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TEACHERS COMMENTARY 

This unit treats one of the most important ideas in mathematics - -  
the idea of a variable. Since this i s  the first time the student wi l l  
receive formal instruction in the use of variables, the instruction 
needs to be given with considerable care. Too often students come 
to their study of algebra with misconceptions about variables, and 
leave their study with many of these misconceptions still intact. 

One of the innovations we have made in the teaching of this con- 
cept is a change in terminology. In the early years of the UICSM 
program, we used the term 'general number* to denote a variable. 
And, we noticed that this usage seemed to have unfortunate results. 
For example, many of our students felt [during a final examination] 
that the sentence: 

-x i s  a negative number 

was a true one. [It is neither true nor false. See page 2-14.] This 
led us to believe that our students thought not only that numbers were 
marks on paper but that letters of the alphabet could be numbers. 
And, if one goes about using the words 'general number*, 'literal 
number*, or 'unknown number', to refer to the letters he uses in 
equations , ine quations, and other sentences, it i s  under standable 
that the novice wi l l  regard these letters as numbers. Even the word 
'variable' itself carries an unfortunate connotation, that of change. 
But, in an equation, say, 'x2 t 5 = 9 * the use of the variable ' x * im- 
plies no notion of change. 

W e  went to the mathematical logician in order to clarify for our- 
selves, and so for our students, the precise role that letters play in 
mathematical sentences. For one thing, we learned that a variable 
i s  a mark on paper. We do not regard a variable as something which 
is denoted by a mark as, for example, a number is  denoted by a 
numeral. A variable i s  not a fuzzy thing which "jumps all over the 
place*'. In the equation '2 t 5 = 9' the letter x *  i s  a variable; it is 
not the case that the le t te r 'x  ' stands for a variable. 

A second thing we learned is that a variable does not have a re -  
ferent. A variable, although it i s  a mark, i s  not a name. In fact, a 
variable is nothing more than a blank in an expression. For example, 
the blank in: 

- t 2 = 9  

is a variable. It i s  a symbol which holds a place for a name of an 





object. In the sentence: - 
- + 2 = 9 ,  

you can think of the blank a s  holding a place for names of rea l  num - 
bers. When the blank i s  replaced by a numeral for a real  number, 
the sentence is converted into either a true sentence or  a false sen- 
tence. The only essential difference between the sentences: 

+ 2 = 9  and: x + 2 = 9  

is that the former uses a blank a s  a variable, while the latter uses 
a letter a s  a variable. 

The similarity between the role of variables in mathematical 
sentences and the role of pronouns in English sentences led us to 
coin the word 'pronumeral*, and to use it instead of 'variable*. [Ac - 
tually, 'pronumeral* is used instead of 'numerical variable*. A vari-  
able can also hold a place for names of objects other than numbers. 
Later in the UICSM program [see Unit 51 when variables a r e  used in 
sentences which, for example, talk about sets,  or points, or triangles 
rather than numbers, we introduce the word 'variable*, and note at 
that time that 'pronumeral* refers  to  a rather special kind of variable.] 

In order to combat the misconceptions students have about the 
role of letters,  we introduce them to variables by using such marks 

as: .a, 0, A D  , and: 0 . The transition from frames to 

letters i s  readily made. 

Thus, there a r e  three things about pronumerals which we s t ress :  

(1) a pronumeral i s  a mark, 

(2) a pronumeral is not a numeral, and 

(3) a pronumeral i s  a mark which holds a place 
for numerals. 

.'. 
.̂\, 

Another feature of Unit 2 which is novel and which deserves 
mention here is  the matter of deductive proof. One of the criticisms 
sometimes heard about the UICSM program i s  that it i s  too formal 
in  that it attempts to develop algebra "axiomatically**. [Once in a 
while we a r e  even told that we a r e  teaching "groups, rings, and 
fields" to  ninth graders!] We a re  somewhat at a loss in trying to 
understand this in view of the discovery aspects of Unit 1, but we 

[ Unit 21 





think the critics a r e  claiming that we give the students a set of axioms 
about the real  numbers and then ask them to deduce theorems from 
these axioms. 

Actually, a major purpose [after teaching students how to use 
variables] i s  to  help students to  develop the manipulative skills which 
a re  customarily taught in beginning algebra courses. We think that 
the acquisition of these skills is a necessary condition fo r  further 
study of mathematics. However, we also believe that the manner in 
which the skills a r e  taught is an item of some importance. We know 
that students - can acquire skill in manipulation even if they a r e  told 
that '3a t 7aS i s  equivalent to * 10a' because 3 apples and 7 apples 
make 10 apples, and that '3a t 7bS can't be simplified because you 
can't add apples and bananas [even though you can multiply them]! 
If students a r e  given an abundance of illustrative examples, they can 
learn through imitation and ignore such improprieties. But, we 
think students ought to begin the acquisition of skills with the exer-  
cise of intelligence, and that explanations ought to be things which 
are  based on mathematical principles, rather than be sheer memory 
devices. UICSM students discover that '3a t 7a' i s  equivalent to '10a' 
on the basis of numerical examples [both in Unit 1 and in Unit 21 and 
u s t i f  the equivalence by means of deductive proof in which they show 
that the generalization : 

For each a, 3a t 7a = lOa 

is a consequence of the distributive principle for multiplication over 
addition and the computing fact that 3 t 7 = 10. A student does not 
have t o  be told that to simplify '3a t 7a' he should add 3 and 7, write 
a *10\ and write an *a' next to it. This i s  a short cut which he wi l l  
discover. It is important that the student become proficient in apply- 
ing the short cut, and it i s  also important that he understand that the 
short cut i s  a consequence of certain basic principles about real num- 
bers. 

One sequence of content in Unit 2, then, i s  directed toward profi- 
ciency in manipulation. The proficiency i s  attained through drill in 
the use of short cuts. [A short cut is being applied when a student 
recognizes that he can compute ( 2  7)(5 9) just by computing 10(7 9). ] 
And, the short cuts a r e  justified by theorems which a r e  deducible 
from the basic principles. Naturally, i t  i s  not necessary that a stu- 
dent actually deduce all of the theorems which justify the short cuts 
he w i l l  use. Even i f i t w e r e  possible to  bring all students to  the intel- 
lectual level necessary for such an accomplishment, you would not 
have the time to  do it. The very best students in the class will be able 
to deduce all of the theorems and all students should be able to deduce 
some of them. 

[Unit 21 







We open this unit on the use of let ters  in mathematical sentences 
with a carefully worked-out "gimmickt* designed both to entertain 
the student and to help him build correct ideas. Although our develop- 
ment i s  completely different from that found in existing textbooks in 
high school mathematics, it is in line with the concept of the role of 
x * .  *y *, etc. most widely accepted by logicians. We hope you will - - 

find time to  look into ~ a r s k i ' s  ~ntroduction to  Logic and compare his 
treatment of variables with our development. Another book which 
you may find useful in this context is the 24th Yearbook of the National 
Council of Teachers of Mathematics, - The Growth of Mathematical 
Ideas. The chapters "Language and Symbolism in~a thema t i c s* ' ,  by 
7 

Fouch and Nichols, and "Relations and Functionst*, by May and Van 
Engen, a re  particularly relevant here. 

We do not anticipate that the student will have trouble with this unit; 
however, may have some difficulty in eliminating the traditional 
explanations and terminology from your own thinking and conversa- 
tion. If you a re  also teaching traditional classes from a conventional 
textbook, your problem is even more difficult. We t rus t  that you will 
bear with us even though it may mean temporary schizophrenia for you. 

The colored insert behind page 2-B serves to  make the holes stand 
out more clearly. The student should not make any marks on page 
2-B.  He wi l l  refrain from doing this i f  he reads carefully the 
instructions in the class exercise on page 2-C. 

The student wi l l  need to read the material at the top of page 2-C in  
order to understand completely Mr. Jones * way of giving True -False 
tests.  The class exercise on page 2-C should clarify the procedure 
for the student. 



[ ~ n t  r odu ct ion] 

T r u e  o r  Fa l se .  - -Mr.  Jones who teaches mathematics in --- 
Zabranchbur g Junior High School has an interesting way 

of preparing True -Fa l se  t e s t s .  F i r s t ,  he duplicates one 

sheet  of i t ems  for each student in his c lass .  Then he uses  

a paper punch to  make holes a t  various spots on these 

pages . 

T u r n  to  page 2-B t o  see  the first page of M r .  Jones* 

t e s t .  











[introduction] 

TRUE - F A L S E  TEST 

t h e  space to the l e f t  Instruction5: W r i t e .  'T' in 
of an i t e m  
W r i t e  ' F '  in 
siatemen+ is 

i f  the  ~ t a t e r n e n t  is true. 
t h i s  space i f  the 
to-Ls. 





Instruct the student to use the colored insert page as the second page. 
If he makes his numerals small, it will be easier for his neighbor to 
align the second page with the first. Suggest to the students that they 
make easy problems, rather than difficult ones, since the purpose of 
this exercise is  not to test ability to do arithmetic computations. Also, 
they should take pains to see that about half the completed sentences 
are  false, since there i s  a tendency to convert all of them into true 
ones. Check this by walking among them as they compose the second 
page. 

4. 
Â¥V 

Answers for Part D. 

Yes 2. Yes 

This exercise i s  a fooler. Actually, there i s  no single answer 
which every student should have for this item. Some students 
will have composed false items and some students will have 
composed true ones. The students should be able to foresee 
this situation. But, if some of the students do not understand 
that the answers may differ, you can ask for a show of hands of 
those who have *T1 and for a show of hands of those who have 
* F*. 

For items 1, 2, 10. 

Some students will have used a numeral which makes the sen - 
tence true, and others will have used a numeral which makes 
the sentence false. 

Some students may assert  that the sentence in the tenth question on 
page 2 -B is true or "always true". In that case, you must point out 
that what the student means is  that no matter what numeral appears 
in the hole, the resulting sentence is true. But, the sentence: 

i s  neither true nor false. [See page 2-14. ] 

In reading page 2-D, you may want to encourage some discussion 
about why the students in Mr. Jones' class were unable to answer 
most of the items when Mr. Edwards was supervising the test. 
Elicit from the students the idea that a sentence with a hole in it 
i s  neither true nor false. [Later in the unit we call such sentences 
'open sentences'. ] 



[ht  r odu c ti on] 

Next, he duplicates several different second pages. Each 

second page can be slid under the f irst  page, and has numerals in 

positions matching the hole s in the fir st page. When a student 

takes this test,  Mr.  Jones gives him a copy of the f irst  page and 

a copy of one of the second pages. Then the student fastens the 

pages together and is ready to work on the test.  

CLASS EXERCISE 

A. Make up your own second page for the True-False test on - 
page 2-B. Choose your numerals for the second page s o  that 

about half of the items on the test a r e  false. Now, take the 

test and record your answers ["I" or 'F'] in a column on 

another sheet of paper. 

B. Exchange second pages with your neighbor. Take this new - 
test and record your answers in a column alongside the an- 

swers to  the f i rs t  test.  

C. Repeat Part B by exchanging the second page you now have - 
for that of another neighbor. 

D. Look at your three columns of answers. - 
is there a *T* for item 1 in each column? Should every 

student in the class have written 'T * for item I ? 

Is there an *F* for item 2 in each column? Should every 

student have written *F* for item 2 ?  

What answer should every student have for item 3 ?  Ex- 

plain. 

For what items on the test  should every student have the 

same answer? 

Explain why it is unlikely for every student to have the 

same answer for, say, item 8 ?  



(Intr d u c t  ion] 

Mr .  Edwards, principal of Zabranchburg Junior High, took 

over M r .  Jones' class one day when Mr.  Jones was ill. Mr.  Jones 

had sent instructions for M r .  Edwards to give the class the True- 

False test which was in the top drawer of the desk. But, Mr. Edwards 

was not told to give out the second page, also. At the beginning of 

the class period M r .  Edwards distributed the f i rs t  page of the tes t  to 

the class, and told them he would collect papers at the end of five 

minutes. In the meantime, 

Of course, no student had any trouble telling that the first state- 

ment was true and the second statement was false. Item 3 puzzled 

the students. They wished they could ask Mr. Edwards for the second 

page, but they remembered : 

NO TALKING ! NO QUEST IONS ! 

Why were the students puzzled? Why could they answer item 2 

but not item 6 ,  for example ? Think carefully about why the students - 
were unable to  answer most of the items. 





In each of the exercises on pages 2-E, 2-F, and 2-G, the students 
must find a number which sat isf ies  al l  of the sentences in the exer-  
c ise .  They will probably begin by looking for a numeral which when 
written in all the blanks yields t rue  sentences. For  example, in the 
case of the Sample, the student inight choose the numeral *5* because 
he recal ls  that *5 t 3 = 8* is true.  In this case  he would fill in the 
blanks like this : 

5) is an  odd number. If I add 3 to  @ the sum is 8. 

Another student might recognize that '8 - 3* is an  appropriate nu- 
m e r a l  and would write:  0 is an odd number. If I add 3 t o  @ , the sum i s  8. 

Any other numeral for 5, say, '10 + 2*, o r  *4 t l * ,  .night correct ly 
be used in  filling the blanks in the Sample. A student might even fill 
the blanks like this : 

is an odd n u n b e r  If 1 add 3 t o  \0+2 , the sum is 8. 0 
Such a student should realize that, while he has fulfilled the instruc- 
tions that he write in each blank a numeral for  the same number, in 
order  t o  know that he has done so ,  he has to  know that 4 + 1 = 10 + 2. - 
The student who writes '5' in - each blank, or who writes *10 + 2* in 
each blank does not need such additional information. In any case,  - 
the number which the student should find is 5, whether he calls i t  *5*, 

'V*, 'g' , o r  '57 - 52*. 
3 

.I/ 
"I' 

These exercises should be handled on a very informal basis. Need- 
l e s s  to say, this is not the place to introduce formal notions of 
equation-solving! You should work several  exercises with the stu- 
dents to  be s u r e  they know how to proceed. 

Give the students complete freedom in devising their own methods 
fo r  discovering correc t  answers. You may have to  caution students 
against getting help from home on these exercises.  

.I. 
* I -  

Answers for Exercises,  [on pages 2-E, 2 - F ,  and 2-G]. 



[ ~ n t r  odu ction] 

EXERCISES 

Below are  several exercises each having blanks. For each 

exercise find a number such that when a numeral for it is put in 

all of the blanks in that exercise, the sentences in the exercise - 
become true.  In some exercises there may be another number that 

will do the job. [ ~ n  some there may not be any. ] 

Sample. 

0 is an odd number. 

Solution. Pick a number 

If I add  3 to 0, the sum is 8. 

a t  random, say, 9. Write a sirn- 

pie name for it  in each blank. 

\^/ is an odd number. If I add 3 to (̂ } , the sum is 8. 

The last  sentence is false, s o  t ry  another number. 

Keep trying until you get true sentences. 

T r y  5. 

\5) i s  a number. If I add 3 to \5J , the sum is 8. 

For 5, both sentences become true. 

0 is an even number. If I multiply 0 by 7, I get 42. 

0 is a real number. If I subtract -3 from V.) , I get +4. 

0 is a number. If I add 2 to 0 , the sum is 1. 

4. If I divide the number 0 by-3, the quotient is 8. 

0 is an even number. If I divide 0 by 4, I get 5. 

6. I f I a d d  0 to 0, I g e t  6, andif  I add  0 t o 6 ,  I g e t 9 .  

(continued on next page) 



[Introduction] 

7. If I add 0 to 0 , the sum is 0 . [DO you have a 

numeral for the - same number in al l  three blanks ?]  - 

8. 0 isarealnurnber.  IfIrnultiply 0 by 0 , I g e t  

100. [There a r e  two numbers which will work! ] - 

0 is a positive number. If I multiply 0 by 0 , the 

product is 81. 

1 .  If I multiply 0 by 0 , the product is 25, and i f  I add 

0 to  7 ,  the sum i s  2. 

11. I f Imul t ip ly  0 b y 2 a n d a d d 4 ,  I g e t  17. 

12. I f ~ a d d o  t o 8 a n d d i v i d e  by3 ,  I g e t  8. 

13. I f I a d d  0 t o 7 ,  I g e t  2 x  0 . 

14. If I sub t rac t  5 f r o m  0 andmul t ip lyby5 ,  I g e t 0 .  

15. If I a d d  () to 12, 1 g e t 0  X 0 . 

16. If 1 multiply 0 by 4, the product i s  0 . 

17. IÂ I add 0 to 4, the sum i s  0 . 

18. \^J i s a n o d d n u m b e r ,  0 > 2, and 0 < 9. 



0 [YOU may find a tendency among some students to  refer  to 
two numbers in order to get t rue sentences. Thus, we have 
added the bracketed caution note. ] 

"10 and ""10 [You may want to ask the class what answer they 
would give for Exercise 8 if ' loo* i s  interpreted as a numeral 
for  a number of arithmetic rather than as a short name of "'100 .] 

0 [AS in Exercise 7, you may find that some students hesitate 
to  select 0. Use this opportunity to s t ress  that 0 is a perfectly 
respectable number. ] 

There is no number which will work. [Some students may ob- 
ject to  this exercise because there is no number whose name 
w i l l  convert the sentence to a true one. Others may suggest 
that 0 i s  the required number, since "nothing works and 0 is 
nothing**. Point out to  students that in this course they should 
expect to find problems whose solutions a r e  somewhat uncon- 
ventional. ] 

Students should supply all three of the required numbers: 3, 5, 
and 7. 

Short quizzes a r e  given on the pages listed below. 

TC[Z-G. H. I] TC[2 -22. 23]a, b TC[Z - 3 1,32]d 

TC[Z-37]c TC[2 -38]e TC[2-48.49.501b 

TC[Z -5 1]d T C[Z -76]a TC[~-88]c 

~ ~ [ 2 - 9 0 ] b  TC[2 -99]b TC[2- 11 11 







19. -7, "7 20. Each number will work. 21. Each number will work. 

We think that Sammy's attitude i s  a common one among beginning 
students. You might ask the students if they also believe as  Sammy 
does that algebra is arithmetic with letters. If one thinks of algebra 
a s  arithmetic with letters, i t  i s  perfectly reasonable to wonder, 
"Does a t b = c ? "  or, "Does x - y = w ? "  and to feel that once one 
learns the correct combinations of letters, one can do algebra just 
as one did arithmetic. It is  one of the major purposes of this unit to 
reveal to students the role that let ters  actually play in algebra. 

The essence of the concept of variables i s  contained in Fred's dis-  
covery [described on page 2-11 of the similarity between letters and 
the holes in the paper. Both the letter and the hole in the paper a r e  
marks which hold places for numerals [but not - for numbers]. Try to 
get the students to point out the similarity in function between the 
letters and the holes in the paper. 

Here i s  a quiz for maintaining skill in using the principles for short 
cuts. You should ask the students to write answers as  quickly as 
possible. 

Simplify . 

Answers for Quiz. 
1 .  -326 2- 499 3.  -793 4.  1376 5. 0 



19. The absolute value of 0 is  7. 

20. The sum of 0 and 2 i s  the sum of 2 and 0- 

23. A name of 0 is a two-digit numeral for a positive whole number. 

If the digits in the numeral a r e  interchanged, the result i s  a two-digit 

numeral which i s  still a name of 0- 
SAMMY'S PROBLEM 

Sammy, a student in Mr. Jones * class,  heard his older brother say 

that algebra was a lot different from arithmetic. "In algebra you do 

problems with letters as  well a s  with numbers. * *  Sammy was puzzled 

by his brother's remark because he didn't know, for example, how to  add 

letters and numbers. He wondered what a + b could be. Was it c ?  How 

could you add 3 and x ?  Since Sammy was hardly an expert in mathematics, 

he supposed that a few of the "whizzes" in his class might know. But, he 

didn't want to  approach them directly with his problem. 

The next day he thought he found a chance to learn some arithmetic 

with let ters .  Mr. Jones gave out the f irst  page of a new True-False test. 

He told the students that he was not going to hand out second pages this 

time but, instead, he wanted each student to make up his own second page 

[as you did on page 2 -C ]  and hand it to his neighbor. In this way, each 

student made a test for  his neighbor. Can you guess the kind of second 

page Sammy wrote ? 

Sammy exchanged second pages with Fred. [Fred's nickname was 

'The Brain'.] Fred answered the f irst  two items and then stopped in 

bewilderment. Turn the page to see his test .  



[Introduction] 

TRUE. - FALSE TEST 

item if the statement i s  true. W r i t e  
'F' in thi5 space i f  t he  statement is fahe. 



[ ~ n t  roduction] 

Fred  raised his hand and said, "Mr. Jones, I don't know how 

to do this test .  * *  Mr. Jones w a s  very surprised, and so  was the 

res t  of the class,  for  there never seemed to be a problem that Fred 

couldn't solve. Sammy thought to himself that now he would never 

find out how to do arithmetic with let ters .  Fred said that Sammy 

had put let ters  instead of numerals on the second page. He said, 

"It's impossible to tell  whether '3 t x = 2' i s  true or false be- 

cause . . . " Suddenly, Fred stopped talking. He seemed to be 

thinking very hard. Then he said, 

"I know. The thing wrong with 

this test  is just what was wrong 

with the test when Mr.  Edwards 

was here. ' *  

Fred was right. Can you tell  why? 







In connection with the discussion of t rue  sentences and false sentences, 
i t  may be helpful t o  recal l  to  the students the discussion on page 1-L 
of Unit 1. A sentence which consists of an equality sign flanked by a 
pair of numerals i s  a t rue  sentence if the numerals a r e  names of the 
same number; it is a false sentence if the numerals a r e  names of dif- 
ferent  numbers. 

In P a r t  A of the exercises we introduce other kinds of "holes". This 
corresponds to  introducing several  le t ters  a s  variables in a conven- 
tional course. 

Pages 2-2 through 2-7 a r e  s o  designed that students can complete 
the exercises with a minimum of writing. We suggest that you do 
not compel the students to copy the given sentences. This is ex- 
t remely time-consuming, and may make students resentful. All 
they need do is write numerals in the f rames  and decide upon the 
truth o r  falsity of the resulting sentence. If you want to make a pe r -  
sonal check of each student's book, you can have him remove the 
pages from the text and submit them to you; they can be corrected, 
returned, and replaced in the text. 



2.0 1 Sentences. --When Mr .  Edwards gave out only the first page 

of the True  -Fa lse  t e s t ,  the students felt  that most  of the questions 

were sil ly.  How could you a s k  "True o r  f a l se?"  about a sentence 

with a hole in  i t ?  A sentence such as : 

i s  neither t rue  nor fa l se .  The sentence: 

9 t 6 = 1 5  

is t rue because '9 t 6' and '15' a r e  numerals  for the same number,  

and the sentence : 

9 + 7 = 1 5  

i s  fa lse  because '9 + 7' and '15' a r e  numerals  for  different numbers.  

But, since a hole i s  not a numeral ,  

and so ,  the sentence with the, hole in i t  is neither t rue  nor f s l se .  

You can convert a sentence which has a hole in i t  into a sentence 

which i s  e i ther  t rue  or false  by putting a numeral in the hole. - 

EXERCISES 

A.  Each of the following exerc ises  contains a sentence with one or - 
m o r e  "holes" in i t .  F r a m e s  like: 

a r e  used to show you where the holes a r e .  Your job i s  to  put 

a numera l  in each hole in  the sentence a s  instructed, and 

then te l l  whether the new sentence you get is t r u e  o r  false. 



Sample 1. (a) Write a '7' in each frame. 

(b) Write a '-5' in each frame. 

( c )  Write a '5' in each frame. 

Solution. 

This sentence is  false because 

7 + 7 + 3 i s  17, 7 - 2 i s  5, and 1 7 #  5. 

Since -5 + -5 + 3 = -7  and -5 - 2 = -7,  

this sentence is true,  

u + 
13 3 

Since 13 # 3, this sentence i s  false. 

1. (a) Write a '3' in each frame. 

(b) Write a '-2' in each frame. 

2xn + 5 = 7 X  

( c )  Write a '2' in each frame. 





Answers for  Par t  A [which begins on page 2- 1 and continues through 
page 2-51. 

1. (a) F (b) F (c) T 

2. (a) T (b) T (c) T 

[In Exercise 2 some students may be able to predict that the com- 
pleted sentences will be true ones. The basis for this prediction, of 
course, i s  the fact that the completed sentences a r e  consequences of 
the distributive principle and the fact that 3 t 2 = 5. A student may 
be tempted t o  asse r t  that the open sentence itself i s  true. Point out 
to him that what he really means i s  that you get a true sentence how- 
ever you f i l l  the holes with numerals.] 

[ ~ n  connection with Exercise 6, you may want to ask the students if  
they could ever convert the given sentence into a false one. This type 
of question will make all students aware of the fact that the converted 
sentences a r e  instances of the commutative principle for addition.] 

7. (a) F (b) (c) F 

8. (a) T (b) F (4 F 
9. (a)  F (b) T (c) T 

[In connection with Exercise 9 ,  there a r e  two possible interpretations 
[see page 1-110.3. The exercise becomes trivial if the left sides of the 
sentences obtained in (a),  (b), and (c) a r e  interpreted as  numerals for 
numbers of arithmetic, for the right sides name real  numbers.  his 
is the case because absolute valuing is an operation on real  numbers; 
hence the '5*, '-3*, and '2' which a r e  to  be used as  replacements for 0 '  [in sentences (a), (b), and (c), respectively] must be interpreted - 
as  numerals for rea l  numbers.] With such an interpretation, each - 
sentence is false. [In (c), since the *2* which replaces * 0* is a 
numeral for the real  number ""2, the expression '2 - 2' which occurs 
in the "completed** sentence must name the real  number 0.1 How- 
ever, if  we interpret * 10 - 21' as  an abbreviation for '""0 - 21*, 
then, while the sentence obtained in (a) is again false, those obtained 
in (b) and (c) a r e  true. In general, ' I . .  . . . . 1 * should be interpreted 
as  an abbreviation fo r  '+ . . . . . . 1 ' whenever not doing so would render 
an expression nonsense : 15 1 t '"31, and whenever not doing 



2. (a) "Write a '4' in each frame. 

(b)  Write a '0' in each frame. 

(c) VJrite a '-5' i n  each frame. 

3. (a) VJrite a '-2' in each frame. 

(b) Vlrite a '0' in each frame. 

(c) Write a ' 1  ' in each frame. 

4. (a) *-1'in each frame. 

(b) *6* in each frame. 

(c) ' 2 '  in each frame. 

5. (a) '*'in each frame. 

0 + 3 x o  = 2 5  

(b) ' Ã ‘ i  eachframe. 

6 3 x 0  = f i  

(c) '8'  in each frame. 

( continued on next page) 
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so  would render a sentence true or false for the sole reason that 
numbers of arithmetic a re  different from real numbers. For example, 
we interpret the sentence * 15 1 = -5' as  an abbreviation for *+I5 I = -5* 
and thus declare it false because *5 # "5. We do not say that * (5 1 = -5' 
is false because the number 5 of arithmetic is different from the real  
number "5. Similarly, we interpret ' } 5 1 # '3' a s  an abbreviation for 
*+I5 1 # '3' and declare i t  true because +5 > +3.] 

[In connection with Exercises 1 2  and 13 on page 2-5, caution students 
to follow the instructions precisely as  they a re  given. For  example, 
a student may want to write a '16' in each rectangle in Sample 2. Of 
course, he wi l l  come out with the same decision as  if  he had followed 
the instructions. However, we a re  trying to lay the groundwork for 
substituting complicated pronumeral expressions for pronumerals . 
Also, a student might feel that he could omit the grouping symbols 
when making these replacements since the frames themselves serve 
as  grouping symbols. However, when we come to  use let ters  instead 
of frames,  the grouping symbols included in the expression to be sub- 
stituted will often have to be retained. [ ~ n  fact, in some cases, the 
student wi l l  need to  enclose in grouping symbols the expression to be 
substituted. You could tell students that when they make the replace- 
ment of the long expression for the frame, they should pretend that 
the frame has disappeared. In fact, i f  the frame were actually a 
hole, there would be no sign of the hole when a replacement w a s  made. 
In that event, if one substituted '9 t 7' instead of *(9 t 7)' in Sample 2, 
he would come out with the wrong decision about the converted sen- 
tence .]] 



Sample - 2. Write a '(9 + 7)' in each frame.  

Solution. 3 x [ ( 9  + 7)] - 7 = I [ ^ +  7) l  + 25 

T h e  new sentence i s  t rue.  

12. (a) '(3 X 9 t 13)' in each frame.  

(b) '(10 X 11 - 104)' in each frame.  

2 X(16 - 11)' in  eachframe.  (c> '[I + 3 

13. (a) '(15 - 3)' in each frame.  

(b) ' ( - 8 i23 ) ' i neach f r a rne .  

(c) '(7 - 20)' in each frame.  



B. The exercises below a r e  like those in  P a r t  A, except that several  - 
types of f r ames  a r e  used in the same sentence. Follow the in-  

structions for putting numerals in the f rame s ,  and te l l  whether 

each new sentence is t rue  or false.  

1. (a) Write a '4' in each '0' and a '3' in each 'a'. 

(b) Write a '3' in  each '0' and a '4' in each '0 '. 

(c) Write a '-5' in  each '0' and a '6' in each 'a'. 

2.  (a) '-7' in each '0' and '-3* in each '0'. 

(b) '5 ' in  each 'a ' and '2 '  in each '0'. 

( c )  '0' in each 'a' and '0' in each '0'. 

3 .  (a) '5 '  in each 'u', *3' in  each * 0 ' ,  and '4' in each *0'- 

(b) '-4' in each ' a ' ,  '2' in each 'o', and '-4' in each ' 0' 

(c) '873' in each ' a ' ,  '-9384' in each '0'' and -76.2' 

in each '0\ 



The sentences in Part  B contain more than one variable. You may 
need to emphasize the instructions that copies of the same numeral 
are  to be written in similarly shaped frames in a given exercise. 
When discussing these exercises, avoid saying or writing things like: 

0 = 3, and: 0 = 2. o= 1, 

Say, instead: ' l ' f o r  '0'. or: ' l ' r ep laces  'o', or: a ' l ' i n e a c h  
'0'. 

.I. 
-Â¥I 

Answers for Part  B [on pages 2-6  and 2-71. 

[Notice that in Exercise 2(c) the students are  asked to put copies of 
the same numeral in all of the frames. Some students may feel that 
differently shaped holes should get different numerals, but this exer - 
cise i s  designed to eliminate such a misconception.] 

(a) T (b) T (c) T [we hope that many of your students 
will be able to predict that each completed sentence in Exercise 3 
will be a true sentence because it is an instance of the associative 
principle for addition. As before, there may be a tendency for 
the students to declare that the given sentence i s  a true one. 
Again, as  before, point out that sentences with holes in them are 
neither true nor false, and what the student really means is  that 
all " completed" sentences following that pattern are  true sen- 
tences. The fact that we refer to such unwieldy numbers in 
Exercise 3(c) i s  a sign that we want the student to look for a short 
way of doing the problem. In this case, we want him to recognize 
an instance of the associative principle for addition. ] 

(a) T (b) T (c) T [As in Exercise 3, we hope that stu- 
dents will be able to predict that each "completed" sentence in 
Exercise 5 will be a true sentence; a "completed" sentence in 
Exercise 5 will be an instance of the commutative principle for 
multiplication. ] 

(a) T (b) T (c) T [ ~ n  discussing Exercise 6, avoid 
reading it aloud as 'negative box . . . *. We use the word 'nega- 
tive' when talking about numbers, but never with pronumerals. 
If you need to read aloud the sentence in Exercise 6, read i t  as  - 
'the opposite of box, plus 3 times hexagon, equals the opposite 
of the quantity, box minus 3 times hexagon*. We sound this note 
of warning now so that later you will not find yourself saying 
'negative x* when you mean 'the opposite of x*. ] 





(a) *8* in each ' o * ,  ' 2 '  in  each 'O', and '20' in each 'a'. 
5 x O X O  '0 

(c) '0' i n  each ' o * ,  '0' in each * 0 ' ,  and '0' in each 'a'. 

5. (a) '5'ineach'0'and'$'ineach'D'. 

(b) '2.4' in each ' 0' and '-2.4' in each ' 0'. 

(c) '783' in each '0' and '9359' in each '0'. 

6 .  (a) '4' in  each ' 0' and '6' i n e a c h  ' 0'. 

(b) ' - 3 * i n e a c h L C ] ' a n d ' - 5 ' i n e a c h b 0 ' .  

( c )  '-5' in each ' 0' and $ '  in each 00". 
3 -0 t 3 x O  =-(u - 3 ~ 0 )  



Consider the sentence : 

As you have seen,  this  sentence can be used a s  a pattern for  writing 

t rue-or - fa l se  sentences.  One way t o  do this  is to  write numerals  in the 

f r ames ,  observing the rule that we write copies of the same  numeral  in 

a l l  f r a m e s  of the s a m e  shape. F o r  example, he re  is a sentence which 

follows the pat tern of ( * )  : 

Another way of following the pattern i s  t o  write numerals  in place of the --- 
f r ames  : 

3 x 1  t 4 X  5 = 1 7 +  2. 
Of course,  we replace all f r ames  of a given shape by copies of the 

same numeral .  In the example above, we replaced each 'Q*  in  (*) by a 

'2' and each '0' by a '5'. F o r  short ,  we say  that we substituted '2' for 

' Q *  and '5' for '0' in  (*). Here  a r e  some m o r e  sentences which follow 

the pat tern of (*). Tel l  what substitutions were made in ( * )  t o  obtain 

these sentences.  

Here a r e  other examples of sentences with f r ames  in them, and of 

sentences obtained by substituting for  the f r ames .  



We give here a precise description of what i s  meant by 'substitution'. 
To substitute a numeral for a frame in a sentence or an expression 
i s  to replace each occurrence of the frame by copies of the numeral. 
We also make the point that a sentence with frames in it gives us a 
pattern for writing other sentences. Naturally, we assume that the 
student has made this point for himself in the preceding exercises. 

Be very careful &to say things like 'substitute A = 1'. This is 
not only grammatically indefensible, but will set up serious blocks 
against your students* learning to carry out substitutions. As a very 
brief indication of the sort of difficulty that we want to avoid, note 
that: 

substitute 'x t y' for 'x' and ' x - y* for ' y' in 'xy = yx* 

makes perfect sense and i s  easy to do [the sentence which results i s  
'(x t y)(x - y) = (x - y)(x t y)']. But: 

substitute x = x t y and y = x - y in ' x y  = yx' 

i s  not only nonsense but very confusing nonsense. [We recognize that 
colloquialisms like ' substitute x = 3* do appear in conventional text- 
books, but such colloquialisms are  completely indefensible. They do 
not even save time. UICSM students will be able to divine the meaning 
if  they see them in conventional textbooks or on standardized exami- 
nations. ] 

Notice that in the exercises in Part  A we have reduced the size of the 
frames. This is to forestall attempts on the part of the student to 
write numerals in the frames. In substituting numerals for frames, 
the frames are  replaced by the numerals. When the student makes the 
substitutions, all he need do is rewrite the sentence, using numerals 
instead of frames. A good way to demonstrate this at the blackboard 
is to take the sentence in Exercise 1 and write i t  on the board. Then, 
erase the two occurrences of ' A * and write '2's in the resulting 
spaces. Next, erase both occurrences of ' 0 *, and write '7 *s in the 
resulting spaces. Of course, students will not be able to carry out 
this erasing procedure on their own papers, but your demonstration 
will make clear what i s  expected of them. 





Sentence (1) on page 2-8 i s  obtained by substituting, in (*), '51' for 
' 0  * and ' 9' fo r  0 '; (2) by substituting '-6' for  ' 0' and '8' for ' 0'; 
(3) ,  '7' fo r  '0' and '7' for  '0'; (4), '(5 +- 2)' for ' 0 '  and '7' for ' 0 ' ;  
(5), '(2 X 6)' for  '0 '  and '3' for '0'; (6), '(4 t 2 X 9)' for '0 '  and 
'(17 - 3 X 5)' fo r  ' 0'.  Notice that the right side of (5) has been abbre-  
viated by omitting unnecessary parentheses. "Whenever a sentence fol- 
lows some pattern we shall also say, somewhat loosely, that an abbre- 
viation of the sentence follows the same pattern. Also, we shall allow 
ourselves to  say that, for example, sentence (5) i s  obtained from (*) 
by substituting '2 X 6' for ' 0' and '3' for '0 ', although, in replacing 
one of the * a ' s ,  we must write the unabbreviated expression '(2 X 6)*, 
rather  than merely '2 X 6'. As another example, (4) may be said to  
be obtained from (*) by substituting '5 t 2' for  ' 0 * and '7' for ' 0'. 
Exercises 4, 5, and 6 of Pa r t  A, and Exercise 2 of Pa r t  B, on page 
2-9, a r e  cases  in which an expression to be substituted for a frame 
must sometimes be unabbreviated to the extent of being enclosed in 
grouping symbols . 
In case  there is any question a s  t o  the result  of making a substitution, 
the rule i s  that the expression substituted should f i r s t  be enclosed in 
grouping symbols. Then, after the substitution has been made, one 
may investigate to see whether our conventions for omitting grouping 
s yrn bols apply. 







An,swers for Pa r t  A. 

1. 9 X 2 + 3 X 7 = 1 5 X 2 X 7  

2. 3  x (-9 t 5) - 2  x ( 5  t -9) = -9 t 5  

3. ( 4  t 1) x ((3 t 5) x (9 t 2)J = ( 4  t 1) x ( 3  t 5) x (9 + 2) 

4. 3 X ( 8  t 3 )  t 5 X ( 8 + 3 ) = 8 8  

5. 6 + 3 X 5 = 2 X ( 3 X 5 )  - 9  

6. 2 X ( 1 5 - 3 x 2 )  - 5 X - 7 = 1 2 X ( 1 5 - 3 X 2 - - 7 )  

Answers for Part B [on pages 2-9 and 2-10]. 

1. ( 6  t 9) X  5  = 6 X  5  + 9  X 5. True, because the new sentence is 
an instance of the dpma. Check: 75 = 75. 

2. 10 X ( 3  + 2 x 5 )  = 3  + 2 x 5  + 117. True:  Check: 130 = 130. 

3. 6 X  (15 X 2  - 5  X 2 )  + 5  = 135. False. Check: 1 2 5 /  135. 

4. 5  X  3 + 12 X  12 = 1 3  X  13. True. Check: 169 = 169. 

5. ( 2  X  9 - 7) X  ( -7  t 7) = 0. True,  because the new sentence is a con- 
sequence of the commutative principle for addition, the principle of 
opposites, and the principle for multiplying by 0. Check: 0  = 0. 

6. ( 4 t  2 X 7 ) X ( 6 X 3 - 2 X 5 ) = ( 6 X 3 -  2 X 5 ) X ( 4 + 2 X 7 ) .  True, 
because the new sentence is an instance of the cpm. Check: 
144 = 144. 

7. ( 3 x 5  - 7 X 2 ) X ( 3 X 5  - 7 X 2 ) = ( 7 X 2 - 3 X 5 ) X ( 7 X 2  - 3 X 5 ) .  
True, because 7  X  2  - 3  X  5  is the opposite of 3  X  5  - 7  X  2, and 
the product of a number by itself is the product of its opposite 
by i t s  opposite. Check: 1 = 1. 

8. 6 1  + 37 + 9 3  = 61 + (37 t 93). True, because the new sentence 
is an instance of the apa. Check: 191 = 191. 

9. 7  X  3  + 2  X  2  = 9  X  3 X  2. False. Check: 25 / 54. 

1 1 1 1 True. Check: 30T = 3OZ. 10. ( 5 t z ) X ( 5 t - , ) = 5 x ( 5 + 1 ) + ~ .  
[You may want to anticipate Exercise 13 on page 2- 38 by asking 
students to make other substitutions and check them. ] 



EXERCISES 

A. - F o r  each of the following sentences, write the sentence you get by 

making the indicated substitutions. 

1 ,  Substitute ' 2 '  for 'A' and '7' for  'a' in: 

2.  Substitute '-9' for  '0' and '5' for ' A '  in: 

3 x (  0 + A ) - 2 x (  A + 0 ) =  0 + A 

3. Substitute '(4 + 1)'for ' a ' ,  '(3 + 5)' for 'o', and '(9 + 2)' for  'A '  in: 

4. Substitute '8 + 3' for 'a' in: 

3 X  + 5 X  0 = 8 8 .  

5. Substitute '3 X 5' for ' Q'  in: 

6 .  Substitute '15 - 3 X 2' fo r  'A' and '-7' for '9' in:  

2 x  A - 5 X  0 = 1 2 X (  A - ). 

B. Substitute, and tell  whether the resulting sentence i s  t rue  or false. - 
T r y  to  predict the answer before substituting and computing, but be 

su re  to  check your prediction. 

1. '5' for  ' D', '6' for 'A'Ã and '9' for '0' in :  

( A + O ) X O =  a x r J + o x n *  

2. '3 + 2 X 5' for ' T I '  in :  

10 X 1__] = r) + 117. 

3. '15 X 2 - 5 X 2 ' fo r  '<Ã‘Ã‘ in: 

6 x <rr̂  t 5 = 135. 

4. ' 5 ' f o r  'A', '12 ' for  ' 0 ' .  a n d ' 1 3 ' f o r  'Q ' in :  

A x A + O x O = 0 x O .  

5. '9' for 'A'  and '-7' for '0' in :  



' 3  X 5 - 7 X 2' for  'A' and '7  X 2 - 3 X 5 '  for  '0' in :  

'61' for  '0'. '37' for 'a', and '93' for  'A '  in :  

'3 '  f o r  'A' and '2'  for  'Q'  in:  

C. Sometimes instead of substituting numerals  for  f r ames  in a sentence, - 
we substitute expressions which themselves contain f r ames .  This  

gives us  a new sentence which contains f r ames .  

Sample. Vr i t e  the sentence you get when you substitute 

'3 X 0' for '[-4' and '4  + 0' for  'a' i n :  

Solution. 

[why do we need to use only one pair  of parentheses?]  

1. Substitute ' 6  - 2 X 1-'forb<3' in: 

2. Substitute ' A -  2 X  u ' f o r  ' L J '  and ' 3 X  0 + - A ' f o r  '-'in: 

3. (a) Substitute '3  t 0 ' for  '=I' and ' 2  - A ' for  'a' in:  

I=+ -= CI+ fa* 

(b) In the sentence you obtained in  ( a ) ,  substitute '5' for '0 '  and 

'9' for  'A'.  Is the resulting sentence t rue  ? Could you have 

predicted your answer before doing any computations ? 



Answers for Part C [on pages 2-10 and 2-11]. 

3- (a) 3 t  D + ( Z - A ) = Z -  A + ( 3 +  m 
(b) 3 + 5 + ( 2  - 9) = 2 - 9 t ( 3  + 5). True ,  because the new 

sentence is an instance of the cpa. 

[Bring out that each resul t  of substituting numerals  for  * 0 * and 
* 0 in:  

is an  instance of the cpa. And that consequently each resul t  of sub- 
stituting numerals fo r  'a* and * /^' in the sentence obtained in answer 
t o  3{a) is a lso  an  instance of the cpa.] 

- D X ( 3 t A ) t  O X ( 2 t O )  4. ( a )  0 x [ ~ + A + ( ~ + D ) ] -  

(b) - 3 ~ [ 3 + 2 + ( 2 + - 3 ) ] = - 3 X ( 3 + 2 ) + - 3 X ( 2 + - 3 ) .  True;  
the new sentence in (b) is an instance of the Aipma. 

(c )  -3 x [3 t 2 + ( 2  + -3)] = -3  X ( 3  + 2) + -3 X ( 2  t -3). T rue ;  
the new sentence in  (c) is an instance of the Mpma. 

5. (a) - = - - - 0 

(b) -"2 = - - --2. This  sentence is t rue.  - "2 = "'2, and - - - "2 is - - "'2, and - - *2 = - "2 which is "'2. 

tc) 0 - A  = -  - ( D - A )  

(d) "3 - "3 = - - ("3 - -3). This  sentence is t rue.  "3 - -3 is 0, 
and - -0 = -0 = 0. 







Answers for Part D. 

[We suggest that these be handled orally. ] 

True - False 

A numeral for A numeral for any number 

8 different from 8 

any number 

0 

any number 

0 or for 1 

different from 6 

different from 50 

different from 6 

different from 1 

different from 4 

[No numer all 

different from 0 

[No numeral] 

different from 0 and 
different from 1 



(b) Substitute '-3'for *a' and '2 ' for  'A* in the sentence you 

obtained in (a). Is the resulting sentence t rue?  

( c )  In the sentence originally given in (a ) ,  substitute *-3'  for 

'a*, '3 + 2' for *A', and '2 + -3' for '0'. Is the resulting 

sentence true ? 

5. (a) Substitute '- Q'  for 'A*  in: 

(b) Substitute ' -2' for * Q' in the sentence you obtained in (a). 

Is the resulting sentence t rue?  

(c)  Substitute * Q - A * for 'A* in the sentence originally given 

in (a). 

(d) Substitute '-3* for ' Q' and '-3' for 'A' in the sentence you 

obtained in (c). Is the resulting sentence t rue?  

D. For each of the following sentences, find a substitution which w i l l  - 
make it true, and a substitution which will make it false. 

Sample. 4 X Q = 8 0  

Solution, (a)  Substituting *20* for ' 0' you get : 

4 X 20 = 80, 

which is a true sentence. 

{b) Substituting '1 I '  for * q * you get: 

4 X  11 = 80, 

which is a false sentence. 

7 X Q = 5 6  2. 3 X D + 2 = 2 0  

0 t = 100 4. 2 X D + 8 X D = 6 0  

3 X D + 1 7 X Q = Z O  6. 3 X Q + 1 7 X Q = 8 0  

5 X 0 + 1 1 ~ 0 = 1 6 X Q  8. 1 3 X ( n + 2 ) = 2 6  

7 X ( D X 5 ) = 3 5 X D  10. 6 X Q x 4 x Q  = 2 4 x  Q 



E. In the preceding exercises you have been using sentences with f rames  - 
a s  patterns for writing other sentences which follow the patterns.  Now 

s e e  if you can reverse  the process by writing for each exercise below 

a sentence with f rames  which serves  a s  a pattern for the sentences 

given i n  the exercise.  

1. 3 + 9 = 9 + 3  

' 8 + 0 = 0 + " 8  

1 + 1 = 1 + 1  

2 X 3 + 6 X 5 = 6 X 5 + 2 X 3  

Pattern sentence : 

4 + 7 = 8 + 3  

4 + 2 = 8 + 5  

4 + 0 = 8 + 7  

4 + 3 X 5 = 8 + ( 6 - A )  

Pattern sentence : 

Pattern sentence : 

2 + 3 X 7 = ( 2 + 3 ) X 7  

5 + 9 X 7 = ( 5 + 9 ) X 7  

1 + 0 X 7 = ( 1 + 0 ) X 7  

O + l X 7 = ( 0 + 1 ) X 7  

5 + , 5 + ( 9 + a ) ~ 7 = [ 5 +  A + ( 9 + ^ 5 ) ] ~ 7  

Pat tern  sentence : 



In answering the exercises of Part E on pages 2-12 and 2-13, students 
may come up with any number of correct answers. For example* each 
of the following is an equally good answer for Exercise 1 of Part E: 

Moreover, the sentence ' = a ' is a correct [though unwanted] an- 
swer for each exercise of Part  E other than Exercise 3. It may even 
be helpful, in preparing students for finding the "best" pattern* to 
point out [before they attempt many exercises of Part E] that each 
sentence in Exercises 1 and 2 follows the pattern of ' 0 = A ', but 
also follows the finer [as opposed to coarser] pattern of ' 0  + A = 
0 t o  '. The sentences of Exercise 1 follow the still finer pattern 
of ' 0 t A = A  + 0 ', while those of Exercise 2 follow the pattern of 
'4 t A  = 8 t 0'. [One pattern is finer than a second if each sentence 
which follows the first pattern also follows the second pattern. Con- 
sider these patterns. 

The sentence : 

(a) 3 i -5 = -5 t 7 

follows from (11, and also could be obtained from (2). However* the 
sentence : 

(b) 3 t -5 = -9 t 7 

follows from (2); but (b) could - not be obtained from ( I )?  according to 
our convention for substitution. Hence, we say that pattern (1) i s  
finer than pattern (2) - 1  

Answers for Part E [on pages 2-12 and 2-13]. 

1. 0 + A = A i a  2. 4 t O = 8 t A  

3, O t A < O - A  4- O t A X 7 = ( O t A ) X 7  

[Be sure that students notice that the first  three sentences in Exercise 
4 are false.] 





5 .  All the instances of the commutative principle for multiplication. 

Pattern sentence: 

Pattern sentence : 

Pattern sentence : 

8. All the instances of the associative principle for addition. 

Pattern sentence : 

9 .  All the instances of the principle for multiplying by 1, 

Pattern sentence : 

Pattern sentence : 

Pattern sentence : 



2.02 Pronouns. --Suppose someone challenges you to  say  'True'  o r  

'False '  about the following sentence: 

He was a president of the United States. 

You don't need t o  know anything about presidentsy or  even about the United 

Statesy in o rde r  t o  know that it would not be correct  to  answer one way o r  

the other.  The sentence i s  neither t rue  nor false.  [If you put a man's name 

in place of 'He '  in the given sentence then the new sentence would be ei ther  - 
t rue  o r  false. ] 

Trying to  answer 'True '  o r  'False '  about the sentence: 

He was a president of the United States 

is just like trying to  answer 'True'  o r  'False '  about the sentence : 

Both sentences have "holes" in them. [You have seen  that a f rame such 

a s  ' 0 ' s e r v e s  a s  a hole. So does the word ' ~ e ' .  ] Neither sentence is 

t rue ,  and neither sentence i s  false.  

A sentence which i s  e i ther  t rue  or  false  is called a s tatement .  F o r  - - 
example,  '9 -t 6 = 15'  and 'Albert Einstein was a president of the United 

States' a r e  s ta tements .  Sentences which can be turned into s tatements  by 

filling holes with name s a r e  called open sentences. An open sentence i s  

neither t rue  nor false.  

Since the holes in  a n  open sentence hold places for  nouns, they a r e  -- 
called pronouns. The pronouns in  the mathematical sentences we have 

been working with hold places for  those nouns which a r e  names of numbers,  

that i s ,  they hold places fo r  numerals.  And so,  we shall  call  such pronouns - 
pronumerals  . 
7 --.. 

