-
gruent.

3. FB 2 RB. 3. Given.

4 AABR = AHBF 4. S.A.s,

5. mA =m<dH 5. Corresponding parts.

m < ARB = m £ZHFB

6. mZMRH = m ZMFA 6. Supplements of congruent
angles are congruent,

7. AB + BF = HB + BR or 7. Addition, from Steps 1 and

' AF = RH. 3.

8 AVRH = AMFA, 8. A.S.A.

9. 1AM = UM, 9. Corresponding parts

[pages 151-152]
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19.

20.

21,

Given: ABCD £
D3 bisects ABDC and
?T bisects JZWYX. A
Prove: DS = ¥T.
1. ABCD = AWXY. 1. Given.
2. _<LB=ZLW 2. Definition of congruent
BD = WY. triangles.
£BDC ¥ LWYX.
3. £BDS £ LWYT. 3. Definition of bisects and
Step 2.
4, ABDS = AWYT, L. A.S.A.
5. DS = ¥T. 5. Definition of congruent
triangles.
1. Z£X = 4£Q. 1. Given.
2. XW = QR. 2. Given.
3. WR = RW. 3. Identity.
y, XR = QW. 4, Addition, Steps 2 and 3.
5. ZLa =Zb 5. Given.
6. AXAR T AQMW. 6. A.S.A,
7. XA = QM. 7. Corresponding parts.
8. KX = KQ. 8. Theorem 5-5.
9. KA = KM. 9. Subtraction, Steps 7 and 8.
1. m£l + m£3 = m<£XJIT.| 1. The Angle Addition Postulate.
m2 + mZ4 = mZXJB.
2. ml + mL3 = 2. By algebra from what is
mL2 + mLh, given.
3. mLXJIT = m £XJB. 3. Steps 1 and 2.
4, JT = JB. 4. Given.
5. JX = JX. 5. Identity.
6. AXJT = AXJB 6. S.A.S.
7. LTXI = ZBXJ 7. Corresponding angles of
congruent triangles.
8. AXJP T AXJIQ 8. A.S.A,
9. 45 =46 9. Corresponding angles of

[page 152]

congruent triangles.



113

22. Yes. The natural proof, showing APAQ = APBQ holds in
either case. The congruence postulates and theorems hold
for any two triangles, coplanar or not.

153 23. a. By S.S.S. AAQP ¥ ABQP. Therefore, ZAQP =/ BQP.
Then OAQR = ABQR by S.A.S. and RA = RB.
b. No. Yes.

*24, Yes.
1. AF = FH and BF = FM. 1. Definition of trisect.
2. mZAFB = mZ MFH. 2. Vertical angles.
3. OAFB = AHFM. 3. S.A.s,
4, LA = /LFHM. 4., Definition of congruence.
5. AF = FB. 5. Given.
6. FH = FM. 6. Steps 1 and 5.
7. <M = £FHM. 7. Theorem 5-2.
8. «M = «A. 8 Steps U and 7.
9. AT = MR. 9. Multiplication, Step 6.
10. AABT = AMTH. 10. S.A.S.
S
25. Given: RA, RB, RC each_| RS.
RA = RB = RC.
Prove: SA = SB = SC.
R C
A B
1. <£SRA, £ZSRB, £SRC are| 1. Perpendicular lines
right angles. determine right angles.
2. ZSRA = /SRB T ZSRC. | 2. All right angles are
congruent.
3. SR = SR = SR. 3. Identity.
4, ASRA T ASRB = ASRC.4. S.A.S.
h. SA = SB = SC. 5. Definition of congruent
triangles.

[pages 152-153]
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*26,
1. APAB T AQAB. 1. Given,
2. AP = AQ, and 2 Definition of congruent
£ BAP ¥ /BAQ. triangles.
3. AX = AX. 3. Identity.
4., AXAP T AXAQ. 4. Steps 2 and 3 and S.A.S.
5 PX = QX. 5. Definition of congruent
triangles.
*27.
1. AH = AF. 1. Construction.
2. AB = AC. 2. Given.
3. ZA Z /A, 3. Identity.
4, AABH = AACF. 4. S.A.S.
5. ZAHB = ZAFC. 5. Corresponding parts.
6. BF = CH. 6. Subtraction, Steps 1 and 2.
7. FC = HB, 7. Corresponding parts.
8. AFBC = AHCB. 8. S.A.S.
9.  LFBC = ZHCB. 9. Corresponding parts.
10. ZABC T ZACB. 10. Supplements of congruent
angles are congruent.
*28,
1 OADC = ACEA. 1. S.S8.S.
2 ZBAC = Z£DCA. 2. Corresponding parts.
3. AABD ¥ ACDB. 3. S.s.s.
4, ZABD = £CDB. 4, Corresponding parts.
5 AABE £ ACDE. 5. A.S.A,
6. AE = CE, BE = DE. 6. Corresponding parts.
¥29. Draw BC. Then:
l. DB = DC, AB = AC, 1. Given.
2. mZABC = mZ ACB, 2. Base angles of an isosceles
m £DBC = m £DCB. triangle are congruent.
3. mZABD = m ZACD. 3. Subtraction, Step 2.
L, £BAX = LCAY 4. Given.
5. ABAX = ACAY. 5. A.S.A.
6. AX = AY. 6. Corresponding parts.

[pages 153-15%4]
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Illustrative Test Items for Chapter 5.

1. Below are listed the 6 pairs of corresponding parts
of two congruent triangles. Name the congruent
triangles.

B = MK LA S LM,
BW = KF. 4B = LK.
I x WF. LW = (F,

2. Given the figures shown below with AABC £ ADEF, and
M between B and C. Write " + " for each of the
following statements which is true. Otherwise,
correct the statement to make 1t true.

e ue

a. AB ¥ DE. e. ZABC T ZABM.
b. LA = /D, f. LABC = ZABM.
c. BC = EF. g. «C = £F.

d. mdB = mdE. h.

ZACB = ZDEF.

Cc F
/\ /\
A B D E

3. Given the two congruent figures shown, complete each

correspondence 1ln such a way that a congruence results.

a. ABCD <> ___ .,
b. BFA «<—> ___
c. FCD €« ___
d. ABFCD<> ___

B W
G
F H
. Q
c D S
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4, Given the figure shown, in accordance with the speci-
fications at the left, list the data that would cor-
rectly fill the blanks at the right.

a. side, angle, side of AACD: AC,___ , AD.
b. angle, side, angle of AABC: ____, AB,

D c

A B

B. 1. Complete the following definitions:

a. Two angles are congruent angles if
b. Two segments are congruent segments if .
¢c. An triangle is one having two congruent sides.

d. (£XYZ is bisected by a ray fg if S 1s in
and if .
e. A segment whose endpoints are a midpoint of one
side of a triangle and the opposite vertex is the
of the triangle.

2. In AABC as marked in the figure, CD is to
the base of the triangle ¢
and £LACB is the
of the triangle.

A + H B
3. Indicate whether each of the following is true or

false:

a. If AABC = ACAB, then £A = £B. .

b. All equilateral triangles are congruent.

¢. Given a correspondence between two triangles such
that two sides and an angle of the first triangle
are congruent to the corresponding parts of the
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second triangle, then the correspondence is a
congruence.
d. 'If LABC = £XYZ, then the points A, B, and C
coincide respectively with points X, Y, and Z.
e. An equillateral trilangle 1s isosceles.
If like markings indicate congruent parts, in which of
the following figures can two triangles be proved
congruent? Answer by naming the pair of trlangles
which can be proved congruent or by writing "none."
In the cases where two triangles can be proved con-
gruent give the abbreviation of the congruence theorem
or postulate which applies (S.A.S., etc.).

c. d.

. D
D ¢ c
C— A
R H H S
Vv A
A + B

B
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2. In each of the following, if enough is given to
establish congruence between the two triangles, state
the appropriate reason by writing S.A.S., S.S.S.,or
A.S.A. If not, name one other pair of parts which, if
congruent, would enable you to prove the triangles

congruent. D
Given:
a. «£ADB = «£CDB, ED = CD.
b. AB ¥ TB. A B c
Y v
c. UT = ST, VT = RT. 4
d. UV = RS, UT = ST.
R S J
e. LJFG = £HFG, £HGF = ZJGF. F G
f. FJ = FH, JG = HG. 4

3. State whether or not each of the pairs of triangles
described below can be proved congruent using postu-
lates and theorems we have had,

a. Two 1isosceles triangles with congruent bases.

b. Two equilateral triangles with congruent bases.

c. Two lsosceles trlangles with congruent bases and
a base angle of one congruent to a base angle of
the other.

d. Two isosceles triangles with congruent vertex
angles.

4, The information given in the statements refers in each
case to the figure. If the glven information is
sufficient to prove the triangles congruent, write the
abbreviation of the congruence statement which would
be used as a final reason. Otherwise write "not
enough given", '
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AC BC, AD = DB.

AC 2 BC, 41 =2,
£1, = g2, 43 T /Y,
AC = BC, <A = /B.
AD = DB, m«3 = mlh,
CD bisects £C.

CD_| TB.

CD is a median to EB. A D B
AC = BC, CD bisects ZC.

CD_] AB, CD is the bisector of £C.

ZACD = £BCD, £CAD = £CED.

D pisects 7B, AC ¥ TB.

21 S g2, 43 T 44, A Y B,

e

.

B H R o OR »H 0 0 0 T o

.. Glven: JZRMW = ZSMW.

ZRWK = ZSWK.
Prove: ZR = £S. M

Proof: (Supply the reasons.)
Statements Reasons

1. ZMWR is supple- (1.
mentary to ZRWK.

ZMWS 1s supple-
mentary to ZSWK.

2. ZRMW = ZSMW. 2.

ZRWK = /SWK.
. ZNWR = ZMWS.
. MW = VW,
AMWR = AMWS.
4R = /8.

e une

[OANRY 1 I g 8
oYUl F oW
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A H
2. In this figure AB = FH and g
mLx = mlg. 1 }
Show that m£A = m4PF,
X
B F

3. Given: A ABC, with AC ¥ BC, AF 2 BH, PF_| AB and
QH_| AB. N
Prove: PF = QH. C

4, Given: The figure with.
AC = DF,
AB = DE,
CM and FP are congruent

medians.

Prove: OABC = ADEF.

5. Given: The figure with
AB = CD,

AD = CB, and
F bisects BD.
Prove: EF = GF.

E. 1. Prove the theorem that the median from the vertex of
an isosceles triangle 1s the bisector of the vertex
angle of the triangle.

2. Prove: Angle bisectors from corresponding vertices
of two congruent triangles are congruent.

3. Prove: A dlagonal of a square bisects its angles.
(Note: The teacher may prefer to supply the drawing
from the answers in order to make lettering uniform.)
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S

In the figure,
Given: /RTP ¥ /XPS, PT = SP o P

and  ZPSO = /TPO.
Prove: TRT = XP. R

N T
Answers X

AABW, AMKF.
a. +. e. +.
b. mZA = mZD. £f. +.

or ZA =D, : g. +.

c. +. h. ZACB ¥ £DFE,
d. +. or (ABC = LDEF,
a. QGSW.
b. GHQ.
c. HSW.
d. QGHSW.
a. <£DAC. )
b, LCAB, £B. (In either order.)
a. They have the same measure.
b. They have the same length.
¢. Isosceles.
d. The interlor of J£XYZ; J<XYS = £7Y¥S.
e. Median.

Perpendicular, vertex angle.

a. True. d. False.
b. PFalse. e. True.
¢. False.

a. OABD ¥ ACBE: A.S.A.

b. None.

c. OABD £ ACDB:  S.A.S.

d. ORCD £ ASAB:  S.S.S.
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a. S.A.S. (or A.S.A.).

b. AD and CTD, or ZABD and ZCBED.

c. S.A,S.

d. £V and4S, or VI and RT.

e. A.S.A. -

f. 8.S8.S.

a. Not necessarily.

b, Yes.

c. Yes,

d. Not necessarily.

a. S,S8.S. h. Not enocugh glven.

b. S.A,S. or A,S.A, i. S.A.S. or A.S.A.

c. A.S.A, J. A.S.A,

d. Not enough given. k. A.S.A, or S.,A.S.

e. S.A.S. 1. S.8.S. or S.A.S,

f. Not enough given. m. A,S.,A, or S.A,S,

g. Not enough given.

Reasons

1. Supplement Postulate.

2. Glven.

3. Supplements of congruent angles are congruent.

4, Identity.

5. A.S.A.

6. Definition of a congruence between triangles.

1. AB = FH. 1. Given.

2., mZx =mlg. 2. Given.

3. BH = BH. 3. Identity.

b, AABH = ATFHB, 4, S.A.S.

5. mZA =mdF. 5. Definition of a congruence
between triangles.
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1. FF_| AB, QH_| AB.| 1. G@Given.
2. /LPFA = ZQHB,. 2. Definition of perpendicular.
Any two right angles are
congruent,
3. iC = EC. 3. Given.
4, <A Z¢B. 4, If two sides of a triangle
are congruent, the angles
opposite these sides are
congruent.
5. AF = BH. 5. Given.
6. APFA = AQHB 6. A.S.A.
7. PF = QH. 7. Corresponding parts of
congruent triangles.
1. AB = DE. 1. Given.
2. CM and FP are 2. Given.
medians.

3. M and P are_ 3. Definition of median.
midpoints of AB,
DE.

4, AM = DP. 4, Step 1 and definition of
midpoint.

5. CM = FP. 5. Given.

6. AC = DF. 6. Given.

7.  AAMC £ ADPF. 7. S.8.S8.

8. <A ZZD. 8. Corresponding parts.

9. AABC = ADEF. 9. S.A.S.

Note: A proof in which the final reason is S.S.S.

is also possible if ACMB is proved congruent

to AFPE.



124

1. AB = CD, AD = CB. 1. Given,
2. BD = BD. 2. Identical.
3.  OABD = ACDB. 3. 8.s.s.
4.,  ZEDF = /GFF. 4. Corresponding parts.
5. DF = BF. 5. Definition of bisects.
6. ZEFD = (/GFB. 6. Vertical angles are
congruent.
7. AEDF = AGEF. 7. A.S.A,
8. = GF. 8. Corresponding parts.
1. Given: AABC is isosceles C
with vertex at ZC.
CD is a median.
Prove: TCD bisects JACB.
A ) B8
1. AC = EC. 1. Definition of isosceles
triangle.
2. &D = DE. 2. Definition of median.
3. TD =TCb. 3. Identical.
4. AACD ¥ ABCD. 4. S.s.s.
5. AACD ¥ £ERCD. 5. Corresponding parts.
6. Cb bisects ZACB. 6. Definition of angle bisector

(Another way of proving AACD ¥ ABCD is to showZA ~ /B
and use S.A.S.)

2. Given: AABC & AWXY.
ED and WZ are angle
bisectors.

Prove: BD 2 WZ.
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1. OABC T AWXY. 1. Given.
2. ZCAB = ZYWX. 2. Corresponding parts.
3. /ZDAB T /ZWX. 3. Step 2, and definition of
angle bisector.
4y, EB = WX L, Corresponding parts.
5. B = /X. 5. Corresponding parts.
6. OABD T AWXZ. 6. A.S.A.
7. AD = WZ 7. Corresponding parts.
3 Glven ABCD is a square A B
with diagonal DBE.
Prove: DB bisects
ZADC and ZAEBC.
D C
1, AB= BC, AD = DC.| 1. Definition of square.
2. DB = DB. 2. Identity.
3. ASBD = ACED. 3. 8.s.s.
b, ZABD = ZCBD, L, Corresponding parts.
ZADB = ZCDB,
5. BD bisects 5. Definition of bisect.
ZADC and JABC.
L,
1. ZRTP = £XPS. 1. Given.
2. PT = S3P. 2. Given.
3. £PSO = /TPO. 3. Given.
L,  ARTP = AXPS. 4. A.S.A,
5. RT = XP. 5. Corresponding parts.
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Answers to Review Exercises

Chapters 1 to 5

1. - 21, - b1, - 61. -
2. - 22. - ho, + 62. +
3. + 23. - 43, + 63. -
o 4 24, + 4y, 4 64, -
5. + 25. - 45, - 65. -
6. + 26, + 46, + 66. -
7. - 27. - Yyr7. - 67. +
8. - 28, - 48, + 68. -
9. + 29. + 49, - 69. -
10. - 30. - 50. + 70. +
11, + 31. - 51. - 71, -
12, + 32. - 2. - 72. +
13. - 33. + 53. + 73. +
14, - 34, - 54, + T4, +
15. + 35. + 55. - 5. +
16. + 36. + 56. + 76. -
7. - 37. - 57. - 7. +
18. - 38. - 58. + 78. -
19. + 39. - 59. + 79. +
20, - ho. + 60. + 80. +
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Chapter 6
A CLOSER LOOK AT PROOF

One purpose of thils chapter is to allow the student,
having had some experience wlth proof, to observe the material
of previous chapters as 1llustrating the postulational struc-
ture of mathematics. Another purpose is to prove Theorems 3-2
to 3-5, as promised in Chapter 3. These proofs are used to
introduce indirect proof and exlistence and uniqueness theorems.
This chapter also discusses questions of betweenness that were
avoided in Chapter 5.

As we pointed out in the Introduction to the Commentary,
this chapter includes material that we belleve can be omitted
by some classes. If your class is composed chiefly of stu-
dents for whom the material in Section 6-5 is too abstract,
it may be best simply to move on. There is plenty of worth-
while material in later chapters.

Section 6-1 should be quite understandable to students
now, particularly if they reread Section 1-2. In general, we
encourage students to direct their attention to the geometric
rather than the algebraic issues involved in proofs since the
student is supposed to be familiar with the fundamentals of
algebra, but is jJust learning geometry. For this reason we
are more explicit in stating geometric principles rather than
algebralc principles as reasons in proofs. The teacher can
use any formulation of algebraic principles that he consilders
sultable for his class.

Our viewpoint 1s that in a first approach to deductive
reasoning, it i1s desirable to treat logic informally and to
encourage the student to appreciate the nature of logical
reasoning by engaging in it. Consequently, we avold putting
into this text any apparatus of loglc that we can readily get
along without. However, you may wish to mention some relevant
principles of logic yourself. Thus when treating indirect
proof, you may wish to refer at the appropriate time to the
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Law of the Excluded Middle, which asserts that either a state-
ment 18 true or 1ts negation is true. This also can be ex-
pressed: a statement must be either true or false.

The essential logical principle which is implicit in the
indirect method may be expressed formally as follows: If
statement A 1mplies a false statement, then A 1itself is
false. For example, let A be the statement "It is not
raining". Then A implies the statement, "The people coming
in the door are dry". The latter statement is false, since
the people actually are wet. Thus we conclude that statement
A, "It is not raining", is false. You can test other examples
of the indirect method to see that they are applications of
the principle above.

A common type of argument which involves the indirect
method may be put in the following form:

(1) One of the statements A or B 1is known to be true.

(2) A implies X.

(3) X 1is known to be false.

(%) Therefore, A 1is false.

(5) Therefore by (1), B must be true.

Usually (1) will be an application of the Law of the Ex-
cluded Middle, as in "AB = CD or AB # CD", or "today is
Tuesday or today is not Tuesday".

Often (3) will be justified by pointing out that state-
ment X contradicts an accepted principle or a known truth.
For example, if X 1s the statement "Two lines have two
points in common", X 1is false since it contradicts Postulate
1. This is an illustration of the Law of Contradiction, which
asserts that a statement and its negative (or contradictory)
cannot both be true. Thus if X contradicts Y, and Y 1is
true, X must be false.

Sometimes we encounter an argument similar to the type
described above, in which we have several alternatives, rather
than just two. Thus (1) might have the form: One of the
statements A, B or C 1is known to be true. Then we would
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proceed to "demolish" the alternatives as above. We show that
A 1mplies a false statement and must be false. Similarly we
show B false. Then we conclude that C must be true. A
common example of such an argument might begin with the state-
ment: AB <K CD or AB =CD or AB > CD.

Some students may be confused by such a statement as: We
Suppose something is false in order to prove it true. It may
help to soft-pedal the word "false" and say that if we don't
know whether a statement is true, it is reasonable to take its
opposite (or negative) and see what follows from it. Our
approach 1s to explore possibilities, not to say categorically
that the given statement is false or equivalently that its
opposite is true.

The very phrase "suppose so and so" may be confusing to
some students. The word "suppose" may suggest to them that we
are supposing it as a fact rather than considering it as a
hypothesis. Remind them that in everyday 1ife we often reason
from premises without knowing that they are true. For example,
when not sure of today's date we might argue so: I know today
1s Saturday and I think the date 1s June 15th, but I'm not sure.
If today is June 15th, then June 1st also was a Saturday. But
I remember that June 1lst was a school day. Therefore, today
can't be June 15th. Sometimes we actually reason from false
premises, as when we argue that if Lincoln had not been shot,
the course of American history would have been such and such;
or that if the Lusitania had not been torpedoed, the United
States would never have entered World War I.

You may be able to help your students by using, in inform-
al classroom speech, such phrases as: Assume for the sake of
argument; Pretend, and see where you end up; Work on the
theory that . . . , and see the kind of jam you get into.

[page 160]
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Problem Set 6-2a

161 1. a. My Mother is not color blind.
b. My brother is left-handed.
¢. Jane drank some hot chocolate.
2. All,
3. (1) This set is not a stainless steel product.
(2) This set 1s a stainless steel product.
(3) This set will not rust.
(4) This set did rust.
162 4, y is true, z 4is true.
5. W, u and x are not true. Yes, indirect reasoning is used
in reaching each conclusion.
6. Let A be "someone is a member of the swimming club".
Let B be "someone can play the piccolo".
Let C be "someone is a turtle".
Let D be "someone wears striped trunks in the club pool".

Then the problem may be diagrammed this way:
(1) If A 1is true, then B 1is true.
(2) If B is true, then C 1is not true.
(3) If D 1is true, then A 1is true.
() D 1is true.
The conclusion is that "C is not true" is true. Hence,
in terms of the problem, the conclusion is "I am not a
turtie".
T. a. Red, white.
b. Yes. A 1s not green.
8. F Given scalene A ABF. To prove
that the bisector of any angle,
F, is not perpendicular to EB.
If we assume that the bisector
of L F 1s perpendicular to AB,
Q ’ then AAFQ £ ABFQ (A.S.A.) and
AF = BF. The assumption that
Q 1is perpendicular to AB led to the contradiction that the
scalene AABF is isosceles,.

[pages 161-162]
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Notice from the proofs in Section 6-2 that uniqueness is
usually established by indirect proof. Showing that there is
only one of something can be accomplished by showing that
there cannot be two.

Note that it is possible to establish uniqueness without,
or before, establishing existence. For example, the proof of
uniqueness In Theorem 3-3 can be made logically independent of
the question of existence, as follows: Suppose that there
are two planes containing I and P. Let Q and R be two
points of L. Then both planes contain P, Q, R which are
non-collinear points. This contradicts Postulate 7. Hence
our suppositlon is false and there is at most one plane con-
taining L and P.

In ordinary life, too, knowledge of uniqueness can be
independent of knowledge of existence. A person with just one
day of his vacation left knows very well that he will not
spend more than one day sailing. But he does not know that he
will spend that one day salling.

Existence means tlat there is at least one. Uniqueness
means that there is at most one. Existence and unlqueness
means that there is one and only one, or’exactly one.

Problem Set 6-2b

1. Yes. Postulates 6 and 7.
<> —> «—>
. 3. VWBand HX. ¥B and ¥F. EX ana 17
<> <> <> «<> <>
3. 6. AQ and BY, AQ and @, AQ and D8, B8 and T3,
< > < <>
BQ and DQ, CQ and DQ.
<> <>
PQ and PT are the same line. -
Yes. By Postulate 7. ABQ. AB. B.
6. If A, B, C, D are not coplanar, we list the planes
ABC, ABD, ACD, BCD. However, if A, B, C, D are coplanaxp
there is only one plane determined.

U =

[pages 163-167]
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Many students may feel that the formal proof of unique-
ness in Theorem 6-1 is mere hair splitting. For them it
probably is best not to belabor the point. After they have
had more contact with uniqueness principles they may better
appreciate the point.

Some students may object that the uniqueness proof 1is
unnecessarily complicated, that the Angle Construction Postu-
late "guarantees" that there is a unique line M in plane B
perpendicular to L. at P. This is not quite correct. The
Angle_gpnstruction Postulate asserts that there 1s a unlque
ray PY with Y in half-plane H such that mLXPY 1is 90.
Then line ?? | L. Suppose then we apply the same process to
the half-plane K opposite to H.

Y
H
< P X SL
K

The Angle Construction Postulate now asserts that there
is a unique ray .$E> with Z in half-plane X such that
mL XPZ is 90. Then line (13'z>__[_L. No_one of our postulates
or theorems tells us that the lines PY and PZ are identi-
cal. The uniqueness part of Theorem 6-1 takes care of this.
Actually it does more - 1t proves that no conceivable process
of "construction" or definition can yield a second line per-
pendicular to L at P 1in plane E.

The question at the end of the paragraph following
Theorem 6-1: Can you identify a uniqueness theorem which has
no corresponding existence theorem? Yes, Theorem 3-1: Two
different lines intersect in at most one point. Theorem 3-2
could be reworded to yleld another example: If a plane does

[pages 168-169]
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not contain a line, then the plane and the line intersect in
at most one point.

In Theorem 6-2 we have put together in compact form, an
important theorem and converse, by using the language of sets.
The theorem and its converse establish a characteristic or

distinguishing property of any point of the perpendicular

bisecting line of a given segment - that is, a property which
holds for, and only for, points of this line. This property
then 1s a characterization of the perpendicular bisector as a

set of points. Other such characterization theorems will
appear later.

In Theorem 6-2 note the importance of the restriction that
all points considered lie in a plane. If this restriction 1is
removed, we get a corresponding result in space: The perpen-
dicular bisecting plane of a segment is the set of all points
that are equidistant from the endpoints of the segment. This
is Theorem 8-7 of Chapter 8. Note that Theorems 8-1 and 8-2
give further "equidistance" properties of lines and planes.

Case 2 of Theorem 6-4: U = Q. 4 p
Use the first 5 statements of Case 1.
6. L RUP = LRUT. 6. Statement 2,
and U = Q. - U R
<> ' - Q >L
7. PU | L. 7. Definition of
perpendicularity.
¢+ T
v
S
Case 3 of Theorem 6-4: Q is P
between R and U.
Insert a step between steps 2 and 3: R Q U
LPQU = LTQU. Supplements >L
of congruent
angles.
T

Refer in Reason 6 to the new state-

ment rather than to Statement 2.

[pages 169-173]
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Problem Set 6-3

174 1, EC 1s the perpendicular bisector of BD and so EB = ED by
Theorem 6-2.
2. x=T, y=5, z=10.
3. Since P and M are points which are each equidistant
from A and B, ﬁi is the perpendicular bisector of KB
by Theorem 6-2 and Postulate 1. Then QA = QB by

Theorem 6-2.
y,
1. PT = PR + RT. 1. Definition of betweenness.
2. RT = RQ. 2. Theorem 6-2,
3. PT = PR + RQ. 3. Substituting RQ for RT
in Statement 1.
175 7. No. Yes.
*8,
1. AC = EC. 1. Given.
2. mlLA =mlB. 2. Base angles.
3. %mLA = %m L B. 3. Division, from Statement 2
L L DAB % [ EBA. 4, Prom step 3.
5 AF = BF. 5. 1If two angles of a triangle
are congruent, the sides
> opposite them are congruent.
6. CF 1is perpendicular 6. Theorem 6-2 and Postulate 1.
bisector of AB.
*9-

Given: HB bisects /s AHF and
ABF,

Prove: WB bisects AF.

[pages 174-175]
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1. X=Yy, r=328 1. Definition of bisect.
2. HB = HB. 2. Identity.
3. A ABH & A FBH. 3. A.S.A.
4. HA = HF, BA = BF. | 4. Corresponding parts.
5. HB | AF. 5. Theorem 6-2.
| HB bisects AF.
*]10.
1. RC = SC. 1. Given.
/ RCA = / SCA.
2. AC = AC. 2. Identity.
3. A RCA = A ScCa. 3. S.A.S.
y, RA = SA. 4, Corresponding parts.
5. Q 1s mid-point of 5. Given.
RS.
6. AQ | TS. 6. Theorem 6-2.

This discussion of the introduction of auxiliary sets is

a departure from the conventional treatment.
Consider how often students assume

and deserves attention.

It is important

they can, by "construction", justify referring to a line
whose existence has not been proved and which, in fact, may

not exist (see Example 2).

n n <> A
Notlce that we say "introduce" 1line AB or segment PQ

and avoid using such words as "draw" or "construct".

As soon

as we have shown the existence of line AE (or segment PQ)
we have the logical right to reason about i1t and to derive
properties of 1t in our geometry. This is independent of
whether we choose to draw or represent it in a diagram.

{page 176}
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Having proved the existence and uniqueness of a certain
geometric object in our theory, we sometimes ask how it could
be constructed physically from given data using prescribed
operations or procedures. Thus the discussion of Theorem 6-14
gives a precise description of the construction of the perpen-
dicular to a given line from a given external point using
ruler and protractor. In thls instance, the construction is
given before the proof to help the student grasp it.

(Once this important distinction between the common meaning of
"draw" and the meaning of "introduce" described above is es-
tablished with your students, 1t seems agreeable to use the
term "draw" for convenience. An occasional reminder of the
distinction should be made, however, so that the correct
concept becomes the one suggested by whatever word is used.)

Notice in Section 6-4 that we do not say that auxiliary
segments always are shown as dotted segments. The dotted seg-
ment seems necessary only when the figure becomes so compli-
cated that the method of proof becomes obscure.

If A, C, D and E are non-coplanar in Example 1, the
proof based on introducing DE does not hold. The proof in
which AC is introduced does hold, however.

Problem Set 6-4

1. 1. cConsider 7. 1. Two points determine a line.

2. AD = CD. 2. Given.

3. m{LDAC = m LDCA. 3. Base angles of an isosceles
triangle are congruent.

4, mLDAB = m LDCB. 4, Given.

5. mLBAC = m/ BCA. 5. Subtraction using state-
ments 3 and 4

6. AB = CB. 6. If two angles of a triangle
are congruent, the sides
opposite are congruent.

This proof does not work if points A, B, C and D are not
coplanar. Step 5 would not be valid.

{pages 178-181}
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*

1. Draw XA. 1. Two points determine a line.
2. XA ='XA, 2. Identical.
3. XY = AB and AY = XB. 3. Given.
4. A YXa A BAX, 4. s.s.s.
5. mL YXA = ml BAX. 5. Corresponding parts.
" ml BXA = mL YAX.

6. mi YXO = mL BAO. 6. Subtraction in Statement 5.
7. LY =LB. 7. Corresponding parts.
8.  AXOY = A AOB. 8. A.S.A.

*A similar proof is possible if ¥B is drawn.

Y S
E A

1. Draw ES and AY. 1. Two points determine a line.
2. YE=B8A./E&/A. 2. Given.
3. Y¥YS = gv. 3. Identity.
4., AYSA = A SYE. L. S.A.S.
5. LYSA =L SYE. 5. Corresponding parts.

{page 181}
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I Y S
E M A
1. Let M be the midpoint | 1. A segment has exactly one
of EA. midpoint.
2. Consider MY and MS. 2. Two points determine a line.
3. EM = ANM. 3. Definition of midpoint.
4, LEZ LA and 4, @Given. -
YE ¥ 3R,
5. AYEM A SAM. 5. A.S.A.
6. YM = TN 6. Corresponding parts.
7. mLMYS = mL MSY. 7. Base angles of an isosceles
triangle are congruent.
8. mLEYM = mL ASW. 8. Corresponding parts.
9. m/L EYS = m/ ASY. 9. Addition of Statements 7
and 8.
5.
1. Consider AD. 1. Two points determine a line,
2. AC = AB. 2. Glven.
CD = DB.
3. AD = AD. 3. Identity.
4, A ACD = A ABD. 4, s.s.S.
5. LACD = [ ABD. 5. Corresponding parts.
182 This 1s very unusual material for a tenth grade geometry

text. We introduce it to indicate that the assertions we make
can be justified from our postulates (without recourse to
diagrams), and to give some typical examples of how we can
logically justify betweenness and separation properties which
usually are read from figures. There are two pitfalls here.
First, it is best not to try to teach this material to stu-
dents who are perfectly satisfied with the proofs as originally

{page 182}
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given. They probably are not yet ready for this kind of
critical thinking and their progress in geometry will not be
impeded by passing on to the next chapter. There is an
opposite danger for the very critical student. He may become
distrustful of diagrams and fail to develop a sound geometrical
intuition. He should be reminded that our theory of geometry
is suggested by physical space, 1s applicable to it, and that
many theorems can be discovered and most can be appreciated
by the study of diagrams and models. (See Chapter 7, Section
7-1, on making conjectures in geometry.) Point out that a
geometric proof in which one step depends on the diagram,
although not mathematically perfect, is still incomparably
superior to what is considered logical in most areas of human
discourse.

Having clarified the basic point in this section we don't
hesitate in later chapters to use the diagram to Justify prop-
erties of betweenness and separation. The complete justifica-
tion of all such properties used is still quite difficult and
requires a deeper study of the foundations of geometry. (See
Studies II.)

-As we mentioned earlier, you will have to declde how much
time your class should devote to Section 6-5. If you do not
choose to have your class as a whole study the section, your
better students may find that the exposition and the problems
provide excellent supplementary work.

Problem Set 6-5

1. a. L B. By Theorem 6-6.
b. L C. By Theorem 6-6,
c. L A,L B, andL C. By the definition of the interior of
a triangle. '

{page 184}
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185 *2,

3.

186

The argument (using the first drawing) depends on the
assumption from the drawing that E 4is inside (. XBC'. 1In
a careful drayigg (see below) X will appear on the oppo-
site side of BC' from E.

D c

X

The three possibllities are:

a. A is on L. In this case L intersects both &AC
and AB.

b, A is in Hl‘ In this case A 1s on the same side of
L as B, and C 1is on the other side of L. 1In
this case L intersects AC. This follows from the
Plane Separation Postulate.

c. A is in H2. In this case A 1is on the other side
of L from B 80 L intersects AB.

a. Since D 1is between A and C, D is in the interior of
L ABC, by Theorem 6-6, and the definition of the in-
terlor of an angle implies that A and D are on
the same side of ?i;

Theorem Q;g'implies that D and F are on the same
side of BC.
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14

Since BF intersects AC at D, it follows from the
Plane Separation Postuligf that F Dbelongs to HQ.
Since BE intersects AC at C, it follows from the
Plane Separation Postulate that E Eg}ongs to H2.
A and D are on the same side of BC because it is
given that D 1s in the interior of L ABC. Theorem
6-5.
E 1s in H2 by the Plane Separation Postulate.
Theorem 6-5.
Each point of -53 with the exception of B 1lies in
H, but no point of EC does. Also, B does not lie
on EC.
Each point of EC other than E 1lies on the same
side of KE' as C and D, but each point on the ray
opposite EB with the exception of B 1lies on the
other side of egﬁl Note that C and D are on the
same s8ide of AB since D 1is in the interior of

L ABC. P
It follows from Problem 3 that BD intersects either
AC or EC. It follows from parts a and b above
that BD does not intersect EC.
Each point of BC other than A 1lies on the same
side of Kf; with C and D by Theorem 6-5 and the
Plane Separation Postulate, but each point of the ray
opposite EEL with the exception of B, lies on the
other side of Efi

Since D is in the interior of L ABC, it follows from the
Angle Addition Postulate that m/L ABD + m LDBC = m/ AEC.
Since all of these measures are positive it is impossible
that either

(1)
(2)

m L DBC or
m L ABD.

m{lL ABD + m{ ABC
m{L ABC + mL DBC

Since (1) is impossible, A is not in the interior of /[ DEC.
Since (2) is impossible, C 1s not in the interior of /£ ABD.

{page 187}
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188*7, a. D 1ies in the plane determined by A, B, C since it
is on the 1in‘e:_>$. E 1lies in this plane since it is
on the line AB.

b. A and B are on the same side of ?ﬁ? and C 1is on
the opposite side from A and B. Hence, ?ﬁ; inter-
Sects AC at a point X between A and C.

c. BC.

8. a. True.

b. True.
¢, False,
d. True,.

{page 188}
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Illustrative Test Items for Chapter 6

In A ABF, every point of AF
except __ and ____ is in the
interior of , . ____ of the
points of BB is in the in-
terior of L ABF.

Snow melts at temperatures above 32°. There is snow on
the ground and the temperature outside 1s 400. Write a
logical conclusion,.

Given that PAé;_PB,

QA = QB and PQ meets
AB at M as shown in
the figure. P M Q
Without using congruent
triangles, prove M 1is
the midpoint of AB. B

In thlis plane figure there are

. two isosceles triangles with
the same base, AB. ?ﬁ?_____ﬁﬁ
H and is _____ to BAB. Every
point of T 1s ____ from A
and B.
B

If, for the sake of argument, you accept the following
hypothesis, which of the followlng are logical conclusions?
Hypothesis: .Every plece of Alpha candy 1s delicious.
Conclusions: a. Since this piece of candy is delicious,
it must have been made by Alpha Company.
b. This Alpha caramel 1is deliclous.
Since this piece of candy is not deli-
clous, 1t could not have been made by
Alpha Gompany.
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10.

F
AF = BF. The points given in the
T AH = BH. picture are coplanar.
AK = BK.
<>
Does line FH pass through K?
A 8 If AT = 3, then BT =
State a theorem which supports
W your conclusions.
K
FB = AB. F
FQ = AQ.
WEF = WA.
Are W, Q and B necessarily w B

collinear if these three
points are coplanar?
A
Given that A, B, C, F are four non-coplanar points, list
all the planes determined by subsets of A, B, C, F.

Prove that the perpendicular bisector of one side of a
scalene triangle cannot include the opposite vertex of
the triangle.

In this figure,

Ao 8 | W7,
AX = PX,
XH = XB.
Prove: HF = BF and
H QA = QF.

A\/ ]
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Answers

Since PA = PBand QA = QB, P and Q lie in the perpen-
dicular bisector of AB. Therefore,‘ﬁfs is the perpen-

Bisects. Perpendicular, Equidistant.

No. Not unless the entlre figure is a plane flgure.

Given that A ABF is scalene.
F Assume that FH could bisect
AB and be perpendicular to AB.
Then A AFH = A BFH by S.A.S.
and FA = FB, so A AFB is
isosceles. The assumptions

H 8 lead to the contradiction that
a scalene triangle is 1sosceles.
Hence the assumptlons were false.

1. A and F; ABF; None.
2. The snow 1s melting.
3.
dicular bisector of A&B.

L,
5. b, c.

6. Yes. 3. Theorem 6-2,
7.

8. ABC, ABF, ACF, BCF.
9.

A

10.

€«<>

QB 1s the perpendicular bisector of AF. Therefore,

QA = QF. Since XH = XB is given, X 1is the midpoint of
HB and <FTX’ is its perpendicular bisector.

Hence, HF = BF.
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Chapter 7
GEOMETRIC INEQUALITIES

. The material covered in this chapter 1s quite similar to
that found in corresponding chapters of other geometry texts.
The main difference is that we compare two segments or two
angles merely by comparing thelr lengths or measures. - Thus,
although our inequalities describe geometric relations, they
involve only real numbers. This is another advantage of our
early introduction of real numbers. Because students do not
always know principles of inequalitles well, we restate the
order postulates first given in Section 2-2, glving examples
to show how they are applied.

The idea that a conjecture must not be considered true
until (unless) it has been proved, bears emphasis. To put it
bluntly, a conjecture is a guess. The kind of conjectures we
pay attention to are the shrewd, reasonable ones that are
based upon inductive thinking or insight. But conjectures, no
matter how reasonable they seem, remain guesses untll they are
proved.

It may be good for your students to be reminded that con-
jecturing is an important part, even if only the first stage,
of mathematical work. After all, a man who develops new
mathematics often must try to decide what the truth is before
he can present a logical proof of it. There is no reason to
look down on the art of making conjectures. There is, however,
no excuse for confusing guessing with proving.