1 In general,  

pronouns in an open sentence 

hold places for nounsy and 

in  par t icular  

pronumerals  in an  open sentence I hold places for numerals.  



We hope that students understand that nouns a r e  words and not things 
for which the words stand. So, a pronoun i s  a word which holds a 
place in a sentence [or in an expression] for nouns. A pronoun does 
not hold a place for things for which nouns stand. The word 'He* in 
the sentence : 

He was the president of the United States 

holds a place for names of men? and not a place for men. I t  would 
make ~ e n s e  to replace the word 'He ' by ' Abraham Lincoln* but not 
by Abraham Lincoln. Similarly, the mathematical pronouns such a s  
'0 * and ' 0 * hold places for numerals rather  than for numbers. 

The thing that needs s tressing in these pages is that sentences con- 
taining f rames  or  letter pronumerals show patterns.  The le t te rs  
show the patterns just as easily as do the frames. The advantage of 
the frame is that i t  is more  readily seen to be a mark  whose purpose 
i s  to hold a place for numerals.  

There may be some objection by grammarians to our assert ion a t  the 
bottom of page 2-1 6 that ' f i r s t  boy* i s  a pronoun. In any event, expres - 
sions such a s  this one function a s  pronouns. 

In discussing the f i r s t  paragraph on page 2-18, ycu should continue 
to avoid such phrases a s  'substitute a = 75*. Instead, say: substi-  
tute '75* for 'a'. You will appreciate the advantages of having been 
careful  when you come to say: substitute ' 9  t a t 5 X b* for 'a*, 
rather  than 'substitute a = 9 t a t 5 X b*. 

The students* practice in substituting numerals for f rames  should 
leave them no room fo r  doubt that a pronumeral i s  merely a symbol 
which can be replaced by a numeral, that is, by a name for a num- 
ber .  However, i t  i s  still possible for them to  become confusedp a d  
this may occur if you happen to speak carelessly about pronumerals. 





Consider the following statements. 

( I )  A pronumeral i s  a symbol which one may replace by a name 
for any number. 

(2) Pronumerals stand for names of numbers. 

(3) Pronumerals stand for numbers. 

. (4) A pronumeral i s  a symbol which i s  a name for any number. 

Of these, (1) i s  correct,  and i s  not misleading. One can argue that* 
properly interpreted, (2) i s  correct [stand for = stand in place of = 
hold places for]. But, i t  i s  clearly misleading [stand for = symbolize 
=name]. Statement (3) i s  incorrect. Here 'stand for* cannot mean 
the same a s  ' stand in place of', for numbers can't occupy places; so, 
'stand for* must be interpreted a s  'name'* and pronumerals a r e  
names of anything. This same criticism applies to (4). 

There is  another use of pronouns in English which must be distin- 
guished from the use which we a r e  now stressing. Two illustrations 
a r e  : 

He who hesitates i s  lost. - 
and: 

One must be 21 years of age if one is  to vote. - 
In these sentences the underlined pronouns a r e  being used to express 
generality. A more explicit statement of the fact asserted by the 
second of these examples is: 

Each one must be 21 years of age if one [or: he] i s  to vote. -- 
It i s  to avoid confusions which can aris.e through these two uses of 
pronouns that, in oar mathematics language, we insist [see pages 
2-27 ff. ] on the use of quantifying phrases such a s  'for each x* in 
statements of generalizations. For example, in 'xy = yx*, the pro- 
nouns 'x '  and 'y* a r e  place holders, while in: 

For each number E, for each number y, xy = yx 

they occur in quantifying phrases. The sentence 'xy = yx' i s  neither 
true nor false; but the displayed generalization sentence i s  true, and 
i s  a statement of the commutative principle for multiplication. 





Draw a line under each pronoun in the following sentences .  

(1)  He i s  Al's fa ther .  

0 i s  an even positive number .  

(4) She i s  t a l le r  than Mary  and she is he r  e lde r  s i s t e r .  

Individual pronumerals  in an open sentence show you where to  

wri te  names .  But, taken together ,  they show you m o r e  than that .  

F o r  example,  in o rde r  to  convert  sentence (3)  into a s ta tement ,  

you can  wr i te  t h ree  names .  However, you would not wri te  some - 
thing like this  : 

or  even something l ike this  : 

7 ^ ? +  85  = 17 - 2 X  85. 

When substituting for  p ronumera ls ,  you follow the ru l e  tha t  

p ronumera ls  of the  s a m e  shape a r e  t o  be replaced by copies of 

the  s a m e  numera l .  Pronumera ls  of the  s a m e  shape "link" places  

where s imi l a r  replacements  a r e  to  be made .  In sentence (3) ,  the 

two ' 0 ' s  a r e  to  be replaced by copies of the s a m e  numera l ,  and 

the 'O* can be replaced ei ther  by another copy of the s ame  numera l  

or  by a different numeral .  

The  ru les  for replacing pronouns in  English open sentences  

cannot be stated s o  s imply.  [In fact ,  they probably just can't be 

s ta ted!]  In sentence (4) we can  substi tute and get :  

Els ie  i s  t a l le r  than Mary  and Els ie  i s  Mary '  s e lde r  s i s t e r ,  

o r ,  we can substi tute and get:  

E ls ie  is ta l le r  than Mary  and Mary  is E l s i e  s e lde r  s i s t e r .  

If you pointed to  E l s i e  and said  sentence (4 ) ,  you would probably 

have mean t  (a);  but i f ,  i n  speaking, you emphasized the second 'she', 

you might v e r y  well have meant  (b) .  If you meant  (a), you were  l ink- 

ing the 'she's .  If you meant  (b),  you were  linking the f i r s t  'she* and 



the 'JÃˆr' 81x9 you were not linking the two 'she's, [Notice that in 

(b) you did not even replace the linked pronouns by copies of the 

same  word; you replaced ' she* b y ' ~ l s i e l  and 'her'  by 'Elsie s ' . ]  

So, the rule that two occurrences of the same pronoun should be 

replaced by copies of the s a m e  name is not s t r ic t ly  followed in 

English. And, different pronouns a r e  sometimes linked. 

You could overcome these difficulties in the English language 

i f  you introduced additional pronouns and adopted s t r i c t  linking 

rules  for them. F o r  example, suppose ' 0' is a feminine pronoun 

and that always in  a sentence a l l  ' 0 ' s  a r e  linked. Then, we could 

s tate  sentence (4) in such a way that it would be impossible to  get 

(b); and in  another way such that i t  would be impossible to  get (a) .  

T o  get (a) but not (b), we would write:  

0 i s  ta l ler  than Mary  and 0 i s  he r  e lder  s i s t e r .  

To  get (b) but not (a ) ,  we would wr i te :  

0 is ta l ler  than Mary  and she is 0 's e lder  s i s t e r .  

If in  the f i r s t  of these sentences you substitute 'Elsie '  for  '0' [and 

'Mary ' s*  for 'her'], you will get sentence (a) .  If in the second 

sentence you again substitute 'Elsie '  for  '0' [and 'Mary' for  'she'], 

you will get sentence (b) . 
Actually, t he re  a r e  pronouns in English which obey s t r i c t  link- 

ing ru les .  Look a t  the sentence : 

He went because he felt  it was polite to do s o .  

Are the two 'he's l inked? You real ly  can't t e l l .  But, he re  is a 

restatement  in ordinary English using pronouns which c lear ly  a r e  

not linked. 

A f i r s t  boy went because a second &fel t  it was polite t o  do so.  -- 
The English language allows you to  manufacture pronouns by prefixing 

to  a noun words like ' f irst ' ,  'second', 'third', ' former*,  ' latter' ,  e tc .  



Do you think that 'he* and *his' in: 

He knew a man who roomed with his cousin in school 

a r e  linked? Use the pronouns 'first man*, and 'second man*, etc. to 

restate this sentence in two ways, each showing a different linkage. 

STANDARD PRONUMERALS 

Although we have been using frames as pronumerals, i t  is more 

common to use let ters .  In doing so, we shall use the lower-case 

let ters  of the alphabet: 

a, bs C ,  ..em...., X, y, z 

a s  well as  the upper -case let ters  : 

In using these you must be careful to observe the difference between *a* 

and 'A', 'b* and 'B*, etc. These a r e  just as different a s  'Q' and 'A' or 

as *a* and *rÃ‘Ã‘Ã‘ 

We use letter -pronumerals just as we used frame -pronumerals. 

You can see a pattern in an open sentence which has letter-pronumerals 

just as  easily as  you could with an open sentence which had frame- 

pronumerals. For  example, from the open sentence : 

we can generate (or  make) statements by substituting numerals 

fo r  the pronumerals *a', 'b*, and 'c*. Here a r e  some of these 

statements : 

W e  can also generate open sentences from the given sentence by 

substituting expressions which contain pronumerals. For  example : 

(y - w) + 7 X ( 2  t r)  t (s - y) = (y - w) - [(Z t r )  t (s - y)]. 



Now, just a s  an open sentence gives you a pattern for other 

sentences, an expression like '9 + a t 5 X b* gives you a pattern 

for other expressions. You can use it to  generate numerals,  o r  

to generate other expressions which themselves give patterns for  

generating numerals .  For  example, from : 

you can generate these numerals:  

9 t 7 5 t 5 X 1 5  

Also, from '9 + a + 5 X b* you can generate these expressions: 

9 + ( 8 t x ) t 5 X ( 7 - y )  

As  you can see,  the expressions and sentences which can be 

generated f rom pronumeral expressions and f rom open sentences 

can look quite complicated. One small  way in which they can be 

made to  look l e s s  complicated is to  follow the convention of omit- 

ting the multiplication signs. For  example : 

*3(5 + 9)' is an abbreviation for '3 X (5 t 9)', 

'ab' is a n  abbreviation for 'a X b', 

'q(3a + 4p)' is an abbreviation for 'q X (3  X a + 4 X p)\  

'(-2a t 13)d' is a n  abbreviation for  '(-2 X a + 13) X d*, 

'5x' is an abbreviation for '5 X x*, 

*x5' is an  abbreviation for *x X 5*, 

but - 
and 

'55' is not an abbreviation for  '5 X 5*, - 
*a - b' is not an  abbreviation for  'a X-b*. - 

Another abbreviation fo r  'X' is obtained by using a ' ' in place of 

a *X*. For  example, '3 7' is a n  abbreviation for  '3 X 7 * ,  and 'u v' 

is an abbreviation for  'u X v'. 









[Ask students i f  they could rewrite the expressions in Exercises 18 
and 19 without using the '+ '. They should compare 
with those in Exercises 13, 14, and 15.1 

such expressions 





3 1 7 -- [or: -ZE] 
12 

48 - [or: 2. 41 
20 

24 -- 8 
15 [or: - $1 

9. xx + x t x  

11. 
5B - 3y 

82 
2 5* - 3  - 3* - 
3 

5 8a --  
4 

-15 - 2 
-10 

17 - [or: 1.71 
10 

15 - [or: 11 15 





Par t  A of the Supplementary Exercises contains very easy exercises 
similar to those on page 2-19, and suitable for oral class work. We 
suggest that after reading aloud the f i r s t  paragraph of Par t  A, you 
have the class turn to page 2 - 1 3 8  and t ry  some of the exercises orally. 
[YOU may want to assign Exercises 41 through 60 for homework. ] If 
the class seems to have had no trouble with the exercises on page 
2 -1 38, they should be ready to t ry  these on page 2 -19. [More diffi- 
cult exercises of the same type occur in Par t  B of the Supplementary 
Exercises. Others occur in Par t  H of the Miscellaneous Exercises, 
page 2-120 through 2-123. ] 

When students do the exercises in Par t  A they should be urged to write 
the original expression for each exercise and then write under this the 
new expression which i s  obtained by making the substitutions. This 
procedure is  not illustrated in the Solution but i s  in the answers below. 

Answers for Par t  A. 



EXERCISES 

A .  A value of a pronumeral i s  a number whose name may be substituted - ---- 
f o r  the pronumeral.  A pronumeral  expression a l s o  has values. These 

a r e  the numbers whose names can be obtained by substituting numerals  

for the pronumerals  in the expression. F o r  example, the value of 

'a + 2b' for  the value 3 of 'a' and 5 of 'b' is 3 3- 2 5, o r  13. 

Find the value of each of the following pronumeral expressions 

for  the given values of the pronumerals .  

Sample. (8a t 2b)(A i - B )  

Solution. ( 8  3 + 2 5)(7 + -3) 

= (24 + 10)4 

= 3 4 - 4  

= 136. 

[Note: - You may be tempted t o  skip s teps 

s u r e  it won't lead to  e r r o r s . ]  

Don't, until you a r e  

24. (A - a)(A - a)(A - a) 25. ( 3  - 2y)(6 - -.y) 1 - (y  + 3) 

 o ore exerc ises  a r e  in P a r t s  A and B, Supplementary Exercises .  ) -- - 



Complete these tables by filling in  the blanks with numerals  for the 

values of the pronumeral expressions [or : of the pronumeral] 

which correspond with the given values. 

Use each of the following open sentences to  generate a statement.  

Te l l  whether the statement is t rue  or  false.  T r y  t o  generate some 

t rue  statements and some false  s ta tements .  

[More exerc ises  a r e  in P a r t  C, Supplementary Exerc ises  .] -- 



Answers for Part  B. 

[unlimited possibilities for 
the blanks above ' 26 '1 

[We trust that students will discover short cuts in doing Exercises 4, 
5, 6, 7, and 8. ] 

The students a re  not solving the equations in Part  C. Caution them 
that some of the statements they obtain should be true and some 
should be false. Of course, when they obtain a true statement, they 
have solved the equation; but avoid this terminology at  this time. 
These matters wi l l  come up in Unit 3. However, you can keep your 
able students busy and happy by challen ing them to find replace- 
ments which will make true statements [except, perhaps, for Exercise 
121. [Do not give this kind of extra assignment as homework because 
the urge to get help from parents i s  too strong. ] Also, you may want 
to use the trick of asking students to find a number which will give a 
false statement in such exercises as 16, 19, and 20, - 





Answers for Par t  C. 

[For Exercises 1-6, 17, and 18, we simply l i s t  the numbers which 
will give true statements. ] 

No number will give a true s t a t e m e n t ~ t h a t  i s ,  there i s  no num- 
ber such that, when you substitute a numeral for i t  for ' I3 *, you 
get a true statement. [Each statement obtained i s  the denial of 
a consequence of the tdpma and the computing fact that 2 2 = 4. ] 
Each number will give a true statement. [Each statement i s  a 
consequence of the Qdpma and two computing facts. ] 
No number will give a true statement. 

No number will give a true statement. 

This exercise i s  interesting. It does - not contain a typographical 
e r ro r .  The students should recognize that the expression in 
Exercise 11 is not a sentence. Therefore, one cannot form a 
true statement nor can he form a false statement by replacing 
the pronumerals by numerals. 

6.72 and -0.89 a r e  numbers that a r e  approximations to the num- 
bers  which will give true statements. We doubt that any of your 
students will be able to determine this, and you may not even 
want to suggest these approximations. The students will find 
many replacements that will give false statements. 

Each number greater than 2/5 will give a true statement, and 
these a r e  the only numbers which do. 

Each number greater than -4 will give a true statement, and 
these a r e  the only numbers which do. 

Each number will give a true statement. 

Each number will give a true statement. 

[In Exercises 17 through 20, do not - introduce exponent notation. If 
some students already know how to use this notation, let them use it 
on their own papers. [We bring in exponents in Units 3 and 4. ] The 
student's symbolism load i s  heavy enough at  this time without intro- 
ducing another symbol which i s  frequently the cause of mechanical 
e r ro rs .  We think a student i s  less likely to confuse 'x2* with '2x* if 
he works with 'xx* for a while before using exponent symbols. ] 

19. Each number will give a true statement. 

20. Each number will give a true statement. 







20. (b) [ ' x  t y* for 'a', ' u  t v' for ' b*] 

( f )  [ ' x  t y* for 'x*, 'u '  for 'y*, 'v '  for 'z'] 

(h) [ ' x '  for 'm', 'y '  for 'n', ' u  t v' for  'p'] 

21. (b) [ ' x t y ' f o r  'a', ' x t y ' f o r  'b'] 

( f )  [ ' x  + y' for 'x*, 'x '  for 'y', 'y*  for 'z'] 

(h) [ ' x ' f o r  'm', ' y ' f o r  'n', ' x t y ' f o r  'P*] 

22. (a) ['7' for  'x', '2k'  for 'Y ' ]  

(c )  [ '7  * for ' y', '2k' for 'x'] 

( e )  [ ' 7 ' fo r  'a', '2 '  for 'b', 'k'  for 'c'] 

23. (b) [ '7 t 2 ' f o r  'a', ' k ' fo r  'b'] 

(h) [ '7 '  for 'm', '2 '  for 'n', ' k '  for 'p'] 

24. (a)  [ '7k' for 'x', '2k' for 'y'] 

( c )  [ '7kS for 'y', ' 2k' for  'x'] 

(d) [ ' 7 '  for 'x', ' k '  for 'y ' ,  '2k' for  ' z'] 

( e )  [ '7k' for 'a', '2 '  for 'b', 'k' for 'c'] 

( i )  ['7' for 'u', 'k '  for 'w' ,  ' 2 '  for 'v'] 





2 ( )  a t b e  for *a', 'c' for *bV] 

(h) ['2aB for 'm', '3b' for 'n*, 'c' for 'p*] 

(0) ['2a + 3b'for 'x*, '5'for 'y*, ' c *  for 'z*] 

[ ~ o t e  that, since '(2a t 3b)5cV is an abbreviation for 
'[ (2a t 3b)S]c', i t  cannot be generated from '(m t n)pV.] 

14. (b) [ ' 7 * 5 * f o r  'a*, 'x 'for 'b'] 

(0) [*7 ' for  'x', '5 ' for  'ye, ' x ' io r  'z'] 

15. (b) ['7* for 'a', '5x' for 'b'] 

( j )  [ '7'for 'P*, '5 ' for 'Q', 'x ' for  'R'] 

16. (a) ['5xV for 'x', ' 7x' for 'Y'] 

(c) ['5xB for 'y*, '7x' for 'x*] 

(d) ('5' for 'x', 'x* for *ye, '7x' for 'z'] 

(e) [*5xVfor  'a*, *7'for 'b', 'x 'for 'c*] 

( i )  ['5* for 'u', 'x' for * w', '7* for *v*] 

17. (a) ['xS' for 'x', 'x7' for *y'] 

(c) ['x5 * for 'y', ' x7' for 'x'] 

(d) [ 'x*  for 'x', '5' for 'ye, 'x7* for ' z ' ]  

(e) [ 'x5'for *a', ' x ' io r  'b', '7 'for 'c'] 

(g) [ 'x '  for 'a', ' 5 '  for 'b*. '7 '  for 'c*] 

18. (b) [' 1' for 'a*, ' 1 * for 'b*] 

(m) [ ' l ' for  *x'] 

(n) [ ' I*  for 'x'] 

19. (a) [ 'x '  for 'x', 'y' for 'y'] 

(c) ['x* for 'y', * y' for 'x'] 





5. (a) 1 '2  t 8 * f o r  'x*, ' 3  t 5 * f o r  

(c) [ ' Z  t 8' for 'y*, ' 3 t 5' for 'x'] 

(k) [ '2  t 8'for 'x*, '3 'for 'y*, '5 'for 'z*] 

(1) [ '2* for 'a*, '8' for 'b', ' 3  t 5' for 'c'] 

6. (a) [ '2 t (8 t 3)' for 'x', '5' for 'y ']  

(c) ['2 t (8 t 3)' for 'y*, '5* for 'x*] 

(1) [ ' 2 *  for 'a*, '8 t 3' for 'b*, '5' for 'c*] 

7. (b) [ ' 5  t 2*3*for  'a*, ' l ' f o r  'b*] 

(h) [ ' S *  for 'm*, '2' 3' for 'n*, '1 '  for 'p*] 

(m) [ ' 5  t 2 3* for 'x*] 

8. (a) [ '9  1 * for 'x*, ' 3 1 * for 

(c) [ ' 9 * 1 9 f o r  'y*, ' 3 * 1 9 f o r  'x*] 

(d) [ '9*  for 'x*, ' I *  for 'y*, ' 3 *  I *  for 'z*] 

( e )  [ ' 9 * 1 1 f o r  'a*, '3 ' for  'b*, ' l ' f o r  'c*] 

( i )  [ ^ * f o r  'u*, ' l ' f o r  'w*, '3'for 'v*] 

9. (a) [ 'x-  1 * for 'x*, 'x*  1 * for 'Y*] 

( c )  [ ' x * l * f o r  'y*, ' x * 1 9 f o r  'x*] 

(d) [ 'x* for 'x*, ' 1 * for 'y*, ' x*  l *  for ' z*] 

(e) [ ' x * l * f o r  'a*, 'x ' for  'be, ' l ' f o r  'c*] 

( g )  ['x'for 'a*, ' l ' f o r  'b', ' l ' f o r  'c*] 

( i )  [ 'x* for 'u*, '1' for 'w*, 'x* for 'v*] 

10. (b) ['Za* for 'a*, 'b* for 'b*] 

(0) [ ' 2 *  for 'x*, ' a*  for 'y*, 'b* for 'z*] 

11. (b) ['Za* for 'a*, '3b* for 'b*] 

( j )  ['Za* for 'P*, '3' for 'Q*, 'b* for 'R*] 

(0) ['2* for 'x*. ' a*  for 'y*, '3b* for 'z*] 





The exercises in Par ts  D and E a re  designed to give students prac - 
tice in recognizing the form of an expression. Notice that students 
a r e  asked to beprepared to give substitutions, that is, to be able to 
expand their answers by adding comments like the bracketed ones in 
the Solution for Sample 1. But students should not be required to 
write such expanded answers on their homework papers. A student's 
written answer for Sample 1 should be: (a), (c), (d), (e), (i). In 
discussing these problems in class i t  i s  helpful to use arrows in 
showing the substitutions. For example, to show that the expression 
in Sample 1 can be generated from expression (d), you might write 
the given expression and (d) on the board with arrows and braces as 
follows : 

Answers for Par t  D. 

1. (a)  ['9' for 'x', ' 5  6 '  for 'y'] 

(c)  [ '9 ' fo r  'y', ' 5 - 6 '  for 'x'] 

(e)  [ '9 ' for  'a', 'S ' for  'b', ' 6 ' fo r  'c'] 

2. (a) [ ' 3*5 '  for 'x', '2' for 'y'] 

(c)  [ ' 3 * 5 ' f o r  'y', ' 2 ' fo r  'x'] 

(d) [ '3 ' fo r  'x', ' 5 ' f o r  'y', ' 2 ' fo r  'z*] 

3. (a) [ '3a1 for 'x', ' 3b' for 'y'] 

(c)  [ '3a'  for 'y*, ' 3b' for 'x'] 

(d) [ '  3' for ' x', ' a '  for ' y', ' 3b' for ' z'] 

(e)  [ '3a1for  'a', ' 3 ' f o r  'b', ' b ' fo r  'c'] 

(g) 1'3' for 'a', ' a '  for 'b', 'b '  for 'c'] 

4. (a)  [ '2 t 8 + 3 ' f o r  'x', ' 5 ' fo r  'y'] 

(c)  [ ' Z  + 8 + 3'for 'y', ' 5 ' fo r  'x'] 

(1) ['Z + 8' for 'a ' ,  '3 '  for 'b', ' 5 '  for 'c'] 



D. Here a r e  fifteen pronumeral expressions. By substituting i n  any - 
of these expressions you can generate other expressions which have 

the same pattern. Each of the exercises is an  expression which can 

be generated from one or more  of the fifteen expressions. For  each 

exercise,  te l l  which of the expressions it can be generated from, and 
be prepared to  give the substitutions. - 

Sample L. ( 4  t 512 t 3 2 

Solution. (a) ['(4 + 5)2* for  'x*, '3 * 2' for 'y*] 

(c)  ['(4 + 5)2' fo r  'y*, '3 2* for 'x*] 

(d) [*4 + 5' for 'x*, '2* for 'y', '3 2' for 'z'] 

(e )  ['(4 + 5)2' for  'a*, '3' for  'b', '2' for  *c'] 

( i )  ['4 + 5' for 'u', '2' for  'w', '3' for  'v'] 

Sample 2, 2x + 2 y +  32 

Solution. ( a )  ['2x + 2y9 for 'x*, '32' for 'y'] 

( c )  [*2x + 2y' for  'y', '32' for  'x'] 

( e )  [*2x t 2y' for  'a*, '3' for  'b', '2' for 'c'] 

( 1 )  [*2x' for 'a', '2y' for *b', '32' for  'c'] 

1. 9 + 5 - 6  2. 3 * 5 + 2  3. 3 a t 3 b  

4. 2 t 8 t 3 i - 5  5. 2 + 8 + ( 3 + 5 )  6. 2 + ( 8 + 3 ) + 5  

7. ( 5  + 2 3 ) l  8. 9 * 1 + 3 * 1  9. x * l + x m l  

10. 2ab 11. 2a(3b) 12. (2a + 3b)c 

13. (2a + 3b)5c 14. 7 5x 15. 7(5x) 

16. 5x t 7x 17. x 5 t x 7  18. 1 1 



E. Each exercise contains tour expressions. Your job is to write  a 
d 

pronumeral expression from which you can generate the f i r s t  three 

but not the fourth. - 

Solution. Pronumeral expressions from which the f i r s t  three 

can be generated a r e :  

'7 9 + 9' can also be generated from 'x', 'x + y', 'xy + z', and 

'xy + y', but not from '8x + y' or  '8x + x*. 
Answer. 8x + y 

 n not her correc t  answer:  8x + x. Of course, you could use 

other pronumerals instead of 'x' and 'y'. ] 



~ n s w e r s  for Part  E [on pages 2-22 and 2-23]. 

9 t x  

x - 2 t x  [or: x - Z t y ]  

5 x  t 4y [or: xy t 4z] 

x e l  

3x t 0 [or: 3x t y] 

1 t 2x [or: 1 t x ,  or: x *  

x + ( y  + 2) 

xy z 
x t y t z  

t 2y, or: x t yz] 

7(x t y)  [or: x(y t z), or: 7x1 

6 x  t 6y [or: xy t 62, or: 6x t yz, or:  xy t x z ]  

4(x t y)  [or: x(y t z) ] 

:# 

Here i s  a multiple-choice quiz which covers some of the ideas of 
Parts D and E. 

Directions. In each question you are  given an expression and, . 
below it, several pattern-expressions. Draw a loop around 
that pattern-expression from which the given expression can 
be obtained b y  substitution. 





3. 8p t [ 7 r  t 8 ( p  t r)] 

(A) x t y t z  

(C) x + [y + (2 + v)] 

4. 10(x t 3) t 5{2x t [3(x t 5) t 61} 

(A) a b  t cde (B) x + YX 
( c )  x t Y[Z t (U t v)] (Dl xyz + u[p + (qr + a)] 

5. x(a t b) t ( a  t b)y 

(A) mn  t np 

(C) ba t ca 

6.  2k t 7m t 3k t 2(m t 5k) 

(A) (x + y)  + (u + v) 
(C) [(x + y) t u] *r v 

(B) x t (y t u) t v 

(Dl x + [y t (u t v)] 







The purpose of the Exploration Exercises i s  to teach students an 
adequate form for stating universal generalizations. This i s  a diffi- 
cult teaching task, and we hope that the Exploration Exercises will 
make the job easier. You should select two students who a re  expres - 
sive readers and have them read this dialogue, one student taking the 
part of Stan, and the other of Al. [If the class objects that i t  would 
be unlikely that the two boys could communicate this way by letter, 
tell them to imagine that they have become ham radio-television 
operators !] As the two readers proceed through the dialogue, you 
should summarize from time to time. For example, when the reader 
finishes Al*s remark at the bottom of page 2-23, you should say some- 
thing like: 

Notice, that although you can get a pretty good 
idea of what the left distributive principle i s  from 
instances, the instances are  the principle. 

Notice how difficult it i s  for Stan to give a precise description of an 
instance of the left distributive principle. A1 i s  very quick to take 
advantage of the flaw in this description. Also, notice how much 
easier it is  to use letter pronumerals for this purpose. The fact 
that letter pronumerals obey a linking rule makes it easy to display 
the pattern. 

Although the open-sentence-business i s  sufficient to tell you how to 
get instances of the left distributive principle, it tells you nothing 
about numbers. The left distributive principle i s  a principle which 
asserts something about addition and multiplication of numbers. Al 
i s  quite sophisticated in pointing out the distinction between a state - 
ment which tells something about numerals and sentences [such as  
Stan's statement, ' Take the open . . . confusion. '1 and a statement 
which tells something about numbers! Stan's next attempt at the top 
of page 2-25 is pretty close to correct. However, Al splits a hair 
by pointing out implicitly that ' 3 t 4' and ' 4 t 3' each stand for the 
sum of 3 and 4. The use of the open sentence involving the letter 
pronumerals*makes i t  unnecessary to use the complicated phraseology 
which Stan employs at the bottom of page 2-25. And, A1 makes this 
point in his remark at the top of page 2 -26. 

Notice the phrases: 

for each first real number, 
for each second real number, 
for each third real number. 

It is phrases such as these which tell you that a generalization i s  
being stated. Without such phrases, we simply have an open sen- 
tence which itself i s  neither true nor false. The leading phrases 
together with the open sentence make up the generalization. 

TC[Z-23, 24, 25, 261 



EXPLORATION EXERCISES 

A .  Remember A1 Moore who lived in Alaska and wanted t o  l ea rn  mathe- - 
matics by correspondence with his  pen pal, Stan Brown? Viell, it 

happened that A1 real ly  did it. He learned about r e a l  numbers and 

pronumerals  and open sentences. Stan had told him about various 

principles of r e a l  numbers which helped A1 get short  cuts,  and a lso  

helped him remember  lots of computing facts .    or example,  as 

soon as he had memorized the fact that 7 X 8 is 56, he a l so  knew 

that 8 X 7 i s  56. ] A1 now wanted to  know more  about these principles.  

So, he wrote Stan and said:  

Just  what - is the left distributive principle ? 

Stan replied : 

I thought you knew that. Here a r e  some instances of it. 

A1 wrote back: 

Say, I don't want instances of it. I want to  know 

what the principle is! After a l l ,  am I supposed - 
to  remember  these examples every  t ime I wan$' 

to  use the left  distributive principle ? And a r e  

these all of the instances? Remember,  I don't - 
have anyone up he re  I can ask. How can I te l l  

an instance of the left distributive principle 

when I meet  i t ?  



Well, of course,  I can't write down every  instance. 

That would be impossible.  But I can give you a rule 

for  getting any instance or  recognizing one when you 

see  it. First, there  i s  a numeral ,  followed by a left 

parenthesis ,  then a numeral,  then a plus sign, then 

a numeral,  then a right parenthesis ,  then an  equality 

sign, then a numeral ,  then a multiplication dot, then 

a numeral ,  then a plus sign, then a numeral,  then a 

multiplication dot, then, finally, a numeral .  That 's  

an  instance of the left distributive nrinciple. 

A1 sent an a i rmai l  reply 

Aha! So, I suppose this i s  an instance of the left 

distributive principle : 

I followed your rule! 

Stan was quick to answer :  

No, that 's  not i t .  I see  I didn't make myself c l ea r .  

I'll t r y  again. Take the open sentence : 

This gives you a pattern for  generating instances.  

Just  substitute a numeral  for  'x', a numeral for 'y', 

and a numeral  for ' z', and put in two multiplication 

dots on the right side to avoid confusion. 

~1 thought about th is ,  and his next le t te r  said: 

Well, I think I can follow that rule al l  r ight.  But, 

didn't you te l l  m e  a long t ime ago that the left distribu- 

tive principle said something about numbers ? Your 

rule just te l ls  m e  about numerals  and sentences.  



And, in  my f i r s t  lesson I learned that numerals  

aren't numbers.  Te l l  me what the left dis t r ibu-  

tive principle says about numbers .  

Stan t r i e s  : 

It says  that for  each rea l  number you take, if you 

multiply it by the sum of a r ea l  number and a r e a l  

number,  you get the same number a s  you would i f  

you took that f i r s t  number and multiplied it by one 

of the other numbers and . . . . Wait, 1'11 start again. 

F o r  each first r ea l  number you take, if  you multi-  

ply i t  by the sum of your second rea l  number and 

your third r e a l  number,  you get the same  number as 

you would i f  you added the numbers you get by mul-  

tiplying your f i r s t  number by your second number 

and by multiplying your first number by your th i rd  

number.  "Whew! ! 

AJ. complains : 

'Whew' is right! That 's  complicated. It sounded 

a s  though this sentence : 

i s  an instance of the principle. But, by that pat-  

t e r n  business you wrote about in one of your other 

l e t t e r s ,  this  sentence wouldn't be an instance. 

Right ? 

Wearily, Stan repl ies  : 

Darn! I meant that you should add the third 

number t o  the second, and that you should add - 
the product of the first number by the third t o  - 
the product of the f i r s t  number by the second. 

Maybe I didn't s ay  it that way; I forget. 



A1 now t r ies  t o  be helpful: 

I think maybe you ought to use that pattern- 

sentence along with the talk about choosing 

numbers to help keep things straight. How 

about this ? 

For  each f irst  real  number I pick, for each second real  

number, and for each third real  number, it turns out that 

the 1st number X (the 2nd number t the 3rd number) 

equals 

the 1 s t  number X the 2nd number 4- the 1 s t  number X the 3rd number. 

Is this what you were trying to tell me  ? 

Stan, with glee : 

Yeah, that's it! And you've given me an idea 

of how to  say it in a shorter way. Remember 

when we talked about phrases like 'the f irst  r e a l  

number', 'the second real  number', and 'the 

third real  number' being like pronouns? Well, 

let's use pronumerals. Here goes. 

For each x, for each y, for each z, 

x(y t z) = xy + xz. 
This is it, isn't i t ?  

A1 closes this exchange with: 

I think we've got it now. And, I like the short 

way you said the same thing I did. But you 

didn't have to use 'x', 'y', and '2' in that order 

did you? Couldn't I say that this is the left 

distributive principle, just a s  well ? 

For  each y, for each z, for each x, 

Or, you could even use different letters.  

For  each a, for each p, for each t ,  

a(p t t )  = ap + a t ,  





occurs first. And, the property which i s  said to be generalized i s  
expressed by the predicate which one obtains by dropping this f i rs t  
quantifying phrase [and, strictly, replacing each remaining occur - 
rence of its corresponding pronumeral by ' . . . '1. [But, no harm 
will now result if we consider that the open sentence which remains 
when the quantifying phrase i s  dropped " expresses " the property in 
question.] Thus, one obtains in this way from (3"') an expression 
equivalent to (3): 

for each y, y 5 . . . , 
from (4"') an expression equivalent to (4): 

there i s  an x such that . . . < x, 

and, from (l"'), (Z"'), and (5"') one obtains, respectively, ( I ) ,  (2), 
and (5). So, one can lean on one's predilection for the subject-predi- 
cate form of sentence for aid in interpreting sentences written in this 
manner. [As previously noted, the collective strength of 'all' and 
the distributive strength of ' any' a r e  likely to override the English 
convention we a re  here leaning on. For this reason, these words 
should be avoided as  quantifiers. Although the word ' each' i s  probably 
the best choice, 'every' will usually do nearly a s  well. ] 

& 
*I- 

The quantifying phrases ' for each' and ' there i s  a . . . such that' have 
convenient abbreviations. One pair of such abbreviations i s  : 

v 3 

Thus, we may write (l'), (2'), (3'), (4'), and (5') as: 

and: 

V x < x .  
x 

And, the left distributive principle may be written: 

v v v z  x ( y + z )  = x y + x z .  
X Y  

Note that, to avoid additional punctuation, the index directly associated 
with each quantifier ' V  * and 3 * is written as a subscript. 





ThusD we obtain: 

for each xD for each yD for each zD 

as  a statement of the ldpma. It is essential to realize that here againD 
the pronumerals 'xlD 'yl  and ' z*  perform just two functions. They 
link quantifiers with argument places* and* by virtue of the convention 
that their domain i s  the set of real numbers* each indicates the domain 
of the quantifier with which i t  i s  associated. [An entirely erroneous 
impression i s  obtained if one reads 'for each x' as  ' for each number, 
say x*. ] 

Note that with this convention the universal quantifier i s  'for eachs* 
rather than merely 'each*. [It would be natural to use 'for some* as 
the existential quantifierD but experience shows that 'there i s  a . . . 
such that* i s  generally easier to interpret. ] 

With this convention* sentence.s (I.  ")* (2")D (3")* (4")D and (5") a r e  
replaced by: 

(1 I" )  for each xD x - < +3 

(2"') there i s  an x such that 2 - < x 

(3'") there i s  an x such that* for each yD y 5 x 

(4"') for each yD there i s  an x such that y - < x 

and 

( 5 " ' )  for each x, x 5 x , 

Of course, since the pronumerals serve merely a s  indices and to 
specify the domains of the quantifiers* any pronumerals with the 
proper domains can be used, provided that different pronumerals 
a r e  used to index different quantifiers. ThusD in place of (3"') one 
might write: 

there i s  a z such thatD for each xB x < zB - 
or: there i s  a y such thatD for each zB z < y .  - 

Recall that our f i rs t  convention was to indicate precedence order for 
quantifiers by supplying each quantifying phrase in a sentence with a 
numerical subscript. The f i r s t  step from here to our later conven- 
tions was to move these phrases to the beginning of the sentenceD 
arranging them in order of precedence. So* by our final convention* 
the principal quantifying phrase in a generali zation i s  the one which 





(3") each number C some number 2 - l *  
and, for the a~sociated universal generalization [indicated by (4'11: 

( 4") each number C some number 1 - 2 

In place of (5') one would then write: 

(5") each numberl 5 each numberl 

For consistency, we would replace (1') (2') by: 

( 1 "1 each number < '3 1 - 
and: 

(2") '2 - C some number 1 

With this convention a statement of the left distributive principle would 
be: 

each number (each number2 t each number3) 1 
= each numberl - each number t each number each number 2 3 ' 

If one reads this expressionJ word by word* and tries to interpret i t  as 
a statement of the ldpma* he i s  likely to be annoyed by the repetition of 
quantifiers. A way out of this difficulty i s  to place the quantifying 
phrases in the numerical order of their subscriptsJ at the beginning* 
and write: 

for each numberlJ for each numberzs for each number 3# 
number (number t number3) = number number + number number 1 2 1 2 3' 

leaving the indexed common nouns 'number ' , 'number2 ' and * n u -  1 ber ' in the argument places to indicate which argument places a re  
gov8rned by each quamtifier. The indexed common nouns* both in the 
quantifying phrases and in the argument places* now serve two 

functions. As stated* they link quantifiers to argument places 
thus solving the linking ~ r o b l e r n ] ~  and they indicate the domain over 

which the generalization takes place [in the case of each of the three 
quantifiers above* the set of real numbers]. NowJ these two functions 
are shared by pronouns and common nounsJ and it is only natural that 
we should replace the indexed words by pronumerals. 





quantifier which occurs in this phrase i s  principal quantifier. We 
have seen that there a r e  various conventions for determining which 
quantifying phrase in an English sentence i s  the principal one. In 
simple cases, the principal quantifying phrase i s  the one which occurs 
f irst  in the sentence, but in more complicated cases other devices 
a re  used. [A device not previously mentioned for indicating order 
among quantifiers i s  the use of adjectives such as  ' f i rst '  and 'second* 
a s  in ' each first  number ' and 'some second number '. ] 
There i s  a second problem concerning the use of quantifiers which also 
must be solved by suitable conventions. Suppose that one wants to say 
that the property expressed by the predicate: 

... ̂  ... - [not: - the relation expressed 
by '. . . - < - - - ' I  

holds universally in the set of real numbers. One might, somewhat 
naively, write : 

each number - < each number, 

but this i s  a t  best ambiguous. Here, the English convention i s  to write: 

( 5 ' )  each number - < i tself,  

But, again, other conventions a r e  needed [as Stan discovered] when 
one has to deal with sentences containing more complicated predicates. 
Stan was dealing with the predicate: 

and had great difficulty in inserting quantifying phrases [page 2 - 2 5 ]  so 
that the proper argument places would be linked. 

What we need i s  a single, simple, convention which will solve the two 
problems --(a)  the problem of determining the order of precedence 
among argument places of a predicate [or among quantifiers in a sen- 
tence built on the predicate], and (b) the problem of indicating when 
two argument places a r e  linked. 

One solution i s  to assign numerical subscripts to the quantifying phrases 
so that numerical order agrees with order of precedence. For example, 
for the existential generalization [indicated by (391 which states that 
there i s  a greatest real number, one might write: 





But, while this i s  a universal generalization, i t  does not say what we 
wish to say. What i t  does do i s  to justify saying that each equation 
like : 

*2 - x = 10, -3 - x = 10, 483 - x = 10, etc. 

has a root. But, these a r e  not the equations with which we a re  here 
concerned. To say what we wish to say, we must also change the 
predicate. We can do this by introducing a new operator: 

= [read a s  ' subtracted from*] 

defined in such a way that, for example, 

' *2 ^ *12 * i s  synonymous with ' *12 - *2*, 

' -3 = +7 * i s  synonymous with ' '7 - -3 *, 
and '483 ^ 493' i s  synonymous with '493 - 483'. 

Then, we replace ' - *  by ' *to get: 

each number ^ some number = 10. 

This i s  the desired generalization [if you want to live with the con- 
vention!] It tells us that each of the equations: 

'2 ^ x = 10, -3 ^ x = 10, 483 ^ x = 10, etc. 

has a root. But, b~trmeanin~of - '=*, - this i s  the same as  saying 
that: 

x - *2 = 10, x - -3 = 10, x - 483 = 10, etc. 

have roots. 

It should be clear by now that although i t  i s  possible to tolerate in 
English the convention which has been illustrated, it  would be most 
inconvenient to follow such a convention in mathematical discourse. 
Shortly, we shall introduce a more satisfactory convention. 

The problem which has concerned us up to now i s  that of establishing 
the desired order of precedence among quantifying phrases in expres- 
sions such as  (*) and (**). When we wish (*) to be analyzed as  an 
existential generalization, a s  suggested by (3'), we shall speak of the 
' some number ' which occurs in i t  as  & principal quantifying phrase; 
and when we wish (*) analyzed as  (4'), we shall say that the ' each 
number * i s  the princ.ipal iuantifying phrase. In gekeral, principal 
quantifying phrase in a generalization sentence is the one which i s  

- -- 

thought of a s  having been written in a blank in the appropriate predi- 
cate in order to complete the sentence. And we shall say that the 





I 

im re-1 
W e have seen that the convention according to which the order in which 
quantifiers occur in a sentence determines what the sentence says, i s  
inadequate, and has to be bolstered by other conventions. [This kind 
of inadequacy becomes even more apparent i f  one considers sentences 
in which three or more quantifiers occur. ] A more important 
inadequacy i s  a consequence of the fact that dependence on this 
convention requires a change in the predicate (the use of ' > ' in place 
of ' < ', or  of 'is loved by* in place of 'is in love with*] when one wishes 
to state one kind of generalization [say, existential] rather than the 
other. Such a change is often awkward, and may even require the 
invention of a new symbol a s  i s  illustrated in the following example. 

Suppose, for example, that we want to make a statement which justifies 
claiming that al l  equations like : 

x - ^2 = 10, x - " 3  = 10, x - 483 10, etc. 

have roots. We want to write a universal generalization sentence. We 
can say what we wish to by saying that for each number you take 
[+2, "3, 483, etc.], there is bound to be some number [the root of the 
equation] which you can subtract it from and get 10. One might be 
inclined to  think that he i s  asserting this [in concise language] when 
he writes : 

some number - each number = 10. 

But, because of the convention, this sentence is actually an existential 
generalization [the predicate is: . . . - each number = 101. It says 
that all  of the equations in question have a common root, and this i s  
false. 

The situation facing us is that facing a person who wants to write the 
universal generalization (7) rather than the existential generalization ( ft), 
o r  who wants to write (*) rather than (**). The convention requires 
such a person to interchange the quantifiers. But, in order to say what 
he wishes to, he must also change the predicates. For example, he 
must replace 'loved by' in (if) by 'in love with*, and ' > ' in (**) by < '. - - 
In the case a t  hand, the sentence analagous to ( f f )  and (**) is : 

some number - each number = 10. 

The convention tells us that in order to get a universal generalization, 
we must interchange the quantifiers. We do so, and get: 

each number - some number = 10. 





The convention, according to which one deletes the f irst  of the quanti- 
fying phrases from a sentence in order to obtain the predicate of the 
sentence, can be illustrated by other pairs of sentences, such as: 

( t)  each person i s  in love with some person 
[a univer s a1 generalization] 

( f  t) some person i s  loved by each person 
[an existential generalization] 

However, this convention [as you have probably found] i s  rather a 
weak one, and in practice i t  i s  bolstered up with others. For example, 
instead of (**), one i s  likely to write: 

some number > every number 

or, still less  ambiguously: 

some number > all numbers . - 
The bolstering conventions here a re  that the quantifier 'every' has the 
collective [as opposed to the distributive] connotation more strongly* 
than does 'each'; and that 'all '  i s  even "more collective" [and "less 
distributive"] than i s  'every'. In fact, the quantifier 'all '  i s  so 
strongly collective that when i t  occurs in a sentence, together with 
another quantifier, one automatically makes i t  part of the predicate. 
As an example of this, note that the sentence: 

all numbers - C some number 

i s  interpreted a s  an existential generalization, saying just what (**) 
i s  meant to, even though the existential quantifier ' some' follows the 
universal quantifier 'all ' .  [In contrast to 'every' and 'all', the word 
'any' is, in many contexts, much more distributive than i s  'each'. 
For example, the sentence: 

some number >  ̂ any number 

(especially if, in reading it, one emphasizes the word ' some') can 
easily be interpreted as  a universal generalization, while this i s  more 
difficult in the case of (**). However, the distributivity of 'any' is 
most easily seen if one contrasts a sentence such as: 

i t  i s  not the case that %pig i s  purple 

with the corresponding sentence: 

it i s  not the case that each pig i s  purple - 
(and then compares with one another the sentences obtained from these 
by deleting the phrase it  i s  not the case that*). ] 





Let us now consider the expression: 

(*I  each number < some number. 

We may think of (*) as  obtained by writing a 'some number * in the 
blank in (3), a s  can be indicated more explicitly by writing: 

(3') each number - < some number. I 
Thinking so, we interpret (*) as  an existential generalization sentence 
which says that there i s  a greatest rea l  number. Under this interpre- 
tation, (*) i s  a false sentence. On the other hand, we may think of 
(*) a s  obtained by writing an each number * in the blank in (4), as  
indicated by: 

(4') each number 1 < - some qumber . 
Thinking so, we interpret (*) as  a universal generalization sentence 
which says that each number has the property of being less  than or  --- 
equal to some number. Since each number is, in fact, less  than or 
equal to itself, this universal generalization is  true and, under this 
interpretation, (*) i s  a true sentence. So, the meaning of (*) depends 
essentially on how we choose to analyze it a s  a sentence. This is in 
sharp contrast to our findings in connection with sentence (O) ,  sen- 
tence (l'), and sentence (2'). 

Clearly, if we a r e  to consider (*) itself as  a sentence, we must have 
some way of deciding for one analysis and against the other. Now, 
in English, we do have a " rule * * for making such decisions. If you 
read (*) without thinking of the preceding discussion, you probably 
tend to interpret i t  as a universal generalization- -that i s ,  a s  suggested 
by (4'). The reason for this i s  that subject-predicate sentences a r e  
much more common in English than a r e  predicate -subject sentences. 
So, although (*) i s  not a subject-predicate sentence [ '  each number * i s  
not a noun], you a r e  likely to regard it  a s  such and thereby identify 
(4) as the predicate in (xc). [You may be able to interpret (*) as  an 
existential generalization if you emphasize strongly the quantifying 
phrase ' each number *, for this emphasis may link the phrase, for 
you, with the '< *, and so cause you to think of the property expressed 
by (3). (On the other hand, for some people, this emphasis will have 
the opposite effect !)] The feeling that subject-predicate sentences 
a r e  " more respectable" than other kinds of sentences has the result 
that in order to say that the property expressed by (3) i s  existentially 
generalized, --that is,  in order to say that there i s  a greatest number, 
one i s  likely to write: 

(**I some number - > each number. 





So, according to  the f i r s t  analysis, ( I t )  i s  not a subject-predicate 
sentence but a new kind of sentence, 

a universal generalization sentence. 

We shall call  'each number' & quantifying phrase. It consists of the 
quantifier ' each* and the common noun 'number '. More specifically, 
we call  the word 'each'  a - universal quantifier. 

Similar r emarks  can now be made about the sentence: 

(2 ') *2 - < some number. 

This sentence can be analyzed as  referr ing to the property of being 
g rea te r  -- than or equal to +2, which i s  expressed by the predicate: 

(2) +2 5 - - - ,  
o r  i t  can be analyzed a s  referr ing to  the property of being l e s s  -- than 
or  equal to some number, which is expressed by the predicate: - -- 

(4) . . . - < some number.  

According to the f i r s t  of these analyses, (2') says that the f i r s t  prop- 
er ty  holds existentially in [or: is existentially generalized over] the 
se t  of rea l  numbers. According to the second analysis, (2') says that 
the second property holds of the rea l  number +2.  According to both 
analyses, (2') conveys the same information, but i t  does so in different 
ways. According to the second analysis, (2') i s  a subject-predicate 
sentence, but, according to  the first ,  (2') i s  

an existential generalization sentence. 

Attempts to construe 'some number' a s  a noun result  in assert ions 
that there a r e  " particular, but not completely specified, numbers ", 
and must fail because, for example, the sentences: 

some number is both even and odd 

and : 

some number i s  even and some number i s  odd 

a r e  not equivalent. We shall call  'some number' a quantify in^ phrase, - 
and call  ' some' - an existential quantifier. 





r Let's concentrate on (1'). We can interpret i t  as saying that each 
number has the property of being less  than or equal to -- +3, and this 
i s  what we have in mind when we think of (1') a s  having been obtained 
by writing an ' each number ' in the blank in (1). Or, we can interpret 
(1' ) a s  saying that '3 has the property expressed by the predicate: 

--that is,  the property of being greater than or equal to each number. 
In this case, we think of (1 ') a s  obtained by filling the blank in (3) 
with a "3'. Like the sentence (O), (1') conveys the same informa- 
tion no matter which way we analyze it; but i t  does so in one case by 
referring to the property of being less  --- than or  equal to - '3 - and in the 
other case by referring to the property of being greater than or  equal 
to -- each number. According to the f irst  analysis, (1') says that the 
f irst  of these properties holds universally in [or: i s  universally 
generalized over] the set of real numbers. 