Goldbach's conjecture that every even number is the sum
of two primes is a simple non-geometric example that you can
mention. After many generations the conjecture is still not
a theorem.

The example of Section 7-1 should suggest two things to
the student. First, he should try to make reasonable conjec-
tures. Second, he should express his conjectures in good
mathematical language. The second goal may be the more diffi-
cult to achieve.
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Problem Set T7-1

1. The opposite sides are unequal in length with the side
opposite the largest angle having the greater length.

2. AB + BC > AC. BC + AC > AB. AB + AC > BC. The sum of
the lengths of two sides of a trlangle 1s greater than the
length of the third side.

3. RS + ST + TQ > RQ. The sum of the lengths of three sides
of a quadrilateral is greater than the length of the fourth

side.
4y, It increases.
5. DF > XZ.
6. Q N

7. From B drop a perpgg?icular to E aEag point D of E. Then
D willlie on some AC and for this AC, m L BAC = m L BAD
is a minimum. If K§ is the opposite ray to KB, m L BAF
is a maximunm.

8. The procedure does not work since m L DAE 1s larger than
either m £ BAD or m L EAC. This shows up clearly if
m L BAC is close to 180.

It may be helpful to state the order principles in English
as well as in algebraic symbolism. For example, 0-2 may be
stated: If the first of three numbers 1s less than the second
and the second is less than the third, then the first is less
than the third. Similarly, 0-3 asserts: If the same number
is added to each of two unequal numbers, the sums are unequal
in the same order. Or 0-3 may be stated: If the same number
is added to each side of an inequality, the inequality remains
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true. You recognize that these order principles are essen-
tially the same as the "Axioms of Inequality" which appear in
most geometryltexts. The order principles refer to real num-
bers rather than geometric quantities.

192 Example 6, simple as it seems, is quite important and
often used. In many geometric problems it is necessary to
prove a relation such as a < ¢ or c¢ > a. In the conventional
treatment we refer to a diagram and conclude ¢ > a by the
principle, "The whole is greater than any of its parts".
Ordinarily, we prove a relation like ¢ > a by applying Exam-
ple 6, that is, we show ¢ = a + b, where b is positive.
(Actually in our applications a, b and ¢ will all be positive.)
We might reword this as, a + b > a when b > O, since ¢ = a + Db,
Even more simply we can say, "The sum of two positive numbers
is greater than either number." Thus, the final justification
is a property of real numbers. An important application of
Example 6 occurs later in Step 8 of the proof of Theorem T7-1.

Example 6. If a + b = c and b is positive then a < c.
Reasons only:
1. Given. k., Postulate 0-3.
2. Definition of positive. 5. Substituting c¢ for a + b,
3. Relation between < and >.

Example 7. If a + b < c, thena < ¢ - b.

Proof:

1. a+b<ec. 1. Given.

2. a+ b+ (-b) <c + (-b).2. Postulate 0-3.
3. a<c - b, 3. Algebra.

"Algebra" means here that the principle involved is well
known to the student in the sense that it involves the "field"

properties; that is, the basic properties of addition, multi-
plication, subtraction and division but not order or inequality
properties. He knows that a + b + (-b) = a, and that

¢ + (-b) = c - b, Step 3 also involves substitution.
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Example 8. If a < b, thenc - a >c - b for every c.
This may be stated: If unequal numbers are subtracted from
the same number, the differences are unequal in reverse order.

Proof:

1. a < b, 1. Given.

2. a+ (c -a-m0D)c<

b+ (c - a - Db) 2. Postulate 0-3.
3. ¢c-b<ec - a, 3. Algebra.
4, e -a>c - b, 4, Relation between < and >.
192 Example 10. If x < y and z < O then xz > yz.

Proof:

1. z < 0. l. Given.

2. z + (-z) <0 + (-2). | 2. Postulate 0-3.

3. 0« -z. 3. Algebra.

L, -z > 0. Y4, Relation between < and >.
5. x<vy. 5. Given.

6. x(-2z) < y(-z). 6. Postulate 0-4.

7. -xz < -yz. 7. Algebra.

8. -xz + (xz + yz) < 8. Postulate 0-3.

-yz + (xz2 + yz)

9. yz < xz. 9. Algebra.
10. xz > yz. N10. Relatlon between < and >.

We have Jjust proved: If unequal numbers are multiplied
by the same negative number, then the products are unequal in
the opposite order. Actually all the familiar "Axioms of
Inequality" can be derived from the four order postulates.

194 Step 6 of the proof of Theorem T-1 tacitly assumes that F
is in the interior of / BCD. This is Jjustified in Problem 4
of Problem Set 6-5. It is probably true that no kind of
mathematics can be effectively presented in a completely
rigorous form to a tenth-grade class. We should not feel
guilty about teaching tenth-grade students merely as much as
they can learn. The betweenness problem here will probably
go unnoticed by most students. It should be called to the
attention only of very capable and critical students. (Such
students will probably be rare.)
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The formal jJustification of Step 8 involves an application
of Example 6 of Section 7-2: If a + b = ¢ and b 18 positive,
then a < ¢. (See the Commentary above.) We have Step 7,

ml_ BCD=m/L B+ m/lL FCD,
and m L. FCD is positive (all angle measures are positive by
the Angle Measurement Postulate). Thus, by Example 6
mi B<mlL BCDorm{ BCD >m/L B.
Hereafter we usually apply Example 6 in such situations with-
out expllcit reference.

The following lemma usually is applicable in proving an
angle larger than another.

Lemma, If D is in the interior of L ABC, then mL ABC >
m L ABD. ‘

Proof: The argument above applles. By the Angle Measure-
ment Postulate |

m LABC =m/l ABD +m/ CBD
and m L ABC > m L ABD by Example 6.
Similarly we can prove an analog for lengths of segments.
Lemma., If C 1s between A and B, then AB > AC.

Problem Set 7-3a

1. a., L ACB and L CAB.

b. L FCB.
2. a. L DBC and L EBA,

b, mL DBC >m Ll A, by Theorem 7-1.

¢c. m/lL DBC >m L C, by Theorem 7-1.

d. m/. DBC + m L CBA = 180, by Postulate 14,
3. a. ho.

b. is greater than 73.

c. 1is equal to 112.

d., 1s less than 112.

e. 1s equal to 30.

f. 1s equal to 90.

g. This is impossible, since, by Theorem 6-3, Kg.and EE

are not both perpendicular to AB.
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4, No. It is not true for the exterior angle at each of the
other vertices. Another exception is a rectangle.

*5. By the Supplement Postulate, a + w = 180. But b < w, by

the Exterior Angle Theorem. Adding a to each side of this
inequality, we get a + b < a + w which becomes a + b < 180,
which was to be proved. Similarly, b + ¢ < 180 and

a + ¢ < 180.

*6, Given: A ABC with AC = EC.

197

199

To prove: mlA < 90,
mlB < 90,
Proof: By the previous

£l

problem we have

mi A+m/lL B < 180.
But the base angles of
an isosceles triangle are congruent, so 2(m L A) < 180,
and mL A < 90. Also, m/lZ B < 90, since the measures of
the base angles are equal.

A B

The S.A.A. Theorem usually is proved after the Parallel
Postulate 1s introduced, since it follows readily from the
theorem that the sum of the angle measures of a triangle is
180. Since the S.A.A, Theorem does not depend on the Parallel
Postulate (Chapter 9) we introduce it here and can apply it
whenever needed.

An S,S.A. theorem also holds when the angle is an obtuse
angle, but there is little value is bringing this fact to the
attention of a class. Outstanding students might enjoy proving
the fact, however.

Problem Set 7-3b

1. Since AQ = BQ, L QBA =/ QAB.
Also AB = AB and L H =, F. Therefore, A ABH = A BAF
by S.A.A, -
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1. AB = HF. 1. Given.

2. BF = BF. 2. Identity.

3. AF = HB. 3. Addition, Steps 1 and 2.

4, & K and Q are 4, Definition of perpendicular
right angles. lines.

5. AK = HQ. 5. Given,

6. AAKF A HQB. 6. Hypotenuse - Leg Theorem.

7. KF = QB. 7. Corresponding parts.

A FAH = A AFX by Hypotenuse-Leg Theorem, hence
L BFA £ [ FAB. Therefore, FB = AB,

F A

A B H

i

Given: HB | iF, @& 1 BF, HB
Prove: A FAB is isosceles.
Since AB = AB, A ABH = A BAQ by Hypotenuse-Leg Theorem and
so L HAB =L QBA. It follows that FA = FB and A FAB is
isosceles.

L AKF = [ ABR (Supplements of congruent angles),

LA=L A, AQ=AF. Hence, A AQB = A AFK by S.A.A,
Then QB = FK,

Since L a ¥ Lec, AB = FB. Also in A ABH and FEH
BH = BH, and A& BAH and BFH are right angles. Therefore,
these triangles are congruent by the Hypotenuse-Leg Theorem
Hence, AH = FH.

QA.

In the proof of Theorem 7-4, Statement (3) involves

Example 6 of Section 7-2. (See comment above on Theorem T7-1,
Step 8.)
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One frequently sees Theorem 7-4 proved by the following
method:

Given: A ABC with AB > AC.

To prove: m L C > ml B,

B E c

Take D, between A and B, such that AD = AC. Bilsect L A, and
let E be the intersection of the bisector with the line EE.
Show that A ADE = A ACE, by the S.A.S. Postulate. It follows
that m L ADE = m L ACE. By the Exterior Angle Theorem,

ml ADE > mlZ DEE,
Therefore, m L C > m L B, which was to be proved.
This proof tacitly assumes that the bisector of L A really does
intersect EE in a point between B and C. See Problem 5 of
Problem Set 6-5 for consideration of this matter.

Problem Set 7-3c

1. L G. L K.

2. AC. TC.
3. a. ho.
b, 80.
c. AB.
4, a. ML > KL.
b. ML < MK.
c. KL > ML > MK.
d. None.

e. ML > KL and ML > KM.
f. ML > KM and ML > KL.

5. In A ABC, AC is the longest side, since it 1s opposite the
angle with the greatest measure. In A ADC, AD is the
longest slde, for the same reason. Therefore, AD > AC
and AD is the longest of the five segments.
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BC, 1B, AC.

(Note to the teacher: You may expect to get a reaction
from the student, to the effect that the figure 1s incor-
rect, sincem/L A +mlL B+m{lL C < 180. This is a fine
opportunity to point out that we cannot prove, on the
basis of the postulates given so far, that the sum of the
measures of the angles in a triangle is 180. When we get
to the Parallel Postulate in Chapter 9, we will be in a
position to prove the angle sum theorem. In any case,
given the hypothesis that such a triangle exists, we can
assert the conclusion that its sides are ordered in the

glven manner.) c
Given: AF 1s the shortest side.
CB 1is the longest side. g 8
To prove: m/l CFA > m /L CBA.
1. InA ABF, AB > AF. 1. Given.
2, ml BFA > m/l ABF, 2. Theorem T7-4.
3. InA BCF, CB > CF. 3. Given.
4, m{ CFB > mL CBF. 4, Theorem T7-4.
5. mL BFA + m/L CFB > 5. Adding Steps 2, 4.
ml ABF + m/ CBF.
6. m/l CFA >m/ CBA, 6. Step 5 and the Angle-
Addition Postulate.
Given: FA = FB. R
A 1s between H and B.
To prove: FH > FB,
L A B
1. FA = FB. 1. Given,
2., mlL FAB =m/l B. 2. Base angles of an isosceles
triangle are congruent.
3. m/L FAB >m/. H. 3. Theorem T7-1.
4, mfL B >m L H. 4, Steps 2 and 3.
5. FH > FB. 5. Theorem 7-5.
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9. a. If a team can win some games, it has some spirit.

b. If two angles are congruent, they are right angles.

¢. Any two supplementary angles are congruent.

d. The intersection of two half-planes is the interior of
an angle,

e. If Joe is seriously ill, he has scarlet fever.

f. If a man lives in Ohio, he lives in Cleveland, Ohio.

g. If two triangles are congruent, then the three angles
of one are congruent to the corresponding angles of
the other.

h. If the sum of the measures of two angles is 90, the
angles are complementary.

Statement Converse Statement Converse

a. F T e. T F

b, T F £f. T F

c. F F g. F T

d. T F h, T T

10. No. The converse should be, "If I will be burned, I hold

a lighted match too long." The hypothesis does not con-
tain "if", and the conclusion does not contain "then".

11. a. No. 9b, 9d, 9e, 9f,.
b. Yes. 9a, 9g.
206 Note that the dlstance between a line and a point is a
number. Theorem 7-7 really involves three inequalities:
(1) AB + BC > AC, B
(2) BC + AC > AB,
(3) AC + AB > EC. 1///////////\\\\\\\
A Cc

The text proves (1), and this is sufficient'since a
relabeling of the figure will give (2) and (3).
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Problem Set 7-3d

207 1. AT and AF. AT and TF.
. The statement of Theorem T7-6.
208 2. HB < HA < HF. The statement of Theorems 7-6 and 7-5.
3. 3, 13.
y, kx-j<x<k+].
5. 1. DB < CD + CB. 1. The sum of the lengths of
DB ¢ AD + AB. two sides of a triangle is
CA < CD + AD. greater than the length of
CA < CB + AB. the third side of the
triangle.
2. 2DB + 2CA < 2CD + 2AD | 2. Addition.
+ 2CB + 2AB.
3. DB+ CA <CD + AD + 3. Division.
CB + AB.
6. 1. If the points are noncollinear, the inequality follows
from Theorem T7-7.
2, If the points are collinear, then either (1) B is on
the segment AC, in which case AB + BC = AC, or (2) A
is between B and C, in which case BC > AC, so AB + BC
> AC, or (3) C is between A and B, in which case
AB > AC, so AB + BC > AC.
Dr———— el Lrater——— el S ——
A B C B A C A C B
209 *7. Case 1. (n = 3). We know from the preceding problem

(Problem 6) that the result is true in this case; that is,

AjA, + AAg > AjA;.

Case 2. (n = &),

1. AlA2 + A2A3 + A3A4 > A1A2 + AQAM because it follows

from Case 1 that A2A3 + ASAM-Z A2A4.

2. AjAy, + AA) > AA) Dy Case 1.

3. AjAy, + AAg + A3A4 > A7) follows from Steps 1 and

2.
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General Case (n is arbitrarily large).

1. We continue as in Cases 1 and 2 to show that

AlAQ + A2A3+ veeess T An_2 An-1~2 AlAn—l'
2. AA ST Al 1 A2 AJA Dby Case 1.
3. Ajy A>AA - AJA by Step 2.
4, AjBy + Aohg + cieiiill A LA L F AL 18> AjA)

from Steps 1 and 3.
*8. XA + XC > PA + PC except when X is on the segment AC, in

which case the equality sign holds. Similarly,
XB + XD > PB + PD except when X is on EB, in which case
equality holds. Therefore, XA + XB + XC + XD > PA + PB
+ PC + PD except when X 1s on AC and also on BD, and
this can happen only if X = P, which is excluded by
hypothesis.

The result also holds if X is not in the plane of

A, B, C and D.
*9. Consider the reflection Q! of Q with respect to m. Then

m 1s the |-bisector of Q' and intersects @3' at a point
which we call M. The point R on m to make PR + RQ a
minimum is the point where PQ' intersects m.

Let S be any point of m other than R. If S # M, then

A SMQ' £ A SMQ by S.A.S. SQ' = SQ, so PS + SQ = PS + SQ.
If S =M, then again PS + SQ = PS + SQ!.
In A PSQ', PS + SQ > PQ' = PR + RQ! = PR + RQ.

J.PS + 3Q > PR + RQ.

Q'
//
—

I~ [ !

| <~ — ]

| —

| Q

p!

210 The proof of theorem 7-8 is among the harder ones; you

may want to skip it and merely authorize the use of the
theorem in solving problems.
We have assumed properties from the diagram without for-
mal justification. This will be done often hereafter as we
{page 210}
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indicated in the Commentary at the end of Chapter 6. The

proof in the text tacitly assumes that K, M, C are noncollinear.
The proof abplies to the case indicated by the left-hand figure
below as well as to that shown in the text. If K, M, C are
collinear (see right-hand figure below), then B, K, C are
collinear and K lles between B and C. Thus BC > CK and since
CK = EF we have BC > EF.

B
B K M
; ii: Z :: K
A C A C
211 Proof of Theorem 7-9.

Restatement: Given A ABC and A DEF, If AB = DE, AC = DF
and BC > EF, thenm/ A >m L D.

B
/\ E
A ” c D//H\F

Proof: Since m{ A and m L D are numbers, there are
only three possibilities: (1) mLZ A=mL D (2) mL A< mLD,
and (3) mL A >mL D.
(1) IfmiL A=mLlL D, then A BAC A EDF and BC = EF.
This contradicts the hypothesis, therefore it is
impossible that m/L A =m L D.
(2) IfmlL A<mLl D, then BC < EF by Theorem 7-8. The
last is false. Therefore, it is lmpossible that
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m/ A<m/L D.
Only possibility (3) remains, and the theorem is proved.

Problem Set T7-3e

212 1, If two trlangles have two sides of one congruent to two
sides of the other, the third side of the first is longer
than the third side of the second if and only if the
included angle in the first is larger than the included
angle in the second.

2, In A ACD and BCD, AC = BC, DC = DC and BD < AD, and so
m/ x >m/l y by Theorem 7-9.

TR 2. Given.
2. RB = RB. 2. Identity.
3. mlL ARB < mlL BRF. 3. Given.
L, AB < BF. 4, Theorem T-8.
4. 1. RA = RF, 1. Definition of median.
2. RB = RB. 2. Identity.
3. m/l FRB >m/ ARB. 3. Supplement Postulate.
4, FB > AB. 4, Theorem 7-8.
5. miL A >m/ F. 5, Theorem T7-4.
5. In A ACQ and BCQ, AQ = BQ,
CQ = CQ and BC > AC. Then
by Theorem 7-9 L CQB > L CQA. ¢
Since the two angles are
supplementary, L CQB is
obtuse. - A Q B

213 6. In A AHF and FQA, FH = AQ, AF = AF, and AH,> FQ,
Therefore, by Theorem 7-9, m L AFH > m/. FAQ. Then in
A ABF, AB > FB by Theorem T7-5.

T. Given: QR = QT, SR = ST.
Prove: m/ RQT > m L RST.
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RS > RQ, ST > TQ. S
miL 1l>mi 3, “
mL 2>mL b,

mZlLZ RQT > mL RST.

R T
Q
8. 1. AB = FB. 1. Definition of median.

2. BH = HH. 2. Identity.
3. m/lL ABH > m., HBF. 3. Given.

(or, m L HBF > m [ ABH.

See below.) -
4, AH > FH. 4, Theorem T7-8.
Also, if the median were drawn so that L ABH < L FBH,
then AH < FH.
Alternate Proof: Assume that HA = HF. Then A AHB = A FHB
by S.S5.S., so L ABH = ( FBH and HB | AF, This contradicts
the glven information, so that HA # HF.

9.

1. AB > AC. 1. Given.
2. L ACB > [ ARC, 2. Theorem T7-4,
3. In A BCD and A FBC, 3. Glven

FC = DB.
4, CB = CB. 4, Identity.
5. FB > CD. 5. Theorem 7-8.

214 In reading Section 7-4, consider the following. A

blasting worker may ask for more soup at 11 a.m., and mean
nitroglycerine. He may ask for more soup at noon, and mean
food. If confusion could arise in any given case, he would
be explicit. His listener will normally interpret his
language in light of the circumstances. Likewlse, the fact
that the context usually points to the proper meaning of
altitude makes the use of the word for three different ldeas
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permissible, and perhaps even desirable.

Problem Set 7-4

25 1. a. An altitude of a triangle is the perpendicular segment
Joining a vertex of the triangle to the line that
contains the opposite side.

b. A median of a triangle is a segment whose end-points
are one vertex and the mid-point of the opposite side.

216 3. They are the same segments and hence have the same length.
%, '

a>t, b>r, ¢ > s by Theorem 7-6, and a+b+c > r+s+t.

If the triangle is oblique the proof still holds. If the
Triangle is a right triangle, simply replace two of the
> symbols by the > symbol.

5. Given: A ABC with AC=AB=CB, c
¢E | A8, AD | TS,
BF | AC.
Prove: CE = BF = AD.
AABD = A BCF = A CAE F
by S.A.A, and so
AD = BF = CE.
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1,

2.
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Review Problems

Yes, 1f the trunk is perpendicular to the ground. There
are really three congruent triangles by Hypotenuse-Leg
Theorem.

CE. In A ADC, AC is the shortest side since it 1s
opposite the smallest angle. In A ACE, CE < AC for the
same reason. Therefore, CE 1s the shortest segment in
the figure.

Given: FB | AC.

iB > .
Prove: AF > FC.
Locate X on AC so that
BX = EC.

L FXB > L A by Theorem 7-1. (L C =L FXB >, A. There-
fore, AF > CF.

1. AF = HB, 1. Given.

2. BF = BF. 2. Identity.

3. AB = HF. 3. Subtraction in Statements
1 and 2.

4, A ABK & A HFR, 4, Hypotenuse-Leg Theorem.

5. LQ T LK. 5. Corresponding parts,

Yes., There will be two triangles which are congruent by
S.ALA,

Since AC > AB, mL B>m/L C,. C
L ADC 1s an exterior angle
of AABD and so m/ ADC > m/B.
Therefore, m L ADC > m/ C,. D
Hence, AC > AD.
A B
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6. Let a, b and ¢ be the lengths of the sides as shown.

t+r > a,.
t+s8 >b,
r +s8 >c.
2(t +r+s8) >a+b+ec.
t+r+s >-% (a +Db+c).

7. x > r since HF 1s the
shortest segment. y > s
since AB is the longest
segment.

Xx+y>r + s, by addition.
TMmNm,mZF)mZA.

8. Let a be the length of the B
longest side of the triangle
and b and ¢ the lengths of c
the other sides.

1. a<b+ec. . Theorem T7-T7.
a = a.

2. . Identity.
3. 2a<a+b+ec. . Addition.
4 a+b+e

. ac< — . Division.

= W N

*g, In AABF w < a (Given that AF > AB). c¢ < w ( L AFB is an
exterior angle of A FBH.) And so, ¢ < a. Also, a < a + X,
which gives us that m£L A < m L ABH. We now have
mliL H<mlL A<mL ABH and as a result we know that the
three sides of A ABH are unequal.

*10. Since m/L CAB < m L ABG by Theorem 7-1,
mi C+mlL CBA+mL CAB<1 +m/. CBA+m/lL ABG =1 +
180 = 181. '
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*11.

*12.

13.

165

The conclusion is obvious if each angle is acute so we

suppose we have a figure as shown so that a > 90.
Then x < 90 and a + b + ¢ < (a + x) + x < 180 + 90 = 270.

XB bisects L CBA. XY | AB.
mLXBY = mL A, L XYA £/ XYB,

XY = XY, therefore A AXY ¥ A BXY

(S.A.A,) and AY = BY.
AXBC = A XBY. (S.A.A,) and

80 BC = BY. Therefore, AB = 2BC.

We prove that r + s > x + y.

1. r+t >x + w, 1.
w+vVv >y,
2, r+t+w+v> 2.
X +wW+y.
3 r+t+v>Xx+y. 3.
L, r+8>x+vy. h,

Theorem T7-7.
Addition.
Subtraction.

Statement 3 and the fact
that t + v = s.
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*14, If /[ ABE is a right angle, P = Q = B. Hence, we suppose,
with no loss of generality, that L ABE is acute. 1Its
vertical angle 1s also acute, so
m L ABE < 90,

m L CBD <€ 90.
We show that P 1s on the
same slide of B as E by < B A
showing that it cannot be E P D
on the slde with D. If P
were on the side with D,

L ABE would be an exterior
angle of A ABP. This leads
to the contradiction that
m L APB < m [ AEE.
However, this is impossible since m L APB = 90 and
m /. ABE < 90. Hence, P ls on the same side of B as E.
Similarly, 1t may be shown that Q 1s on the same side
of B as D by considering A BCQ and showing that the
assumption that it lies on the side with E leads to the
contradiction that the acute exterlor L CBD has measure
less than the right L CBq.
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Illustrative Test Items for Chapter 7

1. Consider this figure and list
correct responses to fill
blanks below.

a. X = .
b. 1s the longest side of A KER.
is the shortest side of A KER.

2. In AXYZ, if XY = 18, YZ = 10 and XZ = 15, which angle of the
triangle has the largest measure?

3. A triangle has sides of lengths x and x + y. Can the third
slde of the triangle be of length y? State a theorem to
support your conclusions. B

4, Given: A ARC.
E 1s a point between B and C.
D 1s a point between A and E. E
Prove: L ADC > L B.

A c

5. Given A ABC with median RB and m L ARB = 73. Prove m/Z A > m/C.
c

6. As shown in this figure, ABCD
is 2a§quare and E is a point
on AB such that B is between

A and E. \
Prove: ED > AC.
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7.

10.

—
If, in this filgure, BH bisects
L ABF and L A £ L F, prove the
ray opposite ﬁ% bisects L AHF.

Prove that the perimeter of
the pentagon (shown in this
figure) is greater than the
perimeter of A ACE. D

For the given figure prove that
the sum of the altitudes is less -

>
@
-n

m

than the perimeter of the triangle. a b
(Use a, b, ¢, as lengths of the St r

sides of the triangle and r, s, ¢,
as lengths of the altitudes,
as indicated.)

Indicate whether true or false.

a.

The bisector of the vertex angle of an isosceles triangle
bisects the base and is perpendicular to it.

The base angles of an isosceles triangle are acute.

Any exterior angle of a triangle is larger than any in-
terior angle of the triangle.

If an angle of one triangle is larger than an angle of a
second triangle, then the side opposite the angle in the
first triangle 1s longer than the side oppdsite the angle
in the second.

A triangle can be formed with sides of lengths 351, 513,
162.
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12,

f.
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An altitude of a triangle lies in the interior of the
triangle.

If AB > AC in A ABC, thenm/. C > m/ B,

Two triangles are congruent if they have two angles and a
side of one congruent to the corresponding parts of the
other.

If the three angles of a triangle have unequal measures,
then no two sides of the triangle are congruent.

A median of a triangle is perpendicular to the side to
which it is drawn.

In A ABC both AB and AC can be perpendicular to EC.

The sgg?test segment from P to Kg'is the perpendicular from
P to AB.

Prove: If D is a point between B and C, then AD is shorter
than one of AC, AB.

Prove that one of the congruent sides of an lsosceles triangle
is longer than the segment which connects the vertex with any
point in the base.

X

Answers

k5. KR. XB.

L Z.

No.

The sum of the lengths of two sides of a triangle is

greater than the length of the third side.

L ADC i1s an exterior angle of A DEC and so / ADC > DEC.

L DEC is an exterior angle of A ABE and so £ DEC >/ B.
Therefore, / ADC > / B.

BC > AB by Theorem 7-8. -
mL A >mL C by Theorem 7-4. B

73 107
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D c
6. Since mLA = 90, L DBE is obtuse. N
By Corollary 7-1-1 L E is acute. N
Then in A DBE, DE > DB by \\
Theorem 7-5. A ABD = A ECA N\ \E
by S.A.S., so AC = DB. Hence, A B

DE > AC.

T. Eit G be a point on ﬁﬁ beyond H so that ﬁﬁ is the ray opposite
HB.  AABH =A FBH by S.A.A, Theorem. Then L AHB < / FHB
and hence L AHG = [ GHF since supplements of congruent angles
are congruent.

8. ED+DC>E3

AB + BC > A Theorem T7-7.

EA = EA.
ED + DC + AB + BC + EA > EC + AC + EA, by addition.

9. r<c, t <b, s <aby Theorem 7-6, thenr +t + s <a+b + ¢
by addition.

10. a. T e. F 1. T
b, T f. F j. F
c. F g. T k. F
d. F h. T 1. T

11. If AD | BC then AD < AB and
AD < AC by Theorem 7-6. If A
AD is not perpendicular to
BC then either L ADB or L ADC
must be obtuse. Say L ADB is
obtuse, then L ADC is acute.
But m L ADC > mL B. Hence,
L B is acute. Thus, AD < AB
by Theorem 7-5.
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Given: A AHF with AH = FH
and B a point between A and F.
To prove: AH > HB.

H 171

A B F
Proof':
1. m/L HBA >m /L F. 1. Theorem T7-1.
2. mLA=m/LF. 2. Base angles of an lsosceles
triangle are congruent.
3. m LHBA >m/ A. 3. Substitution.
4, AH > BH. 4, Theorem 7-5.
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Chapter 8
PERPENDICULAR LINES AND PLANES IN SPACE

This is a good time to ask yourself whether 1t is likely
that your class will cover all the topics in the text. You
will want to plan ahead to give your class a suitable program.
You could make, rather quickly if necessary, an intuitive
presentation of the propositions of Chapter 8 by using
familiar physical objects. Having students draw some figures
after looking at simple models will improve their ability to
handle three-dimensional problems.

On the other hand, deductive work in three-space may
seem more important to you than many alternatives. Part of
the time you plan to allot to deductive work can be spent on
proofs in three-space, even if this entails omitting some
deductive work in two-space.

It is worth spending time to make the basic definition
of the chapter meaningful. A sizeable model will make your
demonstration more effective. Use the floor as a plane,
several pointers for concurrent lines in the plane, and a
window pole for the perpendicular. Have students concentrate
on one particular pointer. Move the pole to show that the
pole can be in many positions, even in the plane, and be
perpendicular to the particular pointer. But the pole - in
all but one position - is not perpendicular to the other
pointers. When the pole 1s perpendicular to all of the
pointers, 1t is perpendicular to the plane. If some students
discover the idea of Theorem 8-3 at this time, that's fine!

While such demonstrations can do much to assist students
in understanding spatial relationships, a most effective

‘means is the assigning of smaller models to be constructed by

each student. Coat hangers, thin wire, straws, string and
cardboard can be used to make models of the next theorems to
be studied. (See Problem Set 8-la, Problem 10.)
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One particularly meaningful device which students can
make at an early stage 1s the following. Each student has a
plece of cardboard on which he draws a segment and marks a
point on that segment. Next he inserts several common pins
such that each pin is perpendicular to the segment at the
point. The teacher can check each model at a glance. The
model helps to 1llustrate the basic definition of Section 8-1
and Theorem 8-5,

Some excellent materials, mainly sticks and connectors,
for constructing models in three-space are available from
suppliers of scilentific and mathematics equipment. Many
teachers find these to be advantageous over ready-made
models.

Problem Set 8-1

o200 1. a. Yes.

b. No, there would be points in space which are not
in plane B.

2. a. b. c. Yes.

Each of the three lines is
perpendicular to the original

line.
{page 220}

]
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4, The statement is true. (Refer to the discussion of
using the word if in definitions, Chapter 2, page 41
of the ‘text.)

5. [ ABR, / ABS, / TBA.

6. No. The definition requires that the line be perpendicu-
lar to every line containing Q and lying in E.

7. a. Yes. b. /TSP and / TSR.

8. a. Yes, three points are always coplanar.

b. Not necessarily.
*9. a.

1. PB = QB. 1. Given.
2. PA = QA, 2. Given.
3. BA = BA. 3. Identity.
L., A PAB A QBA. 4, s.s.s.
5. / PAB & / QAB. | 5. Corresponding parts.
6. AX = AX. 6. Identity.
7. O PAX = A QAX. 7. Statements 2, 5, 6 and S.A.S.
8. PX = QX. 8. Corresponding parts.

b. No.

202 As a model for Theorem 8-1 you can use the tip of a

light fixture and a spot on the floor as points, and a
window pole as a line. You can even tag the pole with A,
B, and a movable X.

{pages 220-222}
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225

226

227

228

Problem Set 8-2a

1. Yes. Statement of Theorem 8-1. 6.

2. Yes. Yes. Yes. Statement of Theorem 8-1.

Some students should enjoy making a model for Theorem
8-2. We suggest a thin stick punched through a sheet of
cardboard, with different colored strings leading from the
ends of the stick to A, B, and C. Then use thumb-tacks
for points X, Y and Z.

You can devise a model for Theorem 8-3 by punching a
pointer through a sheet of cardboard to represent L and
E. Then lay pencils on the cardboard to represent. Ll’ L

and L3.

2)

Problem Set 8-2b

1. This follows directly from Theorem 8-2.

2. The line of intersection is perpendicular to the floor.
Many, in fact, every line in the floor going through the
point at which L intersects the floor will be perpen-
dicular to L. No. It is perpendicular only to lines
of the floor that contain the point of intersection of
L and the floor.

3. a. Three. The sides of the square all lie in a plane.
AB and FB determine another plane, and AB and
BH determine a third.

b. We know BH | HR, HR | RF, RF | FB, BF | BH
(from the square) and FB l_Kﬁ (Given.).éj?nm the
last two of these we note that one line, FB, is
perpendicular to two other lines at their point of
intersection so we know that ‘ﬁg.l plane ABH. It
1s also true that RH | plane ABH, but the studen

probably cannot prove this now,.
{pages 224-228}
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17T

a. Three. Planes ABF, RHB, and AHRF.

b. HB | RH. (Given.) HB | AF. (Theorem 6-2 and
Postulate 1.) Therefore, HB | plane AHRF. This
follows from Theorem 8-3.

1. FB | plane P. 1. Given.

2. FB | AB. 2. Definition of a line
perpendicular to a
plane.

3. m/ FBA =m/ FBR = 90.| 3. Definition of perpen-
dicular lines.

4., BR = BA. k.,  Given.

5. FB = FB. 5. Identity.

6. A ABF = A RPBF. 6. S.A.S.

T. FA = FB. T. Corresponding parts.

8. [/ FAR = / FRA. 8. Base angles of an
isosceles triangle.

Yes.

1. AT = TF. 1. Property of the edge
of a cube.

2. AB = BF, 2. Same as Reason 1.

3. BR = BL. 3. Glven.

4, AR = FL. 4, Subtraction, Steps 2
and 3.

5. A ATR 2 A PFTL. 5. S.A.S.

6. TR = TL. 6. Definition of congru-
ence.

T. KT | AT. 7. Property of a cube.

XT | FF.

8. KT | plane ABFT. 8. Theorem 8-3.

9. KT | RT and 9. Definition of a line
KT | TE. giggg?dicular to a

10. A KTR = A KTL. 10. S.A.S.
11, KR = KL. 11. Corresponding parts.

{pages 228-229]}
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250

231

251

252

7.

1. W% 1. Definition of a line
perpendicular to a
plane.

2. ®e 1 %8, 2. Given.

<>
3. RQ ] E. 3. Theorem 8-3.

By the time you reach Theorem 8-4 it might be best to
proceed without a complete or elaborate model. Students
should be encouraged to perceive spatial relationships in a
diagram rather than to become completely dependent on spatial
models.

You may use a spoked wheel and axle to make Theorem 8-5
intuitively familiar: any line perpendicular to the axle at
the hub must be in the plane of the wheel.

Proof of Theorem 8-7

The perpendicular bisecting plane of a segment is the
set of all points equidistant from the end-points of the
segment.

Restatement: Let E be the perpendicular bisecting
plane of AB. Let C be the mid-point of AB. Then

(1) 1If P is in E, then PA = PB, and
(2) If PA =PB, then P is in E.

Proof of (1): If P =C, then we already know that
PA = PB. If P # C, then TP 1lies in E by Postulate 6,
and 7E;J_fﬁ? by the definition of a line perpendicular to a
plane. It follows that / ACP & / BCP, and, since CA = CB
and CP = CP, we have A ACP = A BCP by S.A.S. Therefore,

PA = PB.
A

ls

{pages 230-232}
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Proof of (2): If P = C, then certainly P is in E.
If P#C, then A ACP 2 A BCP by S.S.S. Theorem. Thus
[ ACP = / BCP' and CP | AB. E contains P by Theorem 8-5,
and P 1lies in E.

Alternate proof of (1): Let C be the mid-point of AB.
If P =C, then certainly PA = PB. If P #C, then CB
is the perpendicular bisector of AB (in plane ABP) and
therefore PA = PB Dby Theorem 6-2.

Alternate proof of (2): If P = C, then certainly P
is in E. If P # C, then fﬁ; is the perpendicular bisector
of BB (in plane ABP). Since E contains E? by Theorem
8-5, P 1lies in E.

The proof of part (2) of Theorem 8-T7 as given above
requires that Theorem 8-5 be proved previously. A simple
indirect proof uses Theorem 8-1 and the Space Separation
Postulate in the following way:

Given P such that PA = PB. Suppose P does not lie
in E. Then 1t lies in one of the two half-spaces into which
E separates space. A and B 1lie in opposite half-spaces,
since AB intersects E at C, by hypothesis. Then P is
in the half-space opposite to elther A or B, say B.

Then PB meets E 1in a point Y. By (1), Y is equidistant
from A and B, and by hypothesis, P 1is equidistant from
A and B. Then by Theorem 8-1, B 1s equidistant from A
and B! This absurdity implies that our supposition 1s false,

and so P is in E.
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234

234

%6,

somewhat different senses.

a.
b.

Yes.

Problem Set 8-2¢

Infinitely many.
One.

Yes. No.

The conclusion follows directly from Theorem 8-5.

Points
ends of AB.

W, X, Y and Z are given equidistant from the
By Theorem 8-T7, they all belong to the

perpendicular bisecting plane of AB and are therefore

coplanar.
a. BW. BK. BR. 90.
b. Not necessarily.

in E.

/ BKP.

W, K and R could be any points

There exists a plane
E' perpendicular to
L at M.

If E.= E', each
line in E!' <‘through
M 1is perpendicular
to L.

If E # E', the
intersection of E
and E' 1is a line
L'.

L | L.

Theorem 8-U4,

Definition of a line
perpendicular to a
plane.

Postulate 8.

Definition of a line
perpendicular to a
plane.

The proof of Theorem 8-8 uses the word "let" in two

"Let Lines

L and L be

1 2

perpendicular" means "Call the two glven perpendiculars L
1

1"
and L2 .

the mid-point of AB,

"Let M be the mid-point of AB"
and call it

by Theorem 2-5).

{pages 233-234}

means "Consider
(The mid-point exists
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1.

(O XN ® ) = w M

Review Problems

a. B e T.
b. F. f F.
c. F, g T.
d. T. h T.
AR>RB. m/B>m/A (m/B=
Theorem 8-8. Yes. Yes.

Yes. No. No. Yes. No.

Theorem 6-3.

181

90).

<> <>
Only one. MQ and WF are coplanar by Theorem 8-8, so

that M, Q, W and F are coplanar,

If two points are

in a plane the line containing them is in the same
<> <> <>
plane. Hence MW and QF are coplanar with MQ and

>
WE.

a. Three. Plane ABF,

plane

RHB and plane RHF.

Two intersecting lines determine a plane.

b. AF | RE and AF | BH so, AF | plane RHB by

Theorem 8-3.

A XAP 2 A XBP by S.A.S.
Hence XA = XB.

Similarly we know XB = XC.

Hence X is equidistant from A, B, C.

1. L | plane ABC. 1. Given.

2. L | QA @B, QC. 2. Definition of a line
perpendicular to a
plane.

3. PQ = PQ. 3 Identity.

b, PA = PB = PC. b, Given.

5. APAQ 2 A PBQ 2A PCQ. | 5. Hypotenuse-Leg Theorem.

6. QA = QB = QC. 6 Corresponding parts.

J. For any point X #Q |7 S.A.S.

on L,
A XAQ = A XBQ = A XCQ.
8. XA =XB = XC. 8. Corresponding parts.

. {pages 236-238}
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10. On the ray opposite to E let R be the point such
that QR = QB. Then A PQR €A PQB by S.A.S.
.. PR=PB. AP | PR, and AP | PB since
AP | plane PBC. Therefore, A APR A APB (S.A.S.)
and AR = AB. .'. AQ | ®B, (&Q | BC) by Theorem 6-2
and Postulate 1.

239 1l. Comnect A with X, the point of ﬁ? such that
BX = BH. Then A ABH = A ABX (S.A.S.) and AX = AH.
Since AB | BF, m/ ABF > m/ F, and since / AXF 1is
an exterior angle of A ABX, m/ AXF > m/ ABX > m/ F.
Then AF > AX and, substituting, we have AF > AH.