According to the second analysis, (1 ') says that the second property 
holds of the real  number *3. So, according to the second analysis, 
we look on (1') as  a predicate-subject sentence; i t  says that a certain 
property holds of a certain thing. 

If we t ry  to interpret (1 ') a s  a subject-predicate sentence then we a r e  
forced to use the f irst  analysis. But, a s  already noted, according to 
the f i rs t  analysis the sentence (1 ') says, not - that a certain thing has a 
certain property, but that a certain property holds of each member of 
a certain set. The attempt to analyze (1') a s  a subject-predicate sen- 
tence whose subject i s  'each number' fails because 'each number' is  
not a noun. Attempts to make i t  a noun result in assertions that there 
a r e  " general numbers " as  well as  "particular " numbers. That such 
attempts a r e  doomed to failure i s  evidenced by the fact that if 'each 
number* were a noun then the two sentences: 

each number i s  equal to *3 or  different from *3 

and : 

each number i s  equal to '3 or  each number i s  different from +3 - 
would be equivalent [although they obviously aren't]; just as the sen- 
tences : 

"2 i s  equal to +3 or  different from +3 
and : 

"2 i s  equal to +3 or +2 i s  different from ""3 

a r e  equivalent. 





[There is a third analysis of (0) suggested by: 

according to  which (0) says that +2 has the relation of being l e s s  than o r  --- 
equal to  '3. This way of analyzing (0) will not concern us  here ,  but it 
should be noted that the sentence sti l l  conveys the same information 
when analyzed in this way a s  it does when analyzed according to  (a) o r  
(b) I 
We shall  distinguish between the two analyses (a) and (b) by describing 
(0) either a s  

a subject -predicate sentence, 

or a s  
a predicate-subject sentence. 

Correspondingly, we shall think of (0) a s  being obtained either by filling 
the blank in:  

(1) . < +3 
by the numeral ^2*, o r  by filling the blank in : 

(2)  2 < - - -  - 
by the numeral '"'3'. The expressions (1) and (2) a r e  called predicates 
and, in  each case,  the numeral used to  complete the sentence i s  called 
the subject of the sentence. - 
[According t o  the third way of analyzing (0) it i s  

a f i r s t  subject-predicate-second subject sentence 

whose predicate is '. . . - C _ _ _ *  and whose subjects a r e  ^2' and '+3*. ] 

There  a r e '  other ways of filling the blanks in the predicates (1) and (2) to  
obtain true-or-false sentences. For example, the sentence: 

(1') each number - C +3 

i s  a false sentence, and: 

(2' 1 '2 - < some number 

is a t rue  sentence. As in the case of (O), we can analyze each of these 
sentences in two ways. 





The following discussion i s  included in the COMMENTARY as  back- 
ground material for teachers who want to know how pronumerals get 
into generalizations. It i s  not expected that you will present these 
matters to your class. Also, you will want to read this discussion 
again and again as questions occur to you throughout the course. 

On generalizations. --Consider the sentence: - 
(0) +2 - < +3 

We can analyze this sentence in several ways, two of which a re  sug- 
gested by the diagrams: 

(a) +2 1 - < +3 (b) +2 - < 1 +3 

According to the analysis (a), the sentence (0) says that 

+2 has the property of being less  than or  equal to '3. -- 
According to the analysis (b), the sentence (0) says that 

'3 has the property of being greater than -- or equal to 2. 
Notice that whether we analyze (0) according to (a)  or  according to (b) 
it  conveys the same information, but in the two cases it  does so by 
referring to different properties and to different numbers. 

Comparable analyses can be made of nonmathematical sentences. 
Consider: 

John i s  in love with Mary. 

Analysis (a)  tells us that this sentence says that 

John has the property of being in love with Mary. 
Â 

Analysis (b) tells us that the sentence says that 

Mary has the property of being loved by John. 

According to analysis (a), the sentence refers to John and to the prop- 
erty of being in love with Mary. What does the sentence refer to 
according to analysis (b)? 





In each case, he should agree that the two sentences have the same 
meaning. [If he doesn't, ask how he decides whether a given open 
sentence states a generalization. ] 

Now, point out- that he should agree that (1) and: 

(4') either, for each x, x < 2, or, for each x, x # 2 

say the same thing. So, (1') and (4') must have the same meaning. 
But, as  the student should discover, while (1') is  true, (4') is false. 
You may also point out that, while, for example, the statement 
' 3 <t 2'  i s  the denial of the statement * 3 < 2'. and * x  # 2' i s  the 
denial of 'x < 2*, statement (3') i s  not - the denial of statement (2'). 
The denial of (2') is: 

it i s  not the case that, for each x, x < 2 

and this is to say that 

there is an x such that x # 2, 

a much weaker assertion than that made by (3'). 

See the article "Variable Paradox" by Gertrude Hendrix in the June 
1959 issue of School Science and Mathematics. 

Answers for Part  B [on page 2-27]. 

1. Foreachx ,  3 x + 7 x =  lox. 

2. For each x, (x t 2)7 = x7 t 2.7. 
1 

3. For each x, [5(x t 5)4 - 1001 = x. 

4. For each x, (x t 5)(x t 7) = xx t 12x t 35. 

After the students have had some practice in stating generalizations 
by writing ' For each x*, etc. , you may want to introduce the abbre - 
viation 'V '. Thus the commutative principle for addition may be 
written: x 

V V  x + y = y + x .  
X Y  

[It i s  likely that the ' V was suggested by the word 'all'. Neverthe- 
less, it i s  better to read ' V  as  'for each' rather than as  'for all*. ] 
We introduce this abbreviation formally on page 2 -61. 





10. (a)  For each f i rs t  rea l  number, for each second real  number, 

f i r s t  number - second number 

e qua1 s 

f i rs t  number t the opposite of second number. 

(b) For each x, for each y, x - y = x t -y. 
4.. 
-T" 

Despite your previous efforts throughout the unit, you may stil l  find 
students who will reply to Exercise 1 of Part A saying: 

xy = yx. 

Such a student may have either of two things in mind, and in either 
case i s  in trouble. He may really be thinking of 'xy = yx* a s  pro- 
viding a pattern for obtaining instances of the commutative principle 
(for multiplication). In this case, when he says that 'xy = yx' i s  a 
statement of the commutative principle, he probably thinks of i t a s  
an abbreviation of: 

For  each substitution of numerals for ' x*  and 'y '  
in 'xy = yx', the resulting sentence i s  true. 

But, A1 would object [see bottom of page 2-24] that this cannot - be a 
statement of the commutative principle. 

On the other hand, the student may think that i t  is proper to claim 
that 'xy = yx' i s  a statement of the commutative principle because 
he takes 'xy = yx' a s  saying the same thing as: 

For each x, for each y, xy = yx. 

Such a student may be asked whether he also takes the open sentence: 

(1) either x < 2, or  x # 2 

to mean the same as: 

(1') for each x, either x < 2, or  x # 2. 

Presumably he will assent to this. Now, ask a similar question about 
the sentence s : 

(2  x < 2, 

and : (2') for each x, x < 2, 

and about the sentences: 

(3)  x ^  2, 

and: (3') for each x, x # 2 .  





In Exercises 3 
emphasize the 
page 2-26]. Y 
in other exerci 
as a device for 
2-121. 
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) For each first real number, for each second real number, 
for each third real number, 

(first  number t second number) X third number 

e qua1 s 

first number X third number t second number X third number. 

4. 
"I" 

4 ,  we use pronumerals other than 'x* and 'y* to 
it made by A1 in his last comment [see bottom of 
students may suggest using different pronumerals 
also. Students should be introduced to subscripts 

arging the alphabet. In this connection see page 

(b) For each x, for each y, for each z, (x t y)z = xz + yz. 

6. (a) For each real number, 

that number t 0 equals that number. 

(b) For each x, x + 0 = x. 

7. (a) For each real number, 

that number X 1 equals that number. 

(b) For each x, x 9  1 = x. 

8. (a) For each real number, 

that number t the opposite of that number equals 0. 

(b) For each x, x t -x = 0. 

9. (a) For each real number, 

that number X 0 equals 0. 

(b) For each x, x a  0 = 0. 





It i s  important that the students do the exercises at  the top of page 
2 - 27  immediately upon concluding the dialogue. The written state- 
ments using letter pronumerals should be recorded on a sheet of 
paper and inserted in the text at  this point. Be sure  that the leading 
phrases [quantifying phrases] a r e  included. Students may use the 
expressions such a s  'for each rea l  number x* a s  the quantifying 
phrases i f  they wish. We don't because i t  i s  redundant. This is due 
to the fact that the domain of such variables a s  ' x*  is understood [in 
this unit] to be the se t  of real  numbers. 

Answers for Pa r t  A. 

1. (a)  For  each f i rs t  real  number, for each second real  number, 

f i rs t  number X second number equals second number X f irs t  number. 

(b) For  each x, for each y, xy = yx. 

2. (a) For each f irs t  real  number, for each second real number, 

f i rs t  number + second number equals second number t f i rs t  number. 

(b) For  each x, for each y, x + y = y + x, 

3. (a)  For each f i rs t  real  number, for  each second real  number, for 
each third rea l  number, 

(f i rs t  number X second number) X third number 

e qua1 s 

f i rs t  number X (second number X third number). 

(b) For each a, for each b, for each c, abc = a(bc). 

[Recall the convention that 'abc* i s  an abbreviation for ' ( a b ) ~ ' .  ] 

4. (a) For  each f irs t  real  number, for each second real  number, 
for each third real  number, 

(f i rs t  number t second number) 4- third number 

equals 

f i rs t  number t (second number t third number). 

(b) For each xl  , for each xz , for each x3,  



Say aloud each principle for the real  numbers, f i rst  by using pro- 

nouns like f i r s t  number *, 'second number*, e tc . ,  and then write 

it  in concise form by using letter pronumerals. 

Commutative principle for multiplication 

Commutative principle for addition 

Associative principle for multiplication 

Associative principle for addition 

Distributive principle for multiplication over addition 

Principle for adding 0 .  7. Principle for multiplying by 1. 

Principle of opposites 9. Principle for multiplying by 0 

Principle for  subtraction 

B. Each of the following is  a general statement about numbers. Translate - 
it into a sentence beginning with 'For each x, . , . '. 

Sample. Whatever real  number you pick, i f  you multiply it by 2, 

and then multiply 3 by the product, the result is the 

product of 6 by the number chosen. 

Solution. For each x, 3(xZ) = 6x. 

Whatever real  number you pick, i f  you multiply 3 by it, then 

multiply 7 by it, and then add the second product to the fir st,  

the result is the product of 10 by the chosen number. 

For each real  number you pick, i f  you add 2 to it and multiply 

the sum by 7, you get the same result as  you would by adding 

the product of 2 by 7 to the product of the number you picked by 7. 

Pick any real  number. Add 5 to i t .  Multiply 5 by this sum. 
1 Multiply by 4. Subtract 100. Multiply by . The result is 

the number you started with. 

Pick a real  number. Add 5 to it ,  and 7 to i t .  Multiply the sums. 

The result i s  the product of the chosen number by itself, plus the 

product of 12 by the chosen number, plus 35. 



In Unit 1 you learned procedures for  adding and multiplying r e a l  

numbers .  That i s ,  you learned ways of solving problems like: 

But, you were not asked t o  s ta te  the rules  you followed. Let 's  look into 

the problem of stating a rule for ,  say, ad-ding two negative numbers.  Of 

course,  you already know - how t o  add such numbers.  Can you s ta te  a rule 

which descr ibes  exactly what you do with the numbers t o  get the s u m ?  

Here  i s  one such careful  description. 

F o r  each f i r s t  r ea l  number,  for  each second rea l  number, 

if  the f i r s t  r ea l  number i s  negative and 

the second rea l  number i s  negative 

then the sum of the r e a l  numbers  is the negative 

number which corresponds with the sum of 

the number of ar i thmetic  which corresponds 

with the f i r s t  r e a l  number and the number of 

ar i thmetic  which corresponds with the second 

rea l  number.  

The description can h e  made briefer by using le t te r  pronumerals .  Here 

i s  a f i r s t  attempt.  

F o r  each x, for  each y, 

if  x i s  negative and y is negative 

then x + y is the negative number which corresponds 

with the sum of the number of ar i thmetic  which 

corresponds with x and the number of ar i thmetic  

which corresponds with y. 

Can we make fur ther  improvements? The phrase 

'the number of ar i thmetic  which corresponds with x' 

can be abbreviated to ' )x  1 '  since,  a s  you reca l l  f r o m  Unit 1, the abso-  

lute value of a r ea l  number i s  the number of ar i thmetic  which corresponds 



The discussion on pages 2 -28 and 2 -29 should be read aloud in class. 
Here, a t  last, a r e  descriptions of the procedures for adding and multi - 
plying real  numbers. These a re  procedures which the student has 
mastered by this time, but this i s  the f irst  opportunity for him to 
consider the complexity of describing the procedure. Students should 
not be required to memorize any of these descriptions. The purpose 
of the exercises in Part C and Part D i s  to demonstrate the ease with 
which complicated rules can be stated when letter pronumerals a r e  
available. * 
Answers for Par t  C [on page 2-29]. 

1. V V i f x i s  positive a n d y i s p o s i t i v e t h e n x  t y = + ( [ x j  t l y l ) .  
x Y 

2. V V if x is  negative and y i s  positive then xy = "(1x1 l y l ) .  
X Y  

3. V V if x is positive and y i s  negative then xy = -( lx 1 1 1 ). 
X Y  

4. V V if x is positive and y i s  positive then xy = +( lx 1 l y  1 ). 
X Y  

5. V V if x is negative and y is negative then xy = +( lx 1 l y  1 ). 
X Y  

Answers for Par t  D [on pages 2 -29 and 2 -301. 

1. This i s  the rule for adding a negative number to a positive num- 
ber. [ ~ o t i c e  that (a)  could be written: 

if x > l y l  then . . . , 
in which case (b) would be written: 

if 1x1 < l y l  then ... . 
If the condition of equality were not mentioned in either (a) or 
(b), we would need a third part: 

(c) if 1x1 = l y l  then x + y = 0. 

When one generates instances from the rule as  i t  is stated in 
Exercise 1, he might obtain an expression equivalent to * +0'. 
As mentioned on page 1 - 1 09, * '0' i s  a name for a positive 
number, * +0' stands for the real number 0. ] 







vxvy if x i s  negative and y i s  positive then 

(a) if 1x1 - > j y l  then x + y = 71x1 - jyl) 

and (b) if 1x1 < l y ]  then x t y = * ( l y l  - 1x1). 

(a)  V x t 0 = x. Principle for adding 0. 

(b) V x *  0 = 0.  Principle for multiplying by 0. 

The commutative principle for addition. 

The commutative principle for multiplication. 

* 
For the sake of completeness, we should have a description of the 
procedure for finding the opposite of a real  number. Students should 
state this description and include i t  in their textbooks. 

V if x i s  nonnegative then -x = '(x 1, and x 

if x i s  negative then -x = + 1 x 1 .  
This description will be useful in giving justifications [if any a re  
needed] for Par t  B on page 2-63. [ ~ e  sure that students read * -x* 
as 'the opposite of x* and not as  'negative x*. 1 



with it.  So, a shorter  description i s :  

F o r  each x, fo r  each y, 

i f  x i s  negative and y is negative 

then x + y is the negative number 

which corresponds with lx 1 + l y  I. 
We can make a final improvement by recalling that in  o rde r  to  form a 

name fo r  a negative r ea l  number we just put a ra i sed  minus sign in 

front of a name of the corresponding number of ar i thmetic .  So, a con- 

c i se  rule  for  adding negative numbers i s  : 

F o r  each x, for  each y, 

if x is negative and y is negative 

then x + y = -( 1x1 + l y  I). 

C. State in  a concise way the rule for - 
1. adding positive numbers.  

2. multiplying a negative number by a positive number.  

3.  multiplying a positive number by a negative number.  

4. multiplying a positive number by a positive number. 

5. multiplying a negative number by a negative number.  

What rule is the following ? 

F o r  each x, for  each y,  

i f  x i s  positive and y i s  negative then 

State the rule for  adding a positive number to  a negative 

number.  

State rules  for  adding the rea l  number 0 and multiplying by 

the r ea l  number 0. [Do you know these rules  by some other 

names?  ] 



4. What principle of r ea l  numbers makes it unnecessaryfor  you 

to  r emember  the rule of Exercise  2 of P a r t  D if you r emember  

the rule of Exercise  1 of P a r t  D ?  

5. What principle of r e a l  numbers makes it unnecessary for you 

to  r emember  the rule of Exercise  3 of P a r t  C if you r emember  

the rule of Exercise  2 of P a r t  C ?  

2.03 Generalizations. --Here is a generalization statement about numbers :  

F o r  each x, 1. + 2x = 3x. 

Translated into ordinary English, this statement te l ls  you that no mat te r  

what r ea l  number you pick, i f  you multiply 2 by this number and add the 

product to  1, the resul t  is the product of 3 by the chosen number. Do 

you believe what this  generalization statement te l ls  you ? Whatever your 

answer i s ,  you should be able to  give evidence for  your belief. If you 

believe that the generalization i s  t rue ,  you might t r y  to  justify i t  on the 

basis of the principles for r ea l  numbers .  If you believe that it i s  false,  

you might t r y  to  find a counter-example, that i s ,  a number such that when 

you multiply 2 by this number and add the product to  1, the resul t  i s  dif- 

fe rent  f rom the product of 3 by this number.  

Actually, the generalization is false.  A counter-example i s  7. 

and 1 5 / 2 1 .  

[ ~ o t i c e  that the generalization i s  false,  despite the fact that 1 + 2 1 = 3 1. 

A generalization i s  false even if it has  only one false instance, no mat te r  

how many t rue  instances i t  has .  ] 
If you had f i r s t  guessed that the generalization i s  t r u e ,  this may have 

been because you thought that it i s  a consequence of the distributive principle 

for  multiplication over addition. F o r  example, you might have thought 

that : 

i s  an instance of the distributive principle. Why isn't i t ?  [Or, you may  

have thought that (:::) i s  an instance of one of the associative principles.  

Vlhy isn't i t  ? ]  



F o r  your information, and to prepare  you for questions which may 
a r i se ,  we amplify he re  the discussion on page 2-30 concerning 
generalizations and counter -examples. 

As remarked ea r l i e r  in the COMMENTARY, there  a r e  two kinds of 
generalization sentences--universal generalization sentences [begin- 
ning with ' for  each', or ,  l a t e r  in the text, with 'V*] and existential 
generalization sentences [beginning with ' there  exists a *, o r  ' 3 *I. 
Because we have l i t t le to do with the la t te r  kind of generalization 
sentence we have, in the text, used the word 'generalization* to r e f e r  
to  universal  generalization sentences. And we shall continue this 
usage here.  

A generalization i s  obtained by writing a quantifying phrase  such a s  
' for  each x, ' in front of a sentence. For  example, consider the two 
sentences: 

x + 3 = 5  and: for each y, xy = yx. 

Both of these  a r e  open sentences, the f i r s t  is an open equation and 
the second is an open generalization sentence. [Recall that open 
sentences a r e  not statements. They a r e  neither t rue nor false. ] 
We can form generalization statements f rom these sentences by 
writing a ' fo r  each x, * in front of each: 

(1) for each x, x + 3 = 5, 

( 2 )  for each x, for each y, xy = yx. 

The f i r s t  of these generalizations i s  false, and the second i s  true.  

An instance of a generalization is ,  in the s t r ic t  sense of ' instance*, 
a sentence obtained by dropping the generalization's [left-most] 
quantifying phrase and substituting a numeral  o r  a pronumeral ex-  
pression for the corresponding pronumeral in the resulting sentence. 
Thus, each of the following i s  an instance of (1). 

[Notice that an instance of a generalization statement may be either 
a statement o r  an open sentence. ] 
The following a r e  instances of (2). 

for each y, 2y = y2; for  each y, ( z  + 4)y = y(z + 4). 

[And, the following a r e  instances of the open generalization sentence 
'for each y, xy = yx*. 





However, we have used the word 'instance' in a slightly different 
sense, to describe sentences obtained from a generalization by 
dropping initial quantifying phrases and then substituting for all 
of the corresponding pronumerals. In this sense, instances of (2) 
a r e  such sentences as: 

[Such sentences would be more properly described as  being instances 
of instances of (2). ] - 
The preceding discussion has some application to the notion of counter - 
examples. It should be clear from the text that, for example, 7 i s  a 
counter -example to the generalization (1). For ' 7 t 3 = 5' i s  a false 
instance of (1). And, since (1) has a counter -example, (1) is ,  itself, 
false. 

Consider, now, a more complicated false generalization, say: 

(3) for each x, for each y, 8x + 3y = l lxy. 

Strictly speaking, 2 i s  a counter-example to (3), since the correspond- 
ing instance of (3): 

is  false. [Statement (4) i s  false because - i t  has a counter-example. 
One such i s  5; the statement ' 8 2 t 3 5 = 11 2 5' i s  false. ] 

Using 'instance' in the broader sense one might say that, since 
' 8 2 + 3 5 = 11 2 *5* i s  false, the ordered pair (2, 5) is ,  in a broader 
sense, a counter-example to (3). Although in the text we have used 
'instance ' in the broader sense, we have not wanted to introduce a 
corresponding broader meaning for ' counter -example '. And, to avoid 
raising the issues discussed above, we use the t e rm 'counter-example* 
only in discussing generalizations having a single initial quantifying 
phrase. 

Students can still explain why statement (3) i s  false by pointing out that 
i t  has the false sentence ' 8 0  2 + 3* 5 = 11 2 5' among its consequences, 
thus appealing to the fact that consequences of true statements must be 
true. [ ~ n  the broader sense, ' 8 2 + 3 5 = 11 2 5' is ,  a s  indicated 
above, an instance of the generalization. So, you could use 'instances' 
instead of 'consequences * in the explanation of why (3) i s  false. ] 







r the difficulty which students encounter in conventional courses may 
be traced to the fact that in such courses one accumulates a multitude 
of generalizations [rules] without noticing the logical connections 
among them. Being unrelated and multitudinous, they a re  difficult to 
remember, let alone to understand. So, students in conventional 
courses often come to  regard algebra a s  a dull game with innumerable 
and unrelated rules which the teacher divulges a t  critical points of the 
play 

4 
*Ib 

Here i s  a quiz to review the inequality relations. 

For each exercise, insert a ' > ', a ' < * or an ' = * so  that the 
resulting sentence is true. 

Answers for Quiz. 

1. < 2. > 

6 .  > 7. > 





The last  sentence at the bottom of page 2-32 i s  very important. The 
purpose of proof a t  this stage is not so  much to convince oneself o r  
others of the "correctness" of a generalization, but rather to exhibit 
the logical connections among generalizations. In proving the generali- 
zation : 

For each x, 3(x2) = 6x, 

the student is not trying to convince himself that this generalization 
is true.  [Actually, he i s  a s  sure of this generalization as he is of the 
apm, the cpm, and the fact that 3 2 = 6. ] What he i s  trying to do i s  
to show that the generalization in question can be predicted from, or  
is a consequence of, the other generalizations and the computing fact. 

Once students have become accustomed to proving generalizations, 
some will raise the question of why we don't t r y  to prove one of the 
basic principles. This i s  an excellent question, and can be answered 
as  follows : By 'proving a generalization* we mean deriving it from 
basic principles. Now, as it  happens, it i s  impossible, for example, 
to derive the cprn from the other generalizations we have taken as 
basic principles [postulates]. We might be able to choose another set  
of generalizations which could serve a s  basic principles but would not 
include, for example, the cpm. We would then be able to  derive the 
cprn from these new principles, or,  a s  we would then say, we would 
be able to prove the cpm. Students have already noticed in Unit 1 that 
the ldpma is a consequence of the dpma and the cpm. So, the Aipma 
need not be included in a se t  of basic principles which includes the 
cprn and the dpma. Similarly, if we accept the cprn and the Aipma as 
basic principles, we need not include the dpma among the basic prin- 
ciples. Clearly, there is  considerable freedom in choosing basic 
principles for  the real numbers. In doing so, one t r ies  to avoid in- 
cluding among the basic principles any generalization which can readily 
be derived from the others. Right now, students probably consider 
the principle for multiplying by 0 a s  a basic principle. Later in the 
unit, they will discover how to derive it  from the others. 

When students come upon a generalization [such as  any of the true ones 
in Pa r t  A on pages 2-34 through 2-36] which they a r e  inclined to  accept, 
they should ask themselves whether their acceptance need be signalized 
by adjoining it to the set of basic principles, or whether it i s  derivable 
from their present set of basic principles. Such questioning i s  charac- 
terist ic  of much of what is known as  "doing mathematics ". Much of 





Recall the role of the substitution rule [see TC[l-5611 in binding to- 
gether the statements displayed toward the bottom of page 2-31. Here 
is  an expanded form of the argument. 

Note that in addition to inferences based on the substitution rule pre- 
viously discussed, we make use of inferences from a universal generali- 
zation to  its instances, such as :  

VxVyxy = yx and : Vy 5y = y5 

Vy5y = y5 
, 

5 * 2 =  2.5 

J u s t  a s  inferences of the earl ier  mentioned sort  [applications of the 
substitution rule] were acceptable to  us because of the meaning we had 
adopted for * = *, s o  inferences of this new kind a re  acceptable because 
of the meaning we have adopted for * V '. 

From the expanded argument above, we can obtain a correspondin 
expanded form for the testing pattern by replacing each *5* by a ' rf * 
[or by a copy of any other single pronumeral (except, in this case, *y*)]. 

Needless to say, we  do not ask you to teach this form of presenting tes t -  
ing patterns to your students. But, at some point, you may find it help- 
f u l  to point out, as  you may already have done in Unit 1, that '3(5 * 2) = 
3(2 5)* is  a consequence of the cpm by virtue of the substitution rule 
and the principle that a thing i s  itself. 

5.2 = 2 * 5  3(5* 2, = 3(5 
[substitution of '2 5' fo r  3(5 2) = 3(2 5) 
second '5 2'1. 

Also, the same rule and principle a r e  used in establishing '(3 2)5 = 6 5'. 

-- 
3 - 2  = 6 [substitution of '6' for second 

'3 2'1. 





The use of a test-pattern a s  a proof of a universal generalization 
statement i s  of basic importance for much that follows. Later in this 
unit students w i l l  use this procedure to obtain proofs for the generali- 
zations concerning subtraction and division which justify their comput- 
ing practices. And students w i l l  be called upon throughout their work 
in mathematics to give similar proofs. The trick of discovering such 
a test-pattern, by looking for  a uniform way of verifying one or two 
chosen instances of the generalization, i s  worth emphasizing. Even 
after some practice, students may have difficulty in writing out a test- 
pattern without previously seeing how to verify a chosen instance. [YOU 

may have helped students in conventional classes to discover how to 
simplify an expression by suggesting that they "try it with numbers in 
place of le t tersv*. ]  The use of frames [as at the top of page 2-32] to 
isolate the substitutions used in obtaining the chosen instance makes 
it very easy to transform the verification of an instance into a proof 
of the generalization. 

It is good practice to repeat in class the discussion on pages 2-31 and 
2-32, but with a different generalization. 

Note carefully that we do not claim that a testing pattern can be used 
in verifying every instance of the generalization in question. Life is 
too short! However, the testing pattern can be used to  verify any in- 
stance that one might suggest. So, if one accepts the principles used 
in justifying the steps of the testing pattern, it i s  unreasonable for him 
to doubt % instance. And, he is in a strong position with regard to  
anyone who denies the generalization. For such a person is  obligated 
to exhibit a counter-example [put up or shut up!], and one who has a 
testing pattern ready can afford to  be complacent. 

Although we take statement s of computing facts [such a s  '3 * 2 = 6'1 
for  granted, they are ,  a s  indicated on TC[l-60, 61]c, consequences 
of our basic principles and definitions such a s  '2 = 1 t 1 *, '3 = 2 + 1'. 
etc. 



Now, consider another generalization about numbers : 

F o r  each x, 3(x2) = 6x. 

T o  make s u r e  we understand what this  says ,  let 's  look at a few instances.  

T o  write an instance, we substitute a numeral  for  'x' in the open sentence 

which follows the 'For  each x, '. 
(1) 3(5 2) = 6 5 

Statement (1) i s  t rue  because 3(5 2) = 3 -  10 = 30, and 6 5 = 30. 

Statement (2) i s  t rue  because 3(8 2) = 3 16 = 48, and 6 8 = 48. 

Statement (3) is t rue  because 3("7- 2) = 3 ""14 = "42, and 6 *-7 = -42. 

So, we have verified each of the three  instances.  

Do you think you could find a substitution for 'x' which would generate 

a false s ta tement? If you think you couldn't, how can you be s u r e  you're 

r ight?  You certainly couldn't t e s t  and verify each instance a s  you did 

( l ) ,  (2). and ( 3 ) .  Vlhat you need is a method for  testing any instance 

which you can be su re  will verify each instance that you t e s t .  The method 

used in testing instances ( I ) ,  (Z), and (3) was to  multiply the t e s t  number 

by 2, multiply 3 by this product, and compare this resu l t  with the p ro -  

duct of 6 by the tes t -number .  But, it is not immediately c l ea r  that this  

computing method will resul t  in a verification of each instance tested.  

Consider another method of testing instance ( 1 ) .  Let's s t a r t  with 

the expression on the left of ' = ' and t r y  to  t ransform it into the expres-  

sion on the right of ' = '. 

Hence, 

So, we say that '3(5 2) = 6 -  5' is a consequence of the commutative and 

associative principles for multiplication, and the computing fact that 

3 - 2  = 6.  

Let's use this  method t o  t e s t  instance (Z), this  t ime putting a f r a m e  

around the numeral for the t e s t  number.  



Hence, 

3(f8) 2) = 3(2 [8]) [cpmj 

3(2 [8]) = ( 3  2)[8] [apm] 

( 3 * 2 ) ( 8 ) = 6 - @ .  [ 3 - 2 = 6 ]  

3 ( 0 0 * 2 ) = 6 * m .  

So, instance (2 )  i s  a consequence of the commutative and associative 

principles for multiplication, and the computing fact that 3 - 2 = 6. 

Do you s e e  how t o  t e s t  instance ( 3 ) ?  Just  e r a s e  the numerals  in 

the f r ames  and write a '-7' in each f rame.  Do you s e e  that when you 

e r a s e  the numerals  in the f r ames  getting : 

3 ( D * 2 ) = 3 ( 2 * Q )  [cpm] 

3 ( 2 * n ) = ( 3 - 2 ) r - J  [apml 

( 3  2 ) o  6 0. [ 3 * 2 = 6 ]  

Hence, 3 ( n e 2 ) = 6 - n .  - 

you have a testing pattern which can be used to  t e s t  any instance, and 

that such a tes t  will always lead to  a verification of the instance tes ted?  

In fact,  the tes t-pat tern shows you that each instance is a consequence 

of the commutative and associative principles for multiplication, and 

the fact that 3 2 = 6. So, we know that the generalization: 

For  each x ,  3(xZ) = 6x 

is a consequence of the commutative and associative principles for  mul-  

tiplication, and the computing fact that 3 2 = 6. The t e s t  -pattern is a 

derivation of the generalization f rom the cpm, the apm,  and '3 2 = 6'. 

F o r  short ,  it  is a proof of the generalization. The proof shows that if  - 
we accept the p r e m i s s e s  : 

F o r  each x,  for  each y, xy = yx, 

For  each x,  for  each y, for  each z, xyz = x(yz),  

3 * 2 = 6 ,  

then we must  accept the conclusion: 

F o r  each x,  3(x2) = 6x. 

You should have just a s  much faith in the t ruth of the conclusion a s  

you have in the t ru th  of the p remisses .  





It may be instructive to introduce the class to the generalization: 

For each x, x(2x t 3) = 2(xx) t 3% 

by means of the following "game9*. Each student picks a number 
but does not tel l  it to anyone. The teacher then asks that each stu- 
dent follow these instructions with regard to his chosen number: 

(a) Multiply 2 by the number. Next, add 3 to  this product. 
Then, multiply the chosen number by this sum, and 
record the product, drawing a loop around the answer. 

(b) Now, multiply the chosen number by itself, and multi- 
ply 2 by this product. Multiply 3 by the chosen number, 
and add this product to the result of the previous multi- 
plication. Draw a loop around the answer. 

The teacher is able to  predict that, for each student, the "looped 
answers*' a r e  the same. The two sequences of instructions a r e  
sufficiently different to cause some surprise at the outcome. The 
students w i l l  be sure that a generalization is involved. Now, they 
can be asked to state it. The f i r s t  step in doing so i s  to write the 
univer sally quantifying phrase : 

For each x, 

Next, the steps in the instructions a r e  followed one a t  a time [an 
activity which was explored in Par t  B on page 2-27]. 

(a) x 4 2x -> 2x t 3- x(2x t 3) 
Â¥ 

So, the generalization in question is  : 

For  each x, x(2x t 3) = 2(xx) t 3x. 

Now, you can proceed with developing a test -pattern for this generali- 
zation. [Notice that during the game, each student verified an instance, 
but the method of verification was not enlightening.] 

As students become more adept a t  setting up test-patterns, you can 
ask them to make up generalizations which they can introduce to the 
class by way of a game as described above. The f i rs t  time someone 
uses a false generalization should prove to be a most instructive 
occasion. 



Now, let's consider stil l  another generalization; 

For each x, x(2x + 3) = 2(xx) + 3%. 

This generalization tells us, for example, that 

Do you believe this instance ? You could test  i t  by computing. But, i f  

we tes t  it in  such a way a s  to reveal a test-pattern, then we shall have 

proven not only the instance but the generalization itself. 

[71(2*  [71+ 3) = [71(2*  ID) t [71* 3 [Wpma] 

1 7 ] ( 2 - [ 7 ) ) + 1 7 ] * 3 = ( 2 * f 7 ] ) 1 7 ] + I T ] -  3 [cpm] 

( 2 * [ 7 1 ) ~ , + ~ - 3 = 2 ( ~ * [ T ) + ~ * 3  [apm] 

2(a* a) t [ 7 ] * 3  = ~ ( ( 7 1 0  [7]) t 3 * [ 7 ) .  [cpm] 

a(2-a+3)=2([7)- ( 3 ) + 3 * a .  Hence, 

The test-pattern is easy to see if we erase  the numerals from the f rames,  

and even easier  to see if  we then replace the frames by a letter.  

Hence, 

This test-pattern can be used to verify any instance of the generalization: 

For  each x, x(2x + 3) = 2(xx) + 3%. 

So, i t  is a proof of this generalization. It shows that the generalization 

is a consequence of three principles for real numbers. What a r e  they? 
[Notice that even when you have a test-pattern, you a r e  still  not able to 

test every instance of the generalization [Why not ?I. However, the test-  

pattern gives you a sure-fire method of refuting anyone who claims to 

have a counter-example.] 



(2.031 

EXERCISES 

A .  Each of the following is  a generalization about real numbers. Some - 
a re  true and some a re  false. Your job is  to decide which, and in 

each case to give either a proof or a counter-example. 

Sample L. For  each y, 7 + ( 3  + y) = y + 10. 

Solution. You may suspect that this i s  true, and be able to 

s tar t  writing a proof immediately. However, i f  

you have difficulty in seeing how to construct a test-pattern, 

get to work on an instance. For  example, t ry  using the 

principles to verify: 

We notice that the 'H' i s  not in parentheses on the right 

side. This suggests transforming the left side ' 7  + ( 3  + a)* 
by the associative principle for addition. 

Since 7 t 3 is  10, 

Then next we can use the commutative principle for addition. 

We can now write a test-pattern. 

Hence, 7 + ( 3  t m) = m t 10. 

1. Fbr each t ,  3(5t) = 15t. 

2. For  each q, 3 t 6q = 9q. 

3. For  each r, 3 + 6r = 3(1 + 2r). 

4. For  each x, x o  1 + x = 2x. 

5. No matter what number you pick, i f  you add it to 9 and add 

this sum to 1, you get 10 plus the chosen number, 



Answers for Part A [on pages 2-34, 2-35, and 2-36]. 

1. 3(5t) = (3*5)t  [apm] 

Hence, 3(5t) = 15t. 

So, the generalization 'For each t ,  3(5t) = 15t* i s  a consequence 
of the aprn and the statement '3 5 = l5*. 

[Students should frequently be required to state, as we have done 
in the last sentence, what their test-patterns show. Also, to guard 
against the likelihood that students come to write test-patterns me- 
chanically and for get their significance, students should be asked to 
use their test-patterns to verify instances of their generalizations. 
An appropriate request in connection with the answer for Exercise 
1 is: 

Use your test-pattern to show that 3(5 863) = 150 863. 

Of course, logically, the existence of a test-pattern relieves one, 
once and for all, of the necessity for testing instances of the cor- 
responding gene~ralization. ~ u t ,  pedagogic~lly, the fact that it does 
so  is perhaps best brought out by occasionally using, all the way 
through the course, test-patterns as patterns for testing instances. ] 

2. 4 is a counter-example. [3 t 6.4 = 27, 9 * 4  = 36, and 27# 36.1 

[Of course, each real  number other than 1 is a counter-example. 
But, don't press  for this. ] 

:;: 

If students notice that 3 t 6 1 = 9 1, don't let them conclude from 
this that the generalization 'For each q, 3 t 6q = 9qJ is sometimes 
true. A statement is either true or false, not sometimes one and 
sometimes the other. Similarly, it is  nonsense to say of a generali- 
zation that it i s  always true. 

Suppose a student claims to  have a test  -pattern for the generali- 
zation in Exercise 2: 

Hence, 3 + 6q = 9q. 
This is a common misapplication of the apa which we have tried to  
guard against through the exercises in Par ts  D and E on pages 2-20 





and 2-21 and through the teaching suggestions on TC[l-44, 45]b, c 
and  TC[l -501. To handle this e r r o r ,  f i r s t  a s k  fo r  a s ta tement  of 
the apa. Then, take the pat tern sentence f rom it: 

( x t  y) t z = x t  ( y t  z) 

and a s k  f o r  the substitutions which the student has  made to get: 

l i t  might even help to unabbreviate the sentence in question, thus 
obtaining : 

Frequently,  the conventional omission of the t imes  sign leads  to 
th i s  kind of misapplication.]  Compelling the student to compare  the 
pat tern sentence of the bas ic  principle with the sentence in his t es t -  
pa t te rn  will help him s e e  the e r r o r .  This i s  one of the advantages 
of being able  to verbal ize  generalizations.  [ ~ u t ,  to keep the verbali-  
zations f rom being m e r e  parrot- l ike  repeti t ions,  we ins i s t  on non- 
verba l  awareness  f i r s t ,  a s  in Unit 1.1 

3 . 1  + 3(2r) = 3(1 + 2r) .  [ J d ~ m a ]  
Hence, 3 + 6 r  = 3(1 + 2r) .  

So, the generalization ' F o r  each r ,  3 t 6 r  = 3(1 + 2r)'  i s  a 
consequence of the s ta tement  '6 = 3 2', the apm, the p m l ,  
and the idpma. 

[Here is a place where students may a s k  if they can  prove the 
generalization by transforming the right s ide into the lef t  side.  Of 
cou r se  they can, and they should compare  the two tes t -pat terns .  
The tes t -pat tern f o r  going f r o m  '3(1 + 2r)* to  '3 t 6r*  i s  just  the com- 
plete r e v e r s e  of the tes t -pat tern given above. 

3(1 + 2 r )  = 3 1 t 3(2r) [ l d ~ m a l  

Hence, 3(1 t 2 r )  = 3 t 6r .  

SO, 3 t 6 r  = 3(1 + 2r) .  





Notice the additional final sentence in the test-pattern. It follows 
f rom the preceding one by virtue of a principle of logic, the sym- 
metry of equality principle [See TC[~-56lb.l. W e  do not cite prin- 
ciples of logic as  justifications of steps in a test-pattern. [For 
example, we have never cited the substitution rule in a test-pattern.] 
However, the last line of this test-pattern is necessary i f  the tes t -  
pattern is to be a proof of the generalization in Exercise 3.1 

Hence, x * 1 +  x = 2x. 

So, the generalization in question is a consequence of the pml,  
the Aipma, the cpm, and the fact that 1 t 1 = 2 .  

[At this point you should ask students to prove that 

for each x, x + x = 2x. 

They can do this by writing a test-pattern similar to the one for 
Exercise 4, or [preferably] they can give the following test-pattern: 

x + x  = x - 1  + x  [pml] 
x * 1  t x =  2x. [For each x, x *  1 t x = 2x.I 

Hence, x t x = 2x. 

This is an excellent opportunity for students to use a generalization 
already proven in establishing another one. [The generalization just 
established is one which the students w i l l  be asked to state, and 
prove, in Exercise 19 on page 2-36.] This opportunity w i l l  be r e -  
peated in Exercise 3 of Pa r t  C on page 2-37. [See the discussion for 
Exercise 3 on TC[2-37]b.]] 

5. Students should state this generalization in concise form before 
writing a test-pattern. 

1 +(9 t x )  = (1 + 9) + x [apa] 
(1 t 9) + x = 10 t x. [l t 9 = lo]  

Hence, 1 + ( 9 + x ) = l O + x .  

So, the generalization 'For each x, 1 t (9 t x) = 10 t x* is a 
consequence of the apa and the statement '1 t 9 = 10'. 







is introduced in Sample 2 on page 2-35. To deepen this appreciation 
you might assign generalizations like: 

For each x, 2 t 5x t 7 t 4x = 9(1 t x), 
and : For each y, 3(1 + 2y) + 6(5 t 3y) = 33 + 2 4 ~ ,  

to be proved before you get to Sample 2. 

In connection with Sample 2, i f  no one suggests it ,  propose this step 
in the test-pattern: 

3k + (9k - 2) = (3k t 9k) - 2 [apa]. 

Again, recourse to  an explicit comparison between the pattern sen- 
tence of the apa and the sentence in question will show that this i s  a 
misapplication. However, students may counter by asserting that 
they believe the generalization: 

For each x, for each y, for each z, 
x + ( y - z ) = x t y - z .  

And, indeed, this is a theorem which they will prove later  in Unit 2. 
They a r e  prepared to  prove it now. Let them do s o  i f  they wish. 

x t (y - z) = x  t (y t -z) [ps] 

x t (y t -z) = (x  t y) t -2 [apa] 
(x t y) t - 2  = x t y - z* [PSI 

Hence, x + ( Y - z ) = x t y - 2 .  

Now that it is  proven, they can cite this generalization in support of 
the step: 

3k t (9k - 2) = (3k t 9k) - 2. 

This bit of pedagogy will help students see how generalizations a r e  
sometimes guessed at, then proved, and used. 





6. 0 is a counter -example [and s o  is each real  number other than 11. 
[8* 0 + 7 = 7, 7 *0 t 8 = 8, and 7 # 8.1 [If students misapply one of 
the commutative principles, be sure to r e  quire an explicit state - 
ment of the substitutions to be made in the pattern sentence of the 
principle. See the discussion in the COMMENTARY for Exercise 2.1 

7. 1 i s  a counter-example [and so  is each real  number other than 0, 
\T5, and -a]. [ l * l a l  1, 3.1 = 3 and 1 # 3.1 [Transforming 'xxx' 
to '3x' i s  a common e r ro r  which probably ar ises  from a mechanical 
approach to manipulating symbols and from the conventional omission 
of the times sign. A student i s  complimented for transforming 
*x t x t x' to '3x' and t r ies  to generalize to transforming 'xxx' to '3x', 
also. He views the *3* as  i f  i t  were an adjective instead of a noun. 
He should not explain the equivalence of 'x t x t x* and '3x' as  a case 
of having "3 of the same thing", but instead should see i t  a s  a con- 
sequence of the pml ,  the klpma, the cpm, and the facts that 1 + 1 = 2 
and 2 t 1 = 3. ] 

4(3x) = 4*3x  [apm] 

4 * 3 x = 1 2 x .  [ 4 * 3 = 1 2 ]  

Hence, 3x* 4 = 12x. 

9 t 7x + 3 = 7x + 9 + 3 [cpa] 

Hence, 9 + 7 x + 3 = 7 x + 1 2 .  

Note that the exercises in Pa r t  D of the Supplementary Exercises 
furnish students with test-patterns for  which they a r e  to supply the 
"reasons". [You may prefer to ask the abler students in advance 
to find test-patterns for  the generalizations in question.] These exer- 
cises provide students with models of "sustained" proofs. They alert  
students to the need to  use caution in skipping steps. They also help 
to build an appreciation for the abbreviated testing pattern which 



6. For e a c h r ,  8r + 7 = 7r t 8. 

7. For  each x, xxx = 3x. 

8. For each x, 3x 4 = 12x. 

9.  For each x, 9 + 7x + 3 = 7x + 12. 

[More exercises a r e  in -- Part  D, Supplementary Exercises .] 

Sample 2. For each k, 3k + (9k  - 2) = 12k - 2. 

Solution. Here i s  a test-pattern. 

3k t (9k - 2) = 3k + (9k  + -2) [PSI 

Hence, 3k t ( 9 k  - 2) = 12k - 2. 

We can save almost half the writing i f  we abbreviate the test-  

pattern as  follows. 

To  save space horizontally, you may arrange your work a s  

follows . 



10. For each m, 3m - 7 + 5m = 8m - 7. 

11. For eachq ,  ( 2 q 0 5 ) q =  10(qq). 

12. For each x, 6x(3x) = 18(xx). 

13. For  each r,  3r - r = 3. 

14. For  each m,  Zm(3 + 5m) = IO(mm) + 6m. 

15. For eachx ,  x - 1 = 1 - x .  

16. For each y, 3y + 7 + 5y - 3 = 8y + 4. 

17. For each x, 3x + 4(x + 7) = 7(x + 4). 

18. For  each n, 4n( 3n) = 7nn. 

19. For each number you pick, i f  you add it to itself, you get the 

product of 2 by the chosen number. 

*20. For  each A, A(A + 2) + A(A + 3) = 2 AA + 5A. 

[More exercises a r e  in Par t  E, Exercises.] -- 

Consider the following generalization : 

( ::c ) For each x, ( x  + 3)(x + 7) = ( x  + 7)(x + 3). 

Do you think it 's  t rue ? Let's look at one of its instances : 

Since * ( 5  + 3)' and *(5 + 7)' a re  numerals for rea l  numbers, do you see 

that from the open sentence : 

we could generate this instance ? And, do you see that each instance 

of (*) can be generated from 'xy = yx' ? Hence, each instance of (*) 

follows from the commutative principle for multiplication: 

For each x, for each y, xy = yx. 

Therefore, each instance of ( * )  i s  true. So, ( * )  i s  t rue.  In fact it i s  a 

consequence of the commutative principle for multiplication. 



= (3m t -7) t 5m i- ps V coa 

Hence, 3m - 7 t 5m = 8m - 7. 

So, the generalization 'For each m, 3m - 7 t 5m = 8m - 7' is a 
consequence of the ps, the cpa, the apa, the dpma, and '5 t 3 = 8'. 

11.  
(2q*5)q }cpm 

[ ~ o t e  that the parentheses and the 
raised dot in the f i rs t  line are  neces - 

= [5(2q)]q sary  only because they appear in the 
= [5 2q]q given exercise. And the brackets in 

5.2 10 the second and third lines a r e  in- = lOqq serted only to simplify reading. Our 
= 10(qq)* conventions would allow us to omit 

them. ] 
Hence, (2qe 5)q = 10(qq). 

= 1 8 (xx) . -) aPm 

Hence, 6x(3x) = 18(xx). I Hence, (6x)(3x) = 18(xx). 

[Note the test-pattern on the right. It shows the grouping sym- 
bols which have been omitted [by convention] from the test- 
pattern on the left. In general, when explaining applications of 
the commutative and associative principles, you will find it help- 
ful to introduce omitted grouping symbols. Notice that, as  illus - 
trated in the test-pattern on the right, you do not need to inter- 
polate additional steps when introducing omitted grouping symbols. 





Your attitude should be that the grouping symbols which have 
been omitted from the test-pattern on the left a r e  really there, 
out happen to be invisible! In particular, - donat say: 6x(3x) = 
(6x)(3x) because we can associate the ' 6 *  and the 'x*. They a re  
already associated in '6x(3x)* .] 

13. 0 is a counter-example [and so  is each real number other than 
3/21. f3.0 - 0 = o1 3 = 31 and 0 # 3.1 

Here i t  is instructive to ask for modifications in the generaliza- 
tion which would result in new generalizations which are derhmble. 
You should get answers such a s :  

and : 
For  each r l  3r - r = 2r1 
For  e a c h r l  3 t r - r = 3. 

[Here a r e  test-patterns for these generalizations. 

1)r - r 
'P 

l r - r  

r l - r  i r - r  , 

3 t 

= 3 t  

= 3 t  

= 3 +  

= 3. 

Hence, 3 

r - r  3 

r t -r ps 

(r t -r) 
} aPa 

0 } PO 
] pa0 

Hence, 3r - r = 2r. I ' 
Although students a re  not asked to think in terms of simplifi- 
cations at this time, we a re  preparing the groundwork, Thus, 
when they notice that '3r - r* does not simplify to '3'. i t  is 
natural fo r  them to wonder about what i t  does simplify to.] 





2m(3 t 5m) 

= 2m(5m t 3) 

= 2m(5m) t 2m3 
Mpma 

i apm 
= 2[m(5m)] t 2(m3) 

= 2[(5m)m] t 2(3m) 
} CPm 
1 apm 

= 2[5(mm)] t 2(3m) ) 

= 2*5(mm) + 2*3m 
} aPm 
) - 2 * 5 =  l o #  2 * 3 = 6  

= lO(mm) t 6m. 

Hence, Zm(3 + 5m) = lO(mm) + 6m. 

[The third expression i s  transformed into the fourth by two appli- 
cations of the apm. 