12, Suppose AB were perpendicular to each of the three
_—_ —>
rays Kg, AD, AE. Then by Theorem 8-3 and 8-5, the
— —
three rays would be coplanar. If AD and AE were
_—
each perpendicular to AC and all were in a plane,
—_ —

then AD, AE would be opposite rays and not perpen-
dicular. Hence each ray cannot be perpendicular to the
other three.

13.

1. V8 | n. 1. Given.
2. YP | AB, or 2. Definition of a line
«> «—>
perpendicular to a
AB J- YB. plane.
<«>
3. XB | m. 3 Given.
> <>
4. XB ] AB, or 4 Reason 2.
«—> " <>
AB | XB.
5. AB ] E. 5. Statements 2, 4 and
Theorem 8-3.

{pages 238-239}
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Illustrative Test Items for Chapter 8

Can the distance from a given polnt to a given plane
vary?

Identify the set of points which are equidistant from
two points A and B?

Through a given point not in a plane, how many lines can
be perpendicular to the plane?

At a point on a line how many lines can be perpendicular
to the 1line?

At a point on a line how many planes can be perpendicu-
lar to the line?

Is it possible for a line which intersects a plane in
only one point not to be perpendicular to any line in
the plane?

Can a line be perpendicular to a line in a plane and
yet not be perpendicular to the plane?

Three points A, B, C are each equidistant from two
polnts P and Q. Fill in the blanks to make true
statements.

a. If A, B, C are collinear then is
equidistant from P and Q.

b. If A, B, C are not collinear then
is equidistant from P and Q.

Points A, B, C, and D are not coplanar.

A ABC 1is isosceles with AB = AC.
A DBC 1is isosceles with DB = DC. A
D

F 1is the mid-point of BC.
In the figure at least one
segment 1s perpendicular to
a plane. What segment?
What plane?
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2. Given in.this figure that
BKJ_‘%> FLE W fa

%8 | R ana BF | 1B.

a. ﬁﬁ? and 7@? determine
a plane ABK. IS ﬁ&i F
perpendicular to plane
ABK? If your answer

was "yes", state a
theorem that supports
your conclusion.

—> <> <>

b. Do FB, RB, HB all
lie in plane KBQ?
Explain.

c. There will be different planes determined
by the given lines.

R
3. In this figure, plane E r\\\\
|
|
Q

—_ —
bisects RQ and E | RQ. E
Also RT = QT. Explain

why T 1lies in plane E.

cC. Indicate whether true or false:

1. A line perpendicular to a plane is perpendicular to
every line in the plane.

2. If a line 1is perpendicular to two lines of a plane it
must be perpendicular to the plane.

3. Through a point on a plane only one plane can be passed.

i, There are infinitely many lines perpendicular to a given
line at a given point on the line.

5. Two lines perpendicular to the same plane are coplanar.
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11.

2.
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Through a point on a line two planes can be passed
perpendicular to the line.

Thirteen points each equidistant from the end-points of
a segment are coplanar.

If two lines Ll
line L, at a given point of L, there is a plane
containing Ll and L2 that is perpendicular to L.

and L2 are each perpendicular to

All lines perpendicular to a line at a given point of
the line are coplanar.

" A line perpendicular to a line in a plane is perpendicu-

lar to the plane.

<> —>
If AB and plane E are each perpendicular to FH at
point P, then ﬁ lies in plane E.

In this figure E is the A
perpendicular bisecting

plane of E Ir E!F

lies in E and CF = CB

= FB, prove A ACF 1is

equilateral. \ 1 pdil

Given in this figure: ’
«—>
HK _|_ E at B.
<>
FA | E at A.
HA = FB = AK.

Prove: A HBA,

A FAB, and
AKBA are in one
plane and are con- E | S |

gruent to each other. /
K




186

3. V 1s the mid-point

of edge RW of the w T
cube shown in this v |
figure.
R T\\\\ S
Prove VB = VF. N
AN
~N
AN
RN N
/ \
/
/ \
\ B

Answers

A. 1. No, it is the length of the unique perpendicular
segment from the point to the plane.

. The perpendicular bisecting plane of XE.
One.

Infinitely many.

No.

2

3

N

5. One.

6

7 Yes.

8 a. If A, B, C are collinear then each point of the
line containing A, B, C 1s equidistant from P

and Q.

b. If A, B, C are not collinear, then each point of
the plane containing A, B, and C 1is equidistant
from P and Q.
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1. BC | plane DFA.

2. a. No. Eii cannot be proved perpendicular to the
plane ABK on the basls of the information given.

b. Yes, Theorem 8-5.

c. Six; ABK, ABQ, ABH, ABR, ABF, and the plane
perpendicular to 75? at B.

3. This follows from Theorem 8-7.
1. F 7. T.
2. F 8. T.
3. F 9. T
y, T 10. F.
5. T 11. T.
6. F
1.
1. AC = CB. 1. Theorem 8-7.
AF = FB,
2. AC = CF = AF. 2. Hypothesls and Step 1.
3. A ACF 1s equi- . 3. Definition of equi-
lateral. lateral triangle.

2. T and FX are coplanar (Theorem 8-8). Since all
vertices of A HBA, A FAB and A KBA are points of
these lines, the triangles are in one plane. Z HBA,
/ KBA and / FAB are right angles (Definition of a
line perpendicular to a plane). BA = BA (Identity).
A HBA & A FAB 2 A KBA (Hypotenuse-Leg Theorem).
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*3.

w T
R \\\ s
N NN
ASERNON
NN NN
| \ A §
H
J—=X F
/ \\
A B
Use auxiliary segments RB and WF.
1. ARAB 2 A WHF. 1. S.A.S.
2. RB = WF. 2. Corresponding sides.
3. RV = VW. 3. &finition of mid-point.
4. /VRB and / VWF 4.  RW | planes of faces
are right angles. RA and WHFT.
5. A RVB £ A WVF. 5. S.A.S.
6. VB = VF. 6. Corresponding sides.




Chapter 9
PARALLEL LINES IN A PLANE

In this chapter we introduce the Parallel Postulate and
the familiar theorems on parallels and quadrilaterals. The
treatment is not significantly different from that of most
traditional texts, except in this respect: The explicit use
of the postulates and theorems of our early chapters and the
careful formulation of definitions.

By this time the student should be quite adept at making
proofs. Consequently, this chapter simply states the easier
theorems and leaves their proofs for the student to accom-
plish. Proofs not supplied in the text are provided in this
commentary. Please note, however, that students may often
discover proofs different from the one given here, or in the
text, and, of course, such proofs should receive appropriate
recognition and acceptance.

As we proceed to study more complicated materlal we
shall relax the degree of precision with which we treat 1t.
We shall sometimes state definitions which are not wholly
precise and give proofs that are not logically complete, with
the expectation that they will be understood with the aid of
diagrams. In succeeding chapters this is done more exten-
sively. In the present chapter we point out several instances
of unprecise treatment and indicate appropriate clarification.

The discussion of parallel lines in a plane, though by
no means difficult, encompasses probably the most significant
property of Euclidean geometry, namely, the "Parallel
Postulate", stated on page 262. By way of introduction ask
the students to tell what they mean by parallel lines. The
answers will no doubt vary, and some will probably be in-
correct. Most answers will probably be descriptions, rather
than definitions. It is hoped that from a discussion of this
sort the class will get the feeling that they are working
with something that is intuiltively very simple, but that at



190

241

the same time the concept of parallelism is not one that can
easily be "pinned down" by the student.

Point out to the students the definition of parallel
lines gives two conditions that must be met by the lines,

(1) they must 1lie in the same plane and (2) they must not
intersect. Ask the student for an example of two lines that
satisfy condition (2), but fail to satisfy condition (1) and
hence are not parallel. Skew lines is the example.

Remind the students that parallel lines do not meet.

You will sometimes hear the expression: "Parallel lines meet
at infinity". This does not mean that the lines do meet.
Mathematicians abhor exceptions, for example, two lines do
not always meet in the Euclidean plane, and just as it is
convenient to introduce complex numbers into algebra so that
every quadratic equation has a root, so it is convenient to
adjoin to the points of the plane, certain "ideal" points so
that we can say two lines always meet.

Notice, however, that such lines are no longer Euclidean
lines. To each Euclidean line we adjoin an ideal point to
form a new kind of line, called a projective line, that is no
longer a Euclidean line. This 1s done in such a way that the
same 1deal point is adjoined to each line of a family of
parallel lines. If two Euclidean lines are parallel then
their associated projective lines meet in an ideal point. If
two Euclidean lines are not parallel they meet in a point P
and their associated projective lines meet in the same point
P. This avoids an exception, but all the properties of real
points do not carry over automatically to ideal points. When
we say two projective lines meet at an ideal point, it follows
that their associated Euclidean lines do not meet at all. If
we adjoln these ideal points to the set of real points in the
Euclidean plane, we get a new "plane", which has different
properties from the Euclidean plane, and which we may call a
"projective plane" in the sense that "point", "line", and
"plane" would satisfy the set of incidence postulates usually

{page 241}
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made for projective geometry. But this is not the geometry
we are studying; in Euclidean Geometry we do have parallel
lines, in'Projective Geometry there are no parallel lines.

Theorem 9-2 gave us one method for constructing a line
parallel to another line through an external point. The
method was used in Theorem 9-3 to prove the existence of at
least one line parallel to a given line from a point not on
the line.

Some enterprising students will feel that Theorem 9-3
establishes uniqueness as well as existence of ﬂe,
especially in light of the paragraph following the proof.
After all, Theorem 6-1 assures that L2 as a perpendicular
to Ll at P 1is unique. Should this arise you may counter
with a statement of this sort: "If this seems astonishing
to you, perhaps you are reading more meaning in Theorem 9-2
than is actually there. Notice that Theorem 9-2 does not say
two lines in a plane are parallel only if they are both
perpendicular to the same line. Is it possible then that two
lines could also be parallel under some other conditions?"

If more discusslon seems necessary you may decide to
present the following: Let the figure be that of Theorem
9-3. From point R on L2 drop a perpendicular EEQ»L’
meeting L at S. Note that we do not know that RS 1.L2.
From P make ‘E?_L?Ei Now we have PZ || L and L, Il L
by Theorem 9-2. We seem to have two lines through P
parallel to L.

A
(e}
|
ml
w
{
Al

{page 242}
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The student will probably claim that ﬁﬁ?:Lﬁ%? and therefore
$Z and L, coincide (Theorem 6-3). While you may agree
with him that this sounds promising, ask him to prove that
PR | RS, the fact his argument is based on. Whatever he may
refer to as convincing evidence from his general store of
knowledge you easily can maintain the essential point of the
whole discussion: that nothing in our previous postulates or
theorems will disprove our argument. The sort of reasons
which refute it - the sum of the measures of the angles of a
quadrilateral is 360, or of a triangle is 180, alternate
interior angles (Theorem 9-8), corresponding angles (Theorem
9-9), and so on - have not been proved yet (and in fact, can
not be until the Parallel Postulate is assumed) .

You would probably not want to go further into this with
your class, especially at this time - and probably not even
this far. But we should state the point to this discussion,
for the reader, at least. The point is that the statements
which would refute the above argument are all logically
equivalent to Postulate 16. Neither Postulate 16 nor any of
these equivalent statements is deducible as a theorem from
Postulates 1-15. It was the discovery of this fact that
finally led geometers to the realization that some postulate
of parallelism is necessary. (See Talks on Introduction to
Non-Euclidean Geometry and on Miniature Geometries.)

Notice that we give a precise definition of alternate
interior angles rather than a "definition" in terms of a
picture. Observe that our definition depends on the separa-
tion concept as developed in Chapter 3.

Proof of Theorem 9-4

Given a transversal to two lines, 1if one pair of alter-
nate interior angles are congruent, then the other pair of
alternate interior angles are also congruent.

{pages 242-246}
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Given: Lines Ll and L2 cut by transveral T such that
/ ABC = / BCD.

To Prove: /x &/ y. T

\
™
_—7
m

44>

By the Supplement
Postulate / ABC and / x
are supplementary, as are X
/ BCD and /y. Since
/ ABC = / BCD, then
/x=e/y, Dbecause
supplements of congruent y
angles are congruent. « -

D C\& F

1. a. No. b. No.

\J
r

Y
-
n

Problem Set 9-1

2. They do not intersect, they are both perpendicular to a
third line, they form alternate interior angles with a
transversal.

(Note: The third condition includes the second as a
special case.)

3. No.
4, Not necessarily.
5. a. No, the 80° angles are not alternate interior

angles, and the alternate interior angles are not
equal.

b. Two sizes: 80° and 100°.

6. L, ||L2, M, || M

1 2°
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2hkg T. Select any two points P/

250

«—>
A, B on L. Draw PA.
Draw / CPA = / BAP so
that C and B are on
opposite sides of ?A.
<> A
Then CP || L by ]
Theorem 9-5.

b @

8. a. Yes. b, No. c¢. Yes. d. Yes. e. Yes, since a
line containing the center of the earth is perpendicular
to certain other lines containing the center.

f. No. g. Yes. h. Yes.

9. Yes. (Such lines are called skew lines.)

10. AABD A BAC by S.A.S. Then DB = CA. Then
ADCB A CDA by S.S.S. and ml BCngZ ADC. (It is
not possible to prove that / BCD and / ADC must be
right angles. Attempts to do so suggest the need for
some further postulate.)

11. ©Proof: AAPR ®A PBQ A RQC ¥ A QRP by S.S.S. By
corresponding parts m/a =m/ A, m/ b =m/B and
m/ ¢ =m/ C. Since the sum of the measures of / a,
/P and /c is 180 by Postulates 13 and 14, the
sum of the measures of /A, /B and /C 1is 180.

It may seem surprising that we can prove that the sum
of the measures of the angles of A ABC is 180 before we
have introduced the Parallel Postulate. In this Problem the
hypothesis assumes the existence of a triangle in which the
length of each segment joining the mid-points of two sides is
one-half the length of the third side. This cannot be proved
before assuming the Parallel Postulate. We should note,
however, that if we do assume that such a triangle exists,
and from this show that the sum of the measures of the angles
is 180, we can prove the Parallel Postulate. (See the
commentary above on equivalence of statements to the Parallel
Postulate. See, also, Talks on Introduction to Non-Euclidean
Geometry, Corollary 7.)
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13.

Proof:

APAR = A QAR by S.A.S.

195

Then / ARP & / ARQ

and jﬁ?_Lﬁii. By a similar proof using A ABD and

A acp, D | B¢,

(Note:
drawing AD 1is also possible.)

D S c
N /
\\\ ,//
AN //
A T B

Then ¥4 || BC by Theorem 9-2.

A proof based on lsosceles triangles without

=]
o

O @ ~N O WD

A DAT = A CBT.
DT = CT.

m/ DTA = m/ CTB.
A DST = A CST.
m/ DTS = m/ CTS.
m/ STA = m/ STB.
ST | B.

m/ TSD = m/ TSC.
“sT | CB.

DC || AB.

O @ ~N O\ EwWw D

=
(&

{page 250}

S.A.S.

Corresponding parts.
Corresponding parts.
S.S.S.

Corresponding parts.
Addition.

Definition of perpen-
dicular lines.

Corresponding parts.

Definition of perpen-
dicular lines.

Theorem 9-2.
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2h2

Proof of Theorem 9-6
Given two lines and a transversal, if one pair of
corresponding angles are congruent, then the other three
pairs of corresponding angles have the same property.

Given: Lines Ll and L2 cut by transversal T such that
a pair of corresponding angles, Z a and ‘é a', are
congruent.
To Prove: /b =/b', fec=/c', /da=x/a.

Given that /Jas/ a'.
By the Supplement Postulate
/ a 1s supplementary to
/b, and /[ a' is
supplementary to / b'.
Since supplements of

congruent angles are
congruent, /b =/ Db',
Similarly we show
/c2/c' and fd=/a.
The method of proof of Theorem 9-7 1s merely to use the
property of vertical angles to establish a pair of alternate
interior angles congruent, and by Theorem 9-5, the lines are

A

parallel.

Because the converses of Theorems 9-5 and 9-7 are reason-
able and are readily accepted by students as intuitively true,
you may find that the dependence on the Parallel Postulate
remains unrecognized, even after the converses have been
proved. As preparation for the proof of Theorem 9-8 and
preliminary to the Parallel Postulate a consideration similar
to the following could be discussed.

It seems reasonable that the converse of Theorem 9-5 is
true. Let's examine 1ts reasonableness if we assume that the
parallel to a line through a point not on the line is not
unique. Then we could suppose two such parallels exist, as
in the figure.
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A

Now how reasonable is the converse of Theorem 9-5? Accord-
Ing to 1t, a =x and a =y, so that x = y. But by the
Angle Construction Postulate x # y. This contradiction
means that if we want the converse of Theorem 9-5, and many
more such "reasonable" theorems, to hold, then we must accept
the uniqueness of the parallel. i

Problems 7 and 8 of Problem Set 9-3 present a more
complete picture of the situation by showing that the Parallel
Postulate can be proved if Theorem 9-8 or Theorem 9-12 is
assumed. From all of this the student should become con-
vinced some postulate of parallelism must be stated. The
importance of the Parallel Postulate is best seen, perhaps
after the sequence of theorems through Theorem 9-13 is
finished and the student can look at the sequence, including
the Postulate, in its entire development.

The Parallel Postulate seems reasonable on the basis of
our experience in the world about us. There is no theoretical

reason why we could not assume the existence of two parallels
to a given line through an external point. From this point
on, Parallel Postulates different from ours result in the
development of different geometries, called Non-Euclidean
Geometries. (See Chapter 1 of Studies II and the Talks on
Miniature Geometries and Introducticn to Non-Euclidean
Geometry.)

{page 252}



198

253

254

254

Now that we have the uniqueness of a parallel through
an external point it 1s possible to prove the converse of
Theorem 9-5. Note carefully in the proof in the text how
the fact that this parallel is unlque is used to establish
the validity of Theorem 9-8.

Proofs of Theorems 9-9, 9-10, 9-11 and 9-12

Theorem 9-9. If L, I L,, We then know by Theorem 9-8
that the alternate interior angles are congruent. By
application of the property that vertical angles are congru-
ent, we can establish the pairs of corresponding angles to
be congruent.

The term "interior angles on the same side of the trans-
versal" can be defined formally as follows: ILet L be a
transversal of Ll and L2, intersecting them in P and
Q. Let A be a point of L1 and B a point of L2 such
that A and B are on the same side of L. Then Z PQB
and / QPA are called interior angles on the same side of
the transversal L. Compare this with the definition of
alternate interlor angles.

Theorem 9-10. Given

T
L Il L,. Then it follows

from Theorem 9-8 that . //ﬂ oL
/a=/b. Also, /a and a/d .

/ 4 are supplementary.

Hence, m/ a + m/ d = 180

=m/ b+ m/ d. Therefore e/b
/P and / d are
supplementary. In a like
manner / e can be proved
supplementary to / a.

N
v
r
L
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Theorem 9-11. Given: L
In a plane, L, [|L; and < —> L\\~
%||Ly’Tohmm: ' g//‘)P

Ly H L,. We use the in-
direct method of proof and
assume that Ll is not
parallel to L2. If this
1s true, then these two
lines will meet at some point P. This means that there are
now two lines through P (L1 and L2) parallel to L.
This contradicts the Parallel Postulate, hence, Ll must be
parallel to L2.

Remark on proof of Theorem 9-11. This theorem can be
proved directly as follows:

Given: 1In a plane, Ly Il Ly, ///ﬁ
L2 ” L3' ] > Ll
To Prove: L; Il L,.

Let T be a transversal

A

A

intersecting Ll’ L2 and L3.
Such a transversal exists, < > L
since any line in the plane of ,//

Ll’ L2, L3 which meets L
in only one point must meet
L2 and L3 by the Parallel Postulate. Consider the alter-
nate interior angles formed as indicated in the figure.