It is customary to combine these two steps into one, and to cite 
the principle just once. Similar elisions occur in transforming 
the fourth expression into the fifth, and the sixth into the seventh. 
In going from the seventh expression to the eighth# we again show 
only one step but we cite the two computing facts used. When 
students become skilled in giving proofs # they may even make 
more sweeping elisions, and justify the steps by citing several 
principles. [See T C[2-52]b# c. ] This is permissible in those 
cases in which the student is sure of himself and is not just using 
a phrase such as 'cpm, apm* as  a catch-all.] 

[You may have wondered why we have 'lO(mm) t 6m* instead of 
'10mm t 6m* in Exercise 14, 'lO(qq)* instead of '10qq' in Exer- 
cise 1 lB  and '18(xx)' instead of '18xx9 in Exercise 12. When we 
introduce the exponent symbol '*.*in Unit 3, we shall there point 
out that* for example# ' f *  is  an. abbreviation for '(qq)*. Hence, 
to go from ' 10qq' to ' 10q ' requires the application of the apm. 
So* in Exercises 1 l #  12, and 14, we are  trying to ready the stu- - - 
dents for the fact that it takes a basic principle to get from '10qq' 
to  '1oqZ*. ] 





15. Each real  number other than 1 i s  a counter-example. 

Or* we could save 
some steps by citing 
computing fact that 
L7 t -3 = 4. 

Hence* 3y t 7 -I- 5y - 3 = 8y t 4. 

[In connection with this exercise students may suggest the short 
cut that "the things be rearranged so that the 'y's a r e  together 
and the numerals a r e  together". Of course, this i s  the short cut 
we hope students will become aware of. Some may even think 
that this i s  nothing but an application of the apa. They a r e  not 
far off* but you should insist upon a precise verbalization. It 
might be stated as:  

VaVbVcVd a t  b t c + d = ( a t  c) t (b t d). 

Then, they should prove it .  

[ ( a t  b) t c] t d 

= [a t (b t c)] t d 

= [a t (c t b)] t d 
) C P ~  

= [(a t c) t b] t d 
1 spa 

1 spa 
= (a t c) t (b t d).. 

Hence, a t  b t c t d = ( a t  c) t (b t d). 

Compare with Exercise 4 on page 2-61. ] 





Hence, 3x t 4(x t 7) = 7(x t 4) .  

18. Each real number other than 0 i s  a counter-example. [Ask for 
a corrected statement of the generalization.] 

x t x  Â¥ 

= x *  1 + x *  1 }pml 
/ idpma 

= x(l t 1) 
\ 1 t 1 = 2  = x2 > 

Hence, x t x = 2x. 

[See the discussion of Exercise 4 on page T C[2-34ld. ] 

20. A(A t 2) t A(A t 3) \ Aipma 
= AA t A2 t [AA t A31 V ana \ 

= AA t (AA t A2) t A3 
; CPa t + 

A A t A A t A 2 t A 3  
} aPa 1 
} pml = AA1 t AA1 t A2 t A3 , 

- 
The sequence: apa, cpa, 
apa, parallels exactly 
sequence: apm, cpm, 
apm, in the answer for 
Exercise 12. - 

= 2(AA) t 5A 'T CPm 

= 2A-A t 5A. } aPm 

Hence. A(A t 2) t A(A + 3) = 2AA + 5A. 







Hence, 3492) = 2722. 

'r c-oa 

Hence, 3(x + 4) + 3% = 6% + 12. 

-1- 
"I" 

Quiz. - 
Complete each generalization [from the choices given] so that the 
resulting statement i s  true. 

1. For each a, 5a t 2a = . 
(a) (5 t a) 2 (b) a t (5 X 2) (c) a + a t (5 + 2) (d) a7 

2 .  For  each n, for each p, n t p t 2n t p 

(a) 2n + 2p <b) 5np (c) (P t n)2 + n (dl 3(n + P) 
3. For each x, for each y, 4xb2y  = 

(a) 6xy (b) XY 8 (c) 2y t 4% 

4. For  each r, for each s, (2r t r ) s  = . 
(a) 2sr + s (b) (2r + s ) r  (c) 2sr t r 

'I" 

Answers for Quiz. 

[We give the letter which identifies the correct choice. ] 

1. d 2. c 3. b 4. d 

(d) 2rs + r s  





x i - x t 4 -  2 
Â ¥ F o  each x, x t x = 2x. 

}pml 
ldpma 

Hence, x t y t x - 2 = 2(x t 1). 

[This i s  another good opportunity to point out that one can use pre-  
viously proven generalizations as  reasons for steps in a test-pattern. 
To make this quite clear,  write on the board the first three lines of 
the test-pattern just given. Then follow these with: 

X Ã ‡  t x * 1  t 4 - 2  
ldprna 

= x ( l + 1 )  t 4 - 2  
1 + 1 = 2  

x 2 t 4 - 2  

Now, call attention to the fact that you have just redone Exercise 
19 of Pa r t  A on page 2-36, and that redoing it  is a waste of time. 
Then, erase  what you have just written and continue as in the 
answer given above for Exercise 3. ] 





The exercises in Part  B a r e  those for which the practice on pages 
2-20 and 2-21 will be helpful to the students. Consider Exercise 2. 

r The pattern sentence for that generalization is: 

ty + 2107 + 3) = (Y  + 2)y + ( Y  + 213. 
This sentence has the same pattern as: 

x(y t 3) = xy t x3, 

which has the same pattern as: 

x(y t 2) = xy t xz. 

So, the given generalization is a consequence of the Idpma. 

Answers for Part  B. 

1. apm 2. Idpma 3. cpa 4. Aipma 5. Xdpma 

6. apa 7. pm0 * 
The purpose of Part  C i s  to determine whether students have developed 
awarenesses of some of the simplification short cuts. The fact that 
they must choose among alternatives only one of which i s  "correct*' 
w i l l  help to  catch incipient errors.  If necessary, instruct students 
that if they a re  uncertain, they can search for a counter-example. Be 
sure that you do not insist that students prepare written proofs for all 
thirteen exercises in one assignment. 

Answers for Part  C [on pages 2-37 and 2-38], 

1. 5 x t 8  [(c)] 2. 5y t 2 [(dl] 3. 2(x + 1) [(a)] 

4. 27zz [(c)] 5. 6x t 12 [(b)] 

Proofs. 

1. 3 t 5 x t 5  2. 2y t 3y t 2 

= 5 x t 3 + 5  = ( 2  t 3)y t 2 

= 5% t (3 t 5) ) spa = 5y t 2. 
] 3 + 5 = 8  

= S x t  8. Hence. 2y t 3y t 2 = 5y t 2. 

Hence, 3 t 5 x t  S = S x +  8. 



B. Each of the following generalizations is a consequence of one of the  - 
principles of real numbers. Tell which principle. 

1. Fo r  each x, (x t 4)(x t 3)(x t 5) = (x t 4)[(x t 3)(x t 5)], 

3. For  each k, 3k t 5 = 5 t 3k. 

4. For  each A, (2A t 7)[(8A t 1) t (5 t ZA)] 

= (2A t 7)(8A t 1) t (2A t 7)(5 t 2A). 

5 .  For  each t ,  (6t t 1)(7t) t (6t t 1)9 = (6t t l)(7t t 9). 

6. For  each s, 3(s - 7) t 9 t 8(s - 15) = 3(s - 7) + [9 + 8(s - 15)]= 

7. Fo r  each x, (xxx t xx t x t 1) 0 = 0. 

[More exercises a r e  in -- Par t  F ,  S~pp le~nen ta ry  Exercises. ] 

C. Each of the following i s  the f irst  part  of a generalization. Your job - 
is  to complete the generalization [from the choices given] in such a 

way that you can prove it .  [You should be prepared to give the proof.] 

1. For eachx ,  3 t 5x t 5 = 

(a) 8% t 5 

For  each y, 

(b) 3 t lox (c) 5x t 8 

3. For  eachx ,  x t 4  t x  - 2 = 

(b) 2x t 6 

4. For  each z, 3z(9z) = 

(a) 272 (b) 1222 

(c) 4x - 2 

(c) 27zz 

5. For each x, 3(x t 4) t 3x = 

(a) 3(xx t 4) (b) 6% t 12 (c) 6x t 4 

(d) 13x 

(d) 5x - 2 

(d) lox 

(continued on next page) 



6. For  each k, 2(k t 5) t 7(k t 4) = 

(a) 9(k + 9) (b) 9(kk t 9) (c) 9k t 9 

7. For  each m, (3m)(5m)(4m) = . 
(a) 60(mmm) (b) 180m ( c )  12mmm 

8. For  each p, (p t 3) t (p + 5) + (P + 6) = 

(a) 4p t 14 (b) 3 p t 1 4  (c) PPP + 14 

9. For  each k, 5k(2 t 3k) 

(b) 10k t 15kk (c) 25kkk (a) 25kk 

10. For each r ,  (3r t 7) - (3r t 7) = 

(4 6r (b) -6r t 14 (c) 0 

(d) 9k t 38 

(d) 60m 

(d) 10k t 3k 

(d) -6r - 7 

11. For  each S J  5(3s t 1) [7(3s t 2)] = 

(a) 35(3s t l)(3s t 2) (b) lZ(6s t 3) 

(c) 35(6s t 3) (d) (15s t 5)(3s t 2) 

12. For each xJ (x t 3)(x t 2) = 

(a) xx t 6 (b) (x t 3)x t (x t 3)2 . 

(c)  2x t 5 (d) [(x t 3) t x ]  t [(x t 3) t 21 

1 1 *l3. For  each N, (N  t v}W t -) = 

(a) 2N t 1 1 1 (b) N t ,N t 7 

1 
(c)  N(N t 1) t q 1 

(d) NN t 



6. 9k t 38 [(d)] 7. 60(mmm) [(a)] 

8. 3p t 14 [(b)] 9. 10k t 15kk [(b)] 

10. 0 [(c)] 11. 35(3s t l ) (3s  t 2) [(a)] 

12. ( x t  3 ) x + ( x +  3)2 [(b)] 1 13. N(N t 1) t q [(c)] 

Proofs . 
6. 

'/Â ana 

. . .  L ana 

Hence, 2(k t 5) t 7(k t 4) = 9k + 38. 

Hence, (3m) (5m)(4m) = 60(mmm). 

[We spell out the first step: 





[some student might suggest proving a generalization like that in 
Exercise 3 on page 2-61 in order to apply it to this problem.] 

- 
Students might sug- 
gest here the theorem 
' V l m x  = x ' t o  save a 
step. [See below.] f 3 - 

[Furnishing a proof of the theorem: 

For each x, 1 - x  = x 

is Exercise 1 on page 2-61, but your students can prove it  now 
should they wish to, and they should prove it if they wish to use it. 
Here is a testing pattern. 

Hence, 1 x = x. 

[Notice that this theorem states an important property of the real  





number 1 with respect to  the operation of multiplication. Texts which 
asser t  that one can, for example, replace 'x' by '1 *x* because "the 
coefficient of 1 is always understood" suggest to  their readers that 
'x* is an abbreviation for '1 *x'. This i s  just plain wrong.]] 

9. 5k(2 t 3k) } Aipma 
= (5k)2 + (5k)(3k) 

} apm 
= (5k)2 t [(5k)3]k- 

= 2(5k) + [3(5k)]k 
} cpm 
\ aom 

Hence, 5k(2 + 3k) = 10k t 15kk. 

Hence, (3r + 7) - (3r + 7) = 0. 

Hence, (x + 3)(x 4- 2) = (x  + 3)x + (x  + 3)2- 





1 (N + y)(N + 7) 
1 1 1  = (N + y ) N  + ( N  + Z ) Z  
1 1 + 1.11 

= N N t z N t [ N o z  2 2 lapa 1 1 1 1  = [NN t ,N + w 7 ]  + - * -  
2 2 ) apa 

1 = N N + N a l + -  
4 }Â Aipma 
1 = N(N + 1) + 4-. 

1 1 1 
Hence, ( N  + ,-)(N t T) = N(N + 1) + T . 

[This is the generalization underlying Exercise 10 on page 2-10. 
Do not fail t o  point out the usefulness of this generalization in corn- 
put ation. 

Similar interesting computational devices a r e  based on these generali- 
zations : 

1 3 3 
v x  (X + T ) ( ~  + T )  = x(x t 1) t n* 

These, of course, and the one in Exercise 13 a re  consequences of: 





H e r e  are some test items which you might like to include in a quiz. 

Each of the following sentences i s  taken from a test-pattern. 
Your job is to write a name for the principle which justifies 
the sentence. 

Answers. 

1.  Mpma 2. apa 3. dpma 4. apm 5 .  apm 

6 .  apa 7.  pml 8. cpm 9. dpma 10. idpma 







Notice that we do not use expressions such as 'equal s ides9 and 'equal 
angles *. Instead we say, for example, that an isosceles triangle has 
two congruent sides and two congruent angles, or  that it has two sides 
of the same measure, or  that the measures of two of its angles a r e  
equal. [See Unit 6, and Chapter 8 of the 24th - Year book of the National 
Council of Teachers of Mathematics. ] 

Answers for Par t  A [on pages 2-39, 2-40, 2-41, and 2-42]. 

square, 20 

parallelogram, 32 

triangle, 22 

2. rectangle, 26 

4. trapezoid, 33 

6 .  isosceles triangle, 18 

equilateral triangle, 18 8. isosceles triangle, 24 

rhombus, 24 10. quadrilateral, 25 

circle, 87r [Answer to bracketed question: circumference] 

isosceles trapez i s I q u a d r i l a t e r a l ,  30 

quadrilateral, 32 In Exercises 13 and 14, students may give - - 
the name 'kite'.] 

hexagon, 31 16. equilater a1 hexagon, 36 

pentagon, 21 18. equilateral pentagon, 20 

octagon, 39 20. equilateral octagon, 24 

concave hexagon, 35 22. concave quadrilateral, 28 

-1. 
"I" 

Answers for Pa r t  C [on page 2-44]. 

1. 18 2. 16 3. 18 4.  20 5. 4 2  

6.  99 7. 66 8. 19 9 .  27v 10. 30 





In order  t o  motivate the need for simplifying expressions,  we intro- 
duce the problem of finding simple formulas for computing per imeters  
of geometric figures.  Students who have had a good treatment  of geome - 
t r y  in grades 7 and 8 will find the Exploration Exerc ises  an easy  review. 
If you a r e  teaching this unit to  8th graders  o r  to  7th graders ,  the work 
may be relatively new to  the students. In part icular ,  you may find a 
need for  teaching students what angles a re .  

W e  do not regard an angle a s  an amount of rotation nor do we regard  
it as a wedge-shaped region. Instead, an angle consists of the points 
of two noncollinear rays  which have the same vertex. [The vertex of 
the r ays  i s  the vertex of the angle; the half-lines obtained f rom the 
r ays  by deleting the ver tex  a r e  the s icks of the angle.] 

We adopt the convention that the perimeter  of a polygon i s  the sum of 
the measures  of its s ides and, so ,  is a number of arithmetic.  When 
one wishes t o  cal l  attention t o  the unit with respect t o  which the  s ides  
a r e  measured,  one may speak of the inch-perimeter , the foot -perimeter ,  
etc.  For  example, the inch-measure of a side of a square,  the length 
of each of whose s ides  is 2 f t . ,  is 24. The inch-perimeter of such a 
square is 96, and i t s  foot-perimeter is 8. 

>;: 

In Exerc ises  1 and 2, we think the students will identify these figures 
as a square and a rectangle, respectively, even though the angles a r e  
not indicated to  be right angles. You may want to  ask whether the pic- 
tu res  give all the information needed t o  insure that a square and a r e c -  
tangle a r e  being shown. 

Similarly,  when Exerc ises  16, 18, and 20 a r e  being considered you 
may want to  have a discussion as to how these figures differ f rom 
those pictured in Exerc ises  15, 17, and 19 ,  respectively. The students 
w i l l  no doubt mention that in  Exerc ises  16, 18, and 20 the figures have 
sides with equal measure ;  they may even say that the figures a r e  equi- 
la teral .  Famil iar ize them with the word 'regular '  as applied to  poly- 
gons by saying that if, for each figure,  all of the angles have the same 
measure and all of the sides have the same measure ,  the figure is 
regular.  Ask whether a polygon can be equilateral and not be equian- 
gular. Have students make pictures to  i l lustrate in the case of the 
equilater a1 quadrilateral and the equilater a1 hexagon. 



EXPLORATION EXERCISES 

A. - Here are some geometric figures which you probably 3tUd18d 

in earlier grades. See how many of these figures you remem- 

ber. Name each figure and compute the distance around it 

[that is ,  compute the perimeter]. 

1. 2. 

Name 

Perimeter 

Name 

Perimeter 

Name 

Perimeter 

Name 

Perimeter 

Perimeter 

Name 

Perimeter 

(continued on next page) 



Name 

Perimeter 

Name 

Perimeter 

Name 

Perimeter 

Name 

Perimeter 

Name 

Perimeter 

Name 

Perimeter 

[Is there another word you 

use in Exercise 11 instead 

of 'perimeter'?] 



Name 

Perimeter  

Name 

Perimeter  

Name 

Per imeter  

Name 

Per imeter  

(continued on next page) 



Name 

Perimeter 

Name Name 

N a m e  

N a m e  

Perimeter 

Perimeter 

Perimeter 

Perimeter 

Name 

Perimeter 



B. Use a ruler and compasses to make careful drawings of the - 
figures described below. [choose a convenient unit. ] 

A triangle with sides measuring 3, 5, and 7. 

An equilateral triangle with one side measuring 2. 

A rectangle with one side 2 units long and another side- 

5 units long. 

A triangle whose perimeter i s  12, and two of whose sides 

measure 3 and 4. [1f you put two such triangles together 

with their longest sides matching, what kind of figure do you 

get ? ]  

A kite with one side measuring 2 and another side meas - 
wing  5. 

A square with one side 3 units long. 

A circle with radius 2 units long. 

A regular hexagon with side 2 units long. [Hint - : Use the 

circle you drew for Exercise 7. ] 

An isosceles triangle with one side 3 units long and another 

side 1 unit long. 

An isosceles triangle two of whose sides measure 3 and 4. 

A circle whose circumference is lor. 

A rhombus [not a square], one of whose sides i s  3 units long. 

A parallelogram two of whose sides measure 3 and 5- 

A square whose diagonal i s  4 units long. 

A parallelogram whose diagonals a r e  6 and 8 units long. 

A square whose perimeter i s  12. 

A rectangle one of whose sides measures 3 more than twice 

the other, and whose perimeter i s  18. 

(continued on next page) 



18. A kite with perimeter 20 and a side 4 units long. 

19. An isosceles triangle whose perimeter i s  30 and one of 

whose sides is twice a s  long a s  the other. 

20 .  An equilateral triangle whose perimeter i s  17 

C. Find the perimeter of each figure described below. - 
1. A rectangle with one side 4 units long and another side 

7 units l ess  than 3 times the f irst .  

2. A square one of whose sides has the same length a s  a 

side of an equilateral triangle of perimeter 12. 

3.  A parallelogram whose sides have the same lengths as 

the sides of the rectangle in Exercise 1. 

4. A quadrilateral whose sides a r e  such that the average of 

their  measures is 5. 

5. An octagon whose sides a r e  such that the average of their 
1 

measures is 5- 4 -  

6 .  A hexagon the measures of whose sides a r e  consecutive 

whole numbers and whose longest side measures 19. 

7. A parallelogram whose shorter side i s  9 units long and the 

measure of whose longer side i s  twice the sum of the meats- 

ure  of i t s  shorter side and 3. 

8. An isosceles triangle whose - base [the side whose length 

differs from that of the others] is 5 units long, and 9 units 

l e s s  than twice one of the other sides. 

9.  A circle whose diameter i s  3 units shorter than twice the 

side of a square whose perimeter i s  60. 

10. An isosceles trapezoid the longer of whose parallel sides 

measures 12, the shorter of whose parallel sides measures 

15 less  than twice the measure of the longer, and the length 

of each of whose nonparallel sides is half the length of the 

shorter parallel side. 





As mentioned in the COMMENTARY for pages 2-39 through 2-44, we 
have introduced the discussion of perimeters, at this point, to moti- 
vate simplification of pronumeral expressions. In order to  accomplish 
this you w i l l  need to get agreement from your students that, by defini- 
tion, the perimeter of a polygon is  obtained by adding the measures of 
its sides taken consecutively in order "around" the figure. 

The demonstration at the bottom of page 2-45 suggests that the formula 
*P = 2(1 + w)' is a simpler formula for computing the perimeter of a rec-  
tangle than the formula *P = 1 + w + 1 + w*.  Most of your students will 
know the formula *P = 2(1 + w)', so  this demonstration w i l l  deal with 
matters which a re  familiar to them. 

The answers to  the five *why? *s are ,  respectively: 

apa, pml ,  idpma, 1 + 1 = 2, cpm. 

4: 

The fact, brought out at the bottom of page 2-46, that simplifying a 
pronumeral expression amounts to proving a generalization, is im- 
portant. We make more of this on page 2-60. 



2.04 Simplification - of expressions. --One of the uses of pronumerals 

and pronumeral expressions i s  to write formulas which can be used 

in solving problems. For example, in solving problems about the 

perimeters of rectangles, you might use a formula like : 
ft 

Then, to compute the perimeter of a rectangle whose sides measure 

4 and 5, you find the value of the expression 'l t w t 5. + w' for the 

values 4 and 5 of 'w' and '5.'. The value of '1 t w t l t w' in this case 

is 5 t 4 t 5 t 4. So, the perimeter is 5 t 4 t 5 t 4. We simplify 

'5 + 4 t 5 t 4' to '18'. 

Now, every rectangle-perimeter problem which uses the formula 

(*) would involve a simplification like the one we went through in sim- 

plifying '5 -1- 4 t 5 t 4' to '18'. For  example, another problem might 

require you to simplify '87.6 t 49.3 t 87.6 t 49.3'. 

Let's look at a way of simplifying such numerical expressions, 

a way which can be generalized to al l  such expressions. 

[(87.6 t 49.3) t 87-61 t 49.3 
[why?] 

= (87.6 t 49.3) t (87.6 t 49.3) 
[why?] 

= (87.6 t 49.3)91 t (87.6 t 49.3)*ls 
} [why?] 

= (87.6 t 49.3)(1 t 1) % 

[why?] 

Does this suggest to you a simpler formula than ( * )?  

[ ~ o t e  that although measures of pieces of straight lines like the 

measures of the sides of a rectangle a r e  numbers of arithmetic, in 

simplifying expressions fo r  perimeters w e  can act a s  thoughthese 

measures were nonnegative real  numbers. Thus, we can use the 

principles for rea l  numbers to justify our simplifications. ] 



Consider a formula for the perimeter of an isosceles triangle. 

From what we mean by 'perimeter*, one such formula is : 

P = a t b + a .  

We can get a simpler formula by simplifying 

the expression 'a + b t a*. Can you guess 

what the simpler expression will be? Here 

is how we use the principles of rea l  numbers 

to simplify this expression. 
b 

( a  t b) t a 

= a t ( a t b )  
aPa 

( a t a )  t b 

( a 0 1  + a - 1 ) i - b  Lml } fiPma 
= a ( l  t 1) t b 

} 1 + 1 = 2  
a 2 t b  

= 2a t b. 

So, a simple formula is : 

Note that the simplification procedure from '(a t b) t a '  to 

'2a t b' shows you that the generalization: 

For  each a,  for each b, a + b + a = 2a + b 

i s  a consequence of the principles [and the computing fact] listed on 

the right. This being so, you can use this generalization a s  you 

would any of the principles in  justifying a step in another simplifi- 

cation problem. 



For  example, suppose you wanted a formula for finding the 

perimeter  of a hexagon which looks like this. 

F rom the meaning of 'perimeter ' ,  a formula i s  : 

P =  y t x t y t x t y t x .  

By using the associative principle several  t imes we can simplify: 

y t x t y t x t y t x  

to: 

The generalization we obtained on page 2-46 justifies simplifying 

this to :  

[2y + XI + [2x + y]. 
The commutative and associative principles for addition allow us 

to  rephrase the expression a s :  

[2y + y] t [2x t XI. 
We should be able to simplify this expression to '3y t 3x'. To 

justify this ,  we can use the generalization: 

F o r  each k, 2k t k = 3k. 

[ ~ i v e  a proof of this last  generalization. ] Finally, the left distributive 

principle justifies going from : 

3y t 3x 

to : 

3(y + 4. 

So, as you must  have guessed from the be ginning, - a simpler  formula is : 



EQUIVALENT EXPRESSIONS 

You have seen that the principles of r ea l  numbers can be used 

to  simplify pronumeral  expressions in just the s a m e  way as they 

a r e  used in simplifying numerical  expressions.  In the work with 

pe r ime te r  formulas  we simplified 

a + b + a '  to  '2a + b',  

and ' y +  x + y  + x +  y + x '  to  '3(y +x)*. 

Since much of your work in mathematics  will requi re  skil l  in  s i m -  

plifying expressions,  you will need to  know not only how the pr in-  

ciples a r e  used in such simplifications, but a l so  how to c a r r y  out 

the simplifications quickly and mechanically. You will l e a r n  t o  do 

this through prac t ice ,  fo r  by doing lots of simplifications you will 

discover  shor t  cuts.  The important thing to r emember  about shor t  

cuts is that they a r e  not magic,  but that they a r e  consequences of 

the principles,  together with computing facts.  

When you have a numerical  expression like : 

and simplify it to :  

both the expression you s t a r t  with and the final expression a r e  

numerals  for the same number .  And, we can s tate  this fact by 

writing a n  equality sign between the two numerals ,  getting the 

t rue  sentence: 

o r ,  by saying that the numerals  ' 3  X 7 + 5 X-6' and '-9* a r e  

equivalent numerical  expressions . 
[Note : We would not say  that '3 X 7 + 5 X -6' equals '-9' because 

'equal' has the s a m e  meaning as *is the same as ' ,  and, c lear ly,  the 

expressions '3 X 7 t 5 X -6* and '-9' a r e  different. Although they 

a r e  different, they stand for the same  number,  and this  is what we 

mean when we say  they a r e  equivalent numerical  expressions.]  



A common way of discussing equivalent expressions is to say, for 
example, that *5x t 7* is a simpler expression - for '3x t 7 t 2x*. 
This is correct if by 'for* you mean the same as 'to replace*. But, 
confusion a r i ses  if the hearer interprets 'for * t o  mean the same as 
'to name*. So, it  is wise to  avoid the word 'for* in such contexts. 
[Of course, it  is just plain wrong to  say that *5x t 7*  is a simpler 
name for *3x t 7 + 2x*.] - 

The bracketed sentences at the foot of page 2-48, and those at the 
foot of page 2-49, make an important point. Here is an amplification, 
should you want additional ammunition. 

The expressions '4 t 3' and '5 t 2' a r e  equivalent numerals [because 
they name the same number], but '4 t 3* and '5 t 2' a r e  different ex- 
pressions. Here is another way of saying what has been said above : 

The sentence : 

4 + 3 = 5 + 2  

is true, but the sentence: 

*4 t 3' = '5 t 2' 

is false. 

When we say that 4 t 3 and 5 t 2 a r e  equal numbers, this is a con- 
ventional [but very sloppy] way of saying that 4 + 3 is the same num- 
ber as 5 t 2, or ,  more briefly, of saying that 4 t 3 is 5 t 2. 

Pronume ral expressions a r e  equivalent i f  and only if "corresponding" 
substitutions convert the expressions into equivalent numerals. We 
rarely have occasion to say that expressions a r e  equal. This is be - 
cause we have only one way of naming an expression [by using single 
quotes]. So, the only true sentences of this sor t  we could write would 
be of the following kind : 

'3 t 5' = '3 t 5' 

'6x t 2y* = *6x t 2y' 

etc. 





Contrast this with the fact that not only a r e  such sentences as : 

4 + 3 = 4 + 3  

and : 6 - 2 = 6 - 2  

true, but so a re  sentences such as : 

4 + 3 = 5 + 2  

6 - 2 = 3 + 1 .  

If your class is a strong one, you may want them to write proofs 
which justify equivalence in the appropriate exercises in Par t  A on 
pages 2-50 and 2-51. Or, you may want t o  assign certain problems 
to individual students. If your class is weak, you may want them 
just to identify pairs of equivalent expressions, and give counter- 
examples in the case of pairs  of nonequivalent expressions. 

Quiz [to be used after discussing page 2-51]. - 
Each exercise contains a pair of expressions. Tell  which pairs  
a r e  equivalent and which pairs a r e  not. 

4. 8aa - 3a 5. aa t 2a 6. 8m t -4n t l l n  t 3m 
5a a(a t 2) 5m t (-4n t Un) t 6m 

9. 8m t -4n t l l n  t 3m 
l l m  t -15n 

Answers for Quiz. 

Exercises 1, 5, 6, and 10 contain pairs  of equivalent expressions; 
exercises 2, 3, 4, 7, 8, and 9 do not. 





Now, suppose we have a pronurneral expression like : 

7x + 3x t 5, 

and simplify it by means of our principles and computing facts to: 

lox + 5. 

If we write an equality sign between the two pronurneral expres- 

sions : 

we get an open sentence. Can you generate a false sentence from 

this open sentence ? The answer is 'no', and we can express this 

fact by stating the generalization: 

For each x, 7x + 3x + 5 = lox t 5. 

Another way of saying that you can't generate a false sentence from 

the open sentence: 

is  to  say that '7x t 3x + 5' and 'lox + 5' a r e  equivalent pronurneral 

expressions. If you pick a value of 'x* and substitute a numeral 

for this value of 'x ' in both '7x t 3 x +  5'and 'lox + 5', you get a 

pair of equivalent numerical expressions. 

Equivalent pronumeral expressions a r e  expres- 

sions such that for each substitution both ex- 

pressions have the same value. 

Equivalent numerical expressions a r e  numerals 

for the same number. 

[Note : We would not say that '7x + 3x + 5' equals 'lox + 5', because 

they a r e  different pronumeral expressions. Instead we say that 

'7x t 3x + 5' i s  equivalent to ' lox + 5' meaning that the expressions 

have the same value for each value of 'x*. ] 

1 



EXERCISES 

A. Each of the following exerc ises  contains a pa i r  of expressions.  - 
In some cases ,  the  expressions a r e  equivalent. In the others ,  

they a r e  not. Te l l  which pa i rs  a r e  equivalent and which pa i r s  

a r e  not. If you claim that two expressions a r e  - not equivalent, 

you should be able to support your claim by giving values --- 
of the pronumerals  in  the expressions which lead t o  

different values f o r  the two expressions.  If you claim 

that two expressions a r e  equivalent, you should be able to  - --- 
show how you can t ransform one expression into the other by 

using principles and computing facts.  

Sample 1. 5x t y t 3x t 4y 

Solution. I claim that these a r e  not equivalent. 

So, I just wri te :  

Not equivalent. 

If I am asked t o  justify this answer,  I should be able 

to  give a substitution for 'x' and a substitution for  'y' 

for  which the two expressions have different values.  

Suppose I t r y  '2' for 'x' and '3' for  'ye. The  c o r r e -  

sponding value of '5x t y t 3x t 4y' i s  

5 2 + 3 + 3 2 t 4 3, that i s ,  is 31. The  correspond- 

ingvalue  of '6xy + 7 x y ' i s  6 . 2 - 3  t 7 * 2 * 3 ,  or  78. 

Sample 2. 7x t 3y t 2x t 9y t 15 

3(3x t 4y t 5) 

Solution. I notice the second expression can be t r ans  - 
formed into ' 9 x  t 12y t 15' by the left distributive 

principle and some computing fac ts .  I can t ransform 

the f i r s t  into '9x t 12y t 15' by the use of the assoc ia-  

tive, commutative, and distributive principles along 





Here i s  the sorting for the expressions given on T C[2-51]d. 





Here i s  a quiz which should help reveal the extent to which students 
have already developed techniques for simplifying expressions. 

Sort these expressions into as  few categories as  possible with 
each category containing equivalent expressions only. 

1. 3 x t  2y t 7x t 5y 2. 3x(l t y) t 2y(l t x) 

3. 4x t 5y t 2(3x + y) 4. 2(x t y) + x + 5xy 

5. 5xy t 12xy 6. y ( 5 x t  2) + 3 x  

7. 3x t 7(x t y) 8. 5(2xy + 1) 

9. 2(5x t 3y) 10. 5xy t 5y 

11. 2(2x t 3y) + 6x -I- y 12. 3x t 3xy+2y+2xy  

13. lox t 7y 14. lOxy 

[The sorting i s  on TC(~-51]e. ] 





6x(2 + 3x) t 5xx 

6x2 Â¥ 6x(3x) t 5xx 
} Sdprna 

6x2 t 6 x 3 ~  t 5xx } apm 

2(6x) t 3(6x)x t 5xx } cpm 

2 * 6 x  t 3 - 6 x x  + 5xx 
2 * 6  = 12, 3 - 6  = 18 

12x t 18xx t 5xx 

12x t [ l8xx t 5xx] 

1 apm 
} spa 

} dpma 12x t [(18x t 5x)x] , - 

The  express ions  a r e  equivalent. 

8. Substitute '0' fo r  'y'. The  corresponding value of '7 t 4y' is 7, 
and the  corresponding value of ' l l y *  is 0. Hence, the express ions  
a r e  not equivalent . 

9 .  Substitute '0' for 'x' and ' 1' fo r  'y*. The  corresponding value of 
'3(x t 7y)* is 21, and the  corresponding value of '3x + 7y1 is 7. 
Hence, the express ions  a r e  not equivalent. 





The expressions are equivalent. 

The expressions are equivalent . 
6. Substitute ' I*  for 'a* and *0* for *b*. The corresponding value of 

'a + 3b + 5ab' i s  1, and the corresponding value of '8ab'.is 0 .  
Hence, the expressions are not equivalent. 





The reasons which should be supplied for the Solution to the Sample 
a re ,  in order from the top to bottom: 

apa; cpa; apa; apa; dpma; 7 + 2 = 9, 3 t 9 = 12; 

9 = 3*3 ,  12 = 3.4, 15 = 3 * 5 ;  apm; Aipma; Mpma 

Answers for Par t  A [which begins on page 2-50; see TC[2-48, 49, 50]b], 

[For your convenience, for the exercises in which the two expressions 
a r e  equivalent, we give the sequence of steps which shows the trans-  - 
formation of one expression into the other. For the exercises in which 
the two expressions - a r e  not equivalent, we give values for the pro- 
numerals which lead to different values for the two expressions. Your 
students may suggest other values.] 

3a + 2b t 7a 

= 7a t (3a + 2b) 
1 apa 

= ?a t 3a t 2b ,J 

The expressions a r e  equivalent. 

Substitute '2' for 'x* and ' 1 * for 'y*. The corresponding value of 
'5% t 4 + 2y* is 16, and the corresponding value of '9x t 2y* i s  20. 
Hence, the expressions a r e  not equivalent. 

The expres sions a r e  equivalent . 



with some computing facts. So, I know that the expres - 
sions a r e  equivalent. Therefore, I just write: 

Equivalent. 

If someone disputes me, I can ask him to give me values 

of 'x' and 'y' for which the expressions have different 

values. If someone asks  me how I know that they a r e  

equivalent, I would prove : 

For  each x,  for each y, 

[You supply the reasons. ] 

5. l l x  + 2y 



We have been talking about pairs of equivalent expression*. w..-~ 

does this have to do with the problem of simplifying an expression? 

To  simplify an  expression i s  to transform i t  into an equivalent one 

which is simpler.  "What do we mean by 'simpler'? In the perimeter 

problems, we said that *2(1  t w)' was simpler than *I t w t 1 t w '. Do 

you agree?  Why? 

Often, when you a r e  trying to decide which of two equivalent pronum- 

era1 expressions is the simpler,  you think about which one would be 

eas ier  t o  find values of. [Usually, this is the one with fewer marks in i t . ]  

VJhen we ask you to simplify a pronumeral expression, you can use this 

"evaluation test". [ ~ u t ,  in some later  exercises you will transform an 

expression into an equivalent one which i s  not simpler to evaluate but 

which is simpler for some other purpose.] 

B . Simplify. - 
Sample 1. 3x t 5 t 4x t 3 

Solution. 3x + 5 + 4x t 3 

= (3x t 4x) + ( 5  t 3) 

= 7x t 8. 

[As answer, we write: 7x t 8. And, this means that we a r e  

claiming that, for each x, 3x t 5 t 4x t 3 = 7x t 8.1 

2. 6b t 5 t 2b 

5. l l a  t 7 t a 

8. 6 t 7 p t 2  

Sample - 2. 2x t 5y + 3 t 7x t 2y t 7 

Solution. 2x t 5y t 3 t 7x t 2y t 7 

= (2x t 7x) + (5y t 2y) t ( 3  t 7) 

= 9x t 7 y t  10. 



Students should begin to develop mechanical short cuts for simplifying 
the expressions in Par t  B. Do not ask for justifications, unless dis- 
putes arise.  In particular, i f  a student simplifies an expression cor-  
rectly, do not ask him - what he did. For example, if  he simplifies 

and you ask him to tell  what he did, he should answer that he added 
2 to 3, got 5, wrote '5*, wrote an 'x* after the ' 5 ' ,  and then wrote a 
' t 7' after that. This is a description of the mechanical short cut he 
has discovered. If you do ask any question at all, it should be : How 
do you know that '3x t 7 + 2x* and '5x t 7' a re  equivalent? To  answer 
this question, he must refer  to  the principles. Suppose a student sim- 
plifies '3x t 7 t 2x* to ' 1 2 ~ ' .  There a r e  two ways to  handle this. One 
is to  supply a counter-example. This convinces the student that the 
two expressions are  not equivalent. But, i t  may be more instructive 
for him to  attempt to give a justification and then discover that where 
he thought he could use a principle he can't, or that he has misunder- 
stood an abbreviation. For example, a student who simplifies 
'3x t 5y' to '8xy* may think he i s  using the distributive principle. A 
student who simplifies '7 t 2x' to '9x* may have misapplied the con- 
vention concerning the omission of grouping symbols. 

In discussing these exercises, there wi l l  be times when you will want 
to talk about a sentence such a s  (Exercise I ) :  

There may be a tendency to want to say that this sentence is true. Of 
course, this sentence is an open sentence and is neither true nor false. 
What you should do is  to prefix a quantifying phrase to the sentence, 
obtaining : 

For each a,  a + 3 + 4a = 5a + 3. 

Then, you can talk about this generalization as  being true. 





In discussing the Samples i t  is  good practice to do them in detail on 
the board and then point out to  the students steps which they should 
be able to  omit with safety [but which they should be able to supply i f  
asked to]. The point here is to show students how the short cuts they 
develop can be justified, and to  suggest a method of checking doubtful 
short cuts. For  example, consider Sample 1. 

- 
As previously remarked in the 
COMMENTARY, students who 
have difficulty using the apa can 
be helped by inserting all mis - 
sing grouping symbols . - 1 

Students should by now be able to see, by merely looking at 
'3x t 5 t 4% t 3', that this expression is  equivalent to  '(3x t 4x) t 
(5 t 3)', and should be fairly confident that they can show that this is 
the case by referring to the apa and the cpa. So, if asked to justify 
their simplification of '3x t 5 t 4x t 3' to '7x t 8' by giving a testing 
pattern, such a student might reasonably write: 

[Of course, in answering the exercises of Part  B, students a r e  not ex- - 
petted to give testing patterns. All that should be required as an an- 
swer is the simpler expression, in this case, '7x t 8'. Testing patterns 
come into the picture only when, and if, a student i s  required to show 
that his answer is  correct.] However, a student who presents the abbre- 
viated testing pattern should realize that the citation 'apa, cpa' is of the 
nature of a promissory note which he may be called upon to make good. 





With practice, students will undoubtedly develop the ability to think 
their way through to the answer in the way suggested by: 

Answers for Part B [on pages 2-52, 2-53, and 2-54]. 

1 .  5 a t 3  2. 8b t 5 3. 2b t 6 

Testing pattern for the generalization corresponding to Sample 2. 







In Sample 3, when we give 'ab t 12c' as the simplest expression, we 
a re  anticipating the "1 times theorem" which is mentioned for the 
f i r s t  time in the student text at the top of page 2-60. Your class may 
have proved this theorem in connection with Exercise 8 on page 2-38 
[see TC[~-38]b]; if not, they should prove it now. 

:# 
Answers for Par t  B, continued. 

10. 10a t 2b 11. 15x t 5 y  t 7  12. 8c t 8d t 5 

13. 3x t 4y t 17 14. lorn t 5n t 2 15. p t 10q + 14 

16. 14s t 6t 17. -lox t -15y + -5 18. x t 13/8 

19. (9/20)x + (1 1 / 1 5 ) ~  20. 4.8k t 3. 8m 21. 3. 9p t 1.6 

22. 9ab t 7c 23. r s  t t 24. 9xx t 12x t 4 

25. 9mm t 7m t 12 26. 9pq t 15rs 27. yy + -1y 

28. 20a t 39b 29. 16a t 5b 30. 24x + 21y 

31. 33x t 12 32. lOxx t 17x + 4 33. 28yy t 10y 

34. 3x t 13/3 35. 4 y + 9 x t  1 36. 15xx t 9x 

37. 3x t (24/7)y 38. 36mnp 39. 30mmn 

40. Z I P P P ~ ~ ~  41; -36xxxxyyy 42. -8xxxyy 43. 90xxxy 
44. 6aaabbb 45. 24xxyyzz 46. "labbccd 47. (2 1 /64)xyz 

48. (l/15)mmm 49. (l/5)kmn 50. -(l/6)abc 5 1. -(5/28)rst 

5 2. (3/22)efg 53. 5 7 . 4 5 6 ~ ~  54. 0.006xyy 55. "118.218ab 

56. 41xy 57. 24ab 58. -24pq 

* 
Answers for Part  C [on pages 2-54 and 2-55]. 

1. 5x t 7 2. 7m t 6 

4. 9 r  t 9 5. 8t t 3 

7. 16j t 14k t 2 8. 9d t 5c 

10. 8m t 2k t 1 11. 10d t lor  

13. (- l)k 14. lOrs t 2t t 5u 

16. 6xyz + 7x t 3yz 17. 8rnn t 6n 

19. 25x t 24 

TC[Z-53, 541 



Sample 3. 7ab t 3c t -6ab t 9c - 
Solution. 7ab t 3c t -6ab t 9 c 

= (7ab t "6ab) t (3c t 9c) 

Sample 5. 
Solution. 3 x x t  2 x t  5xx t 5 t 9 x  

[Either '8xx t 1 lx  + 5' or  'x(8x t 1.1) + 5' is acceptable a s  an 

answer, although the latter i s  simpler according to our evalua- 

tion tes t .  However, there a r e  many places in mathematics 

where '8xx t 1 l x  t 5' is more useful.] 

27. 6y t 2yy t 9 t "lyy t -7y + "9 

29. 2(5a + b) t 3(b t 2a) 

34. (1/2)(8 + 4x) + (1/3)(3x t 1) 35. (2/5)(1oY t 15x1 + (l/7)(21x t 7) 

36. (l/3)(3xx t 6x) + 7(x t 2xx) 37. (3/7)(5x t 2y) + (2/7)(3x t 9y) 

(continued on next page) 
- - - 



Sample 5. ( 3x)(2y)z 

Solution. ( 3x)( 2y) z 

= ( 3  2)xyz 

a m p l e  5. (2ac)( 3ab)(Sabc) 

Solution. (2ac)(3ab)(5abc) 

= ( 2  3 5)aaabbcc 

= 30aaabbcc. 

38. (6m)( 2n)( 3p) 39. ( 2m)( 3n)( 5m) 40. ~ ( 3 ~ ) ( 7 p q q )  

41 . (6xx)( ~ x Y ) (  - 3 ~ y y )  42. (-2x)(-4xy)(-lyx) 43. 5(3x)(-2x)(-3xy) 

44. (3ab)(-2ab)(-lab) 45. (4xy)( 2yz)( 3xz) 46. ('lab)(-1 bc)('l cd) 

53. ( 7 . 2 ~ ) ( 3 . 8 y ) ( 2 . 1 ~ )  54. (0. lx)(O. 2y)(0.3y) 55. -6.1(-3.8a)(-5. lb)  

56. ( 3 ~ ) ( 2 ~ )  -I- (7x)( 5 ~ )  57. (9a)(2b) t (-3a)("2b) 

58. (4~) ( -3q)  + 3(4p)(-lq) 59. ( 7m)( 2n)(-3p) + (-5m)(-6n)( 3p) 

C. Simplify. - 
1. 3 x t 7 t 2 x  

4. 7 r + 5 + 2 r + 4  

6. 10a t 3b t 5a t 7 

8. 2 d +  3c t 7d t 2 c  

10. 5m t 2k t 3m t 1 

12. 4x + 3y t (-7)x t 2y 

14. 7 r s  t 2t t 3rs  t 5u 

16. 6xyz t 2x t 3yz t 5x 

18. 3(2x + 1) t 5(1 + 3x) 





36 t  45x 

31 t  81y 

4x t  1 

84xy z 

24xxYn' 
3aaabb 

49xxy t  50xyy 

40x t  19xy t  6ly  

20a t 4 b  t  7x t  l l c  

24x t  8 

92y - 11 

40aa t  88ab t  48bb 

50. xx  t  14x t  49 [or : ( x  t  7)(x t  7)] 

51. a a  t 9a t  14 [or:  (a  t 7)(a t  2)] 

Answers for P a r t  D [on page 2-56]. 

1 2 55. yxxy t  yrxyy  

- 

*If students write '-2ly - ll', they are just applying the convention 
that '-2 ly * is an abbreviation for '(- 2 1)y *. This convention is 
mentioned on ~ ~ [ l - 8 2 ] a  [lines 8 and 91, and is more  formally 
t reated on page 2-69 in Exercise 4. 



20. 6(5 t 4x1 t 3(2 + 7x1 21. 4(6lx t 72) t 8(61x t 72) 

22. 4(3 t 8y) t 7 ( 4 y t  1) 23, 12(2 + 5y) t 7(1 + 3y) 

24. 5(1 t 2a + 3b) + 7(2 t 4a t 6b) 

25. 3(3x + 2y+ 5z) t 9(2x + 7y t 9 z )  

26. 7x t 2 t (-1)(3x t 1) 27. (-2)(4 + 3y) t (-3)(1 + 5y) 

28. 3a(2b)(6c) 29 . 434 3y)( 7 z) 30. a(5b)(7c) 

31. ~x(~JUC)(~X) 320 ~ Y ( ~ w ) ( ~ x Y )  

3 3. (- 6)x(- 8)y 34m [(-Z)W][(-~)XYX] 

35. [(-l)ab][(-3)aab) 36- [(-~)JV][~YX] 

37. 2ab(a + 3b) + 5ab(2a + 7b) + 8ab(4a + 9b) 

38. 5xy(2x t 5y) t 7xy(5x t 3y) t 4xy(x + y) 

39. 4a(3a + 2b + 5c) t 5b(4a t 2b t 3c) + 7c(a + b t 2c) 

40. 7(2x t 3yx t 5y) + 4(8x t b y  t 7y) t ( -2 ) (3x  + 5xy t y) 

41. 3 ~ 5 ~ t 3 x t 5 ) t ~ ( 4 ~ t 5 x t 7 ) t x ( ~ t x + l )  

42. 8a t 2b t 3x t 5c t 7x t 2b + 5a + 6c t 7a t (-3)x 

43. 4x + 2y t (- 7 ) ~  + 6x + 32 t (-2)y + (-6)x t 3y + (-4)z 

44. 2[(7x + 3) t (5x t 1)] 45. 2[(3 + 5x1 + (9 + 7x11 

46- 5[Gy -k 1) t ( 1  + Y ) ] +  7[(8y - 1) + ( 3 y  - 
47. 4x[( 3y t 2x1 t ( 8x t 4y)) t 5y[( 2% + 8y) t (3x t 5y)] 

48. SaI(7a t b) t (7b t a)] + 6b[(2a t 3b) + (5b + 6a)] 

49. I&[(& -+ 3b) t (4a t b)] t 4b[(8a + 3b) t (4a + b)] 

50. x(x t 7) + 7(x t 7) 51. a ( a t 2 ) + 7 ( a t  2) 

1 3 
52. z ~ 3 t y )  t z y ( x t 5 )  53. ZX(X 3 + y + 1) + 3y(5y 1 + 2x t 3) 

1 3  2 3 2 3 1 1 5  14 54m ( p)( $ 4  + ( $4 gal 55- T( ~ x Y ) (  yx)  + F( TW)( ZY) 

[More exercises a r e  in  -- Part G, Supplementary Exercises.] 



9, Complete each of the following into a t rue  sentence by writ ing - 
the simplest expression you can in the blanlc. 

Sample. For each x,  the sum of (fix t 1) and (3x t 4) 

i s  

Solution. The expression '(6x t 1) t (3x t 4) '  would 

make the sentence t rue .  Butl a n  expres-  

sion simpler  than '(6x -t 1) t (3x t 4) '  and 

equivalent to  i t  is '9x t 5'. So, write 

'9x -k 5' in the blank. 

For  each xl the sum of (9x t 3) and (5 t 7x1 is 

For  each x, f o r  each yl t he  sum of (2x 4. 7y) and (5x t 9y) 

For  each xl the product of (7x) by (3x t x) i s  

For  each xl for each yl  for each z, the s u m  of ( x  t 3y t z)* 

(3x t 2y t 5 ~ ) ~  and (2x t y t 3z) is 

For  each As for each Bl the s u m  of (3A) and (4A t 7E) 

6 .  For  each kl the sum of (3k -k 2) and the product of 6 by 

( 3  t 5k) is 

7. For each p l  the product of the s1 -1~  of (3p t 5) and (5p t 6) 

by 7 is 

8. For  each x, for each y, the s u m  of (3x1 and (5y) is 

9. For  each kl  for each jl the product of the sum of (2k t j) 

and (3j + 5k) by the sum of (5k t 7j) and (k + 9 j) is 

1 1 1 1 
10. For  each x l  for each y, the sum of (-x 2 t -y) 3 and ( z x  -t Ty) 



E. Write the s implest  formula you can for the perimeter of each - 
figure descr ibed.  

Sample - 1, A rectangle whose length m e a s u r e s  1 m o r e  

than twice the measure  of the width. 

Solution. How many rectangles fit this descr ipt ion? 

Here a r e  pictures of just a few of them. 

Our job i s  to find a forw:da for computing the pe r ime te r s  

of - a l l  such rectangles.  F o r  the rectangles shown above, 

the pe r ime te r s  a r e  given by the expressions: 

5 5 and: 2 [ ( 2 * ~ + 1 ) i - ~ ] .  

Do you see  a pattern for these numerical  express ions?  

Each of them can he obtained by substituting for 'x' in 

the pronumeral expression:  

So, a formula for the per imeter  of such rectangles is 

the sentence : 

W e  can simplify the expression on the right of the 



equality sign. 

= 2[x t (Zx t l)] 

Hence, a simple formula i s  : 

Note that the values of 'x' in this formula a r e  the m e a s -  

u res  of the widths of rectangles which fit the given de- 

scription. Let's check the formula with an  example. 

Suppose we take the la rges t  of the rectangles pictured 
5 

on page 2-57, the one whose width measures  -. Accord- 
5 2 

ing to the formulaJ the perimeter  is 6 - t 2, that is, 2  
the perimeter  i s  17. According to the description, the 

5 
length measures  6 ;  so, the perimeter  is 2 ( 6  t which 

is 12 t 5, o r  17. 

Sample - 2. A parallelogram whose longer side measures  3 

more  than the shor ter  side. 

Solution. Instead of drawing severa l  examples of such 

parallelograms, we draw only one, and label 

i ts  sides with pronumeral expressions instead of numerals .  

If 'x' i s  a pronumeral whose values a r e  the measures  of 

the shor ter  sides of such paral-  

lelograms then, for  such values 

of 'x', the values of 'x t 3' a r e  

the measures  of the longer sides.  
x t 3  

Expressions for  the per imeters  

of such parallelograms can be generated f rom the pro-  

numeral expression: 

HenceJ a formula for the perimeter  of such parallelograms 

is 'P = x t ( x  + 3) t x t (x t 3)'. A simpler  formula is: 





x + 5  
P =  6x-t 15 
[or : 3(2x + 5)] 

L P = Z S x t 6  

[Each of the shorter sides 8. 

could be labeled with an 'x'; 
if so,  each of the longer sides 
should be labeled with a 
'5x - 15'. If this is done, a 
formula for the perimeter 
would be *P = 12x - 30', and 
the values of *x* are greater 
than 2.5 .  ] 

9. 





Students should be instructed to include a labeled diagram for each of 
the exercises of Pa r t  E. The various parts of the diagram should be 
labeled with pronumeral expressions a s  shown in Sample 2 on page 2-58, 

Answers for Pa r t  E [on pages 2-57, 2-58, and 2-59].  

 h here is more than one way t o  label the parts  of these figures, and 
accordingly, more than one correct formula for the perimeter.  In 
Exercises 1 and 6 we indicate an alternative. In other exercises you 
will doubtless want the class to  consider other pos sibilities . ] 
1. Using 'xi as a pronumeral whose values a r e  the measures of the 

shorter sides of such rectangles, a formula for the perimeter of 
such rectangles is 'P = 2(6x + 7)'. 

[Each of the longer sides could be labeled with an 'x*; i f  so, each of the 
x - 7 '  

shorter  sides should be labeled with a - . Then, the perimeter 5 
formula is 'P = 2 ( x  + K)', and the values Qâ 'x' a r e  greater than 7.1 5 
2. Using 'x* a s  a pronumeral whose values a r e  the measures of the shorter 

sides of such parallelograms, a formula for the perimeter is 'P = 8x'. 
3x 

3x 
For the remaining exercises, we give just a diagram and a formula. 



A rectangle whose longer side measures 7 more than 5 

times the measure of the shorter side. 

1 
A parallelogram whose shorter side i s  - as  long a s  the 3 
longer side. 

A parallelogram whose longer and shorter sides differ 

in measure by 9 .  

A hexagon the measures of whose sides a r e  consecutive 

whole numbers. [Example : A hexagon with sides 211, 3", 

411, 511, 611, and 7" long. ] 

An isosceles trapezoid for which the longer of its parallel 

sides i s  three times as long a s  the shorter of its parallel 

sides, and the sum of the measures of its nonparallel sides 

is the sum of the measures of i ts  parallel sides. 

1 
A kite whose shorter side measures 3 m o r e  than 3 the 

measure of i ts  longer side. 

A rectangle made by putting two squares next to each other. 

A hexagon made by putting two equilateral triangles with 

equal perimeters next to each other so that the length of 
3 

the overlap is - the length of a side. 
4 

A pentagon, three of whose sides have the same measure,  
1 
1 and, of the remaining two sides, the shorter side is - as 
2 

long a s  the longer. 

A rectangle for which the average of the measures of its 

four sides i s  twice the measure of its shorter side. 

[More exercises a r e  in -- Par t  H,  Supplementary Exercises.] 



2.05 Theorems and basic principles. --In proving generalizations you -- 
probably noticed that you could have shortened your work i f  you had had 

principles like : 

F o r  each x, 1 x = x, 

and : 

For  each x, for each y, for each u, for each v,  

In fact, you may have already stated such principles and derived them 

from the ones mentioned in Unit 1. 

Statements which can be derived from the basic principles a r e  

called theorems.  For  example, when you simplify the expression 

you a r e  claiming that the generalization: 

For  each x, for each y, 3x + 2y + 7x + 1 = lox + 2y + 1 

i s  a theorem. And, when you give a test-pat tern for the generalization, 

you a r e  showing that i t  is a theorem. So, you have already proven 

many theor e m s  . 
A theorem can be used in justifying a s tep in a proof in the same 

way that you have used the basic principles. Those that a r e  most use-  

ful for  this purpose a r e  worth remembering and even giving names to. 

An example of such a theorem is the left distributive principle for mul- - -- 
tiplication over addition. Although this is one of the principles men- - 
tioned in Unit 1, it can be derived from the basic ones. Let's prove 

that for each x, for each y, for each z, x(y + z) = xy + xz. 

( y  + z)x = yx + zx [dpma] 

yx + zx = xy + xz. [cpm] 

Hence. x(y + z) = xy -i- xz. 

[Notice that the commutative principle for multiplication was applied 

twice in the las t  step.] So, the left distributive principle for multipli- 

cation over addition is [as was mentioned in Unit 11 a consequence of 

the commutative principle for multiplication and the distributive prin- 

ciple for  multiplication over addition. 



In this section we collect basic principles for real numbers from 
which all other principles concerning the operations of addition, mu1 - 
tiplication, opposition, subtraction, and division can be derived. [We 
might, of course, have selected another set of basic principles; there 
a re  many possible choices. ] In Unit 1, students have become acquainted 
with the arithmetic of the real numbers and have become convinced of 
the truth of the basic principles displayed on page 2-61. In Unit 2, they 
have, so far, learned how to state these principles and have begun to 
learn how to derive other principles from them. In the remainder of 
this unit they will derive such principles, use them to justify computa- 
tional short cuts, and gain skill, through practice, in applying these 
short cuts. 

The procedure of taking a known subject matter [here, the arithme- 
tic of the real numbers] and organizing it deductively, by choosing 
some true statements from it as basic principles [or postulates] and 
deriving others [theorems] from them, is  a common one in mathema- 
tics, and is even more common in applications of mathematics. 

There is a further step, peculiar to mathematics, in which one for- 
gets entirely the "known subject matter" and, considering the postu- 
lates and theorems merely as sentences in an uninterpreted language, 
concentrates his attention on the logical connections among these sen- 
tences. [One might, for example, refrain from specifying the domain 
of the variables 'x', 'y*, 'z* etc., and consider 'O*, 'l', 't*, ' ', ' - *, 
'-*, and ' Â¥ ' as "undefined terms". ] In doing this, one i s  paying strict 
attention to the "structure** exhibited by the original subject matter. 
This procedure has great value in that it enables one to perceive im- 
portant similarities among different subject matters. For example, 
if, in this way, one empties of content the apa, the paO, and the po, 
and considers the sentences which can be derived from these, he ob- 
tains an abstract deductive theory corresponding to the kind of struc- 
tures known as groups. [If one adds the cpa, one obtains the theory 
of commutative groups.] If one, now, interprets these sentences by 
choosing some set as the domain of the variables, a member of this 
set to be named by 'O*, and operations on the members of this set to 
be named by 't' and '-', all this in such a way that the sentences of 
the abstract theory become true statements, one has described a model 
of the abstract theory. In the case under discussion, such a model i s  
called a group [or, with the cpa, a commutative group]. It turns out 
that groups occur in many situations. So, it is very convenient to have 
one abstract theory which formalizes properties common to all groups. 





You wi l l  probably be interested, in this connection, in the article "To 
teach modern algebra", by Carl H. Denbow, in - The Mathematics 
Teacher, March, 1959. [Our distinction between organizing a known 
subject matter deductively and developing an abstract deductive theory 
corresponds with ~ r o f e s  ;or   en bow 'i distinction between pragmatic . 
postulational systems and abstract postulational systems. ] 

The fact that the basic principles a r e  true of the real number system 
means, in technical language, that the real  number system is a field. -- 
[The rational number system and the complex number system a r e  also 
fields. ] There a r e  many other sets  of postulates for field theory. Our 
choice has been motivated largely by pedagogical conside rations. We 
might, for example, have replaced the pa0 and the po by the statement: 

For  each x, for each y, there exists a z such that x t z = y, 

and omitted the ps . Vle could then have proved that there is just one z 
such that, for each x, x t z = x, and introduced * O* as  an abbreviation 
for 'the z such that, for each x, x t z = x *  and * -x*  to abbreviate 
'the z such that x t z = 0'. And, we could have defined 'x - y* as an 
abbreviation for 'x t -ye. Obviously, such a procedure, while it has 
certain advantages from the point of view of a mathematician, would 
not be pedagogically sound. [There is the further difficulty that when, 
for  example, we define 'x - y* to be an abbreviation for 'x t -sy* this 
i s  really only a specimen definition. It does not tell us how '3 - 2' or 
'y - 4', or  'x - z', for example, a re  to be unabbreviated; all it men- 
tions is 'x - y*. Although you can probably guess that '3 - 2' i s  an 
abbreviation for '3 + -2' from being told that 'x - y* i s  an abbrevia- 
tion for 'x t -y*, a definition which leaves one guessing is not a good 
one. Just because a correctly stated rule for unabbreviating expres- 
sions which contain * - * requires rather sophisticated language, we 
have taken the alternative of adopting the ps as a basic principle. ] 





Also, we might have treated division in a manner parallel to  our treat-  
ment of subtraction. This would involve replacing the principle of 
quotients by a principle of reciprocals [like the pol and a principle for 
division [like the ps]. The difficulty of this approach is that, by the 
time students ar r ive  at the ninth grade their notion of reciprocal is 
inextricably bound up with the notion of dividing into 1. Consequently, 
a definition of division in t e rms  of reciprocation would certainly ap- 
pear to be circular.  It i s  as  though opposition were f i rs t  defined in 
t e rms  of subtracting from 0, previous to a definition of subtraction 
in t e rms  of opposition. If this block were not present, one could 
introduce a name, say '/', for the operation reciprocating, and take 

P .  

as  basic principles : 

and : 

[compare these with the principle of opposites and the principle of 
quotients.] [One would, of course, very soon prove the theorem: 

And, just as a modified ' - ' is used as  a name for subtraction, a 
modified '/' would be introduced as  a name for division. ] 







x . - 1 = =  
^ ^ z # o  z z z 

[Part B, Ex. 1, p. 2-1001 

[Th, 69 i s  the distributive theorem for division over 
subtraction. ] 

v v v x u x v - u y  - - -  = 
x y / o  z # o  u v # o  yz vz [Part B, Ex. 2, 

yvz  p. 2-1001 

VxVyVz # 0 
x +  Y = 

z z [Part B, Ex. 3, p. 2-  1001 

[Th. 71 is the "mixed number" theorem.] 

z 
V y # o ^ # 0  

x +  Y = x . -  
z Y [p. 2-1011 

[Th. 72 is the "dividing by a fraction" theorem.] 

x . u - X V  - - - - -  
^XVY # oVu # 0% # 0 y v yu 

[Part A, Ex. 1, p. 2-1011 

[Th. 7 3  is the "dividing a fraction by a fraction" theorem.] 

= Y  % # o \ # o ' F  x [Part A, EX. 2, p. 2-1011 

[Th. 7 4  is the "reciprocal of a fraction" theorem.] 

x .  x - z = -  V Y / ~ % # ~  y YZ [Part A, EX. 3, p. 2-1011 

[Th. 75 is the "dividing a fraction" theorem. ] 

[p. 2-1031 

[p. 2-1031 

[Part A, p. 2-1031 





v v x u  xu 
- e -  = - 

v x v y # ~  u V # O  y v yv [p. 2-93] 

[Th. 59 is the "multiplication of fractions" theorem.] 

[p. 2-94] 

[Th. 60 is the "reducing of fractions by multiplication*' 
theorem. ] 

X V Z  
v x v y # ~ v z # ~  y ^ y - r ~  [p. 2-95] 

[Th. 61 is the "reducing of fractions by division" theorem.] 

[Th. 62 is the "multiplying a fraction" theorem. ] 

1 Z = x . -  [p. 2 - 9 7 ]  
^Y # 0 Y Y 

[Th. 6 3  i s  the "dividing is the same as  multiplying 
by the reciprocal" theorem. ] 

[Th. 64 i s  the ''dividing is the inverse of multiplying* * 
theorem. ] 

[p. 2-97] 

[p. 2-98] 

[Th. 67 is the distributive theorem for division over 
addition. ] 





48- VxVyvz# 0 if xz = yz then x = y [Sample, p. 2-90] 

[Th. 48 i s  the cancellation principle for multiplication. ] 

49- 'ccv,r # o^ if zy = x then z = x/y [Ex. 1, p. 2-91] 

[Th. 49 is the division theorem. ] 

50. V x/1 = x 

[Th. 50 is the "dividing by 1" theorem.] 

[Ex. 2, p. 2-91] 

51. V x f 0  x / x =  1 [Ex. 3, p. 2-91] 

[Th. 51 i s  the "dividing a nonzero number by itself9* 
theorem. ] 

52. Vx x/-1 = -x [Ex. 4, p. 2-91] 

[Th. 52 is the "dividing by - 1" theorem.] 

"* vx # 0 O/X = 0 [Ex. 5, p. 2-91] 

54- VXVY # 0 if x / ~  = 0 then x = 0 

[Th. 54 is the 0-quotient theorem.] 

55. VxVy if x #  0 and y /  0 then xy/: 0 

56. V V  if xy = 0 then x = 0 or  y = 0 

[Th. 56 is the 0-product theorem.] 

[Ex. 6, p. 2-91] 

[p. 2-91] 

[p. 2-91] 

v v  . 
x u x v t u y  

x y / ~  u v / 0 Y t T =  YV [p. 2-92] 

[Th. 57 is the "addition of fractionss* theorem. ] 

v v x u - x v - u y  
58* %"y#0 u v # O  7 - 7  YV [p. 2-92] 

[Th. 58 i s  the "subtraction of fractions" theorem.] 

T ~ [ 2 - 6 l ] g  





37. V V V  x t ( y - z ) = x - z + y  
X Y  = 

[Par t  A, Ex. 4, p. 2 -731 

[pa r t  A, Ex. 5, p. 2-73] 

[Par t  A, Ex. 6, p. 2-73] 

38. V V V x(y - z) = xy - xz [Par t  A, Ex. 7, p. 2 -741 
X Y  = 

[ ~ h .  38 i s  the left distributive theorem for multiplication 
over subtraction (tdtms). ] 

39. V V V (X - y)z = xz - yz [pa r t  A, Ex. 8, p. 2 -741 
X Y Z  

[Th. 39 i s  the distributive theorem for multiplication 
over subtraction (dtms). ] 

40. V V V x - ( - y  - z ) = x + y + z  [Par t  A, Ex. 9, p. 2-74] 
X Y Z  

41. VxVyVzVu x - (y - z - u) = x - y + z + u [pa r t  A. Ex. 10, p. 2-74] 

42. V 0 - x = - x  [Part  B, Ex. 1, p. 2-75] 

[Th. 42 i s  the "subtracting from 0 i s  oppositing" theorem.] 

43. Vx x - 0 = x [Part B, Ex. 2 ,  p. 2 - 7 5 ]  

[Th. 43 i s  the "subtracting 0" theorem.] 

[par t  B, Ex. 3, p. 2-75] 

45. v v v z x - z - ( y - z ) = x -  
X Y  

Y [Part  B, Ex. 4, p. 2-75] 

46. VaVbVcVd (a - b) + (c - d) = (a + c) - (b + d ) [ ~ a r t  B, Ex. 5, p. 2-75] 

47. V V V i f z + y = x t h e n z = x - y  
X Y Z  

[Th. 47 i s  the subtraction theorem. ] 

[p. 2-89] 





[par t  B, Ex. 1, p. 2-70] v V -xy = x(-y) 
X Y  

V V V -x(y t z) = -(xy) t -(xz) [par t  B, Ex. 2, p. 2-70] 
X Y  = 

V V V -x(-y t -2) = xy t x z  [Part  B, Ex. 3, p. 2-70] 
X Y Z  

Vx x e - 1  = -x [Part B, Ex. 4, p. 2-70] 

[Th. 27 i s  the theorem for multiplying by - 1. ] 

vx -X -1  O X  [Part  C, p. 2 -701 

[ ~ h .  28 i s  the -1  times theorem. ] 

V V ( x t y ) + - y = x  [p. 2 -711 
X Y  

[Th. 29 i s  the "adding the opposite i s  the inverse of adding" 
theorem. ] 

[p. 2-71] 

[Th. 30 i s  the "subtraction i s  the inverse of additionw 
theorem. ] 

[par t  A, Sample, p. 2-71] 

V V  x - y t y = x  
X Y  part.^, Ex. 1, p. 2-72] 

[Th. 32 i s  the " addition i s  the inverse of subtraction" 
theorem. ] 

V V - ( x - y ) = y - x  
X Y  

[Part A, Ex. 2, p. 2 -721 

[Th. 33 i s  the distributive theorem for opposition 
over subtraction. ] 

[par t  A, Ex. 3, p. 2-731 





V kf V z  if x = y then xz = yz [Ex. 4, p. 2-66] 
X Y  

[ ~ h .  11 i s  the uniqueness principle for multiplication. ] 

V V V if x = y then nt = zy [Ex. 5, p. 2-66] 
X Y  

[Th. 12 i s  the left uniqueness principle for multiplication.] 

V  V V  V if u = v a n d x =  y t h e n u  + x = v  + y  [EX. 6, p. 2-66] u v x y  

V V v V X V y  if u = v and u + x = v t y then x = y [Ex. 7, p. 2-66] 

Vx x.0 = 0 

[ ~ h .  15 is the pmO. ] 

[Ex. 8, p. 2-66] 

V V i f x t y = O t h e n - x = y  
x Y 

[Th. 16 i s  the 0-sum theorem.] 

[p. 2-68] 

[par t  A, Sample, p. 2-69] 

V V -(x t y) = -x t -y 
X Y  

[Part  A, Ex. 1, p. 2-69] 

[ ~ h .  18 i s  the distributive theorem for opposition over 
addition. ] 

[par t  A, Ex. 2, p. 2-69] 

[Part A, Ex. 3, p. 2-69] 

V V -(xy) = 
X Y  

-XY [Part  A, Ex. 4, p. 2-69] 

[ ~ o t e  that * -xy' i s  an abbreviation for * (-x)yl and 
for ' -x*y ' . ]  

V V if x = -y then -x = 
X Y  

Y 

V V - x * - y =  
X Y  

XY 

[Part  A, Ex. 5, p. 2 -691 

[par t  B, Sample 2, p. 2-70] 





[Ex. 1, p. 2-61] 

V V V x(y t z) = xy t xz [p. 2-60] 
X Y  = 

[Th. 1 i s  the left distributive principle for multipication 
over addition. ] 

V l * x = x  x 

[Th. 2 i s  the 1 times theorem.] 

V V V V a x t b x t c x = ( a t b t c ) x  x a b c  
[Ex. 2, p. 2-61] 

[Th. 3 i s  the extended distributive theorem. ] 

V x y a b  V V V (ax)(by) = (ab)(xy) [Ex. 3, p. 2-61] 

[Th. 4 i s  the product rearrangement theorem. ] 

VxVyVaVb (a + x) t (b + y) = (a t b) t (x t y) [Ex. 4, p. 2-61] 

[Th. 5 i s  the sum rearrangement theorem.] 

V V V i f x = y t h e n x t z = y t z  
X Y Z  

[ ~ h .  6 is  the uniqueness principle for addition.] 

[p. 2-64] 

V V V i f x t z = y t z t h e n x = y  [p. 2-65] 
X Y Z  

[Th. 7 is  the cancellation principle for addition. ] 

V V V i f x = y t h e n z t x = z + y  [Ex. 1, p. 2-66] 
X Y Z  

[ ~ h .  8 is  the left uniqueness principle for addition. ] 

V V V i f z + x = z t y t h e n x = y  
X Y Z  

[Ex. 2, p. 2-66] 

[ ~ h .  9 i s  the left cancellation principle for addition. ] 

V V if x = y then -x = -y 
X Y  

[Ex. 3, p. 2-66] 

[Th. 10 i s  the uniqueness principle for opposition. ] 





[The theorems in Exercises 2, 3, and 4 are  not too important in them- 
selves. They serve merely a s  samples of the kind of "sweeping" theo- 
rem a student uses a s  a basis for short cuts in simplification. It is 
probably better to have students justify a short cut by saying 'commu- 
tative, associative, and distributive principles' instead of by referring 
to special theorems like those in Exercises 2, 3, and 4. However, 
you should occasionally challenge such answers to make sure they a re  
not being used as  substitutes for 'I don't know*. ] 

For your convenience [in using the COMMENTARY ] we have prepared 
a list of the more important theorems proved in Unit 2. This list 
contains theorems already proved and theorems which will be proved 
later in  the unit. [We do not expect that each student will have proved 
each theorem!] The theorems are  numbered consecutively in the list, 
and [in the COMMENTARY] we shall refer to them by number. You 
may want your students to compile a list like this, but it  would be 
silly and wasteful of time if they were required to memorize the theo- 
rems [especially by number]. It w i l l  probably be more helpful if they 
assign names to the theorems [as we have done in many cases], and 
either refer to the theorems by these names, or write them out in 
full when they use them in proofs. 





Answers for Exercises on page 2-61. 

1. Prove: Vx 1 * x  = x.  h he or em 2. See ~ ~ ( 2 - 6 1 ) c . )  

Hence, l o x  = x. 

2. Prove: VXQVbVc ax  t bx t cx = (a t b t c)x.  h he or em 3) 

Hence, ax t bx t cx ( a t  b t c)x. 

4. Prove: VxVyVaVb (a t x) t (b t y) = (a t b) t (x  t y).  h he or em 51 

a t b t x t y  \ ( a  t b) t (x  t y). 

Hence, (a t x) + (b t y) = ( a  t b) t (x  + y). 



For  definiteness and ease of reference w e  state -- the basic p e  
which we shall use in this unit. [ ~ h e  las t  basic principle ~ i l l  be di8- 
cussed la ter ,  but we state i t  here  for completeness. ] Vie also introduce 

an abbreviation fo r  'for each'. It i s  'V '. 

Commutative principles 

I7 v xy = yx. 
X Y  

Associative principles 

V V  V x + y + z = x + ( y + z ) .  
X Y  

V V V xyz = x(yz). 
X Y Z  

Distributive principle 

v v vz ( x  t y)z = x z + y z .  
X Y  

Principles for 0 and 1 ---- 

vx x t O = x .  

Principle - of Opposites 

v x i - - x = o .  
x 

Princiole for Subtraction 

Principle - of Quotients 

v v 
x Y # O  

( x  -r y) y = x. 

[Notice that we have not included the principle for  multiplying by 0. 

This  i s  because we shall  la ter  derive it f rom the principles just stated. 1 

EXERCISES 

Prove the following theorems. 

1. V 1 x = x. ["The 1 t imes theorem"] 
x 

2. V V V V a x  + bx t cx = (a t b t c)x. ["Extended distributive theorem x a b c  

3. V V V V (ax)(by) = (ab)(xy). [ " ~ r o d u c t  rearrangement theorem"] 
x y a b  

4. V V V V ( a  t x) t (b t y) = ( a  + b) + ( x  t y). ["sum rearrangement x y a b  
theorem"] 



Up to now in Unit 2 you have learned about pronumerals and how they 

can be used in stating generalizations about real  numbers. You have 

seen how to derive theorems from the basic principles, and how to use 

the basic principles and the theorems in finding short cuts for simplify- 

ing expressions . These short cuts apply to problems involving addition 

and multiplication. Now we want to  work toward short cuts dealing with 

opposition, subtraction, and division. V/e shall prove theorems like: 

V v x - y = -(y - x), 
X Y  

and use them to simplify expressions like : 

3b - ( a  - b). 

So, your two main purposes for the res t  of this unit a r e  to prove theo- 

rems which w i l l  help you develop more short cuts in simplifying expres- 

sions, and to gain skill in applying these short cuts. The skills you 

acquire in simplifying expressions w i l l  beused  throughout the res t  of 

your work in mathematics. 





Before beginning this section you may find it helpful to  reread the 
COMMENTARY for page 1-80, for  you a r e  now beginning the "more 
adequate treatment*' mentioned there. 

Answers for Part A. 

1. 043 [or: "31 2. --7 [or: '71 3. - -4 [or: 4) 

4. - t 8.2 [or: -8.21 5. - - -3  [or: -31 6. -0[or: O] 

In doing the exercises of Par t  B, it is imperative that students read 
the expression '-x* as 'the opposite of x* rather than as 'negative x*. 
 h he description of the procedure for finding the opposite of a real  
number given on Tq2-29. 301 may be helpful in giving justifications 
if any a r e  needed.] 

Answers for Par t  B. 

1. F 2. F 

5. T 6. T 

9. T 

Answers for Par t  C. 

In each of Exercises l a  3, 4. 5 .  6. 7, and 8 the blank should be filled 
with an oppositing sign. 



2.06 Oppositing and - subtracting. - -Vle saw in Unit 1 that in order t o  

define the operation subtraction it was convenient to  have the opera-  

tion oppositing [and we introduced the minus sign as a name for this  

operation]. Oppositing is such that 

F o r  each x, x + -x = 0. 

We call  (*) principle of opposites. [ ~ e a d  'x  + -x' as *x plus the 

opposite of x' and - not a s  *x plus negative x' .  ] 

EXERCISES 

A. Give the opposite of each number listed. 

B. T r u e  or  f a l se?  - 
1. F o r  each x, tx is a positive number.  

2. F o r  each x, -x is a negative number.  

3. F o r  each x, if x i s  negative then -x is positive. 

4. F o r  each x, if x i s  positive then -x is negative. 

5. F o r  each x, i f  x is 0 then -x is 0. 

6. F o r  each x, i f  -x is positive then x is negative. 

7. F o r  each x, i f  -x is negative then x is positive. 

8. F o r  each x, i f  tx i s  positive then x i s  positive. 

9. F o r  each x, i f  i-x i s  negative then x i s  negative. 

C. Fill the blank with an  oppositing sign to  make the sentence t rue  - 
unless the sentence is alreadv t rue .  



ADDITION PRINCIPLES 

Suppose Rita and Rhoda each picks a r ea l  number.  Then, 

Aaron picks a r ea l  number and tells both Rita and Rhoda 

to  add i t  to h e r s .  If Rita and Rhoda pick the same number 

[and both add correctly],  do they get the same s u m ?  

Suppose Rita and Rhoda each picks a r e a l  number.  Then, 

Aaron picks a r ea l  number and te l ls  both Rita and Rhoda 

to add it to  he r s .  If they both get the same sum [and 

both add correctly],  did they pick the same number? 

These  situations i l lustrate  two important propert ies  of addition. Let's 

state the principle which expresses  the property i l lustrated in the f i r s t  

situation. For  each number Rita picks, for each number Rhoda picks, 

and for each number Aaron picks, if Rita's number i s  the same a s  

Rhoda's number then Rita's number plus Aaron 's  number i s  the same  

a s  Rhoda's number plus Aaron's number. F o r  s h o r t :  

F o r  example, this te l ls  us that,  since 8 = 4 X 2, 8 + 7 : 4 X 2 + 7. Vte 

accept this reasoning because 8 + 7 = 8 + 7 and, supposing that 8 = 4 X 2, 

'4 X 2' i s  another name for 8. So, substituting '4 X 2' for the second '8', 

w e  see that 8 + 7 = 4 X  2 + 7. 

Here i s  a. test-pattern for this generalization. 

Suppose that 

Since 

it follows that 

Hence, i f  x = y then x t z = y + z .  

The generalization: 

V V Vz i f x = y t h e n x + z = y + z  
X Y  

i s  called the uniqueness principle for addition. ["If you add a number - - 
to  a number you get a unique sum".] 



The uniqueness principle fo r  addition [Theorem 61 and the cancella- 
tion principle for addition [Theorem 71 make up what, in Unit 3,  we 
call the - addition transformation principle. They could be used [at an 
appropriate time; not now] together with the po and the pa0 to justify 
the transposition-short cut used in solving equations. [The unique- 
ness and cancellation principles might just a s  well be called unique- 
ness and cancellation theorems .] 

Students who have difficulty distinguishing between the two principles 
may be helped by asking them to consider pairs of sentences such a s  : 

If John i s  well then he i s  in school today. 
If John is  in school today then he is  well. 

and : 

If two angles a r e  right angles then they have the same 
number of degrees. 

If two angles have the same number of degrees then they 
a r e  right angles. 

A s  pointed out at the top of page 2-65, the uniqueness principle for 
addition is a logical [as opposed to a mathematical] principle in the 
sense that it  can be proved without making use of any of our basic 
principles for rea l  numbers. The proof given in the text makes use 
only of rules and principles of logic. In case you have found the 
"tree-form" of proof used in the COMMENTARY for  pages 1-56, 
2-31, and 2-32 helpful, here i s  such a proof of the uniqueness principle. 

The f irst  inference is  of a kind mentioned in the COMMENTARY for 
pages 2-31 and 2-32- -an example of inferring an instance of a uni- 
versal generalization from this generalization. The second inference 
is an example of the substitution rule. The final inference i s  of a new 
kind, called conditionalizing--froin any sentence ['x t z = y + z*] one 





can infer any conditional sentence which has the former as its conse- 
quent. [For example, from 'the moon i s  made of green cheese* one 
may infer *if the moon is a satellite then the moon is made of green 
cheese'.] The asterisks indicate the applicability of another rule of 
logic according to which i f  [as i s  here the case] the antecedent of the 
conditional [*x = y'] is one of the premisses of the argument, then the 
conditional is a consequence of the remaining premisses [in this case, 
of the premiss *Qx x = x*]. So, the proof shows that the sentence *if 
x = y then x t z = y t z* i s  a consequence of the logical principle 
* Q  x = x*. Hence, the same i s  true of the statement: 

You may wish a t  this time to introduce your students to  the substitu- 
tion rule of logic [See T C[l-56]a, b. 1. If so, the following remarks 
may prove helpful. 

Suppose we have the premisses 

*8 = 5 t 3- and '9 + 8 > 12'. 

Then we infer from these premisses the conclusion 

The inference we have just made {"substitution"] is acceptable be- 
cause we have decided t o  use * = * to refer  to identity. So, in assum- 
ing the premiss *8 = 5 t 3', we a r e  assuming that '8' and '5 t 3' a r e  
names for the same number, and in view of this,  the conclusion says 
the same thing as the second premiss. We can show the pattern of 
this inference [that i s ,  the derivation of the conclusion from the two 
premisses] by using pronumerals : 

We shall say that *c -i- b > d* i s  a consequence of the premisses *a = b' 
and 'c + a > d* because statements generated from the open sentences 
a re  related in this premisses-conclusion way. [we cannot justify the 
inference of the open sentence conclusion from the open sentence pre-  
misses as  we did in the case of the statements. Since *a' and *b* are  
pronumerals, it makes no sense to say that they a re  names for the 
same number.] Note that while the f irst  premiss must be an equation, 
the second premiss [and the conclusion] need not be. 







Thus, in summary: 

the f i rs t  inference, 0, is an example of inferring from a uni- 
ver sal generalization [in this case, the uniqueness principle 
for addition] one of its instances; 

the second inference is [as mentioned above] an example of 
modus ponens; 

the third inference is  of the same kind as  (D [in this case, the 
premiss being the apa]; 

the fourth inference is an example of the substitution rule; 

the fifth, seventh, ninth, and eleventh inferences a r e  like (D 
[the universal generalizations which a re  the premisses of 
these inferences are ,  respectively, the apa, the po, the paO, 
and the paO]; 

the sixth, eighth, tenth, and twelfth inferences a r e  examples 
of the substitution rule; 

the thirteenth [and final] inference is an example of condition- 
ali zing. 

Hence, we see that the cancellation principle for addition is a conse- 
quence of the logical uniqueness of addition principle [which is itself 
a consequence of ' V  x = x'], and of certain mathematical principles, 

the apa, the po, and the paO. Since we do not usually cite logical 
principles in proofs, we may say that the cancellation principle for  
addition i s  a consequence of the apa, the po, and the paO. 





The proof of the cancellation principle for addition is similar in 
structure to that of the uniqueness principle. Lack of space precludes 
exhibiting a tree-form proof, but a slightly abbreviated one can be ob- 
tained by tacking together the following pieces. 

* 1 uniqueness principle for addition 
/=s x t z = y t z " i f x t z = y t z t h e n x t z + - z = y t z + - z  

apa 
\ 

8 "-< 
x t z t - z = x t ( z t - 2 )  x t z t - z = y t z t - z  

x t ( z t - ~ ) = y t z t - z  
\ 

apa V 8 Â¥s 
y t z t - z = y t ( z t - a )  x t ( z t - z ) = y t z t - z  

x t (2 t -2) = y t (2 t -2 )  

\ 

The kinds of inference a r e  those used before, with the exception of 
the last inference in the f irst  block. This is an examole of modus 
ponens --from a conditional sentence together with its antecedent, 
one may infer the consequent of the conditional. 





After students have read Rita's explanation, you should have them 
consider examples like this. 

Suppose Aaron had chosen 6 a s  his number, and 
Rita told him that the sum, when she added Aaron's 
number to hers ,  was 13. How could Aaron use 
addition to  find out what number Rita had picked ? 

Take several examples of this kind, and then have the class pursue 
the following . 

Suppose Rita picked 73 and Aaron picked 59; 
without doing any computing, tell what expres - 
sion represents Rita's sum. 

Write '73 + 59* on the board, and ask what you should 
add to 73 t 59 to  get back 73, the number Rita picked. - 
The students w i l l  tell you [we think] that you should 
add the opposite of 59. So, write a ' t -59' to the right 
of '73 t 59'. 

Then you should go through this sequence. 

If necessary, take a few more examples like this. The students should 
then be ready for the proof on page 2-65. 



[ ~ o t i c e  that in the proof of the uniqueness principle we  did not u s e  

any of the basic principles or theorems. V e  did cite a principle - of 

logic --"a thing i s  equal to itself''. So, the uniqueness principle for 

addition is itself a theorem of logic. ] 
Let's turn now to the second situation. Rita, Rhoda, and Aaron 

each picked a number. Rita and Rhoda added Aaron's number to their 

numbers and got the same sum. When they told Aaron this, he said, 

"You both chose the same number. ' *  How did he know ? 

Rita figured it out this way: 

"V/hen I told him my - sum, he knew that he could get my 

number f rom it by adding the opposite of his number. And, 

he knew he could get your number, Rhoda, by adding the 

opposite of his number to - your sum. And, since we had the 

same sum, he knew he would come out with the same num- 

ber both times [uniqueness principle]. " 

Here i s  a statement of the principle Aaron used: 

It is called the cancellation principle for addition. - - 
Rita's explanation can be translated into a proof. 

Suppose that 

Then 

and 

Hence, 

[uniqueness principle] 

Principles and theorems of logic a r e  not usually cited in proofs. Vle 
cited the uniqueness principle in this last proof for the sake of clarity. 

Thus, the cancellation principle is a consequence just of the apa, the 

po, and the paO. 

Notice in both these proofs that the last sentence is a conditional 

sentence, that is, a sentence of the form: i f .  . . then___ .  Notice also 

that the f irst  line in each proof i s  a supposition of the ^if-part" and 

the next-to-last line i s  the "then-part". So, the proof consists in 

using the if-part together with principles or theorems to  derive the 

then-part . 



[2 -661 

EXERCISES 

Prove these theorems. 

1. V  V  V  i f  x = y then z i- x = z + y.  ef eft uniqueness principle 
X Y  for addition"] 

2. V V  V i f  z + x = z + y then x = y. ["Left cancellation principle 
X Y  for addition*'] 

3. V  V  i f  x = y then -x = -y. ["Uniqueness principle for opposition"] 
X Y  

4. V V V i f  x = y then xz = yz. ["Uniqueness principle for multipli- 
X Y Z  cation"] 

5. V V  V i f  x = y then zx = zy. ["Left uniqueness principle for mul- 
X Y Z  tiplication"] 

*6. V  V  V V i f u = v a n d x = y t h e n u + x = v t y .  
u v x y  

V V V V  
u v x y  

i f u  = v a n d u + x = v + y t h e n x = y .  

Let us now prove the principle for multiplying by 0. What do our 

basic principles tel l  us about O? 

x + o = X  [pa01 

Can we get an expression containing an  *x  a 0' out of this ? 

x(x t 0) = xx [left uniqueness principle for  multiplication] 

Now we have an *x 0' on one side. Can we get a '0' on the o ther?  

x 0 0  = 0 [left cancellation principle for addition] 

So, the principle for multiplying by 0 i s  a consequence of the principle 

for adding 0, the left distributive principle for multiplication over addi- 

tion, and the left cancellation principle for addition. Ear l i e r ,  we 

claimed that we could derive the principle for multiplying by 0 f rom the 

basic principles stated on page 2-61. This can be done because the 

Aipma and the left cancellation principle can be derived from our basic 

principles. 

8 .  Derive the pmO directly f rom the basic principles. 



Answers for Exercises. 

1. Prove: V V V if x = ythen z t x = z t y.  h he or em 81 
X Y Z  

Suppose that x = y. 

Since z + x = z t x ,  

it follows that z t x = z t y .  

Hence, if x = y then z + x = z t ye 
- - 

yF 2. Prove: V V V if z + x - z + y then x = y. (Theorem 91 
X Y Z  

Suppose that z t x = z t y e  

Then z t x t -z = z t y + -2, [uniqueness principle] 

x t z t -z = y t z t -z, [cpa] 

x t (z t -2) = y t  (z t -z), [apa] 

x t o = y t o ,  [POI 
and x = y. [pa0 1 
Hence, i f  z + x = z + ythen x = y. 

[Notice that again, for the sake of clarity, we cite a uniqueness 
principle .] [There is another proof using the cpa and the cancel- 
lation principle proved on page 2-65. ] 

3. Prove: V V  if  x = y then -x = -yo [Theorem 101 

Suppose that x = y. 

Since -x = -x, 

it  follows that Ã‘ = -Y 

Hence, i f  x = y then -x = -Y* 

4. Prove: V V V if x = y then xz = yz. 
Y 

[Theorem 1 11 

Suppose that x = y. 

Since xz = xz, 

it follows that xz = yz. 

Hence, if x = y then xz = yz. 





[The cancellation principle for multiplication i s  proved in the Sample 
of the Exercises on page 2-90. The proof uses the principle of quo- 
tients. ] 

5. [Similar t o  Exercise 4.1 [Theorem 121 

* 6 .  Prove: V V V V if u = v a m d x = y t h e n u  t x = v  t y. [Theorem131 
u v x y  

Suppose that u = v and x = y. 

Since u t x  = u t x ,  

it follows that u t x  = v t y .  

Hence, i f  u = v  a n d x =  y then u t x  = v  t y. 

[The "double substitution" carr ied  out here can be justified by the 
ear l ier  substitution rule together with a new kind of inference for - 
dealing with conjunctions. Here i s  a tree-form proof for the theo- 
rem of Exercise 6 .  * 

* 7. Prove : V V V V i f  u = v and u t x = v t y then x = y.  h he or em 141 
u v x y  

Suppose that u = v and u + x = v + y. 

Then u t x t  - u = v + y t Ã ‘ u  

and 

x t u - b - u = y t v t - v ,  kpa l  

x t (u t -u) = y t (v t -v), lapal 
x t o = y t o ,  b o l  

and x = y. [pa01 

Hence, if u = v and u t x = v t y then x = y. 

[The theorems in Exercises 6  and 7 a r e  those which justify the 
"addition method" of solving systems of equations.] 





'8. Prove: Vx x0 = 0.  h he or em 15) 

x + o = x  

x(x t 0) = xx 

(x + 0)x = XX 

XXtOx=xx  

XX t xo = XX 

x x t x O = x x t 0  

XX t x o  t -(xx) = xx t 0 t -(=) 

XO t xx t -(xx) = 0 t xx t -(xx) 

xo t [xx t -(=)I = 0 t (xx t -(xx)] 

xo t o = o  t o  
xo = 0 

So, the principle for multiplying by 0 i s  a consequence of the paO, 
the dpma, the cpm, the cpa, the apa, and the po. Note that we do 
not include the two uniqueness principles cited in the proof in this 
list because they are  logical principles. If we wanted to include all 
principles needed in establishing the principle for multiplying b y O  
it would, as the proofs of the uniqueness principles show, be suffi - 
cient to add 'V x = x*. x 

The above proof for the pmO shows how such a proof a s  that given 
on page 2-66 can be expanded to show directly that its conclusion 
follows from basic principles. Just replace each theorem used in 
the proof by a derivation of that theorem from basic principles. 
When one does this, it i s  often possible to shorten the resulting 
proof. For example, in the expanded proof above, the second 
line can be deleted if in the third line one replaces '[cpm] * by 
'[uniqueness]'. Also, the sixth line may be deleted if one also 
deletes the ' t 0' from the seventh line, and a '0 +*  from each of 
the succeeding lines. 

The shorter proof given on page 2-66 has the advantage that it 
shows that the ful l  strength of the po i s  not needed in order to 
derive the pmO. So, for example, a similar proof would show 
that the pmO holds for numbers of arithmetic although there is  
for these no po. 







Another way, to clarify what the 0-sum theorem tells one, i s  to do 
the following. Ask the class to  suppose that two students have each 
picked a number. Suppose [point to students as  you say this] that - 
Mary adds her number to  John's and finds that the sum i s  0. What 
conclusion follows ? The class should conclude that the opposite of 
John's number is Mary's number. And, this conclusion i s  justified 
by the 0-sum theorem. 

Suppose the sum i s  not 0. What can we conclude ? The conclusion is  
that the opposite of John's number i s  - not Mary's number. But, this 
conclusion is not justified by the 0-sum theorem ['if x t y # 0 then 
-x # y* is  the converse of the contrapositive of 'if x t y = 0 then 
x = y*. ] It i s  justified by the principle of opposites. The principle 
of opposites could have been stated: 

(1) v if -x = y thenx  t y =  0. 
X Y  

And, this is logically equivalent to: 

(2) vxvy if  x t y # 0 then -x Â¥/ y. 

In case students have trouble seeing the logical equivalence of (1) and 
(2). you might find the following device helpful. Consider all possible 
pairs of rea l  numbers. The principle of opposites tells us that for 
each pair for which the opposite of the f irst  number i s  the second, the 
f i rs t  number plus the second i s  0. Now, suppose we locate a pair for 
which the f irst  number plus the second is not 0. This can't be a pair 
for which the opposite of the f irst  number is  the second [because, by 
( l ) ,  i f  it were, the sum would be 01. But, this i s  precisely what (2) 
tells us. 

[On the other hand, the 0-sum theorem tells us that if  we locate a pair 
whose sum i s  0 then this i s  a pair for which the opposite of the first 
number - i s  the second.] 

[YOU can also contrast converses with contrapositives by using the 
example of the set  of pairs of all angles. For those pairs  which a r e  
pairs of right angles, i t  i s  the case that the angles have the same 
number of degrees. Contrapositively, for those pairs for which the 
angles do & have the same number of degrees , ou can conclude that 
they a r e  not pairs of right angles. But, convers f ly, if we locate a pair 
for which-e angles have the same number of degrees, it i s  not neces- 
sari ly the case that this i s  a pair of right angles. ] 





The reference in the next-to-bottom line on page 2-68 should, s t r ic t ly  
speaking, be to  the 0-sum theorem, ra ther  than to  (*). [And, although 
your students will probably not r a i s e  this  point, it was (*), ra ther  than 
the 0-sum theorem, which we used in Unit 1.1 

It is important that students continue to  be aware that proofs such as 
the ones just discussed - a r e  proofs because they furnish pat terns  f o r  
testing instances of generalizations. Vlhen taken li terally,  such a 
testing pattern a s  the one for  the 0-sum theorem i s  meaningless, in  
the same  sense as an open sentence is meaningless. However, if one 
substi tutes numerals  for 'x* and 'y*, he obtains a paragraph which 
should convince a r eade r  that the corresponding instance of the 0-sum 
theorem i s  a consequence of the principle of opposites and the left 
cancellation principle for  addition. F o r  example, consider the follow- 
ing paragraph. 

Suppose that ""5 t "5 = 0. Now, [by the principle of opposites] 
5 t -+5 = 0. So, '5 t -+5 = '5 t "5. Therefore,  [by the left 
cancellation principle f o r  addition] -*5 = -5. Hence, if "'"5 t "5 = 0 
then -+5 = "5. 

Before moving to the theorems of P a r t  A on page 2-69, be su re  students 
understand what the 0-sum theorem tel ls  them. As noted above, it 
te l ls  them that if ""5 t "5 = 0 then -+5 = "5. [So, because +5 t "5 = 0, 
-+5 = 5 1 .  You might a s k  a t  this t ime how to prove that the opposite 
of the opposite of *5 is *5, that i s ,  how to  prove that - -*5 = *5. The 
0-sum theorem does this  ve ry  neatly. T o  show that the opposite of + - 5 is ^5, just show that -"5 t '5 = 0. By the cpa, -+5 t *5 = *5 + -+5. 
And, by the po, '5 t -+5 = 0. Thus, -*5 t "'"5 = 0. So, by the 0-sum 
theorem, - -*5 = ""5. This  should prepare them for  the proof of the 
Sample on page 2-69  h he or em 171. 

Another simple consequence of the 0-sum theorem, which you may 
want t o  a s k  students for,  i s  '-0 = 0'. The proof is  very simple: 

Hence, -0 = 0. [O-sum. theorem] 

[This proof is also given in the answer for Exerc ise  2 on TC[~-75]a.  ] 





Throughout the subsection beginning on page 2-67 be es  eciall care - 
ful to read ' - *  as t h e  opposite of'. Of course, you wont Ã‘̂ Ã‘Ã r e  it as 
'negative*; but if you read it as  'minus', some students translate this 
to  'negative' 1 

:# 

After studying the proofs on pages 2-64 and 2-65, proving the theo- 
rems on page 2-66, and reading the proof on page 2-67, students 
should have no difficulty in fulfilling the request at the foot of page 
2-67. Of course, all they have to  do is copy the test-pattern given 
on t h i s  page, replacing each '"485' by a '9832'. The proof of (*) at 
the top of page 2-68 i s  equally simple. Here it is. 

Suppose that x + y = O .  

Therefore, y = -x. [left cancellat ion] 

Hence, if x t y = 0 then y = -x. 

The 0-sum theorem [Theorem 16 which i s  displayed near the middle 
of page 2-68] i s  proved in the same way. Just replace the last three 
lines of the proof given above by: 

Therefore, -x = 
Y e  [left cancellation] 

Hence, i f  x t y = 0 then -x = y. 

In both proofs we have made implicit use of the symmetry of equality. 
In the first proof, in order to  apply the substitution rule to obtain the 
third line we need ' 0  = x t - x '  rather than 'x t -x = 0'; and in the 
second proof we need '0 = x + y', rather than 'x t y = 0'. In the for- 
mer, the additional step would be: 

In the latter proof, the additional ste i s  similar to  this, but with 
t y' in place of 'x + -x'.  [See ~~fi-561. 1 You a re  not likely to 

have students who wi l l  see any point in such a step, and we advise 
against straining to develop an interest in such subtleties at this time. 



THE PRINCIPLE OF OPPOSITES 

The principle of opposites : 

tells us that fo r  each real  number there is a real  number [the opposite 

of the f i rs t ]  which when added to the f i rs t  gives the sum 0. In Unit I we 

mentioned that we would be able to prove that there couldn't be two num- - 
bers such that the sum of each with the given number is  0. For example, 

take the number "485. The principle of opposites tells us that 

'485 + -"485 = 0. We a re  now able to predict that there isn't another 

number [that i s ,  a number different from the opposite of "485) which 

when added to "485 gives the sum 0. In other words, we can now show 

that no matter what number you pick, if  you add it  to "485 and get 0, that 

number must be the opposite of -485. Let's state this generalization: 

V i f  "485 + y = 0 then y = -"485. 
Y 

and build a test-pattern. 

Suppose that 

Now, 

Therefore, 

Hence, if "485 + y = 0 then y = -"485. 

Could you write a test-pattern for the generalization: 

[left cancellation prin. ] 

Do s o  right here. 



[2-681 

Now, consider the generalization: 

[Z. 061 

( :;; ) V V i f  x t y = 0 then y = -x. 
X Y  

Vie leave t o  you the job of writing a proof of ( * ) .  

Do you see how generalization (^:) provides a way of showing that 

a second number i s  the opposite of a f i r s t  number?  Suppose a f i r s t  

boy picks a number,  and a second boy picks a number. How can the 

boys use ( * )  t o  find out if the second number i s  the opposite of the f i r s t ?  

Just  find out i f  the f i r s t  number plus the second number is 0. If it is 0 

then the second number i s  the opposite of the f i r s t .  

In Unit 1 you used this idea when you wanted to show, for  example, 

that the opposite of ('4 t "7) i s  -4 t ""7. What we used there  was the 

theorem : 

V V i f  x t y = 0 then -x = y. 
X Y  

We shal l  call  this the - 0 -sum theorem. [Do you see  that i t  is equivalent 

to  ( * )  ? ]  According to  the 0-sum theorem, in order  to show that 

it is sufficient to show that 

Let's do so. 

So, s ince ("'"4 + -7) + ( 4  + +7) = 0, i t  follows f r o m  ( * )  that 





Now, let's replace each occurrence of 'a* by a '"'5' and each occur- 
rence of 'b* by a '+6*. 