1

L, |l Ly, hence (1) /a®=/b by Theorem 9-8.
L, | Ly, hence (2) /c % /b by Theorem 9-8.
Therefore, (3) La=/ec,

and () Ly Il L, by Theorem 9-7.
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L1 L
255 Theorem 9-12. Lines F ]
L, L; and L, are coplanar. - pH "
Given: L, ||L2 and L | Ly
at P.
To Prove: L | L,. - . >L2
L intersects L2, v

otherwise L and Ll would

be parallel to L2 and contain

P. This contradicts the Parallel Postulate. Therefore L
is a transversal of Ll and L2. By Theorem 9-8 it follows
that L and L, form a right angle. Thus L 1 L,.

Problem Set 9-3

255 1.
1. m/A=m/B 1. Given.
=m/ C = 90.
2. AD || ¢B. 2.  Theorem 9-2.
3. m/C=m/D=90. 3. Theorem 9-10.

2. Given: Isosceles A ABC
with AB = BC and
t || AC and inter-
secting AB and BC
at P and Q. - 4
Prove: A PBQ 1s isosceles.

A C
1. /JAa=/c. 1, Theorem 5-2.
2. t || AC. 2. Given.
3 /x= /A and 3. Theorem 9-9.
/vy /C so that
Lx =Ly
4, PB = BQ, or 4, Theorem 5-5.
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T = /S by Theorem 9-9.
S & /8 by Theorem 5-2.

From these two statements / PQT & / RTS. Then

= PT by Theorem 5-5.

Suppose M does not intersect L2. Then, by
definition, M || L,. But L, 1is given || L,.
Hence there are through P two parallels to L
-- an 1lmpossibllity by the Parallel Postulate.
The assumption that M does not intersect L2
therefore false, so that M does intersect L2.

2

is

Suppose L, Il L,. R I L, by the given infor-
mation. Also by the given information both Ll

and R contain P. Since there cannot be two
parallels to a line through a point, the assumption

L | 1s false, and L, intersects L,.

/LY®/BQY and /B =/BQY by Theorem 9-8.
Therefore, /B & /Y.

Consider %5? forming Z PYZ with sides extending
in the same direction as those of Z ABC.

Then, from part (a), m/ PYZ = m/ ABC. But

m/ PYZ + m/ XYZ = 180, and therefore

m/ ABC + m/ XYZ = 180.

It should be intuitively clear what is meant when we say
two parallel rays extend in the same or opposite directions.
A formal definition is easily given. If AB | ¢ T8 and B
and D are on the same side (opposite sides) of T we say
A8 and CD extend in the same (opposite) directions.

If the sides of one angle are perpendicular respectively
to the sides of another angle, then the angles are either
congruent or supplementary.
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*7, Draw a transversal ?Q of L1 and M and also of L

2
and M forming angles a, b and ¢ as shown. If

L, || M, then /b= /c; and since L, || m,

/a2 /c by Theorem 9-8. Therefore, /a=/b.

But then Ll = L2 by the Angle Construction Postulate,
so there cannot be a second parallel to M through Q.

258 *8. Consider a line t perpendicular to M from P. By

258

259

Theorem 9-12, t | Ly. Assume L, parallel to M.
Then t | L,. Since L, and L, cannot both be per-
pendicular to t at P, L2 cannot be parallel to M
as was assumed.

Observe that although the proof of Theorem 9-13 is more
precise than that given in most texts, it still depends on
the figure to show that / x and / x' are alternate
interior angles.

Theorem 9-13 is the first major consequence of our
Parallel Postulate. The proof is directly related to the
fact that there is but one line parallel to the base of the
triangle through the opposite vertex. If there were more
than one, or no parallels, the sum of the measures of the
angles of a triangle would be less than 180 or greater
than 180 as is the case in the Non-Euclidean Geometries.
(See Talk, Introduction to Non-Euclidean Geometry.) It is
interesting that in Euclidean spherical geometry the sum of
the measures of the angles of a spherical triangle is greater
than 180.

Proofs of the Corollaries

Corollary 9-13-1. Given a correspondence between two
triangles. If two angles of the first triangle are congruent
to the corresponding parts of the second, then the third
angles are congruent,
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Given: AACE and A BDF,
such that /A= /B and

/c=/D. . c
To Prove: / E & /F.
We now know, from
Theorem 9-13 that the sum D A E

of the measures of the

angles of a triangle is

180. Given that the sums

of the measures of two

angles in each trlangle are

equal, then the differences g F
between this sum and 180

in each case are equal.

Thus m/E=m/F and /E=/F.

Corollary 9-13-2. This proof follows directly from
Theorem 9-13. If the sum of the measures of the angles of a

triangle is 180, and one angle has a measure of 90, then
the sum of the measures of the remaining two angles must be
90. By definition, then, these angles are complementary.

Corollary 9-13-3.
Given: A ABC with exterior
angle / BCR.
To Prove: m/ BCR = m/ A + m/ B.

By the Supplement Postulate
m/ BCR = 180 - m/ BCA.

From Theorem 9-13 it follows
that m/ A + m/ B = 180 - m/ BCA.
Therefore m/ BCR = m/ A + m/ B.

v
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261

Problem Set 9-4

a. 85, d. 180 - (r + a).
b. 1. e. 90.

c. 180 - 2n. £, 90 - .

m/ P = 4.2,

The Parallel Postulate assures us that L 1is the only
parallel to AC through B. It is also used to prove
that alternate interior angles are congruent when
parallels are cut by a transversal, and this theorem in
turn is used in the proof of the angle-sum theorem.

(Numbers in parentheses
were given in the
original problem.)

a. Yes. b. No.

By theorems on transversals of parallels / EBD & Z A
and /DBC  / C. But / EBD & / DBC. Therefore
/A= /C. Hence AB = BC.

We have m/ 1 =m/ 3 by
hypothesis and m/ 2 = m/ &

by Theorem 5-2. But
m/1l+m/3=m/2+m/}

by Corollary 9-13-3. Taking
half of each sum we have

m/ 1 =m/ 2, and the bisector
is parallel to the base by
Theorem 9-7.
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For convenience we lndicate angles as shown in the

figure.

v

b,

r=m/2+m/ k4, 1.
s =m/1+m/3.
r+s=(m/1+m/2)]2.

+ (m/ 3 +m/ 4).
m/1l+m/2=1%t and | 3.
m/ 3 +m/ 4 =u.
r+s=1%t+ u. 4,

Corollary 9-13-3.

Addition.

Angle Addition Postulate.

Statements 2 and 3.

Since QB =QA, /B = /1. Since /2 and /1 are

complements,
/ C are complements, hence,

/2 and /B are also. But /B and
/22 /C because

complements of the same angle are congruent. Now

QA

In
In

In

= QC, and, hence, QB = QC.

A ABC, m/ B =90 - a.
180 - a
A ATS, m/ ATS = ==x=2,

A BTR, m/ BTR =

180 - (90 - a) _ 90 + a
2 ===

m/ STR

it

180 - (m/ ATS + m/ BTR)

180 - 135 =

{page 262}
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Proofs of Theorems 9-14 through 9-18
Theorem 9-114.

Given: Parallelogram ABCD with diagonal AC.
To Prove: A ABC = A CDA.

265

1 AD || BC and AB | ©D. 1. Definition of a
parallelogram.
2. / DCA = / CAB. 2. Alternate interior
/ DAC = / ACB. angles.
3. AC = TCA. 3. Identity.
i, AABC A CDA. i, A.S.A. Theorem.

The proof using diagonal BD is of course, similar to this.
Observe we are reading from the figure that D and B
are on opposite sides of ia.

Theorem 9-15 is an immediate consequence of Theorem 9-14:
Since the triangles are congruent it follows that the corres-
ponding sides are congruent.

Corollary 9-15-1.
Given: L, Il L, and P L, P Q
and Q on Ll'

To Prove: P and Q are
equidistant from L2.

v

A
Y
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1. From P and Q drop 1. Theorem 6-4 and
definition of distance

perpendiculars PS and from a point to a line.

QT to L2.
2. PS ||lQT. 2.  Theorem 9-2.
3. PQTS 1is a parallelogram. 3. Definition of parallelo-
gram.
g, PS = QT. 4, Theorem 9-15,

Theorem 9-16. Since the triangles into which a diagonal
divides a parallelogram are congruent, then the corresponding
angles are congruent. In the figure of Theorem 9-14,

/D= /B. Considering diagonal DB, we can show, in the
same manner, /A = / C.

Theorem 9-17. Consider any two consecutive angles of a
parallelogram as the interior angles on the same side of a
transversal cUtting two parallel lines. Then Theofem 9-17
is immediate by Theorem 9-10 (given two parallel lines and a
transversal, interior angles on the same side of the trans-
versal are supplementary).

Theorem 9-18.

Given: Parallelogram ABCD with diagonals AC and ED.
(We assume from the figure that the diagonals intersect at
P. For a proof see answers to Problems 19 and 20 of Problem
Set 9-6.)

To Prove: AC and BD bisect each other.
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1. fa=/a 1. Alternate interior
Zb g[b'. angles.

2. AB = CD. 2 Theorem 9-15.

3. A ABP = A CDP 3 A.S.A. Theorem.

] AP = CP. 4 Corresponding parts.
DP = BP.

5. AC and BD bisect 5. Definition of bisect.

each other.

As 1s pointed out in the text, there is a natural break,
or summary point, after Theorem 9-18. Teachers should keep
in mind that a careful selection of problems can emphasize
the common characteristic of Theorems 9-14 through 9-18,
and similiarly for Theorems 9-19, 9-20, and 9-21. At the
same time, the fact that Theorems 9-14 through 9-25 all
involve quadrilaterals is strengthened by the arrangement of
the text. Thus Problem Set 9-6 supplies problems for both
Section 9-5 and Section 9-6.

Proofs of Theorems 9-19, 9-20, and 9-22
D C

A B

Theorem 9-19,

Quadrilateral ABCD with AB 2 CD and AD & CB.

To Prove: ABCD 1is a parallelogram.

1. Draw diagonals AC and DB.

2. By the S.S.S. Theorem AABC €A CDA and A DAB & A BCD.
3. Therefore /a=/b and fc & /4.

4., Then by Theorem 9-5, AB || COD and &D || EC.

5. ABCD 1is a parallelogram by definition.

Given:
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Theorem 9-20.
Given: Quadrilateral ABCD with AB & CD and AB || TD.
To Prove: 'ABCD 1s a parallelogram.

Since AB || CD, /a =/b Dby alternate interior
angles AC = CA, and A ABC &A CDA by the S.A.S. Postulate.

Therefore A = BC and by Theorem 9-19 ABCD 1is a parallelo-
gram.

Theorem 9-21.
Given: Quadrilateral ABCD with dlagonals DB and AC
bisecting each other at P.
To Prove: ABCD 1is a parallelogram.

1. DP = PB. 1. Given.
AP = PC

2. [ CPB & / DPA. 2. Vertical angles are
/ DPC & / BPA. congruent.

3. ADPC = A BPA. 3. S.A.S. Postulate.
ACPB = A APD.

4, AB = CD. 4, Corresponding parts.
AD = CB.

5. ABCD 1is a parallelogram. 5. Theorem 9-19.

Theorem 9-22 states a fact that surprises many students.
Perhaps some students will enjoy making a model to demon-
strate visually, rather than Just logically, that the length
of the segment joining the mid-points of two sides 1s one-
half the length of the third side.

In some texts a rectangle is defined in the following
way: If one angle of a parallelogram is a right angle then
the figure is a rectangle. If this definition is used, you
would want the Theorem. If one angle of a parallelogram is
a right angle then all four angles are right angles, which
in effect is Theorem 9-23. Using this theorem you see that
the suggested definition is equivalent to our definition of
rectangle.
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Proofs of Theorems 9-23, 9-24, and 9-25
Theorem 9-23. By Theorem 9-17 the consecutive angles of

a parallelogram are supplementary, and since one angle is a
right angle its supplement must be a right angle. Two
successive applications of Theorem 9-17 will establish that
the other two angles are right angles. Or we could apply the
theorem that opposite angles of a parallelogram are congru-
ent.

Theorem 9-23 gives us an efficient way to prove that a
quadrilateral is a rectangle. First prove that it 1s a
parallelogram and then prove that one angle is a right angle.

Theorem 9-24,
Given: Rhombus ABCD with
diagonals AC and BD.
To Prove: AC | BD.

D C

By the definition of
rhombus AB = AD and CB = CD; A , B
that is, A and C are equi-
distant from B and D. Since
A and C are coplanar with B and D, by Theorem 6-2
%C 1s the perpendicular bisector of BD. Hence, AC | ED.
An alternate proof uses the S.S.S. Theorem to get con-
gruent any two of the triangles having a common side. Then
the angles of a linear pair are congruent, and the diagonals

are perpendicular.

Theorem 9-25. Using the figure of Theorem 9-24 we have:
Given: ABCD with AC | BD and AC and BD bisecting
each other. '

To Prove: ABCD 1is a rhombus.

By hypothesis, 7ﬁ? 1s the perpendicular bisector of
BD, so that AB = AD and CB = CD by Theorem 6-2.
Similarly, AD = CD so that AB = AD = CD = CB. By
definition, ABCD 1s a rhombus.

An alternate proof uses the fact that A APB 2 A APD
= ACPB 2 ACPD by S.A.S.
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After the class has become familiar with the properties
of quadrilaterals stated on the previous pages you might
propose the following two problems for them to work. Neither
of these can be solved since there is a counter-example (an

example satisfying all of the given conditions that does not
satlsfy the desired result) for each one.

(1) Given quadrilateral ABCD such that AB || CD and

AD 3.55, prove this quadrilateral 1is a parallelogram. Do
not inform the students that this cannot be proved. Let them
search for themselves for a while and perhaps realize that
the counter-example 1s an isosceles trapezoid. This figure
satisfles all of the given conditions, but certainly is not a
parallelogram.

(2) Given a quadrilateral ABCD such that the diagonals are
perpendicular to each other. Prove that the quadrilateral is
a rhombus (or a square). This problem, also, cannot be
solved. A counter-example is a kite, like this:

It can be formed from two B8

4’/////:\\\\\;A
triangles having the same A C
base fitted together as in
the figure. A more general

non-congruent isosceles

figure is also possible.

D
Problem Set 9-6

269 1. All four quadrilaterals.
All four.

Square, rhombus.

All four.

Square, rhombus.

All four.

Square, rhombus.

All four.

o - B T I o A < I « A
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2.
3.
270 4,
5.

1. Rectangle, square.
J. Rectangle, square.

X+ 304+ 2x - 60 = 180 and x = 70. Therefore,
m/A=m/F=280; m/B=m/H-=100.

Since the opposite angles of a parallelogram are con-
gruent, /H = /A and also /R = /A, so that

Z R = Z H. Since interior angles on the same side of a
transversal which cuts parallel lines are supplementary,
Z M 1s supplementary to Z A. By substitution we see
that / M 1is supplementary to / H.

Yes. No. No. No.
Yes. No. No. No.
Yes. Yes. No. No.
Yes. No. No. No.
No. No. No. No.
No. No. No. No.
Yes. No. Yes. No.
Yes. No. Yes. No.
Yes. Yes. No. No.
Yes. Yes. Yes. Yes.
Yes. No. No. No.
Yes. No. No. No.

.

H N S R 00T

AD = BC and AB = DC since opposite sides of a
parallelogram are congruent. Then A APD &% A CRB and
AAPB & A CRD by S.A.S. Then by corresponding parts
RD # PB and PD = RB. Having opposilite sides congruent,
DPBR 1is a parallelogram.
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1. FE || AD. 1. Definition of a
FE I BC. parallelogram.
2. AD || BC. 2.  Theorem 9-11.
3. FE = AD. 3. Theorem 9-15,
FE = BC.
4. AD = BC. 4, Statement 3.
5. ABCD 1is a parallelo-' 5. Statements 2 and 4
gram. and Theorem 9-20.
1. PXRY 1is a parallelo- | 1. Definition of a
gram. parallelogram.
2. PX = RY, RX = PY. 2. Theorem 9-15.
3. /JXps=/T. 3. Theorem 9-9.
4. /Sse= /. 4.  Theorem 5-2.
5. /Xps &/38. 5. Angles congruent to the
same angle. Statements
3 and 4.
6. PX = SX. 6. Theorem 5-5.
b
7. PY = TY. T. By steps similar to
steps 2-6.
8. PX + XR + RY + YP 8. Statements 6 and 7 by
- SX + XR + RY + YT, addition.
or PX + XR + RY + YP
= RS + RT.
1. DQ = BQ. 1. Theorem 9-18.
2. DC || BA. 2. Definition of a
parallelogram.
3. [/ EDQ = / FEQ. 3. Theorem 9-8.
4. / DQE = / BQF. 4. Vertical angles are
congruent.
5. A DQE = A BQF. 5. A.S.A.
6. EQ = FQ. 6. Corresponding parts.
7. EF is bisected by 7. Definition of bisect.
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271 9.

272 10.

12.

273 13.

Through D draw a parallel to CB meeting AB at X.
Then DCBX 1is a parallelogram in which case CB = DX.
Since 1t was given that AD = CB, therefore DX = DA
and / DXA = / A. But, by corresponding angles

[/ DXA & / B. Therefore / A= / B.

a. ADCQ % AKBQ by A.S.A. or S.A.A. so that Q is
mid-point of DK. In A ADK, PQ [l AKX and

PQ = %AK = %(AB + BK). BK = CD since they are
corresponding parts of congruent triangles. Hence,

PQ = %(AB + CD).

b. 8 inches. c. 5%-
1. Draw DB. 1. Two points determine a
segment.
2. RQ Il DB; RQ=5DB. (2. Theorem 9-22.
3. SP || DB; SP=5DB.|3. Theorem 9-22,
. RQ = SP. b, Statements 2 and 3.
5. RQ N SP. 5. Theorem 9-11.
6. SPQR 1is a parallelo- | 6. Theorem 9-20.
gram.
7. SQ and PR bisect 7. Theorem 9-18.
each other.

Let C!' Dbe between B

and C such that AD = BC'.
Then AD 1 BC'  so that
ABC'D 1s a parallelogram
and m/ ADC' = m/ BC'D.
Making this replacement in
m/ ADC' < m/ ADC, we have
m/ BC'D < m/ ADC. By the A B
Exterior Angle Theorem

m/ C < m/ BC'D. Therefore m/ C < m/ ADC.

[pages 271-273]
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Given: A ACB with AC = BC, PX | AC, PY | BC,

BT | AC.
To Prove: PX + PY = BT.
1. Draw a perpendicular, | 1. Theorem 6-4.
E@g from P to BT.
2. PX || QT, and 2. Theorem 9-2.
<> <>
xt || BQ.
3. PQTX 1is a parallelo-| 3. Definition of a
gram. parallelogram.
k., PX = QT. 4, Theorem 9-15.
5. [/ QB = /A, 5. Theorem 9-9.
6. [/ YBP = /A. 6. Theorem 5-2.
7. [ QPB & / YBP. 7. Statements 5 and 6.
8. A QpPB = A YBP. 8. S.A.A. Theorem.
9. PY = BQ. 9. Corresponding sides.
10. PX + PY = QT + BQ, 10. Steps 4 and 9.
or PX + PY = BT. %
Given: P interior to
equilateral A ABC. PQ, S R
PR, PS and CD are \4
perpendiculars as shown. //;? Z[ P j\\\
To Prove: PQ + PR + PS = CD.
A D Q B

1. Draw"if; through

P, | CD intersecting
BC as shown.

‘AC, CD,
2. Pz || ab, PQ || ZD.
3. PQDZ 1s a parallelo-

gram.

b, PQ = ZD.

5. PR + PS = CZ.

6. PQ + PR + PS =CZ + ZD,|6.
PQ + PR + PS = CD.

[page 273]

Theorems 6-3 and 6-4.

Theorem 9-2,

Definition of a
parallelogram.

Theorem 9-15.
Problem 1%.
Steps 4 and 5.
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273 16. EFOD is a parallelogram, by definition. Hence %E/z DO
and EF || DO. Similarly DO = CB and CB = OA."
Therefore EF = OA and EF || OA. So EFAO is a
parallelogram and FA || EO. Since CD || EO, we have
FA || cp. ‘
274 17. a. ABB'A' 1is a parallelogram so that AA' = BB!'.
Similarly BCC'B' is a parallelogram and BB' = CC'.
Thus AA' = CC' and AA'C'C 1is a parallelogram.
Hence &C 1 ae.

b. The proof does not apply if the figure is not in a
plane because it has not been proved that if two
lines in space are parallel to a third line they
are parallel to each other.