(-5 t +6) t (-"5 t -+6) 

= (-5 t +6) t (-'6 t --5) \ CPa 

= -5 t +6 t -+6 t -"5 aPa 

= -5 t ('6 t -+6) t --5 aPa 

= -5 t 0 t --5 PO 

= -5 + --5 pa0 

= 0. PO 

Hence, (-5 t '6) t (-"5 t -'6) = 0. 

So, -(-5 t "'"6) = --5 + -+6. [O-sum theorem] 

The principles cited as justifications refer  to the numbers "5 and +6 
and to the operations addition and opposition. When one cites these 
principles in writing the testing pattern, he should always have in 
mind [perhaps not consciously] the verification of instances. 

Now, since the testing pattern can be used to verify any sentence ob- 
tained by substituting numerals for the pronumerals in:  

we conclude that the generalization: 

VaVb -(a t b )  = - a t  -b 

is  a theorem. 





juggling attitude may be found in the student's invention of collo- 
quialisms such a s  : 

commute the 'x* and the 'y', 
associate the 'y* with the 'z', 
distribute the 'z' over the '(x t y)'. 

The use of such colloquialisms would lead one to think that the student 
believes that the basic principles apply to numerals o r  to pronumerals 
rather than to numbers. Now, colloquialisms facilitate communica- 
tion and it would be idiotic to forbid their use in the classroom. But 
it is imperative that the student understand that such colloquialisms 
cannot be taken literally. This understanding and the concomitant 
understanding of what one is doing when he proves a generalization can 
be achieved by reviewing occasionally the idea about patterns for test- 
ing instances which were discussed in Section 2.03 [pages 2-31ff.l. 
For example, after the students have completed Part A, you might open 
a discussion on what is really accomplished in the proof of the theorem 
in Exercise 1. Here is a sketch of such a discussion. 

To convince someone that the generalization: 

is a theorem, we show him a pattern by means of which he could veri-  
fy any sentence obtained by substituting numerals for 'a' and 'b' in the 
open sentence : 

For example, suppose he wants to  verify the sentence : 

-(-5 t +6) = --5 t -+6 

One testing pattern which we presented as  a proof of the generalization 
is the following. 

( a t  b) t (-a t -b) 

= (a t b) t (-b t -a) CPa 

a t b t - b t - a  aPa 

= a t (b + -b) t -a aPa 

a t 0 t - a  PO 

a t - a  pa0 

= 0. PO 

Hence, a t b t (-a + -b) = 0. 

So, -(a t b) = -a t -b. [O-sum theorem] 





5. Prove: VxVy if  x = -y then -x = y.  heor or em 221 

Suppose that x = -y. 

Since y t -y = 0, [PO] 

it follows that y + x = O .  

Since x t y = y t x, [cpa] 

it follows that x + y = O .  

So, -x = Y [O -sum theorem] 

[we can abbreviate this proof by omitting the steps which indicate - more or  less  explicitly the use of the substitution rule. Thus: 

Suppose that x = -y. 

Then y + x = O .  [PO] 

so, x t y = o ,  kpa l  

and -X = Y [O -sum theorem] 

Hence, if x = -y then -x = ye ] 

An alternative proof : 

Suppose that x = -y. 

Then -x = --y. [uniqueness of opposition [Th. 1011 

SO, -x = Y [ V  - -X = x [The 1711 

Hence, i f  x = -y then -x = Y 

This theorem and the 0-sum theorem justify the useful result: 

If the sum of any f i rs t  number and any second number is 0 
then each is the opposite of the other. 

This is a good time to inject a note of caution concerning the attitude 
students may be developing toward proofs. Some students develop a 
mechanical proficiency in giving proofs which rivals the proficiency 
customarily developed in conventional courses with respect to manipu- 
lating algebraic expressions. In other words, they become proficient 
in juggling symbols and may tend to lose sight of what it is they a r e  
accomplishing when they prove a generalization. Some evidence of this 





4. Prove: V X V  -(xy) = -xy. (Theorem211 

Hence, xy 4- -xy = 0. 

So, -(xy) = -xy, [O-sum theorem] 

[The theorem in Exercise 4 can be regarded a s  a corollary of 
the one in Exercise 3. 

Hence, -(xy) = -xy.] 

Note that the theorems of Exercises 3 and 4 relate the operations 
opposition and multiplication, just as those of Exercises 1 and 2 
relate the operations opposition and addition, and a s  the dpma relates 
multiplication and addition. The theorems of Par t s  A and B a r e  not - 
rules for adding o r  multiplying positive and negative numbers. [Such - 
rules have been discussed on pages 2-28 and 2-29.] For this reason, 
we have previously stressed the importance of reading, say '-x* as  
'the opposite of x*, and have warned that confusion results from read- 
ing it as  'negative x*. 

To drive this point home, have students give several instances of, 
say, the theorem of Exercise 3, and see that they come up with some 
like ' - (-3 +2) = -3 -+2* and ' -(+3 -2) = +3 --2*. 





That 0-3 = *3 and -"2 = *2 follows from the rules for oppositing given 
on TC[2-29, 301. ] 

2. Prove: VcVd -(c t -d) = d t -c. [Theorem 191 

- d t d  

d t - d  

= 0. 

- 
As illustrated in the preceding 
treatment of Exercise 1, there 
a r e  many ways of deriving the 
sentence *c t -d t (d t -c) = 0' 
from the basic principles. You 
might ask your brighter students 
to find several such derivations. - 

Hence, c t -d t (d t -c) = 0. 

So, -(c t -d) = d t -c. [O-sum theorem] 

[A very short proof of the theorem in Exercise 2, but one which 
does not use the 0-sum theorem, is the following: 

- ( c  t -d) V X V  -(x t y) = -x t -y [Th. 181 
= -C + - -d - -x = x [ ~ h .  171 
- c t d  

Hence, -(c t -d) = d t -c. 

A theorem such as this one which follows quickly from another theo- 
rem is  known as  a corollary of the second theorem. So, the theorem 
in Exercise 2 i s  a corollary of the theorem [Th. 181 in Exercise 1.1 

3. Prove : 
VPV- 

-(pq) = p -q. [Theorem 201 

Sdpma 

Hence, pq t p -q = 0. 

So, -(pq) = p -q. [O-sum theorem] 





There a r e  many ways of developing a testing pattern for Exercise 
1 [and for each of the other exercises]. We give two of these here. 
[The last two lines a re  the same for both.] 

Prove: VaQb -(a t b) = -a t -b. 

a t b t ( - a t  -b) 

= a t  b t (-b t -a) 

a t b t - b t - a  \ spa 

= a t (b t -b) t -a 

a t 0 t - a  

a t - a  

[Theorem 18) 

a t - a t b t - b  

= (a t -a) t (b t -b) 

o t o  l p O  

= 0. 

Hence, a t b + (-a t -b) = 0. 

So, -(a t b) = -a + -b. [O-sum theorem] 

[This testing pattern shows that the generalization 'V V -(a t b) a b  
= -a t -bS i s  a consequence of the apa, the cpa, the po, the paO, 
and the 0-sum theorem. Hence, the generalization i s  a theorem. 
Some of your students may like to check the proof of the 0-sum 
theorem to discover that it i s  a consequence of the po and the left 
cancellation principle, and then check the proof of the latter to 
see  that it is a consequence of the apa, the cpa, the po, and the paO. 
They w i l l  then see  that Theorem 18 i s  actually a consequence of 
these same basic principles. ] 

You w i l l  notice that one uses the distributive theorem for opposition 
over addition in conventional courses when one talks about how to 
remove parentheses which a re  preceded by a minus sign. It might be 
profitable to follow the discussion of Exercise 1 with a few applica- 
tions of the theorem. For example, students can be asked to trans- 
form each of the following expressions into equivalent expressions 
which do not contain grouping symbols : 

4 - 3  t +2), -("5 t -8), - (3  t 8). 
Answers: 

+3 t "2, '5 t *8, -3 t -8. 
+ [Note that what Theorem 18 tells us is that -("3 t +2) = --3 + - 2. 





You may feel that Par t  A on page 2-69 should be replaced by Part C on 
page 2-70. The reason for using the 0-sum theorem in Pa r t  A rather 
than the -1 times theorem of Par t  C is that i t  is desirable that students 
be fully aware that finding the opposite of a number means finding a 
second number which when added to the f irst  gives 0.  [The establish- 
ing of this awareness was also the main point of Part C on page 1-84.] 
If they a r e  aware of this, they will have less  trouble with division. 
For,  i n  order t o  discover [and organize for themselves] theorems 
about quotients they need to be aware of the analogous fact that finding 
the quotient of a pair of numbers means finding a number whose product 
by the divisor is the dividend [cf. - the division theorem, page 2-86]. 

Although the 0-sum theorem i s  of fundamental importance and should, 
for this and the reason given in the preceding paragraph, be stressed, 
the -1 times theorem is ,  of course, the basis for numerous short 
cuts, and, for this reason, should not be neglected. We hope that the 
treatment of these two theorems in the text wi l l  provide the proper 
emphasis for each. 

Î. 
'1- 

Answers for Par t  A. 

1. Although the theorem t o  be proved is stated in the exercise, there 
is some advantage to be gained by considering, f irst ,  how such a 
theorem might be discovered. Starting at this point, we a re  look- 
ing for a theorem which wi l l  answer questions like; What i s  the 
opposite of "5 t *6 ? The 0-sum theorem tells us that we shall 
have the answer to this question if  we find a number which, when 
added to "'5 t '6. gives the sum 0. NOW, i f  we add, f i rs t  -*6 and 
then -3, it is clear that the resulting sum will be 0. So, one 
answer is '-+6 t -"5*. This suggests the theorem 'V V -(x t y) = x Y 
-y t -x ' .  An equally satisfactory answer is '-"5 t -+6'-. This 
suggests ' V V  -(x t y) = -x t -y'. And this may be more 

appealing thanthe former theorem because we see in it a kind of 
d i s t r i b ~ t i v i t ~ .  In fact, we can call it the distributive theorem for - - 
opposition over addition. - 
The point to be stressed in the preceding discussion is the power 
of the 0-sum theorem to suggest other theorems dealing with 
opposition. 



EXERCISES 

A .  - Let's use - the 0-sum theorem to prove some other theorems about 

opposites . 
Sample. The opposite of the opposite of a number is that number. 

Solution. Va - -a = a .  

[The 0-sum theorem tells us that to prove this,  we 

should prove that, for each a ,  

Then, the 0-sum theorem would enable us to con- 

clude that 

Let's write a test-pattern . ]  

Hence, -a t a = 0. 

- -a = a.  [O-sum theorem] 

This shows that the generalization 'V - -a = a'  is a consequence a 
of the commutative principle for addition, the principle of opposites, 

and the 0-sum theorem. 

1. V V b  -(a t b) = -a t -b. ["Distributive theorem for opposition 
over addition"] 

4. V V -(xy) = -xy. [ ~ o t e  that '-xy' is an abbreviation for 
X Y  '(-x)y' and for '-x y'. ] 

5 .  V V if x = -y then -x = y. 
X Y  



B, Prove these theorems, - 
Sample 1. Vm - - -m = -m. 

Solution. - - -m } 
V - -a = a. 
a = -m. 

Sample 2, V V -u -v = uv. - u v 

Solution. -u -v 

= -(-u v) 
v v -(xy) = -xy. 

= -[-(uv)] 
V - - a = a ,  

= uv. 

C. Prove the "-1 times theorem": - 

Then, use it to prove a s  many of the theorems in Par ts  A and B 

as  you can. For example, here is  a proof of the theorem of 

Exercise 1 of Par t  A. 

-(a t b) - 1 times theorem 
= -1 (a t b) 

Jdpma 
= - 1 - a t - 1 - b  

-1 times theorem 



Sample 1 of Par t  I3 provides another illustration of the notion of a 
corollary of a theorem. It is a corollary of the theorem in the Sample 
of P a r t  A. In fact the theorem in the Sample of Pa r t  A is the basis of 
the short cut that "pairs of opposition signs cancel out". T o  drive 
this point home, ask students [after Sample 1 has been discussed] to 
prove: 

To make sure  students do not regard the theorem in Sample 2 a s  one 
which tells them that "the product of two negative numbers i s  a posi- 
tive number ", ask them to apply the theorem in transforming 
'--2. -+3' to '-2 +3'. 

Answers for Pa r t  B. 

1. Prove: VxVy -xy = x(-y). [Theorem 241 

-by )  = -xy [Th. 211 

-(xy) = x a  -y [ ~ h .  201 
= x -y. X Y  

Hence, -xy = x ( - ~ ) .  

[A few students may have difficulty in seeing how the transfor-  
mation of '-xy* into '-(xy)' i s  justified by Theorem 21. The pat- 
t e rn  sentence of Theorem 21 i s  '-(xy) = -xy*. But, because of 
the symmetry of equality, this pattern sentence i s  equivalent to 
- X Y  = -(xy)', which is the pattern used in the proof.] 

2. Prove:  V V V -x(y t z) = -(xy) + -(xz).  h he or em 251 
X Y Z  

- - -xy + -xz \ VxVy - b y )  = -xy [Th. 211 
= -(xy) t -(xz). 

Hence, -x(y t z) = -(xy) + -(xz). 

[ ~ n  alternative proof i s  on T C[2-70 ]b. ] 





Alternative proof . 
-X(Y + 2) 

I v x v  -(xy) = -xy [Tho 211 
= -[x(Y + z)l 

idpma 
= -(icy t xz) 

VXVY -(x t y) = -x t -y [Th. 181 
= -(xy) t -(xz). 

Hence, -x(y t z) = -(xy) t -(xz). 

3. Prove: V V V -x(-y t - z )  = xy t xz. [Theorem 261 
X Y Z  

-x(-y t -z) 
V jf V -x(y t 2) = - (xy) t -(xz) [T h. 251 

= -(x* -y) t -(x- -z) T x y z  
-(xy) = xÃ ˆ -  [Th. 201 - - - (xy )  t - -(xz) 

- -x = x [Th. 171 
= xy t xz . 

Hence, -x(-y t -z) = xy t xz. 

Alternative proof. 

-x(-y t -z) \ idpma 
= -x* -y + -x*  -z J 

- 

^Y 
-x* -y = xy [Th. 231 

= xy t xz* 

Hence, -x(-y t -z) = xy t xz. 

4. Prove: V x *  -I = -x. [Theorem 271 

Hence, x *  -1 = -x. 





Answers for Pa r t  C. 

Prove: V -x = -1 O X .   h he or em 281 

Hence, -x = -1 *x.  

In using the -1 times theorem in proving the theorems in Par t s  A and 
B, students may [and some should] raise the question of "circularity". 
Perhaps, in proving the -1 times theorem, we have used, at least 

- 

implicitly, some of the theorems which we now propose to  use the -1 
times theorem to prove! As a matter of fact, this i s  the case .  In the 
proof given above for the -1 times theorem we cited the theorem of 
Exercise 4 of Part B, and in the proof given for this theorem we cited 
Exercise 3 of Part A. So, it would, with this development, be circu- 
l a r  to use the - I  t imes theorem in proving the theorem of Exercise 3 
of Pa r t  A. However, this state of affairs can be corrected by giving 
an alternative proof for the -1 times theorem. The following is one 
such suitable proof. 

x t -1 * x  
the 1 times theorem [ ~ h .  21 

= 1 * x  + -1 * x  . 

Hence, x + -1 * x  = 0. 

So, -x = -1 *x. [O-sum theorem] 

We can now, without danger of circularity, use the -1 times theorem 
in proving some of the theorems of Par t s  A and B. Such a proof for 
the theorem of Exercise 1 of Par t  A i s  given in the text. And, such 
proofs for the theorems of Exercises 3 and 4 of Par t  A and Exercises 
1, 2, and 4 of Par t  B a r e  readily constructed. As examples, here a r e  





proofs for  the theorems of Exercise 4 of Par t  A and Exercise 2 of 
Pa r t  B. 

-1 times th. 

Hence, -(xy) = -xy. 

-X(Y + 2) \ -1 times th. 
= -lx(y t 2) } Aipma 
= -1xy t -1xz , 

1 Hence, -x(y + a )  = -(xy) t -(xz), 

But, if one attempts to use the - 1 times theorem in proving the theo- 
rem of Exercise 2 of Part A, he hits a snag. Let*s see  where. 

-(c + -d) 
-1 times theorem 

= - l (c  + -Id) } fdpma 
= - 1 ~  t - l(- ld)  

What a r e  we to do with '-1(-ld)*? By the -1 times theorem, this i s  
equivalent to '-1(-d)' and, again to '- -dB. So, we could use the theo- 
rem of the Sample. But, we have not yet used the -1 times theorem 
to prove this. Another possibility is to use the theorem of Exercise 4 
of Pa r t  A to show that '-1(-ld)' i s  equivalent to '- -Id'. But, again, 
we need the Sample if we a r e  to replace '- -1' by '1'. A third al ter-  
native is to cite the apm to justify reducing '-I(-ld)* to '-1 * -Id'. 
But, we have not yet reproven the theorem of Sample 2 of Par t  B 
which we would need to cite if we were to claim that -1 -1 = 1. 
Evidently, i f  we a r e  t o  ca r ry  out the program in Par t  C, we need, in 
addition to  the - 1 times theorem, either the Sample of Par t  A, or Sam - 
pie 2 of Pa r t  B, or at least one of the simpler theorems '- -1 = I*  and 
'-1 - 1 = 1'. And, so, we must make an additional use of the 0-sum 
theorem. The point of all  this i s  that the -1 times theorem alone i s  
not enough. 

Probably, i f  we a re  to follow up the idea which suggests using the -1 
times theorem, the most satisfactory way out of the difficulty we have 
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come upon is to prove that -1 -1 = 1. Here is a way of doing so. 

- - - -1 .  
}-I times theorem 

But, -1 t 1 

1 t - 1  

= 0.. IpO 
So, - - 1 = 1. [O-sum theorem] 

Hence, - l a - 1  = 1. 

We can now complete the proof we began for the theorem of Exercise 
2 of Par t  A. 

} -1 times theorem 
= -C t - l S - I d  

1 - 1 . 4  = 1 
= -C t Id 1 

- c t d  \ 1 times theorem 
I 

Hence, -(c t -d) = d t -c, 

Proofs based on the -1 times theorem together with the theorem - 
* -  1 - 1 = 1 ' can now be constructed easily enough for the Sample of 
Par t  A, Exercise 5 of Pa r t  A, and samples 1 and 2 and ~ x e r c i s e  3 
of Pa r t  B. 

It may have occurred to you that *-1 --- 1 = 1 * states a computing fact. 
What you probably have in mind i s  that "I *-1 = 1 [and this is a comput- 
ing fact] and that -1 = "1 [and this i s  a consequence of the computing 
fact that 1 t "1 = 0 together with the 0-sum theorem]. So, however -- 
you look at it, the 0-sum theorem comes into the picture. Hence, i t  
i s  more satisfactory to base the proof of '-1 -1 = 1' on the 0-sum 
theorem, the -1 times theorem, and basic principles, a s  we have 
done, and to avoid unnecessary citations of computing facts. 







y e r e  a r e  test patterns for the two theorems which precede the exer- 
'cises. 

V V (x t y) + -y = x [Theorem 291 
X Y  

Hence, (x t y) t -y = x. 

vXvy (X t y) - y = x [Theorem 301 

Hence, (x t y) - y = x. 

[The f irst  theorem states that adding the opposite of a real  number 
i s  the operation inverse to  adding the real  number. The second 
theorem states that subtracting a real  number [also] i s  the in- 
verse  of adding the real  number.] 

In class discussion you may find it  helpful to refer back to the sub- 
section "Does Absolute Valuing Have An Inverse", pages 1-107 and 
1-108. 



SUBTRACTION 

In Unit 1 you learned that the inverse of adding a real number is - - 

adding the opposite of that number. We can express this idea by the 

generalization : 

Write a test-pattern for this theorem. 

The principle for subtraction: 

tells us that adding the opposite of a real  number is  the same operation 

as  subtracting the number. So, we see that the inverse of adding a real - - - - - - . . - -. 
number is subtracting the real number. That i s ,  that 

Prove this last theorem by writing a test-pattern. 

EXERCISES 

A.  Each of the following exercises contains several sentences-to-be- - 
completed. After you complete the sentences in an exercise, state 

the theorem which is illustrated by the completed sentences and be 

prepared to prove it. 

Sample. 

(b) "9 - 8 13  = -9 + - 13 

(c)  5  - " 2 * 5 = 5 +  5 

( d )  -8 - - 3  7 = -8 + - 7 
Theorem : 

(continued on next page) 



Solution. 

(a) 7 - 4 * 5 = 7 + - 4  - 5  

( c )  5 - - 2 * 5 = 5 + - - 2  - 5  

(d )  -8 - - 3  7 = -8 +--3 7 

[The sentences i l lustrate  the theorem that subtracting the 

product of a f i r s t  number by a second number i s  the same 

a s  adding the product of the opposite of the f i r s t  number by  

the second number.  ] 
Here i s  a proof of this theorem. 

x - y z  ! 

r ps 
= x + -(yz) .; 

V V -(xy) = -xy. 
X Y  = x 4- -yz. , 

1. (a) ' 9  - "5 + 
(b)  -3  - +7 4- = -3 

( c )  "8 - ""2 + + 2  = 

Theorem:  

2. (a) -(70 - ) = 90 - 70 

(b)  -(81 - ) = 35 - 81 

( c )  - ( lo  - ) = - 3  - 10 

(d)  -( - -19) = -19 - -3 

Theorem:  



You should require all students to f i l l  the blanks in Par t  A and to 
write the relevant generalizations. It is not necessary to require 
each student to write proofs of all of them! 

.I. 
"t- 

Answers for Part A [on pages 2-72, 2-73, and 2-74]. 

1. (a) -5 (b) +? ( 4  -8 (d) -43 

Theorem: Vxvy x - y t y = x [Theorem 321 

Proof : x - Y ~ Y  

x t - y t y  , 

Hence, x - y t y = x. 

[When a student writes a proof of a theorem on the board, it  w i l l  
be easier  for other students to follow his development if the theo- 
rem is written f irst ,  with a proof below it. ] 

In the answers for the remainder of the exercises, to save time and 
space, we shall omit the words 'Theorem' and 'Proof*, and just give 
the theorem with a proof below it. W e  shall also omit the last  line of - - 
the proof: Hence, . . . - --- . 





VxVy -(x - y) = y - x [Theorem 331 

-(x - y, I p s  = -(x t -y) 1::~~ -(x 4- -y) = y + -x [Th. 191 
y t - x  

y - x .  

[As usual there a r e  alternative proofs. One may, for example, 
use the -1 times theorem. 

-(x - Y) t 

.i -1 times theorem 
= - l (x  - y) 

= - l (x  t -y) 1 ps 
Mptna 

= - l x +  -1.-y 
} -1 times theorem 

- X t - - y  J 1 V, - -  x = x [Th. 
- x t y  ^ CPa 
y t - x  

y - x .  

If, with a view to consistency of method, we had modified the 
proof above to use '-1 - 1 = 1 * in place of Theorem 17, the proof 
would have contained eleven lines rather than the present eight. 
In either case, the contrast with the previous 4-line proof is  a 
striking indication of the value of using previous theorems other - 
than the -1 times theorem. ] 







Alternative proof. 

- y) = y - x [Th. 331 

V V V x t (y - z) = x - z  t y [Theorem 371 
X Y Z  

x t ( y -  z, I p s  = x t ( y t - z )  
} q?a 

= x t (-2 t y) 

x t - z t y  
] aPa 

x - z t y .  1 ps 

vxvyvz X(Y - z) = xy - xz [Theorem 381 





3. (a) 60 (b) 84 (c) -3 (d) -3 1 

v v v x t (y - z) = x t y - z (Theorem 341 
X Y  

x (Y - 2) 

= x t (y t -2) 

x t y t - z  

x t y - z .  

' PS 

apa 

PS 

V V V x - (y t z) = x - y - z [Theorem 351 
X Y Z  

- (y + \ ps = x t -(y + 2) } VxVy -(x + y) = -x + -y [Th. 181 
= x t (-y t -2) 

= (x t -y) + -2 
} aPa 

x -  y - z. 

x - (Y - z) 

= x - (y t -2) 

V V V x - ( y t z )  = x - y - z  [~h. 351 
x -  Y - - 2  1 X Y Z  

P s 
x -  y t  --z - -x = x [~h. 171 
x -  y t z. 

[An alternative proof i s  on TC(2 -73, 74]b. ] 



[Z. 061 

3 .  (a) 30 + ( 9 0  Â ¥  6 0 )  = 30 4-90 - 

(b) 7 2  + ( 5 3  - 84) = 72  + 53  - 

( c )  -9 + (-3 - +7) = -9 + - +7 

(d) 15 t (29 - -31) = 15 t Z9 - 

T h e o r e m :  

4. (a) 1 0 - ( 5 +  \ - 1 0 - 5 - 2  _ 

(d)  5  - ( 5  + ) = 5 - 5 - 5  

(a) 

(b) 7  - (10  - 7) = 7  - 10 t 

Theorem. : -- 

6. (a) 5 + ( 1 2 - 9 ) = 5 -  + 12 

(b )  61 t ( 3 7  - 58) 61 - + 37 

(c) -2 + (-7 - 5) = -2 - 5  + 

T h e o r e m  : 

(continued on next page) 



7. (a) 5(6 - 3) = 5 6 - 5 * - 
(b) "5(7 - 18) = - 5 -  7 - " 5 *  

(c)  4 3 - 4 17 = 4(3 - 1 

Theorem: 

8. (a) (9  - 3)8 = 9 8 - 3 

(b) ( 4  - 14)51 = 4 51 - 51 

(d) -3 48  7 3 4 8  = ( - 3)48 

Theorem: 

9. (a) 5 - ( - 9 0 -  ) = 5 + 9 0  t 6 0  

( c )  6 - ( - 1 )  = 6 t '3 + -1 

(d) 4 - (-15 - -9) = 4 t 15 + 

Theorem: 

10. (a) 15 - (17 - 13 - 19) = 15 - 17 + t 19 

(b) 2 1  - ( - 8  - 10 - -3) = 21 - + 10 + -3 

(d) 60 - (60 - 30 - 30) = 60 - 60 t 30 + 

Theorem : 



V V V (x - y)z = x z  - yz [Theorem 391 
X Y  = 

(x - Y)Z 

= z(x - y) 
Aitms [Th. 381 

= z x - z y \ c p m  - 

= xz - yz. 

Alternative proof. 

= xz t -yz J 

- 

V V V x - yz = x  t -yz [Th. 311 
= xz - yz. 1 X Y Z  

9. (a) 60 (b) -81 ( c )  0-3 (dl -9 

V V V x - (-y - z) = x t y + z [Theorem 401 
X Y Z  

x - (-y - z) 

= x t -(-y t -2) 

)VxVy -(x t y) = -x t -y [Th. 181 
x t  --(y + z) 

V - -x = x [Th. 171 
X t  ( y t  a) 

x t y t z .  

V V V V X - (y - z - u) = x  - y + z t u [Theorem 411 x y z u  

x - ( y - z - u )  
V v V X - (y - Z ) ^ X  - y t  z [~h. JOJ 

x - ( y - a )  t u  X Y Z  
[ ~ h .  361 

x - y t z t u .  







3. V V Vz (x t z) - (y t z) = x - y  [Theorem 441 
x Y 

(x + z) - (Y + 2) 

= (x t a) - (z t y) 
x - ( y t z )  = x - y -  z [Th. 351 

= ( x t z ) - 2 - y  
t y) - y = x  [Th. 301 

x - y .  

(x - 2) - (Y - z) 

= (x t -z) - (y t -2) 
x t z - ( y t z ) = x - y  [Th.44] 

x - y .  

(a - b) t (c - d) 
V V Vz x t (y - z) = x t y - z [Th. 341 

( a - b ) t c - d  } x Y  ) VxVyVz x t (y - z) = x - z t y [ ~ h .  371 
= a t ( c - b )  - d  } [Th. 341 
= ( a + c ) - b - d  \ VxVyVz x - (y t z) = x  - y - z [Th. 351 
= ( a t  c) - (b t d ) .  





Answers for Part B. 

2. V x - 0  = x [Theorem 431 

x t  Proof: 0 t 0  = 0 .  So, bythe 

x t o  0-sum theorem, -0 = 

= X. 

The following interesting alternative proof for Theorem 43 was 
submitted by a student. 

v x v ~  
-(x - y) = y - x [Th. 331 

= -(0 - x) , 

1 ̂  
- -x = x [Th. 171 



B. State the theorems refer red  to  in the following exerc ises ,  and be - 
prepared to prove them. 

If I subtract a number from 0,  I get the opposite of the 

number. 

Theorem : 

If I subtract 0 from a number, I get the number. 

Theorem: 

Rita and Rhoda each picks a rea l  number. Aaron picks a 

number and tells each girl  to add his number to he r s .  Then 

Rhoda subtracts her  sum from Rita's sum, and finds that she 

gets the same answer a s  she would have i f  she had subtracted 

he r  original number from Rita's original number. 

Theorem : 

Just like Exercise 3 except that the girls subtract Aaron's 

number from each of the i rs .  

Theorem : 

Albert and Beulah and Charles and Dora each picks a rea l  

number. Beulah subtracts h e r s  from Albert 's and Dora 

subtracts h e r s  from Charles'.  They add the differences. 

Then, Charles adds his number to Albert 's and Dora adds 

h e r  number to Beulah's. The girls subtract their sum 

from the boys* sum, and get the same result  a s  when they 

added the differences. 

Theorem : 



C. Complete each of the following f r o m  the choices given t o  make a - 
t r ue  generalization.   h here is  only one c o r r e c t  choice .  ] 

3. V V V  x - y z =  
X Y Z  

( a )  x - y - z  (b)  x + y - z  ( c )  x + -yz (d)  x 4- -y -2 

5. V a V b v d  -(a - b) - ( c  - d)  = 

( a )  - a - b - c - d  (b )  b - a + d - c  

( c )  -a i b - c - d (d) b + a - i - d  - C  

( a )  - u x +  uy - vx - vy 

( c )  -ux - uy + vx - vy 

( b )  -ux - uy - vx + v y  

(d) -ux + -uy + -vx + -vy 

7. V V 8x - 2y - 5x-t  7y = 
X Y  

( a )  6xy - 2xy ( b )  3x - 9y ( c )  8x  (d )  3x + 5y 

8. V V V  3 a - 2 ( a - b + c ) =  
a b c  

(a) a - b + c  (b )  a + 2b - 2c 

( c )  3 a - 2 - a - b + c  (d)  3 a - 2 - a + b - c  

9. V V V  3 x - x - x - 2 y - y - z =  
X Y Z  

(a) x - 3y - z (b )  3 x -  2 - z 

(c)  -5x - 3y - z (d)  3 - x - 2 - 2  

10. VaVb -(3a - 5b)(4a - 2b)(5a - 7b) = 

(a )  (5b - 3a)(2b - 4a)(7b - 5a) (b )  (3a  - 5b)(2b - 4a)(7b - 5a) 

( c )  -(5b - 3a)( 2b - 4a)(7b - 5a) (d) (5b + 3a)(4a + Zb)(5a + 7b) 



The purpose of Par t  C is to give the student an opportunity to continue 
to  develop and to  use short cuts based on the theorems he has seen in 
Par t s  A and Be There is the same opportunity here to  correct rniscon- 
ceptions as was afforded by Part C on pages 2- 37 and 2-38. Students 
will begin using short cuts in earnest in Par t  D on pages 2-77 through 
2-80. 

53 

Answers for Part C. 

1. x t y t z  [(dl] 

3. x t -yz [(?)I 
5. b - a t  d - c [(b)] 

2. - x t y t z  [(c)l 

4. (b - a)(c - d) [(dl I 
6. -ux - uy - v x t v y  [(b) I 
8. a t 2 b - 2 c  [(b)] 

10. (5b - 3a)(2b - 4a)(7b - 5a) [(a)] 

Here is a quiz which w i l l  get at some of the ideas developed in Part A. 
[This is a long quiz and perhaps should be given for homework.] 

Sort the following expressions into as  few categories a s  
possible with each category containing only equivalent 
expressions. 

4. c t a t b  

a t c - b  

-a(-b - c) 

ab  - ac 

-[c - (a - b)] 

-a(b - c) 

-(ab - ac) 

-(ab t ac) 

-(-ab - ac) 

a - b - c  

-(ac - ab) 

ab t ac 

a(b t c) 

5. c - a - b  

c - a t b  

+ a - b  

-(b - c) t a 

gab - ac  

-(c - a - b) 

-(ac t ab) 

-a t (c - b) 

c - (-a - b) 

(a - b) - c 

-(b - a) - c 

b - ( a t  c)  

-a(b t c) 

c - b t a  

- c t a - b  

-(b - a - c) 

- a t c t b  

-(-c t b - a) 

ac - ab  

a - b t c  
-(c t a) - b 

(a - b) t c 

c - (-b - a) 





Here is the sorting for  the quiz. 

(7) a t c - b  

(11) c t a - b 

(12) c - b t a 

(14) -(b - c) t a 

(18) -(b - a - c) 

(24) -(-c t b - a) 

(30) a - b t c 

(36) ( a  - b) t c 
-- - 

(8) c - a t b  

(21) -a t c t b 
- - 

(15) -c t a - b 

(16) -{c - (a  - b)] 

(31) a - b - c 

(32) (a - b) - c 

(35) -(b - a )  - c 

(4) c t a t b  mr 
(29) c - (-a - b) I (19) -a(b - c) 

(39) c - (-b - a) (22)  -(ab - ac) 

I (27) ac - ab 

-- -- - -- 

(9) -a(b t c )  -a(-b - c) 

(17) -ab - ac pi- (28) -(-ab - ac) 

(23) -(ac t ab) (37) ab t ac 

(25) -(ab t ac) (40) a(b + c) 

(38) b - ( a t  c) I I 
For maximum benefit, students should be required to write the 
expressions [not just the corresponding numerals] in columns. 
This will compel them to compare equivalent expressions . 







Answers for P a r t  D [on pages 2-77, 2-78, 2-79, and 2-80]. 

1.  -3a t 2b 2. 8x - 8y [or: 8(x - y)] 

3. 3k - 2 r  4. -2q t 7 5. 7 x + 8 y  

6. -4a 7. 6 t - s  8. 4 x t y  

9. 2 x + 5 y  10. 3 m - 9 n  11. -5% t 3x 

12. 5aa - 3a t 13b 13. 12a - 3b - 6c 14. 3x - 10y 

15. 3r - 2k - 7 r k  16. 16t - 3st - 6s  17. (7 t T ) X  - 9y  

18. 9. 7a - 2. 7b 19. (a t b t c )x  20. a + 4cc + 4ac 

b t 4d t bd 

24a - 45b f o r :  3(8a - 15b)] 

lox - 29y 

24a - 9b 

-26x - 20y [or: -2(13x t loy)] 

-4aa t 15ab t 3bb 

4x t 3y 

-m + n [or: n - m] 

1 3 ~  - 5y - 3 

-8a - 3b [or: -(8a t 3b)] 

(x - Y)(U + v) 

14m - 30n [or: 2(7m - 15n)] 

-6x - 22y - z 

-7M t 19N t 21 

-13a - 38b 

36xx t 31xy [or: x(36x + 31y)] 

8a t 6b [or:  2(4a + 3b)] 

k - j  

l o r  + 5s + 7 

- 3x - 6y [or:  -3(x t 2y)J 



D. Simplify. - 
Sample 1. 3x - 2y - 7x - 

Solution. 3x - 2y - 7x 

[Read '-4x - 2y' a s  'the opposite of 4, t imes  x, minus,  

2 t imes  y ' . ]  

[Note: In doing simplification exerc ises  you do not need to - 
write all the s teps .  As in ea r l i e r  simplification exerc ises ,  

you should look for short  cuts,  and be able to  justify them by 

refer r ing  to  principles or  t o  theorems which you can prove 

f r o m  the principle s . ] 
1. 5 a t Z b - 8 a  2. 3x - 7y + 5x - y 

[More exerc ises  a r e  in P a r t  I, Supplementary Exerc ises  .] -- 



Sample 2 .  5(3x - 4y) t 6x - 
Solution. 5(3x - 4y) t 6x 

= 5(3x) - 5(4y) t 6x 

= (5 3)x - (5  4)y t 6x 

= 15x - 20y t 6x 

= 15x t -2Oy t 6x 

= 15x t 6x - 20y 

[More exercises a r e  in -- P a r t  I, Supplementary Exercises.  ] 

Sample - 3. 3r t 5s - (2r  - 7s) 

Solution. 3r t 5s - (2r - 7s) 

33. 5 x t Z y - ( x - y )  34. 7a t 5b - (-a - b) 

35. 3m - 2n - (4m - 3n) 36. 8k - 3j - (7k - 2j) 

37. l l x  - (3  - 2x t 5y) 38. 15r - (5r - 2s - 7) t 3s 

39. a - (3b t 7a) - 2a 40. x - (6x - 3y) - (9y - 2x) 

[More exercises a r e  in Part I, Supplementary Exercises.  ] -- 





Answers for  Pa r t  D [on pages 2-79 and 2-80]. 

41. 38y - 14x [or: 2(19y - 7x)] 42. 38m t 18n [or : 2(19m t 9n)] 

43. -3k t 6j  [or: 3(2j - k)] 44. 36r - 45s [or: 9(4r - 5s)] 

45. 28x t 13y 46. 20x t 45y [or : 5(4x t 9y)] 

47. 62y 48. x t x z  + 5yz t 15 + 20y - z 
49. 7A t 26B - 24 50. - 26x2 t 14yz [or : 2z(7y - 13x)] 

51. -12aa - ab t 15bb 52. 4x - 12y [or: 4(x - 3y)] 

53. -x t 22y t 6 54. -14 t 23a - 38b 

55. -45 t 2 lx  t 2ly  [or: 3(7x t 7y - 15)] 

56. -1% - 131b 57. -7Oxyz 58. 60abc 

59. 66mpq 60. -42ABB 61. -24XYZ 

62. -XYZ 63. 30aaabbb 64. 42xxyy 

65. -3ppqr 66. 6kkkmmm 

67. - 13aab t 27abb - abc [or: -ab(13a - 27b t c)] 

68. 4x t 22xy - 36xx [or: Zx(2 t l l y  - 18x)] 

69. 18bb t 48ab - 15aa [or: 3(6bb t l6ab - 5aa)] 

70. 1 2 ~ - 2 4 x x + 2 6 x y + 1 2 5 y - 7 5 y y  

71. 9x t 1 . 5 ~  72. -14gg t 5gh t 2gy - log 

73. -11AA t 2AO 74. -33rst t 35stt 

75. -1lpq - 4p t 8q 

76. 2lccd - 2cdd t 24cd [or: cd(2lc - 2d t 24)] 



sample 4. 5x - 6(x - 3y) - 
Solution. 5x - 6(x - 3y) 

= 5x t -6(x t - 3 y )  

= 5x + [-6x + -6*-3y] 

= 5x t [-6x t (-6 -3)y] 

= 5x + [-6x + (6 3)y] 

= 5x t [- 6x + 1 Sy] 

= 5x + -6x t 18y 

= 5x - 6x + 18y 

= (5 - 6)x + 18y 

= -1x t 18y 

= -x t 18y. 

3y - 7(2x - 5y) 42. 8m - 6(-3n - 5m) 

7k - 2(5k - 3j) 44. 18r - 9(5s - 2r) 

4x - 3y - 8(-3x - 2y) 46. 5(2x t 7y) - lo(-x - y) 

9 x  - (x  - y) . -  3(5x - l l y )  - 7(-2x - 4y) - 7x 

-4x - z(x - 2y) - 5(-x - 3 - 4y) - z(1 - 2x - 3y) 

6A - 3(A - B + 1) - 7(2A + 3 - 5B) - 6(2B - 3A) 

- z( l1  x - 2y) - 3 4 5 x  - 4y) 

-2a(6a - 2b) - 5b(a - 3b) 

-x - 3y - 4(-x t 2y) - y t x 

5x t 4y - 6(x - 3y - 1) 

-5(2 - 3a + 5b) - 7(1 - a + 2b) - (-a - b - 3) 

-6(5 - x - 3y) - 3[5 - 3x - 4y - (ZX - 3y)] 

-2[3(a - b) - 7(2a - 3b)] - 5[-6(-a - 3b) - (-a - b)] 

[More exerc ises  a r e  in P a r t  I, Supplementary Exercises .  ] -- 



Sample - 5. 3a(-~b)( -4c)( -d)  

Solution. 3a( -2b)( -4c)( -13) 

= -[3a(Zb)(4c)d] 

= -[(3 2 4) abed] 

= -24abcd. 

Sample 6. -5x(-2y)(-3z)(-2x) 

Solution. -54-2y)(-3z)(-2x) 

= ( 5  2 3 2)xxyz 

= 60xxyz. 

65. - 3 q m  -p - rp  66. - 2mk -3km *dm -k 

67. 3ab( -2a + 7b) - 7aab t 5abb - acb + bba 

[More exercises a r e  in P a r t  I, Supplementary Exercises.  ] -- 



2 . 0  7 Division. - -In Unit 1 you learned that dividing by a number 

i s  the inverse of multiplying by that number.  F o r  example,  

and (-12 ~ " " 5 )  + *5 = -12. 

If you wish to  do a division problem, such a s :  

you can do it by solving the problem: 

You a lso  learned that there a r e  severa l  numerals  which name the 

quotient of ""16 by "2. Probably the simplest  looking i s  ' -8 ' .  Others 
"16 ' 

a r e  "16 + -2' i tself ,  and the fractions 7 2 and ' +l6/-2'.  

DOES MULTIPLYING BY 0 HAVE A N  INVERSE ? 

Since division i s  the inverse of multiplication, and subtraction 

i s  the inverse of addition, division and subtraction have much in 

common. But, they differ in one important respect .  

It is always possible to  subtract  a second rea l  number f rom a 

f i r s t  r ea l  number,  but you can divide a f i r s t  r e a l  number by a second 

rea l  number only i f  the second i s  not 0 .  

~ e t ' s  look into this problem of "dividing by 0". Do y o u r e c a l l  

f rom Unit 1 the description of an operation and an inverse operation 

a s  s e t s  of pa i rs  of numbers?  W e  can construct a l i s t  of pa i r s  which 

belong, for  example, to  dividing by 2, by f i r s t  constructing a l i s t  of 

pa i r s  which belong to multiplying by 2. You get a pair which belongs 

to  dividing by 2 by interchanging the components of a pa i r  which be- 

longs to  multiplying by 2 .  



To do a problem which involves dividing by 2, for  example : 

we look for a pair  which belongs to dividing by 2 and which has f i r s t  

number 18. This i s  the pair  (18,9).  So, the  solution of the problem 

'18 + 2 = ? '  i s  9.  

Now, let 's  get a l i s t  of pairs  which belong to  "dividing by 0 " .  

This s e t  of pa i rs  ought t o  be the inverse of multiplying by 0 .  

multiplying by 0 - 
So, some of the pa i rs  in "dividing by 0 " would be 



Now, let's t r y  to  use this l i s t  t o  solve a "division by 0" problem: 

We want to find a pair  belonging to "division by 0" whose f i r s t  

number is 93. A glance at the l i s t  shows us no such pai r .  P e r -  

haps we need a bigger l ist!  Do you think a bigger l ist  would help? 

The principle for multiplying by 0 tel ls  us that there  can be - no pair  

in the multiplying by 0 l is t  with second number 93. So, there can 

be no pair in the "dividing by 0" l is t  with f i r s t  number 93. This 

means that there  i s  no solution to the problem : 

' 9 3  
So, this means that m a r k s  such a s  '93 + 0' and 7 and '93/0' a r e  

u Â ¥ 9 3  not numerals .  There is no number whose name is '93 + 0' o r  7 

What about the ~ r o b l e m :  

Once again, we go to the l i s t  for "dividing by 0" to seek  a pair ,  

this t ime one with f i r s t  number 0 .  The principle fo r  multiplying 

by0 tells us that every pair in the "dividing by 0" l i s t  has 0 for 

f i r s t  number [Explain. 1 .  So, i f  '0 + 0' were a numeral,  it would - 
have to  be a numeral for each number! If this were the case,  we 

would have, for example, 

0 + 0 = 17 and 0 - 0  = 10. 

And, this would mean that 

which is certainly - not the case .  The only way out of this unpleas- 

ant situation is to decide, a s  in  the case of '93 Â¥; O' ,  that '0 + 0' is 

not a numeral.  



We conclude, then, that  "dividing by 0" is not an operation;  

multiplying by 0 does not have an inverse.  A shor t  way of saying -- 
this i s  : 

[ NOBODY CAN! ] 

EXERCISES 

A .  You have seen that you can't divide & 0.  E e r e  a r e  some - 
exerc ises  which a s k  you t o  divide 0 by numbers other than 0 .  --- 
Fill in the blanks t o  make t r u e  sentences.  

1. 0 + 8 =  because 8 = 0 .  

2. O + - 3 =  because -3 = 0.  

0 - - - 
5 

because 

4. F o r  e a c h x t  0 ,  2 = because, for  each x, * x  = 0. x 

B. Fill in the blanks to make t rue  sentences.  - 
1. F o r  each x ,  x + 1 = because, for  each x, 1 = x .  

2. F o r  e a c h x ,  x +  -1 = because, for  each x ,  - 1  = x.  

3. F o r  each x # 0, x/x = because, for  each x ,  * x  = x. 

[ ~ i v e  names to  the f i r s t  generalization in each of Exerc ises  1 and 21. 



The exercises in Part A a r e  placed immediately after the rather 
strongly stated injunction because there is  a tendency for students t o  
feel  that as fa r  as division is concerned, 0 must be left out of con- 
sideration. Having learned that you can't divide by 0, students also 
conclude [incorrectly] that 0 can't be divided by a number. 

Answers for Par t  A. 

1. 0 , o  2. 0, 0 

Answers for Par t  B. 

[The theorems of Par t  B a re  Theorem 50, Theorem 52, and Theorem 
51 respectively. Their proofs a r e  assigned as  exercises on page 2-91 .] 

Exercise 4 of Par t  A and Exercise 3 of Par t  B contain the f irst  exam- 
ples of a restricted quantifying phrase: For each x # 0. [The next 
occurrence i s  in (*) on page 2-85--' v i 0 '. ] The phrase 'For each 

x / O *  may be read as  'For each x unequal to O', or 'For each x other 
than O', o r  'For each x different from O', or 'For each nonzero x'. 

We have already accepted the convention that [in the absence of restr ic-  
tions] the set of values of our pronumerals i s  the set of real  numbers. 
A restriction such as  'y # - I*  tells you that the set of values of the pro- 
numeral 'y' i s  the set of real  numbers different from -1. And this 
means that in  working with expressions which contain 'y', the only 
admissible values of 'y' a r e  real  numbers different from -1. Consider 
the generalization: 

Since the set of admissible values of 'x' does not contain 0. this 
generalization does not have a s  instances meaningless expressions 
like : 

' 2  = 0' and ' 0 
0 2 * 5  - 10 

= 0'. 





[Note that since '0/0* and '0/(2* 5 - 10)' a r e  neither numerals nor 
pronumeral expressions, the expressions displayed above a re  - not 
sentences .] So, with this convention as to the meaning of restricted 
quantifying phrases, each expression which results from substituting 
a numeral  for an admissible value of ' x *  in the pattern sentence of 
(ib) i s  a sentence TinstanceL and is a consequence of generalization ('it'). 

Note that it is not correct to paraphrase (&) by: 

(a*) 0 
VX i f  x #  0 then - = 0. 

This expression is not a sentence because, i f  it were, it would have: 

0 i f  0 f 0 then 5 = 0 

as  a consequence. But, this last expression is not a sentence [since 
*0/0* is not a numeral] and, so, has 20 meaning. Since we do not 
want a sentence to have meaningless consequences, we do not regard 
(&&) a s  a sentence. [Sometimes it is necessary to  substitute a pro- 
numeral expression, rather than a numeral, for a restricted pronumeral 
[as might occur when writing a test-pattern]. The procedure to  be fol- 
lowed in such cases is best illustrated in context. For this, see 
COMMENTARY for Sample 3 on page 2 -89. ] 







m (1) - (6) read ' ? ' a s  'what'. 

The purpose of the subsection on page 2-85 i s  to lead students, 
through the recollection of some computation facts, to  re-examine 
their belief that multiplication by a nonzero number has an inverse, 
and to recognize (*) as a statement of this belief. 

The principle of quotients, referred to  in the next-to-last sentence on 
page 2-85, has already been given on page 2-61, and appears again a t  
the top of page 2-86. 

As already remarked, on TC[2-60]c, our treatment of division i s  not - 
analogous to our treatment of subtraction. You may find it helpful to 
reread that - COMMENTARY now. 

The division theorem [see page 2-86] plays the role with respect to  
division which the 0 -sum theorem plays with respect to opposition. 
Just as the latter suggests other theorems concerning opposites 
[see T C[2-69la; in particular, the discussion of Exercise 1 of Part 
A], and plays an important part in the proofs of such theorems, s o  
the division theorem suggests other theorems concerning quotients, 
and is a powerful tool for use in proving them. [Some illustrations 
to this effect a r e  given in the last paragraph on page 2-86 and another 
occurs in the f i rs t  paragraph on page 2-87. ] 

The division theorem bears a stronger formal resemblance to  (*) on 
page 2-68 than it  does to the equivalent 0-sum theorem. In some 
cases it  would be slightly more convenient to have a more exact 
analogue of the lat ter .  On this point, see the COMMENTARY for 
Exercise 2 on page 2-91. 



DOES MULTIPLYING BY A NONZERO NUMBER HAVE AN INVERSE? 

Te l l  how many solutions there a r e  for  the problem : 

(1) ? 0 93 .  

Tel l  how many solutions there  a r e  for the problem: 

(2) ? o = 0 .  

We have seen that the f i r s t  problem has  no solutions, and that the 

second problem has many. It was these answers  which showed us 

that multiplying by 0 does - not have an inverse .  

Now, tell  how many solutions there  a r e  for the problem : 

( 3 )  ? 0 - 2  ="16.  

Clearly,  -8 is - one solution. Is  there  another solution? How about 

these problems : 

How many solutions does each of these have? 

When we say  that multiplying by "2 - has an inverse operation, 

we mean precisely that for each f i r s t  number, you can find just one 

number whose product by "2 is that f i r s t  number.  That i s ,  we mean 

that each problem like ( 3 ) ,  (41, (51, and (6) has exactly - one solution. 

In other words, 

for each x, there  is just one z such that z "2 = x. 

What we have said about multiplying by -2 could be said about 

multiplying by any nonzero number.  So, multiplying by each nonzero - 
r ea l  number has  an  inverse just i f  

(^) v v  
x Y # O  

there  i s  just one z such that z y = x .  

Since we believe it to be the case  that multiplication by each nonzero 

r e a l  number does have an inverse,  we want (*) t o  be a theorem. One 

way to make s u r e  that it i s  a theorem would be to  take (*) i tself  a s  one 

of our basic principles.  But, as you will s ee ,  i t  is sufficient to  take 

the principle of quotients as a basic principle. Using the principle of 

quotients and the other basic principles we can derive (*). 



QUOTIENTS 

The principle of quotients : - - 
v v 

x Y # O  
( x +  y ) * y = x  

tells us, for example, that, since 5 # 0,  6 + 5 is  a rea l  number whose 

product by 5 i s  6. In fact, it tells us that, for each x, and for each 

\ \  nonzero y, 

there i s  at least one z [the quotient of x by y] such that z y = x. 

Hence, in order to establish (*), i t  i s  sufficient to  show that there i s  no 

number other 

to prove : 

We shall call 

prove it latei 

'x* Since - 
Y 

than x + y whose product by y is x--that is ,  it i s  sufficient 

this generalization - the division theorem, and you wi l l  

in an exercise. 

i s  an abbreviation for '(:< + y)', the principle of quotients 

I can be written : 1 \ 

\. 
The principle of q u o t i e n t s T o u ,  for example, that 

Similarly, the division theorem can be written: 

It tells us, for example, that 

6 So, since 3 2 = 6, we know from the division theorem that 3 = -- 
2 ' 

6 - = 3 because 3 2 = 6. 2 

Similarly, 

36 - = 9 because 9 4 = 36, 4 

( 5  X 6) + 6 = 5 because 5 6 = 5 X 6, 

3 - 7  3 - = -  3 3 
5 - 7  5 because ^-(5 7) = ( -  5)7 = 3 7. 5 

[in the last example we also used the principle of quotients [where?]. 

What other principle did we u s e  ? ]  



7 
Point out casually to stude 7 

vXVy + 
if z y = x then x <Â y = %. 

>;< . - 

The proof of the division theorem is Exercise 1 
have, on page 2-89, a proof of an ahalogogf '*su 
which should serve them as a model.] 

Notice that each of the four "because-sentences" at the bottom of page 
2-86 is of the form: 

x - = z because z y = x. 
Y 

Such a sentence records a derivation of the form : 

the division theorem 
zmy = x if z * y  = x then z = x + y 

z = x + y  
x - = z  
Y 

>$ 

The fourth of the 'bbecause-sentences** anticipates the proof of Theo- 
rem 60, which is required of students on page 2-94. The discussion 
of Sample 1 of Par t  B on page 2-88 furnishes another illustration of 
how the division theorem can be used to  suggest other theorems con- 
cerning quotients, and how the principle of quotients and the division 
theorem cooperate in the proofs of such theorems. 

Answers to  questions in brackets at bottom of page 
the second equality; the apm. 

Ã‡A 
'a* 

It may be helpful to use the following a s  a 'pattern 
division theorem: 

if quotient divisor = dividend 

2- 86: In justifying 

sentence" for  the 

then quotient = dividend T divisor. 

T C[2 - 861 







Your students may find the proof a t  the top of page 2-87 easier to 
follow if they have seen the pattern sentence referred to on TC[Z-861. 
[Also, see  TC[2-91, 92]a. ] 

Answers for Part A. 

[The convention that, in a complex fraction, the bbprincipal** fraction- 
bar is  longer than the others is easier  to  grasp from an oral  expla- 
nation accompanied by chalk board illustrations than from a written 
discussion. So, we have left this explanation to you.] 



Another use of the division theorem is  to prove such generaliza- 

tions as : 

Here i s  a test-pattern. 

= 5x - 5  1 [cpm] 

Hence, 

= 5x - 5. [pmll 

5x - 5 x - l = -  
5 '  

[division theorem] 

Notice that while the division sign '+ ', like ' t ', ' X ', and the sub- 

traction sign ' - *, has associated with it  a pair of grouping symbols 

[which, according to the conventions you learned in Unit 1, can often 

be omitted], the fraction-bar ' - ' does not require grouping s yrnbols . 
For example, although 

' 3  X ( 5  + 6)' may not be abbreviated t o  ' 3  X 5 + 6' 

[since the latter is an abbreviation for ' ( 3  X 5) + 6'1, 
ft 5' 

' 3  X(5 + 6)'- be abbreviated to 3  X . 
Furthermore, the use of the fraction-bar instead of ' T ', often permits 

one to  omit other grouping symbols. For  example, 
ft 

' 3  X [ ( 5  t 4 )  + ( 6  - 3)]' may be abbreviated to 3 X 
5 t 4 '  
F 3  ' 

thus getting r id of two pairs of parentheses, as well as the pair of 

brackets. In general, the outermost grouping symbols in both the 

numerator and the denominator of a fraction may be omitted. 

EXERCISES 

A. - Abbreviate each of the following expressions by using f raction-bars 

instead of division signs and as few grouping symbols a s  necessary. 



the divifiion theorem [and the basic to sim- 

plify expressions containing fractions. Simplify each of the follow- 

ing, and show how the division theorem justifies the simplification. 

2 5  
Sample - 1. - + - 3  7  

Solution. The division theorem tells us that, for  each x, and 

fo r  each nonzero y, 

2 5  2 5 x  + = x then 3 + - = - 
7  v '  

'2 5' 
So, to  simplify -3- + 7 requires  finding simple numerals for 

-^ c 
3 a number x and a nonzero number y such that ( Ã  + =-)y = x. 

2 5 2 5 3  
Now, for each y, ( -  + -)y = ~y t ~ y .  If we use the value 3  7  ' 2 5 ' 3  7  for 'y*, the corresponding value of z y  + -y is 
Â¥ c 7  

3 $ ( 3  7) + 7 ( 3  7) .  The principle of quotients together with 

the associative and commutative principles for multiplication 

tel l  us that this value is 2 7  + 5 3. So, we know that 

2 5 2 * 7 + 5 * 3  and the division theorem tells us  that - + - = 
'2 5' '29 * 3  7  3 * 7  

So, 3 + 7 simplifies to  - 
21 

[Note : Do you see  that this justifies, in this instance, the 

rule for "adding fractions by finding a common 

denominator " ? ] 
a b  

Sample 2. - - - 10 5 
a b  a 

Solution. (lo - $10 = - b 
10 

l o - - =  
5 10 = a - 2b. 

' a  b' So, by the division theorem, - - 'a - 2b' 
10 

Â¥p simplifies t o  - 
10 

'a - [we say that - 
10 

i s  s impler  because it is a single 

a fraction, whereas Ã - Ã‘ contains two fractions. ] 
10 5 



Even though your students know a rule for "adding fractions ", they 
should solve the exercises of Par t  B by the method illustrated in the 
samples. The main point of these exercises is to show students how 
solutions to problems involving fractions can be discovered by paying 
attention to the division theorem, and how such solutions can be veri-  
fied by the use of this theorem and the principle of quotients. Also, 
these exercises prepare students for  proving Theorem 57 and Theorem 
58 on page 2-92. 

Students wi l l  have opportunity to practice the short cuts suggested by 
these theorems while doing the exercises on pages 2- l O O f f .  

You may find it helpful to  write the solution for Sample 1 a s  follows. 

2 5 
Hence, ( -  t -)21 = 29. [3*7  = 211 

3 7 

29 [division theorem] So, 7 + 7 =  - 21 

[In applying the principle of quotients, we also use the fact that 3 / 0 
and that 7 # 0. We shall, in the future, call attention to such additional 
hypotheses, but it is not a serious fault if  students take such numerical 
facts for  granted and so  fail to cite them.] 





Here i s  an expanded form of the Solution for Sample 2. 

j- apm 
- a --â b 
10 

10 - ($ 5)2 1 
> Pq 110 # 0, 5 # 01 

a - b 2  \ ' cpm 
- a - 2b. 1 

a b  Hence, 4- - -)10 = a - 2b. 
10 5 

So, by the division theorem [ l o  01, 
a b a - 2 b  
105 10 

Answers for Par t  B [on pages 2-88 and 2-89]. 

5. 3 [or: -L} 6 .  21x - l 0 y  
14 

If your students have difficulty in seeing the purpose of Part B, it may 
be because it  appears to them that we a r e  trying to teach them some- 
thing they already know. For  example, it is the case that they know 
from grade school how to transform 

'7 2' -4-7  '37' 
8 

into - 
24 

F'lhat we a r e  concerned with here i s  proving that the sum of the w- 
tient of 7 by 8 and the quotient of 2 by 3 i s  the quotient of 37 by 24. - 
To show that 7 + 8 + 2 + 3 is the quotient of 37 by 24, we show that 
(7 + 8 t 2 + 3)24 is 37 and use the division theorem. 





The purpose of Part B, then, is to show that the grade school rule for 
"adding fractionsb* is consistent with our basic principles. For some- 
one who didn't know the grade school rule. Part  B would be a means 
for his discovering it. * 
Notice that we are using a colloquialism when we say "adding frac- 
tions*', since fractions are  numerals, not numbers. But. the collo- 
quialism i s  well-established. 

Quiz. - 
Simplify. 

1. 1 7 m - 7 n t 8 p - 5 n - l O m  

5 .  5(3 - Zy) t 7 y -  10 

7. n - (5n - Z r )  - (7r - 3n) 

Answers for Quiz. 

6. aa t 2ab - 3a(a t Zb) 







In motivating proofs of the cancellation principle for multiplication 
[given on page 2-90]  and the division theorem we make use of students* 
familiarity with subtraction by showing how the theory of subtraction 
could have been developed in a manner parallel to our development of 
the theory of division. Make sure  that students a r e  aware of the for - 
ma1 similarity between ( 1 )  [on page 2-89]  and the principle of quotients, 
and between ( 2 )  and the division theorem. 





Here i s  an expanded form of the Solution for Sample 3. 

3 5 
Hence, [for x #  0 and Y #  o , ]  (-  + -)(xy) = 3y + 5x. 

Y 
3 y + 5 x .  [divisiontheorem;xy#O] So, - t - = 

X Y  XY 

This testing pattern is ,  because of the restrictions required when 
citing the principle of quotients, a proof of the theorem: 

In contrast with the premisses '3 # 0' and '7 # O* mentioned in the 
COMMENTARY for Sample 1, page 2-88, it  i s  essential that students 
do cite such restrictions as  'x # 0' and 'y # 0'. For, recognition of - 
these is necessary i f  one is  to formulate the generalization proved by 
the testing pattern, o r  i f  one i s  to  state properly the answer to the 
corresponding simplification problem. 

Answers for Par t  B, continued. 

[Actually, in solving Exercise 8, one comes out with the restrictions 
'2x k O * ,  and '7y / 0'. The reduction of these to 'x # 0' and 'y # O Ã ˆ  
respectively, should cause students no concern at this time. That 
'2x # 0' is a consequence of 'x # O *  and '2 # 0' follows from the 0- 
product theorem [See page 2-91.]. ] 



3 5 
Sample - 3. ;+ - 

Y 
3 5 

Solution. (; t -)(xy) 
Y 

- 3 5 
- -(xy) x + - -by)  Y I [providing that neither 'x' nor 'y ' 

= 3y t 5x. 
has  the value 01 

So, by the division theorem, V 
3 5 - 3 y + 5 x  

x # o V y # o  x + y -  XY 

3 + 
~ / e  write our answer a s :  u, [x # 0,  y # 01. 

XY 

PROVING THE DIVISION THEOREM 

You have seen how the be used in simplifying 

expressions.  It i s  now t ime to show that the division theorem i s  actu-  

ally a theorem. That i s ,  to  derive it f rom the principle of quotients 

and the other basic principles. As preparation fo r  doing so,  let 's con- 

s ider  an analogous situation concerning subtraction. 

F o r  subtraction, the analogue of the principle of quotients is : 

and the analogue of the division theorem i s :  

Now, we can use ( 1) to  derive (2) as follows. 

Suppose that 

Then 

and 

z + y = x .  

z + y = (x - y) + y, [( l)]  

z = x - y .  [cancellation ~ r i n c i p l e ]  

Hence, if z + y = x t h e n  z = x - y. 

However, besides (1)  we had to  use the cancellation principle for addi- 

tion. Now, it turns  out that we can use ( 1 )  t o  derive the cancellation 

principle [without using ei ther  the principle of opposites o r  the princi-  

ple for  subtraction]. Turn  the page t o  s e e  how. 



Suppose that 

Then 

and 

Hence, 

x t [z t (0 - z)] = y + [z + ( O  - z)], [spa] 

x t [(O - z) t z] = y t [(O - z) + z], [cpa] 

x t O = y - 1 - 0 ,  [( !)I 

So, we could use (1)  a s  a basic principle in place of the principle of 

opposites and the principle for  subtraction. Analogously, you can use 

the principle of quotients [together with our other basic principles] to 

prove - the cancellation principle for multiplication: - 
v v v  

x Y z # o  
i f  xz = yz then x = y. 

Then, use this and the principle of quotients to  prove the division theorem : 

[The principle of quotients and the division theorem together te l l  us 

that multiplication by each nonzero r e a l  number has  an inverse.  That 

is, (-".;) on page 2-85 is a consequence of the principle of quotients and 

our other basic principles.  ] 

EXERCISES 

Prove each of the following theorems.  

Sample. "Cancellation principle for  multiplication" 

VY^# 0 if xz = yz then x = y. 

Solution. Suppose that xz  = yz. 

Then xz(1 + z) = y z ( l  + z), 

x[z( 1 - z)] = y[z( 1 + z)], [apml 

x[(l  Â¥; z ) z ] = y [ ( l  Â¥; z)z], [cpm] 

x . 1  = y * 1 ,  [pq; z # 01 

and x = y. [prn 1 1 

Hence, [for z # 0, ] i f  xz = yz then x = y. 

[Note that in applying the principle of quotients we had to  



Students ought t o  be able to  state the cancellation principle for mul- 
tiplication before they see  it on page 2-90. One way of handling this 
i s  t o  write the uniqueness principle for addition and the cancellation 
principle fo r  addition, one under the other, on the board. Then, to 
one side, write the uniqueness principle for  multiplication, and ask  
f o r  a statement of the cancellation principle for  multiplication. It 
is likely that you w i l l  get: 

V V V i f  xz = yz then x = y. 
X Y Z  

This,  of course, is false. Let the students discover the e r r o r  by 
going through the following routine. Ask the class  to suppose that 
Mary has given you a number and that John has given you a number, 
and that you multiply Mary's number by 3 and you also multiply John's 
number by 3. It turns out that the products a r e  the same. What can 
the class  conclude about Mary's number and John's number? Now, 
ask  the c lass  to suppose that Jack has given you a number, that Jil l  
has given you a number, and th?.t you multiply each number by 0. 
Again, it turns out that the products a r e  the same. "What conclusion 
follows ? Clearly, one cannot correct ly conclude that Jack and Jill 
picked the same number. So, the correct  statement of the cancella- 
tion principle for  multiplication is : 

VxQyVz # 0 
i f  xz = yz then x = y. 

Compare the proof given at the top of page 2-90 for the cancellation 
principle for addition with the proof given on page 2-65. 

If we were t o  develop the theory of subtraction using (1) on page 2-89 
a s  a basic principle [in place of the po and the ps], we would need an 
additional basic principle, 'Vx -x = 0 - x' to  enable us to  prove theo- 
r e m s  concerning opposition. Similarly, if we now wanted t o  introduce 
the operation reciprocation [see T C[2-60]c], we would adopt 

"'x # 0 
/x = 1 + x* a s  an additional basic principle. 

Some students may profit f rom discovering a new proof, like that a t  
the top of page 2-90, for the left  cancellation principle for  addition. - 





The bracketed sentence just before 'EXERCISES' i s  merely a repeti- 
tion of what was said in the first paragraph on page 2-86. 

Note the parallelism between the proofs on page 2-90 of the two can- 
cellation principle s. 

Some students may wish t o  state the left cancellation principle for 
multiplication. It can be proved in an analogous manner, o r  derived 
from the cancellation principle for multiplication and the cpm. 

>k 
Quiz. - 

Abbreviate each of the following expressions by using fraction-bars 
instead of division signs and a s  few grouping symbols as  necessary. 

1. 15 + (5 x 6) + 2  2. 1 2 - 3 x 5 - 4  3. 10 + 2 X (14 + 7) 

4. 18 + 9  i- (5 T 3) 5. 7 X 8 + ( 1 3 X 4 )  6. (13  + 2) t (9 + 2) 

7. 7 X 8 + 1 3 X 4  8. (21 X 4) + 7  9. 12 X (5 + 2) 

Simplify. 

.I* 
'1. 

Answers for Quiz. 

5 3 22 b 9. 1 2 x  lo* iT 11. -g- [or: 4.41 12. g 







Notice that 'V V i f  x = 0 or  y = 0 then xy = 0' i s  a rather immediate 
x Y 

consequence of the pmO, and that an equivalent statement is : 

V V i f x y # O t h e n x # O a n d y # O .  
X Y  

Together with the 0-product theorem these tell  us that 

QxVy xy = 0 if and only i f  x = 0 or  y = 0 

and that 

V Q x y #  0 if and only if x i  0 and y #  0. 
X Y  

The answers to  the 'Why?'s in the testing pattern on page 2-92 are ,  
f rom top to bottom : dpma, cpm, apm. 

The test-pattern for the "subtraction of fractions" theorem [Theorem 
581 i s  obtained from that for the "addition of fractions" theorem 
[Theorem 571 given on page 2-92 by replacing each t ' by a * - * and 
changing the citation 'dpma' to 'dtms'. [The dtms is Theorem 39.3 

In your class discussion of the subsection which begins on page 2-92 
you should be sure,  whenever a theorem has been proved, to  ask your 
students to state some of i ts  instances. 





The 0-product theorem [which i s  (2' ) on page 2-91 and listed a s  Theo- 
rem 56 on T C[2-6l].g] is ,  a s  you w i l l  recognize, of fundamental signifi- 
cance in equation-solving. Our immediate concern with it  w i l l  be to 
use it [more conveniently in the equivalent form (Z) ]  to show that, for 
example, '2x # 0' is implied by '2 # 0' and 'x # 0' [See COMMENTARY 
for Exercise 8 of Part B, page 2-89.]. 

Students should have no difficulty in proving ( I ) ,  but they may have 
some difficulty in recognizing that (1) and (1' ) a re  logically equivalent 
and that (2) and (2') a r e  logically equivalent. Let us consider, first, 
(1) and (1'). To  "see" that these say the same thing, begin by con- 
sidering pair s of sentences like : 

If John is well then he is in school today. 
If John is not in school today then he is not well. 

and : 

I If today is a legal holiday then the bank is closed today. 
If the bank is  not closed today then today i s  not a legal holiday. 

Once i t  has been established that the two sentences of such pairs a r e  
equivalent it should be sufficient to  notice that one can pair up instances 
of (1) and (1') in this way. So, (1) and (1' ) a re  equivalent generaliza- 
tions. 

The equivalence of (2) and (2' ) poses an additional problem. It should 
by now be clear that (2) is  equivalent to: 

To recognize that (*) is equivalent to (2') it i s  necessary t o  see that 
'it is not the case that x # 0 and y # 0' i s  equivalent to 'x = 0 or y = 0'. 
One way of looking at this is to  realize that if one cannot do both of two 
things then one must decide not to  do one or the other of them [and, - 
conversely]. [For a discussion of conditionals and their contraposi- 
tives, see TC[~-67,  68lc.I 





0 - = 0 [Theorem 531 - " x # o  x 

So, O*x = 0. 

0 
Hence, - x = 0. [division theorem 

x i f  - = 0 then x = 0 [Theorem 541 6 *  VxVy#0 y 

x 
Suppose that - 0. 

Y 

Then 

and 

x = O m y ,  [pq;y#OI 

x = y * O ,  [cpm] 

x = 0. [pmol 

x 
Hence, [for y # O , ]  i f  - = 0 then x = 0. 

Y 

Notice how Theorem 53 and Theorem 54 complement one another. 
Theorem 53 is equivalent to 'V V 

x Y # O  
if x = 0 then- = 0'. Hence, 

Y 
these two theorems could be combined into one: 

[z = 0 if  and only i f  x = O ]  
"XVY^i0 Y 

Such "if and only if generalizations" wi l l  be introduced in Unit 3. 





x  - = x  [Theorem 501 2- vx 1 

x.1 = X. [pmll 
x 

Hence, x = - [division theorem; 1 # 01 1 

[ ~ n  the future, we shall [as your students probably do] take the 
x 9 

symmetry of equality for granted and, so, replace *x = - in the 1 
second line of the proof above by ' z  = x ,  and omit the third line.] 1 

= 1 [Theorem 511 
3- V x # o  x 

1 *x = x. [l times theorem] 

So. 
x  - = 1. [division theorem; x # 01 
x 

x 
4. Vx -J = -x [Theorem 521 

-xÃ -y = xy [Th. 231 
X . 1  - 

So, -x * -1 = x. 

Hence, x/-1 = -x. [division theorem; -1 # 01 

Alternatively, the f i rs t  three lines of the proof might be : 

- X V  -1 
multiplying by -1 theorem [Th. 271 - - - -x - -x = x [Th. 171 

= X. 





Answers for Exercises. 

x 
l -  ^ y i f o ^  if zy = x then z = - [Theorem 491 

Y 
Suppose that zy = x. 

Then 
x 

ZY = - * y ,  Y [pq; y #  o] 
x 

and z = -. [cancellation principle; y # 01 
Y 

x 
Hence, [for y / 0, ] if zy = x then z = - 

Y '  

[Note the parallelism between this proof and that given on page 
2-89 for statement (2).] 

>;: 

To get started on the remaining proofs, it may help the students i f  you 
review the "pattern sentence" for the division theorem which w a s  sug- 
gested on T C[2-861: 

if quotient divisor = dividend 

then quotient = dividend + divisor. 

For example, to prove the theorem in Exercise 4, we must derive 
the sentence : 

dividend 

- = -x. / quotient 

divi sor - 
So, f i rs t  we derive the sentence: 

quotient 
\ 1 divi Or -x* -1 = X. 

'dividend 

And then we use this sentence together with the division theorem 
[- 1 # 01 t o  derive : 

x -x = - 
-1 

By symmetry of equality, this i s  equivalent to  the sought -for sentence. 



introduce the restriction 'z # 0'. So, the tes t  -pattern proves : 

x ' 
V if zy = x then z = -. i [ ' '~ iv is ion  theorem"] 

- .  . Y 1 

6 .  V V x i f  - = 0 t h e n x  = 0. 
x Y # O  Y 

THE 0-PRODUCT THEOREM 

It is easy t o  derive the generalization: 

V V i f  x = 0 then xy = 0 
Y 

f rom the commutative principle for multiplication and the principle for  

multiplying by 0 [DO so.], So, this generalization i s  a theorem. Do you 

think that you could prove : 

Since 1 0 = 0 but 1 # 0, this second generalization i s  not a theorem. 

How can you "correct" this generalization to get a theorem? 

The generalization: 

( 1 )  vxvy # 0 if xy = 0 then x = 0 

is a theorem. Here is a proof. 

Suppose that xy = 0. 

Then 

So 1 

xy = Oy. [ ~ m 0 ;  cpm] 

[cancellation principle for  
x = 0. multiplication; y # 01 

Hence [for y # 01, if xy = 0 then x = 0. 

Notice that ( 1) is logically equivalent to:  

(1 ' )  v v 
x Y # O  

i f  x # 0 then xy # 0. 

And, (1') is logically equivalent to:  

( 2) V V i f  x #  0 and y #  0 then x y #  0. 
X Y  

Also, ( 2 )  is logically equivalent to: 

W e  shall  call  (2') the 0-product theorem. Sometimes when we refer  t o  - 
this theorem, you will want t o  think of the equivalent generalization (2 ) .  



SIMPLIFYING EXPRESSIONS CONTAINING FRACTIONS 

In doing Exerc ise  12  on page 2- 89 you actually proved the theorera: 

This  theorem justifies the rule you learned in  an ea r l i e r  grade fo r  

"adding fractions". So, the rule you learned follows f rom the basic 

principles.  This is the case  for a l l  the rules  you learned about f r ac -  

t ions.  You will use these same  ru les  in simplifying pronumeral  expres-  

sions such as : 

But, before you do so,  you will want t o  show that these rules  a l so  

follow f rom the basic principles.  This  amounts to  stating generalizations 

which justify the rules  and showing that these sentences a r e  theorems.  

Adding or  subtracting fractions 

F o r  this  you have two rules  based on the generalizations: 

and : 

Here  is a test-pat tern for  the first generalization. 

so, 

Hence, 

= xv + uy. 

x u 
( -  + ;)(yv) = xv + uy. 

Y 

Why? 

Why? 

Vlhy ? 

Pq; [Y 

[division theorem; yv # 01 

Since, by the 0-product theorem, the restr ic t ions 'y # 0' and 'v # 0' 

imply the  res t r ic t ion  'yv # O', we may  d is regard  the l a t t e r .  So, the 

above t e s t  -pattern is a proof of the f i r s t  generalization. 

Now, write a test-pat tern for  the theorem which justifies the rule 

for  subtracting fractions.  





Proof of Theorem 59, the "multiplication of fractions" theorem. 

x u (7 ^)(Yv) 
product rearrangement theorem [Th. 41 

x u 
= (-â Y)(;W 
' Y 
= xu. 

xu u xu , [division theorem; yv / 01 So, ( -  -)(yv) = xu. Hence, - - = - 
Y V  Y V  yv 

x u xu 
So, [for y # 0, v # 0, ] - 7 = - . [O-product theorem] 

Y YV 

[The citation '0-product theorem* justifies omitting 'yv # 0' from the 
bracket following 'So, *. ] The f i rs t  step in this proof may be expanded 
by paralleling the proof given for Theorem 4 [see answer for Exercise 
3 on T C[2-6l]a], or the citation of Theorem 4 may be replaced by 
'apm, cpm*. 

If the proof of Theorem 59 is assigned as homework, some student 
should then present i t  at the board. In the ensuing discussion you 
may find it helpful to  suggest a motivation for the proof by taking up 

*Â¥  e* 
t. 2 

the problem of simplifying, say, 3 7 , and treating this in the man- 

ner of the Solution for Sample 1 on page 2-88. 

If, on the other hand, you wish to lead students to discover the proof 
of Theorem 59 in class, you may find it helpful to  refer them t o  the 
Solution of Sample 1 on page 2-88 and suggest that they begin by try-  
ing to parallel the discussion there with ' + * replaced by * * '. 

Answers for Exercises [on pages 2-93 and 2-94]. 

[As in earl ier  simplification exercises [see T C[2-52]a], students 
should not beasked for justifications unless disputes arise. This 
remark applies also to later  simplification exercises.] 



Multiplying fractions 

3 7 x - = ?  
5 8 

3 7 
Since ( - X -) X (5 X 8) = 3 X 7, i t  follows from the division theorem 5 8 

that 

The rule about multiplying numerator -numbers and multiplying 

denominator-numbers is justified by this generalization: 

v v x u xu - - - = -  
v x v y / ~  u v # O  y v y v '  

Prove this  theorem. 

EXERCISES 

Simplify . 
2a 5c Sample 1. - - - 3b 7d 

- 1 Oac - -  
21bd 

lOac Answer. - 21bd ' [b # 0, d # 01 

[Notice that, since 3 # 0, the 0-product theorem tel ls  us 

we can replace the restriction '3b # 0' by ' b # 0'. ] 

9r  l l r  2. x - -  
10s 

(continued on next page) 



w x  u Sample 2. -( - t --) - Z Y  

w x  u 
Solution. - ( -  + --) 1 

z Y 

- - w(xv + uy) J 
z(yv) 

w(xv + uy) Answer. 
=yv 

# [y#OJ V # O J  z # O ]  

Reducing fractions 

The generalization which justifies these illustrations i s  : 

Here i s  the beginning of a test-pattern for this generalization; you 

should complete it. 

Here is another test-pattern for the same generalization. 

--- 

multiplication theorem for 
fractions; [y # 0, z # 01 

x 
--â Y 



An alternative solution for Sample 2 begins with an application of the 
Aipma. This leads to the answer: 

If students suggest this procedure, point out that the alternative an- 
swer must be equivalent to the one given in the text [since both frac- 

b W X  u s  tions a r e  equivalent to -(- t --) 1, and use this as  a motivation for 
Z Y  

the material on reducing fractions which follows the exercises. 

Some students may also suggest using a least common denominator. 
This technique is taken up on page 2-99. 

Students w i l l  discover when doing exercises on pages 2-106 and 2-107 
that, in problems like Sample 2, it is  sometimes simpler to begin by 
using the Aipma. 

-1. 
#I- 

Answers for Exercises, continued. 

3(2c + 5b) # [a + 0, b i( 0, c ,< 01 7* abc 

Completion of first test-pattern for Theorem 60. 

x xz x So, $yz) = xz .  Hence, - = - . [division theorem; yz / 01 
Y Z  Y 

xz x 
So, [for y #  0, z # O , ]  - = -. [O-product theorem] 

YZ Y 

Answers for *Why?'s in second test-pattern: 

'x# 0 x/x = 1, [z # 01. and: pml.  







A second proof. 

= 
x/1 = x [Th. 501 

x 
= -y. z 

Hence, [for z # O,] 3 x 
z - Y e  z 





Answers for *Why?'s in the proof of Theorem 61 on page 2-95: 

xz -, x [y # 0, z # 01, and: pq; z # 0~ 
VXVY# oVz# 0 yS = y 

When discussing instances of Theorem 61, make sure that students 
see that this theorem justifies such simplifications as 

' 3 '  - ' 6 x + 5 '  
2 ' 3 ' and 2kLx!- to  '6x t 5 '  
T to  7 ' x - 4  x - 4  

Answers for Par t  A [on page 2-96]. 

Students may be helped in seeing the connection between the theorem 
t o  be proved and the problem of transforming '(12x) + 3' to '(12 + 3)x' 
i f  they first state the theorem as : 

' w z  # 0 (xy) v z = (x + z)y. 

x x̂ - = -yn.  h he or em 621 A proof of 'V>yVz # 

x y .  J 

XY x So, ( 2 y ) z  = xy. Hence, y- = - z y. [division theorem; z # 01 

[Another proof of Theorem 62 is on TC[2-95, 96lb.l 



P e r h a p s  you a r e  m o r e  fami l ia r  with the ru l e  fo r  reducing 

f rac t ions  i n  which you divide nume r a t  o r  -number and denominator - 
number  by the s ame  number .  H e r e  a r e  two examples .  

And, you probably shor ten  the work by using cancel  m a r k s  l ike this .  

T h e s e  p rocedure s  for  reducing f ract ions  a r e  justified by 

Th i s  generalization can  be proved by applying the theorem sta ted on 

page 2-94. 

X T  z 

Why? 

Why? 

Sometimes the  p r o c e s s  of reducing f rac t ions  is used in  a d i s -  

guised f o r m  in  ca r ry ing  out a simplification.  F o r  example:  

But,  th i s  is r ea l l y  a sho r t  cut  f o r  the following procedure  : 

So, the  ru l e  f o r  cancell ing before multiplying is justified by the  multi-  

plication t heo rem f o r  f rac t ions ,  the t heo rem for  reducing f ract ions  by 

dividing, and the commutative principle for multiplication. 



EXERCISES 

A. Reduce these fractions. - 

12x Sample 1. - - 15y 

Solution. In reducing this fraction we can apply the 

theorem for reducing fractions by dividing. 

[Notice that in simplifying ' l 2 x  + 3' to '4x' we assume 

that '(1 2x) T 3' and '(1 2 + 3)x' a re  equivalent. In other 

words, we assume that the generalization : 

v v v  x y _ x  
x y Z # O  z -Y z 

i s  a theorem. Prove this theorem. ] -- 
5 

25a 
Sample 2. solution. = 

3 b  7b' fb # 01 

There a r e  several theorems which follow easily from the theorem : 

which you were asked to prove in Sample 1. These theorems justify 

some of the short cuts you have learned. Of course, you don't need 

these theorems to justify the short cuts because you can use earl ier  

theorems for this purpose. For example, consider the problem: 

In grade school you may have learned to do this problem this way: 





x t xz V V -̂ Ã‘Ã = y + z [Theorem 651 
x i 0  y z x 

x 
= Zy, [x # 01 [Th. 621 }vxvyvz# 0 z z x 

= -(Y + z) , x 
x/x = 1, [x # 01 [Th. 511 

= l Y  
1.1 times theorem [Th. Z] 

y t z .  

t xz 
Hence, [for x #  0.1 % = y t z. 

A second proof. 

(y + z)x lcpm = x(y + z) 

= xy t xz. ldpma 

So, (y t z)x = xy t xz. 

Hence, = y t z. [division theorem; x # 01 x 





A third proof. 

1 x 1 So, (x-  -)y = x. Hence, - = x -. [division theor em; y # 01 
Y Y Y 

^ 
Â¥'I 

2% = x [Theorem 641 
X - Y # O  Y 

Hence, [for y # O,]  = x. 
Y 

A second proof. 

xy = xy. 

Hence, x̂ - = x. [division theorem; y # 01 
Y 

Î̂  
V 





We give three proofs for Theorem 63, and two proofs for each of 
Theorems 64 and 65. [ ~ h e s e  three theorems are given in the bottom 
half of page 2-97. ] 

x  1 - = x Ã ˆ  [Theorem 631 
^Y#O Y Y 

x  1 
Hence, [for y # O,] - = x *  -. 

Y Y 

A second proof. 

1 Y  \ V x/I  = x [Th. 501 

1 Hence, [for y # 0, ] = x *  -. 
Y Y 



This  method i s  co r rec t  and i s  justified by the theorem for dividing by 

1 [Exercise 2 on page 2-9 11, the multiplication theorem for fractions,  

and the principle for multiplying by 1. But, a short  cut i s  : 

and this i s  justified by ( * ) .  [in fact,  the long way of doing the problem 

may suggest a proof of ( * )  . ]  

Consider the problem of simplifying the expression:  

Here i s  one procedure for simplifying: 

Another way t o  do this  i s  as follows: 

Still a third way i s  : 

Each of these procedures i s  justified in par t  by a special  theorem. 

In ( 1) we used the generalization: 

[Dividing by a number i s  the same a s  multiplying by its  reciprocal . ]  

In (2)  we used the generalization: 

[The inverse of multiplying by a nonzero number is dividing by that 

number.  ] 
In (3) we used the generalization: 

Each of these theorems i s  an easy  consequence of (*), and an even 

e a s i e r  consequence of the division theorem. Prove these three  theorems.  --- 



[Z-981 

Here is another easy consequence of (*): 

Prove it. 

B . Simplify. - 

10. (ab) + a 



Here is a proof for (f) which is at the top of page 2-98. 

V  V  Â£3 = 'w [Theorem 661 ^x^,r#o u v # o V z # o  yv z v  

Answers for Part B. 

12 
* 77 

4. ,̂ [c # 01 

1 5ab 
7. r. [c # 01 

10. b, [a # 01 
13. 1 . 5 ~  

16. 9 
J .  3b + 5c, [a # 01 
21, 3x - 4z, [y#  O] 

23. 3, [x # 01 

Hence, [for y 0, v  # 0, z # 0, ] = H. 10-product theorem] 
yv (Y - z)v 







A second proof. 

[Notice that the second of the proofs given for Theorem 68 amounts 
to replacing the f irst  step in the f irst  -proof by a proof of Theorem 60. 
Students a r e  often taught to go through steps like those in the second 
proof in order to simplify an addition problem. They should be able to 
use the short cut suggested by Theorem 60 instead.] 

Qui z . - 
Simplify . 

Answers for Quiz. 

1. aa, [b # 01 2. 63ce, [d { 01 3. 3n 4. 14ce, [ d / 0 ]  

5. 45rs 6. 2k - 5p, [ n /  01 7. 3b - a, [c t d /  01 





Lowest common multiples are discussed in Unit 4. 

Proof of the distributive theorem for division over addition [Theorem 671. 

x Y x t So, (; t ;)z = x t y. Hence, 2 t = 2. [division  theorem;^ # 01 
z z z 

.I. 
Â¥'I 

a 
v v x 

A proof of *V V V - t- = .  heor or em 681 
x y # o  z # o  u v # o  yz vz yvz 

x XV t u 
Hence, [for y # 0, v # 0, z / 0, ] p t vz = 2. [O-product 

yz theorem] 

[Another proof of Theorem 68 i s  on TC[2-99]b. ] 



Least common denominator 

Consider the problem : 

You wouldn't want to  use the addition theorem for f ract ions:  

to  solve this problem. You would probably solve it this way: 

That i s ,  you would use the generalization: 

[Use the division theorem to  give a very  quick proof of this  theorem. 

Do you see  that this  theorem tel ls  you that division dis t r ibutes  over 

addition? So, we can call  this the distributive theorem fo r  division - - 
over addition. Do you think that there  i s  a left distributive theorem - 
for  division over addition? If there  were,  it would follow that 

Similarly,  you wouldn't want to  use the addition theorem for  

fractions t o  solve the problem: 

Instead you might proceed a s  follows: 

2 7 - 29 - So, ~y t - [ ~ o t i c e  the way in which the least  common denom- 

inator ,  '3 4 5', was found. ] Explain the s tep:  

and then explain the las t  step. 

This  procedure is justified by the generalization: 

Prove  i t .  



EXERCISES 

A.  Simplify. - 

B .  Prove these theorems,  - 

3 .  V V V  Y = X Z + Y ,  

x Y z # o  
x i -  - 

z z 

Dividing fractions 

Consider the problem : 
5 3 + - = ?  
7 

$5 '  
7 

' ' and then The grade school rule  tells you to "invert" the - t o  get - 
7 5 ' 

multiply 3 by -. Let 's  justify this procedure.  
5 5 T o  solve the problem ' 3  + - = ? '  is t o  find the number whose pro-  

c 7 
duct by is 3 .  That is,  

K 

7 5 
But, - X - = 1 [why?] ,  and 3 X 1 = 3 .  So, 5 7 

Hence, 

So, 



h s w e r s  for Par t  A. 

ac  t b 
8 [c # 01 

288 
11. - 12. 11.52 [or: z] c 

4 0  
-1. 

Answers for Par t  B. 

1. [This is Theorem 69# the distributive theorem for division over 
sub t rac t io~~.  Its proof is  like that of Theorem 67, given on 
T G[2-991. ] 

2. [This is Theorem 70. It can be proved as Theorem 68 was proved 
on T C[2-991.1 

3. The "mixed number" theorem. [Theorem 711 

so, (x t Y )  z = xz t y. 
z 

= w.  [division theorem; z # O] Hence, x t - z z 

[Another proof of Theorem 71 i s  on TG[2 - 1 OO]b. ] 





A second proof. 

dividing is the inverse of multiplying theorem; z # 0 
- - -  

z 5 + Y = w,  [ z #  O] [Th. 671 
z - xz t y - -. J' 

z 

xz t 
Hence8 [for z # 0 8 ]  x t = 2. z 

A third proof. 

-- . z 
x/ l  = x [Th. 50) 

x Y = i t r  
1 

- ! addition of fractions theorem; 1 # 0, z # 0 [Th. 571 

Hence8 [for z # O D  ] x t $ = 
xz t y . z 

[Note that the f i rs t  two proofs a r e  conceptually much simpler, a s  well 
a s  shorter.] 

4. 
-4. 

Notice how the division theorem motivates the "invert-and-multiply** 

rule. To answer the question '3 + ?'# it  is sufficient, according 7 = 5 to the division theorem, to find a number whose product by - is 3. 
7 7 

That 3 X - is such a number i s  guaranteed by the apm8 the "inulti- 5 
plication of fractions " theorem, the cpm, the "dividing a number by 

itself*' theorem, and the pml .  [See proof at top of TG[2-lOl]a.] 







Answers for Par t  B [on pages 2-101 and 2-1021. 

[ ~ o t e  : One neat way of arriving at the answer for Exercise 1 7 - is to  use Theorem 60 and Theorem 61 as  follows. 
(3/5) T (7/10) = (6/10) + (7/10) = 6/7.] 

11 - 1 
3 3. g 4. 30 

[Note that, for typographical reasons, we state the restriction 
for Exercise 7 as  'abcxz # 0' rather than a s  'a # 0, b / 0, c # 0, 
x # 0, z # 0'. Students should be able to explain why these a r e  
equivalent . ] 
2 6 0 3 3 
7 9. - 13 10. 5, [xy# 01 11. x, [abc # 01 

7 - 85 13. 9 14. 7 6 
10 15. 

2x t 1 2 b t a  
(x f .0 ,  X #  31 17. - 3x - 2' b - a '  [ ab#  0. b #  a1 

[Note that the restriction for Exercise 19 is an abbreviation for 
'a t b # 0, a t b # 5 ' . ]  





3. The "dividing a fraction" theorem. [Theorem 751 

x = -y, [yz # 01 [Th. 621 
xz = - .  

x x x .  x So, - * z  = -. Hence, - 7 z = - . [division theorem; z # 01 
YZ Y Y YZ 

x .  x Hence, [for y # 0, z # 0, ] - 7 z = - . [O-product theorem] 
Y YZ 

A second proof. 

x x .  x 
So, ( -  + z)(yz) = x. Hence, - 7 z = - . [division theorem; y z  # 01 

Y Y YZ 
x .  x Hence, [for y # 0, z # O,]  - 7 z = - . [O-product theorem] 
Y YZ 

A third proof. 

x 
- 2  
Y ' , [z # 01 [Th. 631 

- x 1 Y - - 0 -  . 1 multiplication of fractions theorem; y / 0 # z [Th. 591 
- x.1 - -  

yz { p m l  
- - - x J  
YZ 

x Hence, [for y # 0, Ã # 0.1 + z = -- 
Y 

TC[2-101]b 





Proof a if the "dividing by a fraction" theorem. [Theorem 721 

Y 2 multiplication of fractions theorem; 

1 - - - x *  Y5 
yz b 0  x/x = 1, [yz# 01 [Th. 511 

= x * 1  

z z ^ = x. Hence, x + ^ = x - . [division theorem; $ # 01 so, (x* -1 z 
Y 
z Hence, [for y # 0, z # 0, ] x + 5 = x *  -. [ ~ - ~ r o d u c t  theorem; Th. 541 
Y 

Answers for Part A. 

1. The "dividing a fraction by a fraction" theorem. [Theorem 731 

2. The b*reciprocal of a fraction*' theorem. [Theorem 741 



Justify the invert  -and-multiply rule in general by proving that 

EXERCISES 

A.  Prove these theorems.  - 

B . Simplify. - 

3- - 
5 4 

Sample. - 

Solution. W e  could simplify 

/ .  -5- 
2abc Bab 

this by simplifying 

9 

11.  
Gab 
3 c 
4b 

the numera-  

to r  and then the denominator, and then use the 

theorem for dividing fractions.  Perhaps an eas i e r  way is to  

"clear the numerator  and denominator of fractions" by using 

the theorem about multiplying numerator -number and denomi- 

nator -number by the same nonzero number.  

[why did we multiply the numerator  - and denominator- 

numbers by 2 0 ? ]  



a ' b  
1 7 -  1 1 - - -  

a b  

DIVISION AND OPPOSITION 

In e a r l i e r  sections you proved theorems about opposites of sums ,  

products,  and differences.  

V V -(x T y) = -x 4- -y. 
X Y  

V v -(xy) = -xy = x 
X Y  

-Y 

V V  - ( x - y ) = - x - - y .  
X Y  

~t i s  now natural  to  a sk  about the opposite of a quotient. F r o m  the 

theorems on the opposites of sums and differences,  one might suspect 

that the opposite of a quotient is the quotient of opposites. F o r  

example,  that 

18 - -18 -- - - -9 - and - - 9 
3 - 3  -18 - 18. 

But, a bit of computing shows that these statements a r e  false. More-  

over ,  division is more  closely related to  multiplication than it is to 

addition o r  subtraction, s o  we should expect to  get a better clue f rom 

the theorem on the opposite of a product. This  suggests,  for  example, 

that 

18 -18  -- = - 18 18 
3 3 and that - - = - 3 - 3  

Computation shows that these statements a r e  t rue .  So, we should 

investigate the generalization: 





A simpler version of the bbsame" proof: 

An alternative proof: 

Note that Theorem 76 might have been proved earlier and used in 
deriving subtraction theorems from addition theorems. For example, 
note the following proof of Theorem 58. 

[v # 01 [Th. 761 

v 
[ ~ h .  571 

-yz [Th. 311 

This i s  one way to remind students that subtracting is adding the - 
opposite. And, the more conscious they a re  of this, the better. 





[Some students may suggest that (b) could be proved by using the 
division theorem as  in the following. [AS mentioned earlier in 
the COMMENTARY, there are many ways to prove most of the 
theorems; we usually give no more than two of them. ] 

x -- 
-Y ) 

1 times theorem and - 1 times theorem 
lx = -  \ 

v v x u xu 
- 0 -  = - 

- lYey  i v x v y # O  u V # O  y v yvD [ - 1 # 0 = y] [Th. 591 - 1 X - -- * Y ,  - 1  V - 
dividing by -1 theorem 

x = -1 - * y  
Y 

= -1x 
) - 1 times theorem 

x x - -x 
So, - y = -x. Hence, - - - . [division theorem; y # 01 

-Y -Y Y 
x -X And, -- = - x x 

[Th. 76; y # 01 SO, - - = - 
Y Y Y -Y I 

Answer for Part A. 
-X x - = - [Theorem 781 

^ ~ ^ Y # O  -Y Y 

-- = - - , [-y # 0] [Th. 761 - X } ^ X ^ Y # O  Y Y 

- - - -- '  

:K - -  
x = x [Th. 171 

x - - - 
Y 

-X x 
Hence, [for y # O , ]  - = - [ v y # ~  if y # 0 then -y # O] -Y Y 





Using the division theorem: 

.r x 
- - ~ i  

So, - - * -  
Y 

y = x* 
F.K-^ 

4 x x Hence, -- =-. [division theorem; -y # 01 
Y - Y  

x x Hence, [for y # O,] -- = - 
Y -Y P I  

The citation indicated by the ' ? ' is needed to  justify the assumption 
that, for each y, if y # 0 then -y # 0. One can derive a theorem to  
this effect from the 0-product theorem, the -1 times theorem and 
'-1 # 0'. Here is a proof. 

Suppose that y # 0. 1 
V V if x # 0 and y # 0 then xy # 0, 

y [-1 # 01 [Th. 551 
Then -1y / 0, 

I Vx -x = -1x [Th. 281 

and -Y # 0. 

Hence, if y # 0 then -y # 0. 

Here is another proof [it involves contr aposition]. 

Supposethat -y = 0. 

Then Y + -Y = Y + on] ad pao 

and 0 = y. 

so, if y # 0 then -y # 0. 





Proofs of (b) on page 2-103. [Theorem 771 

Because there is no left distributive theorem for division over (or 
under!) addition, the use of the 0-sum theorem is not as direct in 
this case as i t  is in proving Theorem 76. If one attempts to use i t  
one may be led to  the following proof. 

But, one already sees a "direct" proof of Theorem 77: 

x x Hence, -- = - . 
Y -Y 

[Another proof of Theorem 77 is on TC[2 - 1031~. ] 





Proofs of (a) on page 2-103. [Theorem 761 

Using the 0-sum theorem : 

t x = %, [y# 0) [Th. 671 
x  + -x = -- .. 

x  -x Hence, -- = - . [O-sum theorem] 
Y  Y 

Using the division theorem : 

x So, (-$y = -x. 

x -x Hence, -- = - . [division theorem; y  Â¥/ 01 
Y  Y 

Using the - 1 times theorem: 

^ } - 1 times theorem 

XY x  - = -y, [y # 01 [Th. 621 
- x *  -1 - -  

y  } ~ , x @ - l = - x  [Th. 271 

- -x - -  . ' 
Y 

x -X Hence, -- - . 
Y  Y 



Let 's  t r y  t o  prove that  

One way to  a t tack this  would be through the 0-sum theo rem.  Tha t  i s ,  

we t r y  t o  show that ,  fo r  each x and each  nonzero y,  

This  i s  e a s y  t o  do. 

Another way to  prove (a) i s  to  use the 

we t r y  t o  show that ,  fo r  each x and each 

division theorem.  Tha t  i s ,  

nonzero y, 

C a r r y  out the proof yourself .  

Still  a t h i r d  way of proving (a) is to  use the -1 t i m e s  t heo rem.  
x x - Hint: -- = -1 - - - . . . . Finish th i s  th i rd  proof 
Y Y 

of ( a ) .  

T o  complete the proof of (*) ,  we need to  prove : 

P r o v e  this  in a t  l e a s t  two ways.  

EXERCISES 

A .  - The theo rem about the product of opposites i s  : 

T h e r e  is a n  analogous t heo rem for quotients. State i t  and prove it. 

E. Simplify by finding equivalent express ions  with fewer  minus s igns .  - 
- 3  Sample 1. - - - -7 

- 3  - 3 Solution. - - - - - . - 7 7 

(continued on next page) 



-x(a - b) Sample L. - 
-Y(C - d) 
-x(a - b) Solution. - 
- y k  - 4 

Answer. x(b - a) 
Y(C - dl ' [Y # 0 ,  c #  dl 

x(a - b) [An equally good answer i s  : m' fY # 0 ,  c # dl*]  

[part J of the Supplementary Exercises provides computational 

practice in simplifying fractions which do not contain pronumerals. ] 
4. 
'1" 

C. Simplify. - 



Answers  for Part B [which begins on page  2- 1031. 

(a - b)(d - c) 9. a t b  a t  b 1. [a # -bl 

Answers  for Part C [on pages 2-104 through 2-1081. 







p' 
lr,. -i 
h.. 