18. By S.A.S. the four triangles are congruent. Hence the
four sides -Ef, iﬁ, etec. are congruent. But of the
three angles at N, for example, two are complementary.
Therefore the third is a right angle. Likewise the
other angles of KIMN are right angles and the figure
is a square.

*19., 1. A and D are on A D

the same side of
BC Dbecause AD || BC.

2. Similarly C and D

are on the same side
<>
of AB. B C

3. D 1is in the interior
of / A by the defin-
ition of the interior
of an angle.

[pages 273-274]
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275

275

AC.
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1. In the parallelogram
ABCD shown, D is

in the interior of . A D

/ ABC by the preced-
ing problem.

ﬁ —
2. BD intersects AC

by Problem 5 of

Problem Set 6-5.

e
3. Similarly, DB
intersects AC.

y, Hence BD intersects
AC.

It is intuitively evident that B 1is the mid-point of
This can be proved formally as follows. One of A, B,

C must be between the other two (Theorem 2-2). If A is
between B and C we have BC > AB, contradicting BC =
Similarly if C is between A and B we get AB > BC
which is impossible. Thus B 1is between A and C and B
is the mid-point of AC by definition.

does not say that the segments intercepted on one transversal
are congruent respectively to segments intercepted on another

Caution the students that the statement of Theorem 9-26

transversal. The segments of any one transversal are con-

gruent to each other.

In the proof of Theorem 9-26, we have tacitly assumed

that T2 does not contain B; otherwise, T4 could not be
parallel to T2. The case in which T2 contains B is

easily disposed of using congruent triangles, A DBA and
AFBC, since Z DBA and A FBC are vertical angles.

In Problem Set 9-7, Problem *7 is intended to provide

the capable student with some insight into the problem of
incommensurability.

[pages 274-275]
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280

280

281

You may wish to point out to your class that the
centroid of a triangle has a significant physical inter-
pretation. It is a "central point" of the triangle. If
the triangle and its interior are given a physical existence,
in the form of a pilece of cardboard or wood, for example,
the center of gravity of each is at the centroid of the tri-
angle, and the triangular piece will balance on a pin at
this point. Also, if the triangular piece is freely suspend-
ed from a vertex and a plumb line attached to that vertex,
the plumb line will always come to rest over the centroid of
the triangle.

Problem Set 9-7

1. a. By Theorem 9-26, RS = ST; and then by the same
theorem ZY = YX.

b. No.

2. The right edge of sheet A 1s a transversal divided
into congruent segments by ruled parallels. By
Corollary 9-26-1, any other transversal, in particular
65, will be divided into congruent segments by the
same parallels.

3. Congruent corresponding angles assure parallel lines
through Nl’ N2, ey N5. Conéidering a2 sixth
parallel through A, Corollary 9-26-1 explains why
AB  will be divided into congruent segments.

b, 12, 5, 6.

282 5. 10, 5, 5.

[pages 280-282]
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283

*7,

*8,

Extend BC making

CE = BC and draw AE.
Extend BP to meet

AE at W. Draw <-]3—1{->||E
Now MC || AE by Theorem
9-22 and BP = PW by
Theorem 9-26. By Theorem
9-22 again, AW = 2MP = 2PC
= WE. Hence BW is a
median of A ABE and meets
the median AC at a point
Q where AQ = 2QC.

a. 3.

b. T.

c. 9.

d. 1207.
e.

219

> <>
No set of parallels can include AR, 553 and CT.

1. Through C draw a
<> <>
line CL || DY.
2. BC = AD.

3. BY = DX.

Yy, BYDX is a parallelo-
gram.
<> <>

5. DY || XB.
«—> <>

6. cL || xB.

7. CQ = QT.

8 AT = TQ.

9. AT = TQ = QC.

[pages 282-283]

Theorem 9-3.

Theorem-9-15.

Halves of equal numbers
are equal.

Theorem 9-20.

Definition of a
parallelogram.

Theorem 9-11.
Theorem 9-26,

By steps corresponding
to Steps 1-7.

Steps 7 and 8.
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283 1.

285 2.

3.
286 4,

*6,

Review Problems

a. S. i A, q. A.
b. S. J N. r. A.
c. S. k S. s. S.
d. A. 1 S. t. S.
e. S. m, S. u. S.
f. A. n S. V. S.
g. A, o A, w. A.
h. S. . S. X. A.
a Yes, No, No, No.

b. No, No, No, No.

c. Yes, No, Yes, .No.

d. Yes, Yes, Yes, Yes.

e. No, No, No, No.

f. Yes, No, No, No.

g. No, No, No, No.

h. No, No, No, No.

i. Yes, No, No, No.

J. Yes, No, Yes, No.

k. Yes, No, No, No.

1. Yes, No, Yes, No.

a. supplementary. b. congruent.

(d) are parallel.
(b) a rectangle.

(a) If and only if the diagonals of ABCD are congruent
and perpendicular. Answer (c¢) is incorrect. Although
the inscribed quadrilateral is a Square 1f ABCD 1is a
square, 1t is untrue that the inscribed quadrilateral

1s a square only if ABCD 1is a square. See the figure.

-

[pages 283-286]
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287 8.

10.

11.

288 12.
13.

14,

a. 4o,
b. 60,
DG = 4,
DG = DPF -
9'inches.
a. 55.
3a
bo T,
m/ A =m/
m/ E=m/
Therefore
65.
A aoC = A

70. c.

120.

(GF = 8 = 3AF. AF = 2k,

GF = 4.)

180 - 328 ., 360 - 3a
-3

ACD - m/ ABC = 2b - 2a.

ECD - m/ EBC = b - a.

m/ E =% m/ A.

BOD by S.A.S.

221

90, 6.

DF = 12.

Z C = Z D since they are corresponding parts.

AC || BC

since / C

interior angles.

and / D are congruent alternate

N
o
o
I

3 / DAP = / BCR. 3
4 A DAP = A BCR. k.,
5 DP = BR. 5.
6. PB = RD. 6
T DPBR 1s a parallelo-| 7.

[pages 286-288]

Given.

Opposite sides of a
parallelogram are con-
gruent and parallel.

Alternate interior
angles.

S.A.S.
Corresponding parts.

Prgof similar to Steps
1-6.

Theorem 9-19.
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288 15. The statement can be dis-
proved by a counter-example.
If parallelogram ABCD has
side CB in common with
isosceles triangle CBE in
which CB ®CE and B is
between A and E, then quadrilateral AECD meets
the requirements of the hypothesis of the problem but
is not a parallelogram.

A B E

*¥16. Given: CM = MB, AM & CM. o
Prove: A ABC 1is a right
triangle.

Let m/ B =x and
m/ C =y as shown in
the figure,

1. m/ MAB = x, 1. Base angles of an
mé CAM = y. isosceles triangle.
2. m/CAB =x + y. 2. Angle Addition Postulate.
3. 2x + 2y = 180. 3. Theorem 9-13.
4, x4+ y = 90. 4. Division.
5. m/ CAB = 90. 5. Steps 2 and 4.

17. Given: ABCD 1is a parallelo- D ¢
gram. DX bisects / ADC. v \
AY bisects / DAB. DX and X
I?P intersect at P.
A B

Prove: iﬁ?l_AY.

[page 288]
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289 18,
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1. . m/ ADC + m/ BAD 1. Theorem 9-17.
= 180.
> 1 1
. zm/ ADC + 3m/ BAD 2. Division, from State-
ment 1.
= 90.
3. m/ ADP + m/ DAP = 90.| 3. Step 2 and definition
of bisect.
g, m/ DPA = 90. 4, Theorem 9-13 and
Statement 3.
—, —>
5. DX | AY. 5. Definition of perpen-
dicular.
1. Consider KE, FK; 1. A segment is determined
PE and K. by two points.
2. PK || AC and 2. Theorem 9-22.
PK = ZAC.
3. ACDE 1is a parallelo-~]| 3. Theorem 9-20.
gram.
4, ED = AC. b, Theorem 9-15.
5. EM = %AC. 5. Given, and Statement 4.
6. EM = PK. 6. Statements 2 and 5.
7. EM || AC. 7. Definition of parallelo-
gram.,
8. ©PK || EM. 8. Theorem 9-11.
9. PEMK 1is a parallelo-| 9. Theorem 9-20.
gram.
10. KE Dbisects PM. 10.  Theorem 9-18.

[pages 288-289]
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289 19,

o -~

\ ‘W//,/
55

90" 5 75

/

-

/

290 20. The dlagonals of quadrilateral ABDC bisect each other
so ABDC 1is a parallelogram. For the same reason,
AFBC 1s a parallelogram. F, B, D are collinear be-
cause only one parallel to AC can contain point B.

[pages 289-290]
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Illustrative Test Items for Chapter 9

If a statement is always true write the word TRUE. If it is
not always true write the word FALSE,

1.

10.

11.

12.

The diagonals of a square are perpendicular to each
other.

A square is a parallelogram.

If the diagonal of a quadrllateral divides 1t into two
congruent triangles, then the quadrilateral is a
parallelogram.

Lines which never meet are parallel.

If two consecutive angles of a quadrilateral are right
angles, then the quadrilateral 1s either a trapezoid or
a rectangle.

Two lines which are each perpendicular to a third line
are parallel.

Given a correspondence between two triangles. If the
triangles have two sides and an angle of one congruent
to the corresponding parts of the other, then the
correspondence is a congruence.

Every right triangle has two acute angles.

If a diagonal of a parallelogram divides it into two
isosceles ftriangles, the parallelogram is a rhombus.

If each two opposite sides of a quadrilateral are con-
gruent segments, the quadrilateral is a parallelogram.

Opposite angles of a parallelogram are congruent.

The measure of an exterior angle of a triangle equals
the sum of the measures of the two remote interior
angles.
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13.

14,

15.

16.
17.
18.
19.

20.

21.

22,

23.

24,

The perimeter of the triangle formed by joining the
mid-points of the sides of g given triangle is half the
perimeter of the given triangle,

If the diagonals of a quadrilateral are perpendicular
and congruent, the quadrilateral is a rhombus .

A line that bisects one side of a triangle bisects
another side also.

The diagonals of a parallelogram are congruent.
A dlagonal of a parallelogram bisects two of 1its angles.
A quadrilateral with three right angles is a rectangle.

A set of parallel lines intercepts congruent sSegments on
any transversal.

Given two parallel lines and a transversal, two interior
angles on the same side of the transversal are supple-
mentary.

If two angles of a triangle are congruent to two angles
of another triangle, then the third angles are congruent.

If a line bisects one side of a triangle and is parallel
to a second side, then it bisects the third side.

If a quadrilateral has a pair of sides parallel and the
other pair of sides congruent, then the quadrilateral is
a parallelogram.

If a parallelogram has one right angle, it has four
right angles.

Would the following information about a quadrilateral be
sufficient to prove it a parallelogram? a rectangle?

a rhombus? a square?

a. Each two opposite sides are parallei.
b. Each two opposite sides are congruent.
c. Three of 1ts angles are right angles.
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d. Its diagonals bisect each other.
e. Its diagonals are congruent.
f. Its diagonals are perpendicular and congruent.
g. Its diagonals are perpendicular bisectors of each
other.
h. It is equilateral.
i. It is equiangular.
J. It is equilateral and equiangular.
k. Each two opposite angles are congruent.
1. Each two consecutive angles are supplementary.
2. Write on your paper these names of quadrilaterals:

rarallelogram, rhombus, rectangle, square. After each
name write the number of every statement below which

always applies to 1it.

1
2
3
I
5.
6
7
8
9

Each two opposite sides are parallel.
Each two opposite angles are congruent.
Each two opposite sides are congruent.
Diagonals have equal lengths.

Diagonals bisect each other.

Diagonals are perpendicular.

All sides are congruent.

All angles are congruent.

All angles are bisected by the diagonals.



P
a. In quadrilateral MNOP
having diagonal MO,
if / OMP = / MON,
what two segments are M N
parallel?
b. If the parallel lines < )
x and y are cut by b
a transversal, and if
m/ b 1is 10 greater a Y,
than m/ a, find //
m/ b.
Given: ABCD 1is a rhombus. B C
m/ BAD = 60, AD = 5. \
Find: BD. \
\
A D
Given: A ABC with medians
BD and EC. BD = 8, B
EC = 9.
Find: The lengths of the E
shorter segments of each
median. c
A D

If in the figure, DB = DC
= BE and m/ ECB = 30,
find m/ ABE. E
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Two sides of a parallelogram are 6 -and 10. Find the
length of the segment connecting the mid-point of the
shorter side with the intersection of the diagonals.

In AABC, AE bisects / A, ¢

BE bisects / B, and

DF || AB. m/ CAB = 40

and m/ CBA = 60. What

is m/ BEF?

In A ABC, AR bisects D E F
—>

[/ A. BE bisects /B,
<> <>

and DF || AB. m/ C = 110

and m/ CDF = 50. What A B

is m/ BEF?

Two angles of a triangle have a total measure of 100.
What 1s the measure of either of the obtuse angles
formed at the intersection of the bisectors of these
two angles?

I the measure of one of the congruent angles of an
isosceles triangle is 70, what is the measure of the
smallest angle of the triangle?

Find the measure of each acute angle of a right tri-
angle if the measure of one of them is three times that
of the other.

Consider the following theorem: Given two lines and a
transversal. If one palr of alternate interior angles
are congruent, then the lines are parallel.

Given: Lines Ll and L2 cut by a transversal L to
form congruent alternate interior angles.

To Prove: L, Il L,.

Proof: Suppose L1 intersects L2 in a point P.

This situation leads to a contradiction of what theorem?
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Given: NP intersecting
MS at O with MN =
and OP = PS.

D
Given: 1In the figure
ABCD 1is a parallelogram
with AP = QC
Prove: DP
Pl o A P

Prove: N 1 .

—
Given: BD bisects / EBC,
<> <>
and BD || AC.
Prove: AB = BC.

Given: In A ABC
bisects / ACB. AR ll
«—>
intersects CB at E.
Prove: AC =

Given: / BAC is a right B

angle. QB = QA.
Prove: = QC.

Prove: If a‘line is
parallel to the bases of

1’%

a trapezoid and bisects P §

one of the non-parallel Z(\\\\\\\\\\\\\\\\
sides, then it bisects E )
elther diagonal of the

trapezoid.




.

= O~ OWU & WP

.5.

Answers
True. 9. True. 17.
True. 10. True. 18.
False. 11. True. 19.
False. 12. True. 20.
True. 13. True. 21.
False. 14, False. 22,
False. 15. False. 23.
True 16. False. 24,
a. Yes. No. No. No.
b. Yes. No. No. No.
c. Yes. Yes. No. No.
d. Yes. No. No. No.
e. No. No. No. No.
T. No. No. No. No.
g. Yes. No. Yes. No.
h. Yes. No. Yes. No.
i. Yes. Yes. No. No.
J. Yes. Yes. Yes. Yes.
k. Yes. No. No. No.
1. Yes. No. No. No.
Parallelogram. 1, 2, 3, 5.
Rhombus. 1, 2, 3, 5, 6, 7, 9.
Rectangle. 1, 2, 3, 4, 5, 8.
Square. 1, 2, 3, 4, 5, 6, 7,
a. MP || No. b. 95.
The length of the shorter segment of
The length of the shorter segment of
m/ ABE = 90.
5.

30.

231

False.
True.
False.
True.
True.
True.
False.
True.
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10.
130.
9. Lo,
1 1
10. 225, 675.
D. 1. The Exterior Angle Theorem.
2.
1. AD = CB, AB = CD. 1. Theorem 9-15,
2. /Aa=/c, 2. Theorem 9-16.
3. AP = CQ. 3. Given.
L, A APD = A CQB. 4, S.A.S.
, 5. PD = @gB. 5.  Corresponding parts.
6. PB = DQ. 6. Subtraction, Statements
1 and 3.
7. DQBP 1s a parallelo- 7. Theorem 9-19,
gram.
8. DP || @B. 8. Definition of a
parallelogram,
3.
1. / NoM = / PoSs. 1.  Theorem 4-7,.
2. /8 =/ Ppos. 2.  Theorem 5-2,
M=/ NoM.
3. [M=/5s. 3. From Statements 1 and 2.
Y. W || 55 4.  Theorem 9-5.
4.  / EBD and / A are congruent because they are corres-

ponding angles formed by parallel lines and the trans-
versal AR, / CBD- and / C are congruent since they
are alternate interior angles of parallel lines. Since
the given bisector makes / EBD & /[ CBD, then /A= /cC,
and the opposite sides AB and BC are congruent.
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«—> >

1. AE || cp. 1. Given.

2. [/ ACD = / BCD. 2. Definition of bisect.

3. [/ EAC = / ACD. 3. Alternate interior
angles.

4. JE & / BCD. 4,  Corresponding angles.

5. [ E=&/EAC. 5. Statements 2, 3, and

6. AC = EC. 6. Theorem 5-5,

1. /CAQ 1is a comple- 1. Definition of comple-

ment of / BAQ. ment.
2. /C 1is a complement | 2. Corollary 9-13-2.
of / B.

3. /B=/BAQ. 3. Base angle of an
isosceles triangle.

b, JcaQ=/C. 4.  Complements of congruent
angles are congruent.

5. QC = QA. 5. Theorem 5-5.

6. QB = QA. 6. Given.

7. QB = QC. 7. Steps 4 and 5.

Given: The figure with trapezoid TRAP having

PA TR, PE = ET and EZ [| TR.

Prove: PO = OR.

<> <> <>
PA, EZ and TR

are parallel.
PE = ET.
PO = OR.

1. Theorem 9-11.

2. Given.
3. Theorem 9-27.
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Chapter 10
PARALLELS IN SPACE

This Chapter develops the properties of parallelism and
perpendicularity of lines and planes in space and applies
these properties to the study of projection of figures on a
plane. Essentially the treatment 1s conventional. A minimum
program would cover Section 10-1, studying the essential
properties of parallelism of lines and planes and the related
propertles of perpendicularity. Section 10-2, which probably
is more difficult, 1s devoted to dihedral angles and in
particular to theilr application to the concept of perpen-
dicular planes. Sections 10-1 and 10-2 give good coverage of
the basic subject matter. Section 10-3, which could be taken
if time and class ability permit, does not add to the
student's basic knowledge of parallelism and perpendicularity
but applies it to the interesting geometric problem of pro-
Jecting figures into a plane.

In this Chapter you will see a very strong analogy
between the material concerning parallel lines in a plane as
described in Chapter 9, and the discussion of parallel planes
in space. For example Theorem 10-2, on a line perpendicular
to one of two parallel planes, is analogous to Theorem 9-12;
and Theorem 10-3, two planes perpendicular to the same line
are parallel, is analogous to Theorem 9-2, expressed in the
form: In a plane, two lines perpendicular to the same line
are parallel. In some cases the proofs are a bit more
involved, since we are working in space and not just in a
plane.

[pages 292-293]
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Problem Set 10-1

296 1. a. True. g. False.
b. True. h. True.
c. False. i. True.
d. True. J. Falsé.
e. True. k. True.
f. True. 1. False.

297 2. Let AZ intersect plane n at T. Draw Ki: iif, 75?,
and CZ. Then BT || CZ and TY I AX by Theorem 10-1.
From Theorem 9-26, in plane ACZ, AT = TZ; and in
plane AZX, XY = YZ.

3.
1. s || r. 1. Given.
2. AB ] r. 2.  Given.
3. AB | s. 3. Theorem 10-2.
4. AB | CX and 4. Theorem 8-3.
i | .
5. AACX =A aAcy. 5. S.A.S.
6. AX = AY. 6. Corresponding parts.
4,
1 m | AB, n | AB 1. Given.
2. m]} n. 2.  Theorem 10-3.
3. m ] cp. 3. Given.
4 n | CD 4.  Theorem 10-2.

298 5. By Theorem 10-5, AB = CD. Consider BD. AB_]_ BD and
CD 1_BD by definition of a 1line perpendicular to a
plane. Then A ABD A CDB by S.A.S. and AD = CB by
corresponding parts.

[pages 296-298]
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298 *6. By Theorem 10-3 we know E || F. By Theorem 10-1 we
know AD || B ana X Il ¥E. Since BK = AD and
BH =-AC, we know we have two parallelograms. These
are rectangles since AB 1is perpendicular to both
planes and therefore to lines in the planes through A
and B. /fsCAD and HBK are plane angles of the
dihedral angle D-AB-H and are congruent. Then
A CAD A HBK by S.A.S. However, we do not know the
measure of any of the angles of the two triangles and
sc cannot find the length of CD.

*7. Let points D and G be such that AD = BG and E
and F be such that AE = BF. Draw DE and GF.
Then:

(1) BAE || BF and AD || BG by Theorem 10-1.

(2) AEFB and ADGB are parallelograms since they have
two sides parallel and equal in length.

(3) EF = AB and DG = AB Dbecause opposite sides of a
parallelogram have equal lengths. Also EF || AB
and DG || AB.

(4) Therefore EF = DG and EF || DG making EDGF a
parallelogram by Theorem 9-20.

(5) ED = FG.
(6) A ADE & A GFD by S.S.S.
(7) [/ DAE = / GBF.

[page 298]
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*8,

*9.

Given two skew lines L1
L2, at any point P on
draw the one line L3
parallel to Ll. Then
L2 and L3 intersect
and determine a plane
parallel to Ll‘

Proof: L1 and L3 are coplanar and determine a plane
n because they are parallel. L1 and L2 cannot be
coplanar because they are skew. Hence, L2 and L3
are distinct intersecting lines determining a plane m.
Planes m and n have the line L3 in common, hence
it 1s their intersection. Ll’ which is in n, could
intersect m only at some point of L3;7 and this is
impossible since L, || L3. Hence L, ||

QP || SM by Corollary 10-4-2., In the plane of RL and

QP, af.l PL; and in the plane of 3SM and QP, QF | PM.
Since QP 1is perpendicular to both PL and PM, QP ] E.
Then both RL and SM are perpendicular to E by
Corollary 10-4-1,

The notion of dihedral angle may seem strange to a

student on first acquaintance. You might point out that Just
as angles arise in the practical problem of measuring the
difference in direction of two lines, so dihedral angles are
suggested when we have to specify the "difference in direct-
ion" of two planes. If you are designing a gable roof for
your house, somehow you must speclfy the size of the angular
opening between the sides of the roof.

In designing a building, an architect must specify the

relative direction of plane surfaces. Ordinarily walls are
perpendicular to floors, but in many modern buildings, planes
appear which are not perpendicular to each other. There is
implicit in this situation the notion of dlhedral angle and

[page 299}
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the problem of measuring dihedral angles. Consider the
every-day sltuation of specifying how steep a hlll is. When
we say a2 hill has an inclination of 250, this can be inter-
preted as a statement about the angle formed by the plane of
the hill and a horizontal plane.

You can illustrate dihedral angles very easily by using
the covers or leaves of a book to represent the faces and
the binding to represent the edge. You can use this to gilve
the students some feeling for relative size of dihedral
angles, bisection, perpendicularity, and so on.

Dihedral angles are important for theoretical reasons
as well as for practical ones. Observe that planes are as
important in space as lines are in a plane. If angles
formed by lines are worth studying in a plane, it 1is natural
to try to make a similar study of angles formed by planes in
space. In studying the properties of points, lines and
planes in space we naturally try to generalize planar con-
cepts about lines to spatial concepts about lines and planes.
Thus we study "angles formed by planes", perpendicularity of
lines and planes and of planes and planes, and parallelism
of lines and planes and of planes and planes.

Notice in the definition of dihedral angles, that we
cannot just speak of the union of two half-planes, but that
we must include their common edge in the union. This 1is
because a half-plane does not contain its edge. Similarly
the side or face of a dihedral angle is defined, not as a
half-plane, but as the union of a half-plane and its edge.
(This is sometimes called a "closed" half-plane to emphasize
that the half-plane has been "closed up" by adjoining its
bounding line - in contrast a half-plane in our sense 1s
called an "open" half-plane.) Observe that the intersection
of the two faces 1is thelr common edge, just as the inter-
section of the two sides of an (ordinary) angle 1s their
common end-point.

[page 299]
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Suggested definitions: Dihedral angles Z A-PQ-B and
‘é A'—PQ—B:%_Sre vertical if A and A' are on opposite s
sides of PQ, and B and B' are on opposite sides of PQ.

The interior of dihedral angle ZA-PQ-B consists of
all points which are on the same side of plane APQ as B
and are on the same side of plane BPQ as 'A. The exterior
of a dihedral angle consists of all points which are not in
the interior of the angle and are not in the angle itself.

Notice that the rafters of a gable roof form plane
angles of the dihedral angle formed by the sides of the roof.

Some of your students may have difficulty in grasping
the idea that a spatial object like a dihedral angle can be
measured by 1ts plane angle which is only a "planar" figure.
You might point out that two dihedral angles will be
"congruent", that is can be made to "fit", 1f and only if
their plane angles are congruent, that is have equal measure.
This can be illustrated with models of sheets of cardboard,
folded lengthwise to form dihedral angles. Observe that
they can be made to coincide if, and only if, corresponding
plane angles can be made to coincide, that is if and only if
the plane angles have equal measure. Similarly if you form
a dihedral angle which is "twice as large" as a second
(say by putting two "congruent" dihedral angles together),
you can convince the student that the plane angle of the
first has a measure which is twice as large as that of the
second.

The formal significance of the above discussion is this.
Although the text proper does not define congruence of
dihedral angles, a general definition of congruence for any
two figures is given in Appendix VIII, Rigid Motion. (See
also the Talk on the Concept of Congruence.) Using this
definition we can prove the theorem that two dihedral angles
are congruent if and only if their plane angles are congruent.
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We could have given a definition of right dihedral
angle very similar to that for right angle. First by
analogy wlth the idea of linear pair of angles (see page 82,
Student Text), we can define "planar pair" of dihedral
angles as follows: Dihedral angles Z A-PQ-B and Z_A'-PQ-B
form a planar pair if A and A' are on opposite sides of

<>
PQ. Then if the dihedral angles of a planar pair have the

same measure each is defined to be a right dihedral angle.
Proofs of the Corollaries
Corollary 10-6-1. If a line is perpendicular to a

plane, then any plane containing this line is perpendicular
to the given plane.

Given: 73?_L E, F contains B
To Prove: F | E.
P

In E draw BC | Q. Since 9B | E, then by the
definitiogég? %eiine perpendicular to a plane, 7E§_L?ii
likewise AB l_BC. Hence A ABC 1is a plane angle of
A A-PQ-C, since Kg and ?ﬁg are perpendicular to ﬁﬁi
at B. Since / ABC 1s a right angle we see that F 1l E
by the definition of perpendicular planes.

Corollary 10-6-2. If two planes are perpendicular,
then any line in one of them perpendicular to their line of
intersection is perpendicular to the other plane.

<> <>
Given: F | E, AB | PQ.
>
To Prove: AB | E.
<> K <>
Using the figure above, in E draw BC l PQ. Then by
the definition of a plane angle, [ ABC 1s a plane angle of
/ A-PQ-C. F | E by hypothesis. Hence / A-PQ-C 1s a right
dihedral angle, and its plane angle, A ABC, 1is a right
> <> < A6 <
angle, and AB | BC. Since it was given that AB 1 PR, we
now have fﬁg perpendicular to two lines in E passing
<>
through 1ts foot, hence by Theorem 8-3, AB | E.
[pages 301-302]



ol

302 1,

303 2.

304 4,

305 *6.

Problem Set 10-2

[ C-AB-D, [/ A-BC-D, / A-CD-B, / B-AD-C,
/ B-AC-D, / A-BD-C.

/ CPB 1is a plane angle of / C-PA-B. Since m/ CPB
= 90, m/ C-PA-B = 90. m/ CAB = 60 since A CAB can
be proved to be equilateral.

a. 1 g 0
b. 1 h. 0
c. 0 i. o
d. 0 J 0
e. 0 k 1.
f. 1

XP lr and YP 1 s by corollary 10-6-2. Then ﬁ_l_ QP
and -§§_l af- by the definition of a line perpendicular
to a plane. By Theorem 8-3, QP | E. Since XP | m,

XP 1 PQ and / XPQ is a right angle. Therefore

Z X-AB-Q 1is a right dihedral angle, and by definition
of perpendicular planes s l m.

x =145 m=1Uu5 y=90,

If E, 1l L5, then
E3 do not
meet. Then L12 and
L13 do not meet; and
since they both lie in
El’ they are parallel.
Similarly, L12 and
L13 are parallel. Also L13 and L23 do not inter-
sect, for if they did intersect at a point P this
point would lie in each of El’ E2, E3, and E3
would meet L12 at P which in this case is not
possible. ‘

[pages 302-305)
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If E3 intersects L12 at point P, P 1lies on each
of El’ E2
L Hence all three lines are concurrent at P.

and E3, and hence in L12, L13, and

23°
Point X 1les in plane ABC and also in plane A'B!(C!,
and hence on their intersection. Similarly, Y and Z
lie on the intersection on these two planes, or the
points X, Y, Z 1lie on a line wu, which was to be
proved.

Remark 1. The two non-parallel planes always intersect,
aAstalr = badmint e

but it might happen that B'!'C!' and BC are parallel

lines, so there would be no point X. This would happen
> —>

if and only if BC and B'C' are both parallel to the

line wu. This could not happen for two pairs of side-

lines for we could not have two lines through a vertex

parallel to u.

Remark 2. The Theorem 1s also valid 1f plane ABC

= plane A'B'C!, but we have not proved it.

Desargues! Theorem is an interesting and important
incidence theorem relating concurrence of lines with
collinearity of points. The theorem is also valid when
the two triangles are coplanar, but is much harder to
prove. In this case the student can get an intuitive
apprecilation of 1ts correctness by imagining the figure
to collapse into a plane.

[page 305]
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The theory of projections is important in engineering,
particularly in drafting. Speaking broadly it may be con-
sidered part of the subject of "map" making or the repre-
sentation of geometrical objects on a given surface, usually
taken as a plane. (See Problem 4 of Problem Set 10-3. for
an indication of the use of projections in giving planar
representations of a solid object.) The study of projection
throws light on familiar visual experiences. For example,
if we look at a circle, inclined so that its plane is oblique
to the line of sight, it appears as an ellipse - that 1is,
we see 1t as 1f 1t were projected on a plane which is per-
pendicular to the line of vision.

Observe that the definition of S' the projection of
a set of points S as the set of projections of all points
of S means two things. Namely, that the projection of
every point of S must be in S', and, in addition, that
such projections form the whole of S'. That is each point
of S' must be the projection of some point of S. Other-
wise S' would contain the projection of S and additional
points besides. As a homely illustration of a similar
situation consider the statement that the Yale Mathematics
Department 1s the same as the Olympic Hockey Team. Disre-
garding its improbability, this statement asserts two things.
First that every member of the Yale Mathematics Department
15 a member of the Olympic Hockey Team. But further, that
every member of the Olympic Hockey Team is a member of the
Yale Mathematics Department - otherwise the Olympic Hockey
Team would be a larger set than the Yale Mathematics Depart-
ment. To summarize: 1n identifying a set S' as the
projection of S we will have to prove a characterization
theorem for S! involving a theorem and its converse.

[pages 306-307]
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308 The conventional phrase 1s to project a point or figure
"onto" a plane rather than "into" a plane. We have changed
this in order to be consistent with mathematical usage in
the theory of mappings or transformations. A mapping is a
correspondence which associates with each point of a given
set S a unique point of a set S'. We describe this by
saying that each point of S is "mapped into" its associated
point of S' and that S 1is "mapped into" S'. We say S
is "mapped onto" S' only when the whole of S' is involved,
that is when each point of 8' 1is the associated point of
some point of S. Since this distinction between "into"
and "onto" is quite firmly established in higher mathematics
we thought it wise to use the appropriate technical term
"into" even at this elementary level.

308 The answer to why M intersects L: M and L both
lie in F. Suppose M || L. Then by Corollary 10-4-1
M | E implies L ] E. This contradicts the hypothesis.
Therefore M must intersect L.

Problem Set 10-3

309 1. a. Yes. d. Yes.
b. No. e, No.

c. Yes; yes; yes. f. No.

2. a. Not necessarily. c. Yes.

b. No. d. Yes.

310 3. AX and BY are perpendicular to plane m. Hence
‘ AX || BY and ABYX is a plane figure. Since the
projection of a segment is a segment (or a point) N
is in this plane. Since MN | m, MN || AX and
MN || BY. Then XN = NY so that N 1is the mid-point
of XY because parallels which intercept congruent
segments on one transversal intercept congruent segments

on any transversal.

[pages 308-310]
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310 4,

311 5.

312 *7.

Since the intersection point shown within the large
triangle in the problem may be on a vertex, on an edge
or on the extension of an edge, or elsewhere in the
exterior of the large triangle the projection may

A

Let BE- be the perpendicular to plane m at B.
Then AB | BE, and it is given that AB | BC. Hence
AB | plane EBC. By definition of projection 65'1 m.
Then CD || BE so that D is in the plane EBC.
Then DB 1is in this plane and AB | BD or / ABD is
a right angle.

appear as follows:

By definition of projection 55?,1 m and therefore
also QQ' 1 Q'X so that A QQ'X 1is a right triangle.
Then QQ' < QX. But AQ ® AQ, and AX ® AQ'. In
triangles QAX and QAQ', m/ QAQ' < m/ QAX by
Theorem 7-9, which was to be proved.

The projection is a regular hexagon with segments from
its vertices to its center.

[pages 310-312}
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Review Problems

a Yes . |
b. Yes.
c Yes
No. No.

Yes. A plane angle of a dihedral angle is the angle
formed by two rays, one in each side of the dihedral
angle and perpendicular to 1ts edge at the same point.
No. 90.

a. S. h S.

b. S. i S.

c. S. J S.

4. A. k S.

e. S. 1 A,

f. S. m S.

g. A. n S.

1. AF 1 E. 1. Definition of pro-
Jection.

2. Plane ABF | E. 2. Corollary 10-6-1.

3. HB | FB. 3. Definition of per-
pendicular.

4. HB | plane ABF. 4.  Corollary 10-6-2.

5. HB | AB. 5. Definition of line
perpendicular to a
plane.

6. [/ ABH 1is a right 6. Definition of per-

angle. pendicular.

[pages 312-314)
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315 6.

1. BD || CE. 1. Theorem 10-1.

2. [ ADB a‘é E. 2. Corresponding angles
of parallel lines.

3. /JA=/E, 3. Hypothesis and base
angles of an isosceles
triangle.

L., / ADB = / A. 4.  Steps 2 and 3.

5. BD = AB. 5. Theorem 5-5.

7.
1 RX || BD and 1 Theorem 9-22.
RX =

ZBD
YZ || BD and
1
§BD
YZ

YZ =

2. RX || Y2 2. Corollary 10-4-2.

3. RX = YZ. 3. Step 1.

4, R, X, Y, Z are L, Theorem 9-1,
coplanar.

5. RXYZ 1is a parallelo-{ 5. Two sides both congruent
gram. and parallel.

*8. plane, ||, plane, plane, |, |.
plane, |, plane, plane, ||, |.
plane, ||, plane, line, |, ].
plane, ||, line, plane, |, |
plane, |, 1line, 1line, ||, |.
line, ||, line, plane, |, |.
line, |, plane, plane, ||, |
plane, |, 1line, plane, ||, |.

*g, X is the mid- point of BD and of AC.
AB, BF, XY, DH, CG are parallel segments (Theorem
9-2). Y 1is the mid-point of FH and EG. (Theorem
9-26). 1In trapezoid AEGC, XY = (AE + CG) (See
Problem 10 of Problem Set 9-6). In trapezoid BFHD,
XY = 5(BF + DH). .°. AE + CG = BF + DH.

[page 315]
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Tllustrative Test Items for Chapter 10

PN
Given:' XA | E at A. X ‘t‘o
<
QB | E at B. F is a =
<>
point on QB. Are X,
A, B, F coplanar? A' 8
State a theorem to support £ : }
your conclusion. What is 1
m/ XAB? If m/ BFX = 135, r l I
what 1s m/ AXF?
Plane x | plane r. They w
<>
intersect in AB. In X Q
Fi | %B. WH, @, ™ ALL_/]
R X
lie in plane r. H T
m/ FHW =
m/ FHQ = .
m/ FHT = . Z B

Support your conclusions with suitable principles. On
the basis of the given information we cannot say that
any of these three angles is a plane angle of dihedral
/ W-AB-F. / WHF would be a plane angle of / W-AB-F
if WH |

In the figure, plane X lﬁ

and plane y J_fﬁ?») Is ‘
x || y? State a theorem to

support your conclusion.
Plane E intersects x 1in

<‘7~I_I?andyin<@~’.WK ?F>

If a 1line L is perpendicular
<> <>
to WK and intersects QF,
what kind of angles does L
<>
make with QF?
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Indicate whether true or false.

a.

If a plane is perpendicular to each of two lines, the
two lines are coplanar.

If a plane intersects two other planes in parallel
lines, then the two planes are parallel.

Two planes perpendicular to the same line are parallel.

If each of two planes is parallel to a line, the planes
are parallel to each other.

The projection of a line into a plane is always a line.
Two lines are parallel if they have no point in common.

For each acute angle there is a plane such that the
projection of the acute angle into the plane is an
obtuse angle.

The length of the projection of a segment into a plane
is always less than the length of the segment.

Two lines parallel to the same plane are parallel to
each other.

If each of two intersecting planes is perpendicular to
a third plane, their line of intersection is perpendicu-
lar to the third plane.

If a line not contained in a plane is perpendicular to
a line in the plane, then it is perpendicular to the
plane.

If a plane bisects a segment, every point of the plane
is equidistant from the ends of the segment.

At a point on a line there are infinitely many lines
perpendicular to the line.

Through a point outside a plane there is exactly one
line perpendicular to the plane.

> <« A <>
If plane E 1is perpendicular to AB and AB ||CD,

then E | CD.




2.

<c_ﬁ_[_E at D.

251

A plane perpendicular to one of two perpendicular
planes 1s never perpendicular to the other plane.

If plane M 1s perpendicular to plane N and A ABC
lies in plane M, then the projection of A ABC into
plane N 1is a line segment.

It is possible for the measure of a plane angle of an
acute dihedral angle to be Q0.

Any two plane angles of a given dihedral angle are
congruent.

If a line 1s not perpendicular to a plane, then each
plane containing this line 1s not perpendicular to the

plane.
' A
Given: H 1is the pro-
Jection of A 1into plane
E. HB is the projection
of AB into E. HF is
the projection of AF H F
into E. AF = AB. -
Prove: HF = HB. E -

C F
Given: E || F. BF””’71
<> 4 ’

AB | E at A.

Prove: AC = BD.

W \| E
D
A
Given: AH || BF || oK. B E
AH = BF = QK.
Prove: A ABQ & A HFK. A W

—— — s
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w

H o R 0 0 0 T oo

Yes.

90.

Answers

Statement of Theorem 8-8 or 10-4. 90. 45,

90. 90.

Statements of Corollary 10-6-2 and

<>
the definition of a line perpendicular to a plane. AB.

Yes. Statement of Theorem 10-3. WK Il iﬁ; Right angles.
T. h. F. 0. T.

F. i. F. p. F.

T. J. T. a. T.

F. k. F. r. F.

F. 1. F. s. T.

F. m. T. t. F.

T. n. T.

1. BAH | E. Definition of pro-

Jjection.

2. / AHF and / AHB Definition of a line
. perpendicular to a
are right angles. plane.
3. AH = AH. Identity.
4, A AHF = A AHB. Leg-Hypotenuse Theorem.
5. HF = HB. Corresponding parts.
1. AB Il cp. Theorem 10-4,
2. A, B, C, D are Theorem 8-8 or Theorem
coplanar and so 9-1.
determine a quadri-
lateral.
3. AB | F. Theorem 10-2.
CD | F.
L, AB = CD. Theorem 10-5,
5. ABCD 1is a parallelo- Two sides congruent and
gram. parallel.
6. / BAD 1is a right Definition of a line

angle.

perpendicular to a
plane.
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