15. 5y. [ x /  01 16. 5ab. [a # 01 

18. %, [X # 0 # u] 19-  1. [ X Y ~  # 01 

21. -17. [a#O] 
4x 22. -, [xyz # 01 
Y 
3n 

24. -1, [a# 0] 25. - [mn# 01 m' 

5 ax 
27* m~ [b # 01 28. - [mp # 01 2~ 

- 18dr 4- 
30* 7 , [crs # 01 31. T ,  [XY # 01 

9d t 3e 

2x t 3 

-p - 2r 
u t v  - 
2 

lOxy - 14 

2y + z, [x # 01 

7q - 28 [ap # 01 
3, [x # -41 
-m - 7, [m#5] 



20 aab 16. - 4a 



Solution. 28 1 v8 3 - - 311 

Answer. -a + 15, [a # 51, or: 15 - a. [a# 51 



Students should see additional samples before going on with the exer- 
cises. [For one thing, their work on the previous exercises may 
otherwise lead them to make the common mistake of forgetting the 
denominator when simplifying a sum or difference of fractions. ] 

4x 5% 
Sample . - t -  3y 6 2  

Solution 1. 4x 5x - - t -  3y 6 2  

[Y # 0.  z ̂  01 

Solution 2. 4x 5x - ^ + 5 ?  







132. , [ x #  0  # Ys 3x-t 2Y # o ]  3x t 2y 

bc 
133' a(b + c ) '  

[abc(b t c)  # 01 

134. -1 135. 7/17 





[Z .  071 

5 6 Sample 3.  - - - - a - 2  a 

5 6 
Solution. - - - a - 2  a 1 

' [a # 2 ,  a / 01 

Answer .  l 2  [ a $  2, a t 0 1  (a - 2)a ' 

[More e x e r c i s e s  a r e  in -- P a r t  K, Supplementary Exerc i ses . ]  



Exercises 122 through 127 are  optional, of course. However, we 
anticipate that your better students will do them. It would be instruc- 
tive t o  ask them t o  justify their solutions by means of the basic prin- 
ciples o r  theor ems previously studied. 

Here is a solution for Exercise 122. 

\ mixed number theorem; x # 8 
5 x - 8 t 3  = -  + 
x x - 8  1 

ps, apa, and -8 t 3 = -5 
5 x - 5  - - - t- 
x x - 8  1 

addition of fractions theorem; 0 / x #  8 

Qdtrns, dtms, 5 8 = 40 
- - 5x - 40 + (xx - 5x) j 

x(x - 8) 1 

5 3 Hence, - + - + 1 =  xx - 40 
x x - 8  x(x - 8) 





Here i s  a solution for Exercise 124. 

6 =- 2 -7 t-t a - 3  a t 5  - 1  

addition of fractions 
theorem; -5 # a # 3 

. . 
dpma, 2 t -1 = 1, V  l x  = x, 

- - a - 11 -5 t -6 = -11, ps 
(a - 3)(a t 5) 

6 +---= 2 7 a - 11 Hence, - a - 3  a t 5  a - 3  ( a - 3 ) ( a t 5 ) *  

[The first  four steps in this derivation a re  worth noting. If one fol- 
lowed the convention "perform additions and subtractions in order 
from left to right" the test-pattern would be much longer.] 







There is a more extensive treatment of inequations in Unit 3. [See 
pages 3- 1 OOff . and the accompanying COMMENTARY . ] 

4 0  
*I9 

Students who wish to  prove the generalization in Sample 1 can proceed 
as  follows. 

x t 7 - x  

x t 7 t - x  

7 t x t - x  
1 :;a 

(x + y) t -y = x [ ~ h .  291 
= 7. 

So, since 7 is a positive number, x t 7 > x. 

Answers for Part A[on pages 2-109 and 2-1101. 

{For some exercises which deal with false generalizations we give be- 
low a related true generalization.] 

1. V x - 3 <  x. True. 

2. V 2x > x. False. [ V  if x > 0 then 2x > x. ] 

3. Vx X + 2 < x. False. [ V  if x > 0 then x + 2 < x. ] 

4. Vx x x > x .  - False. [Vx i f x >  - 1 or x < 0 then xx >x. ]  - - 
5. V X V  i f  y - x > O t h e n x -  y < 0 .  True. 

6. VxVy i f y  - x < O  thenx - y >  0. False. 

7. v v v  i f x > y a n d y > z t h e n x > z .  True. 
X Y Z  

8. V V V if x < y a n d  z < y t h e n x < z .  False. 
X Y Z  

9. V V V if y <  z t h e n x + y > x +  2. False. [More properly, 
X Y  = 'Nonsense '. ] 



2 . 0  8 Comparing . -  r ea l  numbers.  --In Unit 1 you learned a procedure 

for deciding which of two rea l  numbers  is the l a r g e r .  If you have a 

f i r s t  number and a second number and i f  you can get the f i r s t  number 

by adding a positive number to the second number,  which is the l a rge r  

number ? 

Suppose Rita  picks a f i r s t  number,  Rhoda picks a second number,  

and Rhoda subtracts  he r  number from Rita's. If the difference is a 

positive number,  who picked the l a rge r  number?  If the difference i s  

not a positive number,  who picked the l a rge r  ? 

We can summarize  this subtraction procedure for telling which 

is the l a rge r  number a s  follows: 

F o r  each x, for each y,  

(a) i f  x - y i s  a positive number then x > y, and 

(b) i f  x - y i s  not a positive number then x f y. 

EXERCISES 

A.  - Each of the following exerc ises  involves a generalization. In 

some cases  the generalization i s  t rue ,  in others  it i s  fa lse .  

F o r  each exerc ise ,  s ta te  the generalization in a concise way, 

and te l l  whether you think i t  is t rue  or  false .  

Sample - 1. If I add 7 to a f i r s t  number,  I get a second num- 

ber which i s  l a rge r  than the f i r s t  number.  

Solution. If you need to, you can t r y  a few examples to  

get the "feel" of the generalization. 

and 

and 

4 8 3  + 7 = "476 and -476 > -483 

The  generalization is : 

I think it's t rue .  - 



Sample 2. If I add a second number to  a f i r s t  number ,  I - 
get a th i rd  number which i s  l a r g e r  than the f i r s t  

numbe r . 
The generalization is : 

This  is fa lse ,  and here ' s  why. Add " 5  t o  G ;  you 

get 3 which i s  sma l l e r  than the f i r s t  number ,  8. 

If I sub t rac t  3 f rom a f i r s t  number ,  I get a second number 

which i s  sma l l e r  than the f i r s t  number .  

If I multiply a f i r s t  number by 2, I get a second number  

which is l a r g e r  than the f i r s t  number .  

If I divide a f i r s t  number  by 2, I get a second number  which 

is s m a l l e r  than the f i r s t  number .  

If I multiply a number  by i t se l f ,  I get the s a m e  or  a l a r g e r  number. 

If I sub t rac t  a f i r s t  number f rom a second number  and get a 

posit ive difference,  I would get a negative difference i f  I 

r eve r sed  the o r d e r  of subtracting.  

If I sub t rac t  a f i r s t  number  f rom a second number  and get 

a nonpositive difference,  I would get a positive difference 

if I r eve r sed  the o r d e r  of subtracting.  

If a f i r s t  number  is g rea t e r  than a second number ,  and the 

second number is g rea t e r  than the th i rd  number ,  then the  

f i r s t  number is g rea t e r  than the th i rd  number .  

If a f i r s t  number is l e s s  than a second number and a th i rd  

number  is l e s s  than this second number ,  then the f i r s t  

number  is l e s s  than the th i rd  number .  

I divide a f i r s t  number by a second number ,  and I a l so  divide 

the f i r s t  number  by a th i rd  number .  If the second number i s  

l e s s  than the th i rd  number ,  the f i r s t  quotient is g rea t e r  than 

the second quotient. 





Answers for Par t  B. 

1. T 2. T 

6. F 7. T 

11. T 12. F 

16. F 17. F 

We have given no basic principles from which students could derive 
theorems concerning absolute values. Using * I.. . * as an abbrevia- 
tion for ' " " I . .  . 1 '  we could take for such a basic principle: 

V (if x - > 0 then 1x1 = x and i f  x < 0 then 1x1 = -x). 

Quiz. - 
1. Which of the expressions given below i s  equivalent to * 1-9 - -1 3 I * ?  

2. Which of the following statements is t rue?  

3. V if x < 0 then 

(a) x t  1x1 > x - x  (b) 1x1 <-x 

1 
(dl - < 0 

1 
(el ; < x 

:;: 
Answers for Quiz. 

[we give the letter which identifies the correct choice.] 

1. (el 2. (c) 3. (dl 



12. 081 

B. T r u e  o r  false  ? 

x x 1 > x. [An instance of this generalization is : 1-5 1 > -5 - 
T o  make sense out of this statement,  we must assume  that 

' 1-5 1 * is being used as an  abbreviation for ' ""1-5 1 '. See Unit 1, 

page 1-110.1 

vxvy XY 5 1x1 ly l .  

V 0 x 1  = 1x1. x 

v -1xx.I = x e - x .  
x 

V jx(-x)j  = x x .  x 

v v  l x + y I  = ! X I +  I Y I .  
X Y  

v v lx + Y I  < l x l  + I Y I .  
X Y  

v v I x - y l 5  1x1 - I Y I *  x Y 

V V V V i f x >  y a n d u >  v t h e n x + u >  y t v .  x y u v  

V V V i f x >  y t h e n x t  z >  y t  z .  
X Y  

V V V i f x  + z >  y + z t h e n x >  y. 
X Y Z  

V V V i f x >  y t h e n x z >  yz. 
X Y Z  

V V V if xz > yz then x > y. 
X Y Z  

v 1 1 
x # o v Y # o  

i f  x >  y then - < -. 
x Y 

v v v x y z >  0 i f  y < x then yz < xz. 

vxvyvz < 0 i f  x > y then x z  > yz. 

vxvy > 0 lxyl i> -XY. 

v v 4 -xy. x < o  y > o  lxyL 
V V i f x > y t h e n x - y > 0 .  

X Y  
- 
1 1 

vx > 0 i f  - > 2 then x < - . x 2 



MISCELLANEOUS EXERCISES 

A. F o r  each open sentence, tell  what value of the pronumeral can - 
be used to generate  a t rue  sentence. 

B. F o r  each of the following expressions,  write three expressions - 
which a r e  equivalent to i t .  





Answers for MISCELLANEOUS EXERCISES. 

16. -13 
1 

17. 15; 18. 7 19. none 20. 8, -2 

B. [For each exercise, we list three expressions which are equivalent - 
to the given ones; these are not the only ones which could be written. 
Your students will doubtless suggestothers. You may need to 
review the description of equivalent expressions which i s  found on 
page 2-49. ] 





C. [The numerals given here name the numbers 9 ,  12, 14, 17, 18, - 
49, -3,  -12, and -14.  W e  use the simplest names a s  column 
headings, and under each of them give the other numerals which 
name the same number .] 





Answers for Part B, continued. 

13. 2x + 2. This is not equivalent to the given expression because 
1 is a counter-example. If I substitute '1' for 'x* in both expres- 
sions, the given expression has the value 3 and the expression I 
wrote has the value 4. 

[The explanation given as  the answer for Exercise 1 3 i s  the kind of 
argument a student should give in each case to  establish the fact that 
the expression he haswritten is not equivalent to the given one. For 
the remainder of the h s w e r s ,  we merely give an expression which 
is not equivalent to  the given one, and we give values of the pro- 
numerals which wi l l  yield different values for the two expressions.] 

14. 3y + z; substitute '1' for 'y* and '0' for '2 ' .  

15. 4k; substitute '0' for 'k*. 

16. lost; substitute '2' for 's* and '2' for 't*. 

17. xx; substitute '2' for 'x'. 

18. 7x; substitute '2' for 'x*. 

19. 3y; substitute '2' for 'x* and '1' for 'y'. 

20. 7xxy; substitute '2' for 'x* and 'I* for 'y*. 



F o r  each  of the following p ronumera l  express ions ,  wr i t e  - one 

exp re s s ion  which contains the s a m e  p ronumera l s  but which is 

not equivalent  to  i t ,  and p r o v e  that  they a r e  not equivalent. - - 
1 3 .  2 x +  1 1 4 .  3yz 

15. 6 k - 2  16. 7 s  x 3t  

C. R e a r r a n g e  t he se  numera l s  into columns with a l l  n u m e r a l s  f o r  - 
the  s a m e  number  in  the s a m e  column. 

5 X 2 t 4  9 x 1 - 6 x 2  23 - 2 . 3  7 + - . 5  



D. State the generalization involved in each of the following descriptions - 
and prove it. 

San~p le .  If I m u l t i p l y a f i r s t n u m b e r  by itself a n d a d d  the f i r s t  

number to this product, I get the same resu l t  I would 

have gotten if I had multiplied the f i r s t  number by a 

number which i s  1 m o r e  than the f i r s t  number.  

Solution. [I t r y  a special  case  f i r s t  to get the "feel" of 

this generalization. 

The generalization i s :  

Proof . 

1 .  The square  of the double of a number i s  4 t imes the square  

of the number.  [The square  of 7 i s  49, of 8 i s  64, of -3 is 9; 

the double of 3 is 6, of 1 5  i s  30, of -4 i s  -8.1 

2 .  The product of the opposites of two numbers  i s  the product 

of the two numbers.  

3 .  If I subtract  8 t imes a f i r s t  number f rom 13 t imes  the f i r s t  

number,  I get  5 t imes  the f i r s t  number. 

4. Pick a number. Multiply i t  by 10. Add the number you 

s ta r ted  with. Divide the sum by 11. What number do you 

g e t ?  

5 .  Pick a number. Add 9 to i t  to get  a second number. Subtract 

9 f rom the f i r s t  number to get  a third number. Take the average 

of the second and third numbers .  What number do you ge t?  



2. VxVy - x 0 - y s  xy [This is Theorem 23.1 

= (5 t 8 t -8)x ^ 
apa 

= [5 t (8 t -8)]xJ 

= (5 t 0)x f PO 
= 5x. 

pa0 







= ( x *  2 )  + 2  

= X. 

Th. 64; 2 # 0 t 

y t - x  

y - x .  





. - 
LJ'J 11. Students should see that here [and in Exercise 121 they would be 

foolish to t r y  to state the generalization. But thinking about these 
exercises may lead them to the solution suggested for Exercise 10. 
[You may tell students that when they study mathematical induction 
in a year or s o  they will discover easy ways of stating and proving 
generalizations such as  these.] The sum of the numbers i s  the 
number of numbers multiplied by the average of the first and last,  
or  it  is half the number of numbers multiplied by the sum of the 
first and last .  

[Note that phrases like 'exceeds' and 'decreased by* already have 
connotations which refer to numbers of arithmetic. In order to 
conform to conventional terminology, we introduce these words in 
Exercises 4 - 10, and 14 in connection with real  numbers. Students 
will have to extend the meanings of these words to the point where 
it makes sense to say that -6 exceeds -5 by -1.1 







I decrease  each of a f i r s t  number and a second number by 

a third number to get  a fourth number and a fifth number,  

respectively. The difference of the fourth number f rom 

the fifth number i s  the difference of the f i r s t  number f rom 

the second number. 

I subtract  a f i r s t  number f rom a second number,  and then 

subtract  the second number from the f i r s t  number.  Then 

I pick a third number and multiply i t  by each of the differ - 
ences.  The sim of these products i s  0.  

1 multiply a f i r s t  number by a second number which i s  3 

l e s s  than the f i r s t .  I multiply the f i r s t  number by a third 

cumber which i s  3 m o r e  than the f i r s t .  1 add the products 

and get  twice the square of the f i r s t .  

The sum of the reciprocals  of two numbers i s  the sum of 

the numbers divided by their  product. 

Pick a f i r s t  number. Add 1 to i t  to get a second number.  

Add 1 to the second number to get a third number. Add 

1 to the third number to get a fourth number. Keep this 

up until you get a tenth number. The sum of the ten num- 

b e r s  i s  5 t imes the s c m  of the f i r s t  and tenth numbers ,  

Continue the process  of adding 1 in Exerc ise  10  until you 

get  a thousandth number.  The sum of the thausand numbers 

i s  500 t imes the sum of the f i r s t  and thousandth numbers.  

Continue the process  of adding 1 in Exerc ise  10 until you 

get  bored. What i s  the sum of the numbers you ge t?  



[MISCELLANEOUS ExETGISES] 

E. Complete each sentence to a t rue  one by writing the s implest  - 
expression you can in the blank. 

F o r  each x, the sum of 2x and 5 is 

F o r  each y, the product of 5 by 3y i s  

F o r  each x, the difference of 7 f rom x t 7 is 

F o r  each x, x t 7 exceeds 7 by 

F o r  each x, 3x exceeds 2x - 1 by 

F o r  each a ,  for  each b, 3a t 2b exceeds 5a - 6b by 

F o r  each x, x decreased by 5 is 

F o r  each xp  7x decreased by 7 i s  

F o r  each x, x increaszd by 9 i s  

F o r  each x, 5x increased by 3x - 2 i s  - - 
F o r  ezch x, for  each y, for  each z, the s u m  of 5x - 4y t 62 

and - 3 x t  2y - 2 z i s  

F o r  each x, the product of 3x by the sum of 4x t 1 and 

1 - x i s  
- -- 

F o r  each x, fo r  each  y, for  each z,  the difference of 

x - y t  1 f rom the sum of x t  z t 1 and x t y t 1 i s  

F o r  each x, for  each y, 3x - 2y exceeds 2x + 5y by 

F o r  each x, the difference of ihe product of x t 9 by x 

f rom the product of x t 1 by x is 

F o r  each a, for  each  b, the clifference of 

f rom 3a - 2b is 2a - 3b. 

F o r  each x, f o r  each y, f o r  each z # 0, the quotient of 



For  each a,  for  each b # 0, the quotient of ab + b by b 

i s  

F o r  each 0 , f o r  each 0 , the sum of 3 # i- 5 0 and 

1 F o r  each  m f  for  each n, the product of 15m t 10n by -m 
5 

i s  

F o r  each 0 , fo r  each v , the difference of 

4 5  0 - 9 - 1 5  v frorn 3  t 12 + 0 - 18 i s  

F o r  each r f  f o r  each t # 0, the quotient of 6 r t  t 4t - 2r t  t 2r  

F o r  each a ,  13a increased by 9 t 14a i s  

3 
F o r  each x # 0, the sum of - and - i s  

x 7x 

5 
F o r  each x other than 2 and 3 ,  the sum of - 7 

and - 
x - 2  x - 3  

3 2 9 
F o r  each a other than 2 and - the difference of - 

Q 3 2a - 3 
< J  

frorn - 3a - 2 is 

F o r  each x # 0, f o r  each y O f  for  each z # 0, the product 

3 4 F o r  each  x # 0 and # the quotient of - - - 1 1  
5 x b y G - 7  



F. Rearraage these numerals into columns with all numerals for - 
the same number in the same column. 



I?. [The numerals given here name the numbers 5 - and--  - 5 ,  3 ,  5 ,  3 .  

W e  use the simplest names as  column headings, and under each 
of them give the other numerals which name the same number .] 







5. (a) 0 

6. (a) T 



[MISCELLANEOUS EXERCISES] 12-1 191 

G. 1. Which of the following numerals  name the opposite of - 6 ?  - 
(a) --6 (b) +6  (c)  -(7 - 13) 

(d) - 3 X - 2  (e) -1 x -6 ( f )  - 1 ~ - 2 ~ - 3  

{g) - 1 X 2 X -3  (h)  1 X 2 X - 3  ( i )  2 x 3  

-18 
( m )  7 (n) ( 5  - 3) X ( 5  - 2) 

3 
2. Which of the following numerals  name the reciprocal  of -- ? 

8 

3. Which of the following numerals  name the opposite of (6  - 3 + 7 ) ?  

(a) -(6 - 3 + 7) (b) -6 + 3 - 7 (c )  -6 - 3 +  7 

(d)  - 1 ~ ( 6 - 3 + 7 )  (e )  6 + 3 - 7  ( f )  ( 6 - 3 + 7 ) + - 1  

3 - 8  4. Which of the following numerals  name the opposite of -7 
-2 + 7 .  

(a) -1 X 
3 - 8  3 - 8  + -1 8 - 3  

-2  + 7 (b) -2 + 7 (c )  -2 + 7 

3 - 8  
( j )  -1 x (-2 + 7) (k )  - l x  -2 + 

3 - 8  

5. ( a )  Which number i s  i ts  own opposite? 

(b) Which number i s  i ts  own reciprocal?  

(continued on next page) 



[MISCELLANEOUS EXERCISES] 

T r u e  o r  f a l s e ?  

(a) If you mul t ip ly  a number  by - 1, the product  is the 

opposite of the given number .  

(b )  If you divide a number  by-1, the quotient is the 

r ec ip roca l  of the given number .  

( c )  If you divide a number  by-1,  the quotient is the 

opposite of the given number .  

(d )  If you divide -1 b y  a nonzero number ,  the quotient is the 

opposite of the r e c ip roca l  of the given number .  

( e )  If you divide - 1 by  a nonzero number ,  the quotient i s  the 

r e c ip roca l  of the opposite of the given number .  

H. Evaluate  e ach  of the following p ronumera l  exp re s s ions  using the - 
given va lues  of the p ronurnera l s ,  Answer s  should be  i n  s imp le s t  

f o r m .  

Solution. - 

n 
,[2a + ( n  - l ) d ] ;  '20  ' f o r  ' n  ', '6 ' f o r  'a ', ' 45  ' f o r  ' 6 '  

rQ - a --. 
r - 1 '  ' 2 ' f o r  ' a ' ,  ' 1  ' - f o r  ' r ', '2' f o r  ' 1  ' 2 512 

a -. 
1 - r '  

' 1 . 0 4 ' f o r  ' a ' ,  ' . 0 1 ' f o r  ' r '  

2 r r ;  ' 1 3 ' f o r  ' r '  1 6. 5-rC; ' 5 ' f o r  ' r ' ,  ' l O f f ' f o r  ' C '  

r r r ;  ' 7 ' f o r  ' r '  1 8. zbh;  '14 ' f o r  ' b  ', ' 6 '  f o r  ' h '  



In some of the expressions which follow, you will s ee  pronumerals  

like 'd ' and 1 'd2'. The sma l l  numerals  written a t  the lower right of 

the le t te r  a r e  called subscripts ,  and they a r e  used to indicate that 

' d l *  and 'd ' a r e  different pronumerals.  [Read ' d l '  and 'd2'  a s  
2 

'dee sub one' and ' dee sub two'. ] 

Using subscripts  enables you to manufacture an  unlimited number 

of pronurnerals f rom just one le t ter .  They a r e  especially helpful in 

writing and remembering formulas .  F o r  example, the formula: 

can be used to compute the per imeter  of a trapezoid. 

The values of ' s l  ' and ' s 2  a r e  the measures  of the nonparallel s ides ,  - 
and the values of 'b  ' and 'b2' a r e  the measures  of the bases .  

1 

h(bl + b2) 
12. 2 

; ' 3 ' f o r  ' h ' ,  ' 6 ' f 0 1 =  'b17, ' 1 5 ' f o r  'b2' 

13. s ( s  - a ) ( s  - b)(s  - c ) ;  ' 15' for  ' s  ', '5 '  for  'a', '12' for ' b '  '13' for  ' c '  

14. rrr(1 + r) ; '4' for  ' r  ', ' 12' for  '1' 

1 15. -Tr r rh ;  ' 7 . 5 '  for  ' r * ,  ' 8 . 3 '  for  ' h '  3 

(continued on next page) 



[2-  1 221 [MISCELLANEOUS EXERCISES] 

1 
16. ^(P, + P,).!; ' 19' for 'P., ' 28'  for 'P2', '6 '  for  ' 1  ' 

18. aa + bb + c c  ; '1. 5' f o r  'a', '2 .0 '  fo r  'b' ,  '3 .5 '  fo r  ' c '  

19. 2(ab + ac + b c ) ;  ' 2 .1  ' for  'a', ' 3 . 4 ' f o r  ' b ' ,  ' 4 .2 '  for  ' c  ' 

E r 
20. 47rrr -; '36' fo r  'E  ', ' 2 '  for  ' r  ' 3 

h 21. ,(B ,+ B, + 4M) ; ' 7 .1  ' for  ' h  ', '20.3 '  fo r  'B,, '31.2'  fo r  'B2' ,  

'28.1 '  fo r  'M'  

22. a a  t bb + Zabc ; '5 .1 '  f o r  'a  ', ' 3 .2 '  fo r  ' b  ', '0 .87'  for  ' c  ' 

k r  23. Ã‘ ' 1 . 3 ' f o r  ' k ' ,  ' 6 . 2 ' f o r  ' r ' ,  ' Z ' f o r  ' t '  



[MISCELLANEOUS EXERCISES] [2-1231 

1 25. v t + -att ;  '3 '  f o r  'v  ' '20' fo r  'a ' ,  '5' for  ' t '  
0 2 0 '  

26. r t2 ; ' 9  ' for  'r ' ,  '50 ' fo r  'k2', '80' for  ' l z19 ,  '3 '  f o r  ' t '  

m m 
1 2  27. G - ; '0.0000000666' f o r  ' G  ', '250000' for  'ml ' ,  
dd 

'8700000' for  'm2', ' 20' fo r  'd ' 

28. m a + R v ;  ' 41 ' fo r  ' m ' ,  ' 25 ' fo r  ' a ' ,  ' 0 . 1 2 ' f o r  'R', ' 38 ' fo r  ' v '  

vv 29. m a - -  
r '  ' 9 4 ' f o r  ' m ' ,  ' 2 7 ' f o r  'v ' ,  ' 6 ' f o r  ' r '  

1 1  
30. - +  - ;  ' 8 ' f o r  ' p '  and ' 1 2 ' f o r  ' q '  

P q 

1 
31. - -  

1 1 '  ' 7 ' f o r  ' p '  and ' 3 ' f o r  ' q '  
- +  - 
P q 

32. a ' 7 ' f o r  ' p '  and ' 3 ' f o r  ' q '  
P + q '  

33. 
I ' 10' fo r  ' r,', '20' f o r  ' r2'# ' 1.0'  fo r  ' t ', m ( r l  + r2) - t (m - 1) ' 

' 1. 5' fo r  'm'  



I. Complete each sentence to a t rue  one by writing the s implest  - 
expression you can in the blank. 

1. (a) If eggs cos t  60 cents  a dozen, 3 dozen eggs cos t  

cents.  

(b) F o r  each  x > 0, if eggs cos t  60 cents a dozen, x dozen 

eggs cos t  cents. [Why ' F o r  each  x > 0, ' instead 

of just ' F o r  each x, ' ? ]  

(c )  F o r  each x > 0, if eggs cost  60 cents a dozen, x eggs 

cost  cents.  

(d) F o r  each  x > 0, if eggs cos t  60 cents  a dozen, (x + 3) 

dozen eggs cos t  cents.  

2 .  (a) F o r  each x > 0, if one pencil costs  2 cents,  x pencils 

cos t  cents. 

(b) F o r  each x > 0, if one pencil costs  3 cents,  x t 5 pencils 

cos t  cents. 

(c )  F o r  each x > 0, if a dozen pencils cost  30x cents then 

2 pencils cos t  cents. 

(d) F o r  each  x > 0, for  each y > 0, i f  3 pencils cost  y cents  

then x pencils cost  cents. 

3 .  (a)  F o r  each x > 0, the per imeter  of a square  with one side 

2x units long is 

(b) F o r  each y > 0, the per imeter  of a square  with one side 

(3y t 7) units long i s  -- 
(c )  F o r  each x > 0, f o r  each y > 0, the per imeter  of a square 

with one side (3 $y} units long is 

4. (a) If there  a r e  100 sheets  of paper in a pile 1 inch thick, 

there a r e  sheets  of paper in a pile 9 inches thick, 

and 575 sheets  in a pile inches thick. 
4 

<b) F o r  each x > 0, if there  a r e  75 sheets  of paper in a p i l e  

1 inch thick then there  a r e  sheets  of paper in a 

pile 2x inches thick. 



The quantifying phrases in the generalization sentences of Part  I 
indicate that the generalizations refer to real numbers. Strictly 
speaking this i s  not correct. The generalizations are  about numbers 
of eggs, numbers of pencils, distances, lengths of segments, etc., 
and these are  [cardinal numbers and] numbers of arithmetic rather 
than real numbers. [See bracketed note at bottom of page 2-45.] So, 
for example, the proper quantifying phrase in Exercise l(b) is : 

For each number of arithmetic x > 0, . 
['x > 0' instead of just 'x' because one wouldn't ordinarily concern him- 
self with the price of 0 dozen eggs. ] As it now stands, the generaliza- 
tion in Exercise l(b) refers to the positive real numbers. An instance 
of the correctly completed generalization is: 

if eggs cost 60 cents a dozen, *4 dozen eggs cost 60 -*4 cents. 

To make sense out of this, one would translate this to: 

if eggs cost 60 cents a dozen, 4 dozen eggs cost 60 - 4  cents. 

You may want to make a brief mention of these matters in class. 
We make more of this in Unit 3. 

(d) 60(x t 3) 

(b) 3x t 15 (c) 5x (d) 2? 
8x (b) 4 ( 3 ~  + 7) ( c )  5 t 2x 

900,5+ (b) 150x (c) 300aabbc (d) 7 125x 

21k (b) 3 t t t 4 t t 6  

a lox t 8 (b) 2x (c) 4x + 8 (d) y + 4b (e) 2 

45 (b) 15x (c) 12x (4 26 

3 ~ - 1 2  (b) 6 x - 9  ( c )  3 x - 2 8  (d) 4tr 

50abc 4x t 5 144 (b) 2.4xy (c) (d) 7 (4 Ã‘SE 
35x (b) 90x t 195 (c) Y + 1 





( c )  F o r  each a > 0, fo r  each b > 0, fo r  each c > 0, if there  are 

20ab sheets  of paper in a pile 1 inch thick, there a r e  

shee ts  in a pile 15abc inches thick. 

(d) F o r  each x > 0, for  each y > 0, if there  a r e  125 sheets  of 

paper in  a pile y inches thick then there a r e  sheets  

of paper i n  a pile x inches thick. 

5. (a)  F o r  each k > 0, the per imeter  of an equilateral  tr iangle with 

one side 7k units long i s  

(b) F o r  each t > 0, i f  the per imeter  of an equilateral  tr iangle i s  

9tt t 12t t 18, one of i t s  s ides  i s  units long. 

6. (a) F o r  each  x > 0, the pe r ime te r  of a rectangle whose dimensions 

a r e  3x units by 2x t 4 units is 

(b) F o r  each x > 0, if the per imeter  of a rectangle is 18x t 4, and 

if two of the s ides  a r e  each (7x t 2) units long, then each of 

the other two sides  is units long. 

( c )  F o r  each x > 0, f o r  each y > 0, if one dimension of a rectangle 

i s  (2y + 4) units and the per imeter  is 4[2(x + 3) t Y], the other  

dimension i s  units. 

(d)  F o r  each a > 0, for  each b > 0, the per imeter  of a rectangle 
a whose dimensions a r e  - units by 2b units i s  
4 

(e )  F o r  each x > 0, the per imeter  of a rectangle whose dimensions 
x 

a r e  2 units by 4x units i s  t imes the per imeter  of one 
x whose dimensions a r e  units by 2x units. 4 

5 
7. (a )  If a c a r  t ravels  1 mi le  in - minutes, i t  will t rave l  30 mi le s  2 

a t  this r a t e  i n  minutes. 

3 
(b) F o r  each x > 0, if a c a r  t ravels  1 mi le  in - minutes,  i t  will 

2 
t rave l  lox  mi le s  a t  this r a t e  in minutes.  

3 
(c)  F o r  each x > 0, if a c a r  t ravels  1 mi l e  in - minutes,  i t  will 2 

t ravel  mi l e s  a t  this ra te  in 18x minutes. 

x 
(d)  F o r  each x > 0, if a c a r  t ravels  13x mi le s  in -y minutes,  i t  

will t rave l  -- miles  a t  this r a t e  in 1 minute! 

(continued on next page) 



8.  (a) For  each x > 4, if a side of an equilateral triangle i s  (x - 4) 

units long, the perimeter i s  . [Why 'For  each x 7 4, 7 

instead of ' Fo r  each x > 0, ' ? I  
(b) Fo r  each x > 2, if a side of an equilateral triangle i s  (2x - 3) 

units long, the perimeter is  

28 
(c) For each x > - if a side of a square i s  (2 - 7) unite long, 3 ' 

the perimeter i s  units. 

(d) For each t > 0, for each r > OD i f  the perimeter of a square 

i s  16trn a side of the square is units long. 

9. (a) If amanborrows$l2OOatanamualinterest rate of 3%, the 

total simple interest due a t  the end of 4 years is 

dollars. 

(b) For  each x > 0, for each y 7 0, if a man borrows 30% dollars 

a t  an annual interest rate of 4701 the total simple interest due 

a t  the end of 2y years i s  dollars. 

( c )  For each a > 0, for each b > 0, for  each c > 0, if ,a man 

borrows 15a dollars a t  an annual interest rate of b%# the 

total simple interest due a t  the end of 6c years i s  

dollars . 
(d) For each y > O D  for each z > 0, for each a > 0, for each 

b > 0, for each c > 0, if a man borrows dollars at 

an annual interest rate of 4y%, the total simple interest due 

at the end of 32 years is  6abc dollars. 

(e) For each x > 0, for each y > 0, if a person borrows x dollars 

at 4% per annum and y dollars a t  5% per annum, the total 

simple interest due on these two loans a t  the end of 2 years 

i 6 dollar 6 .  

10. (a) For  each x > 0, a pile of coins consisting of x nickels and 

3x dimes i s  worth cents. 

(b) For  each x > Ol  a pile of coins consisting of 2x nickels, 

(3% + 2) dimes* and (2x + 7) quarters is worth cents. 

(c) Fo r  each y > 0, a pile of coins consisting of nickels, 

(7y t 2) dimes, and (5y t 3) quarters is worth (2OOy + 100) cents, 





$24.3475 [or : $24.353 

This problem gives insufficient data to make it possible to 
answer the question asked. 

42 miles per hour 

143 hits 

$81.59 [The wording of this problem makes it possible to 
interpret it in more than one way. A more precise statement 
of the problem we intended is 'If Mrs. Smith buys a sofa 
whose original marked price was $99.50 at a discount of 1890~ 
how much does she pay for the sofa?'.] 

45 t 5 . 8 ~  [If 3.14 is used as an approximation for xJ the 
circumference of the outer edge of the sidewalk is approxi- 
mately 63 feet.] 



[MISCELLANEOUS EXERCISES] [2-1271 

J. True  o r  f a l se?  - 

K. Solve these problems. - 

1. A television s e t  i s  advert ised fo r  $97. 39. If the s e t  cos ts  

the s to re  7570 of this pr ice,  what i s  the s tore ' s  marg in?  

2 .  A recipe includes 2 cups of sugar ,  3 tablespoons of citron, 

2nd a pinch of salt .  If the recipe i s  to be increased to take 

c a r e  of 8 people, how many m o r e  cups of sugar  will be needed'? 

3 .  A t r a i ~  t ravels  f rom station A to station B in 2 hours and. 

20 minutes,  If the d i s t a c e  between the two stations i s  97 

mi le s ,  what i s  the average ra te  of the t r a in?  [Round to the 

nea res t  mi le  per  hour. ] 

4. A baseball  player's batting average a t  the end of a season is 

. 302. If he was "at  bat" 473 t imes during the season, how 

many hits did he g e t ?  

5. Mr. Alexander has a $15, 000 life insurance policy. If the 

annual premium ra te  i s  $1 1.47 per  thousand dol lars  of 

insurance,  what i s  his annual premium ? 

6 .  If Mrs .  Smith buys a sofa selling a t  $99. 50 a t  a discount of 

18%, how much does she pay for  the sofa? 

7. How many hours of baby sitting a t  55 cents per  hour will i t  

take to accumulate $1 3.75? 

(continued on next page) 



Mrs .  Ashton buys a radio selling a t  $112. She give$ $20 a s  

a down payment, and ag rees  to pay $8.25 each month for  a 

year.  How much i s  she paying for  the privilege of buying the 

radio on the installment plan? 

A cement sidewalk i s  placed around a flower bed. If the 

flower bed has a circumference of 45 fee t  and the sidewalk 

i s  2 . 9  feet wide, what i s  the circumference of the outer edge 

of the sidewalk ? 

If the wholesale pr ice of an ar t ic le  i s  75% of the retai l  pr ice,  

what percent of the wholesale pr ice is  the retai l  p r i ce?  

L. [ ~ a k e  a careful sketch for  each problem. ] - 
What i s  the per imeter  of a rectangle whose smal le r  dimension 

i s  3 units and whose l a r g e r  dimension i s  3 units m o r e  than 

3 t imes  the sma l l e r  dimension? 

A semic i rc le  i s  drawn on each side of the rectangle in Exer -  

c i se  1 and the s ides  of the rectangle a r e  e ra sed  leaving a 

figure with four bulges. What i s  the per imeter  of this f igure? 

What i s  the per imeter  of a parallelogram if each of i ts  longer 

s ides  m e a s u r e s  2 m o r e  than either of i t s  shor te r  s ides ,  and 

if the measure  of o r ~ e  of i ts  s h o r ~ e r  s ides  i s  1 l e s s  thail the 

average of the measures  of the four s ides?  

The measure  of one of t5e longer s ides  of a rectangle i s  

3 .  5 t imes the measure  05 one of the shor t e r  s ides .  The 

sum of the measures  of the four  s ides  i s  6 t imes  the m e a s u r e  

of a shor t e r  side. What is the pe r ime te r?  

The midpoints of the four  s ides  of a square a r e  connected to 

f o r m  another square.  If the per imeter  of the sma l l e r  square  

i s  8, est imate the  per imeter  of the l a r g e r  square.  



Perimeter : 30 w Perimeter: 1% 

3. An infinite number of parallelograms would have sides whose 
measures agree with the conditions of the problem. Here a re  
pictures of some of them. 

SO, it is impossible to  determine the perimeter, since the 
information does not refer to a particular parallelogram. 

The data given in this problem are  inconsistent since, i f  the 
measure of each of the longer sides is 3.5 times the measure 
of one of the shorter sides, the sum of the measures of the 
four sides would be 9 [and not 61 times the measure of a 
shorter side. [But, even i f  one were given these consistent 
data, it would be impossible to  compute the perimeter since 
they would not be sufficient. ] 

Perimeter of larger square is 
approximately 11.3 

Students wi l l  probably estimate 
that the perimeter i s  "between 
10 and 12". 







3A 

11A 

4c t 2d 

l lx  - 5 

4 0 0  
15e t 3 

3p t n 

0 

7 - r 

7c t 8d 

2~ 
3 

8a 

3d - 19 

7r - 7 

9 - 5a 

12d - 21 

2n t 8 

7x 

5x 

300  

4u t 6y 

3h t 4j 

16r 

2 

l lx  - 6 

7x  - 8y 
7 0  

9x  

0.711 t 0 . 7  

2j t 2 

7s  - 8 

4e - 2 

5g - 5 

2m - 4 



[MISCELLANEOUS EXERCISES] 

M. Simplify. - 
1 .  A t 2 A  

3 -  A t A t D  
5. 5A t 6A 

7 .  5 0 - 3 0  - 2 0  8 .  1 5 x +  l l x  

16. 16 t 6y - 1 3 +  2y 

18. 6 u + 4 y -  2 u + 2 y  

20. 5x t 4x t x 

22.  2 h + 3 j t h t j  

24. 4a t (9a t 3) 

26. 9r  t l o r  - -5r 

28. 8 t [5 + (6  - a)] 

44. 2 ( b - 1 ) - b  

46. 4 x t 7 x - 2 x  

48.  8 t 6 g - 5  

(continued on next page) 



lOd - 7d - 19 

8 - 9t t 3t 

l l r  - 7 - 4 r  

7 f - 4 t f  

9 t a - 6 a  

2 r  t (5  - r) 
13d - ( d t  21) 

73 t 2 - 5 j  

2p - 5 t 8p 

2s - 8 t 5s 

13 - 5 k t 7  

2e - 2 t 2e 

5x - (Zx t 3) 

3g - (5  - 2g) 

92 - (32 - 6) 

3m t 4 - (m t 8) 

7t - {-t - 9) 

a(3a t 3b) - b(a t 2b) 

2(5r - 5 r )  t 3{3r t 3s) 

5(2x t 2) + x(3x - 3) - 3xx 







[MISCELLANEOUS EXERCISES] 



TEST 

I. In these exerc ises  make the substitutions indicated and tel l  

whether the resulting sentence is t rue  or false. 

'-1' for  'a' '4' for  'b' 

'-3' for  ' c '  - ' -\ ' for  'r9 

'2' for y '  ' 

11. In these expressions make the substitutions l isted below and 

simplify the resulting numeral .  

'2'  for 'x' '4' for 'z  

'-3' for ' y '  '0'  for 'a' 

U s e  single quotes to  punctuate the following paragraph s o  that 

i t  makes  sense .  

I wanted t o  have a dog as a pet because a dog i s  

a nice animal for a pet.  But I could not have a dog 

for a pet, because a dog is not and cannot be a pet. 

A dog i s  not even an animal.  If I had a dog for a pet, 

I could have a lot of fun playing with i t .  But I could 

not even walk a dog! 



Answers for TEST. 

111. I wanted to have a dog as  a pet because a dog is a nice animal 
for a pet. But I could not have a 'dog* for a pet, because a 'dog* 
is not and cannot be a pet. A *dog* is not even an animal. If I 
had a dog for a pet, I could have a lot of fun playing with it. But 
I could not even walk a *dog'! 

IV. 1. 4y 2. 4 x t 2  

4. -4a - 8 5 5. - x - y  2 

nnn 
9 =  7 

13. 13b, [a # 01 14. 22bc, [a # OJ -2 15. - 2u ' [abxyu / 01 

18. 
5n - 4 

2n [n#OI 9 m, [abed # 01 
20. 6c, [c#O]  21. 2 x - 7  22. 15x - 4, [aq # 01 





[TEST] 

IV . Simplify. 

1 \ 
(3") (3 ( in)  

a t b  3 a t b  
17. -- - 

2 5 

4aq - 15 aqx 
2 2 .  

-aq 



V .  In these exercises, write in each 

not @ its name] which justifies LÃ -- 
blank. the 

the step. 

[TEST] 

principle or theorem 

1. V V V (y  + x ) z  = xz + yz. 
X Y  

xz t y z .  1 

2. V V V  x t y - z = ( y - z ) t x .  
X Y Z  

x t y - z  -> 



VI. (1) 

(6) 

VII. 1. 





VI. In each blank at  the right, indicate with a 'T* or an 'Fa whether 

the statement is true or false. 

Fo r  each x, +x is a positive number. (1) 

For  each a ,  a = "^la 1 .  ( 2) 

For each x, for 'each y, the product (3 )  

of x by y i s  xy. 

For  each c,  for each d, c -d < 0. - (4) 

For  each Q , for each ^\ , i f  

a + A =  0, then = - A .  

For  each m, for each n, -m * -n = mn. (6)  

F o r e a c h x ,  f o r e a c h y ,  I x t y l  - > 1x1 < I y ] .  (7) 

For  each r ,  for each s ,  rs > 0. (8) 

For each m ,  8m + m = 8mm. 

For each s ,  for each t ,  -(t - s)  = s - t .  ( 10) 

VII. Examine the pairs listed below, and put a ' y ^ '  in the blank 

alongside each one whose f irst  component is greater than or 

equal to its second component. 



[TEST] 

VIII.  1. List 3 p a i r s  of r e a l  number s  which belong to the operation 

mult iplying by -2.  

2 .  List 3 p a i r s  of r e a l  number s  which belong to  the operat ion 

which is the i nve r se  of adding '5. 

3 .  Lis t  3 p a i r s  of r e a l  n u m b e r s  which belong to the operat ion 

mult iplying by zero  . 

4.  Lis t  3 p a i r s  of r e a l  number s  which belong to  the operat ion 

which is the inverse of mult iplying by " 3 .  

5. L i s t  3 p a i r s  of r e a l  number s  wh'ch  belong t o  thc operat ion 
1 

dividing by - - - 
2 

I X .  Complete with the  simples^ express ion  which m a k e s  the s t a t e -  

ment  trzie . 

F o r  each 11, the SUIT! of 3n cind 10 is  

F o r  each  r ,  the product  of & by - 3 r  is 

F o r  each c ,  the d i f ference of 12. from c + 12 is 

F o r  each  y, y i nc r ea sed  by 9 is 

Fo r  each a ,  fo r  each b, 5a dec rea sed  by La 4. 7b is 

F o r  each x, for  e ach  y 0 ,  the quotient of 

F o r  each x > 0 ,  for  each y > 0 ,  the p e r i m e t e r  of a 

rec tang le  w i t h  sho r t  side 3x units long and long side 

2y units  long is 

8. F o r  each  a > 0 ,  i f  3a objects  a r e  to  be dis t r ibuted 

equally among  5 p e r s o n s ,  then each  p e r s o n  will r e ce ive  

objects .  

9 .  F o r  each  m > 0 ,  a c a r  t r ave l ing  a t  a  s teady r a t e  of 3m 

m i l e s  an hour  will t r ave l  150 m i l e s  in hou r s .  



IX. 1. 3n + 10 

4. y + 9  

7. 6 x t 4 y  





[TEST] 

X. Each of the following statements i s  a consequence of one of the 

principles f o r  r e a l  numbers.  Below them a r e  the names of 

these principles,  each being preceded by a le t te r .  In the blank 

at  the left of each statement,  write the le t ter  corresponding to  

the principle of which the statement is a consequence. 

Commutative principle for  addition 

Commutative principle for multiplication 

Associative principle for  addition 

Associative principle for  multiplication 

Distributive principle fo r  multiplication over addition 

Principle for  adding 0 

Principle for multiplying by 0 

Principle for  multiplying by 1 

Principle of opposites 

Principle of quotients 

Principle for  subtraction 



SUPPLEMENTARY EXERCISES 

A .  Find the value of e a c h  of the  following pronumeral expressions - 
for t h e  given values of t h e  pronumerals. 



Answers for SUPPLEMENTARY EXERCISES. 







No answer; when the substitutions are made, the resulting 
expression i s  meaningless. 



33. In each  of the following pronumera l  express ions  make  the - 
substi tutions l i s ted  below and simplify the result ing numeral .  

'7' fo r  ' m ' ,  

' 2 '  f o r  ' x ' ,  

' 2 '  fo r  ' v J ,  
4 

m t x - y  

( 0 '  for 4 y 7 ,  

' -3'  f o r  ' z ' ,  

' -8 '  f o r  ' u  '. 

mx + y z  - 
m - x  



[ S U P P L E M E N T A R Y  E X E R C I S E S -  -Part  C ]  

P - Use each of the following open sentences zo generate a state- - 
merit. Tell whether the statement is true or false. T r y  to 

generate some true statements and some false statements. 



C. [For Exercises 1-4, 6-9, 11 , and 17, we simply list the numbers - 
which wi l l  give true statements .] 

1. 9 2. 1 3. 1 4. 6 

5. Each number wi l l  give a true statement. 

6. 3 7. 12 8. 3 9. 2, -2 

10. Each number will give a true statement. 

12. No number wi l l  give a true statement. 

13. Each number smaller than 26 w i l l  give a true statement, 
and these a re  the only numbers which do. 

14. Each number not greater than 5 wi l l  give a true statement, 
and these are  the only numbers which do. 

5 15. Each number not smaller than -- wil l  give a true statement, 
and these are  the only numbers which do. 

16. No number will give a true statement. 

17. 8, -6 

18. No number wi l l  give a true statement. 

19. Each number wi l l  give a true statement. 

20. Each number w i l l  give a true statement. 







kipma* Jtdpma 

apm, apm 
2*7  = 14, 3 * 2  = 6 ,  365  = 15 

pml 
aPa 

aPa 

=Pa 

aPa 
dpma 

aPa 
14 + 6 = 20, 2 +  15 = 17 



D. Here a r e  test-patterns f o r  genera l i za t ions .  Y o u r  job is to give - 
the reasons for  the s teps i n  the proof.  

1 .  For  each x ,  4x(Zx) = 8(xx). 

4x( Zx) = 4 x 2 ~  

4 x 2 ~  = 4(x2)x 

4(x2)x = 4( 2x)x 

4( 2x)x = 4  2xx 

4 2xx = 8xx 

8xx = ~ ( x x )  . 

2. For each y, 2y t 5  + 3y t 8  = 5y t 13. 

2 y + 5 + 3 y t 8 = 2 y t ( 5 + 3 y )  t 8  [ 1 (a) 

2 ~ + ( 5 + 3 ~ ) + 8 = 2 ~ + ( 3 ~ + 5 ) + 8  [ 1 (b) 

2 ~ + ( 3 ~ + 5 ) + 8 = ( 2 ~ + 3 ~ ) + 5 + 8  [ 1 ( c )  

( 2 y + 3 y ) t 5 + 8 = ( 2 + 3 ) y + 5 + 8  [ 1 (dl 

( 2 + 3 ) ~ + 5 + 8 = 5 y t 5 + 8  [ ] ( e )  

5 y + 5 + 8 = 5 y + ( 5 + 8 )  [ 1 ( f )  

5 y t ( 5  t 8 )  = 5 y t  1 3 .  [ 1 (g)  

3. For e a c h k ,  2(7k t 1) t 3(2k + 5) = 2 0 k t  17. 

(14  t 6)k + ( 2  t 15) = ZOk + 17. 



[SUPPLEMENTARY EXERCISES-Parts Â and F] 
. n .  

E. Each of the following i s  a generalization about rea l  numbers.  Some 

a r e  t rue  and some a r e  false. Your job is to  decide which, and in 

each case to give either a counter-example or  a proof.  

1. For  e a c h x ,  1 + 3 x T 5  = 3 x t  6. 

2. No matter  what number you pick, i f  you add 4 to  i t ,  and 

multiply 2 by this sum,  the result  is the product of 2 by 

the chosen number, plus 8. 

3. For  each t, 3t + 9t = 12t. 

4.  For  each k, 3(5k) 4 6(2k) = 27k. 

5. For  each m, 9 + rn + 7 = 16 + m .  

6. For  each y, 3 t 8y = l i y .  

7. F o r  each r ,  5 t l o r  = 5(1 t 2r) .  

8. F o r  each k, 3k + 5 + 9k = 17k. 

9. For  each t ,  7t t 6 + 8t = 15t t 6. 

10. For  each q, 2q t 9 t 7q = 9(q + 1). 

11. For  each a, 3a(7a) = Zl(aa).  

12. F o r  each r ,  7r + 1 t 3r t 5 = lor + 6 .  

13. For  each n, n(n + 2) t 6n = nn t 8n. 

F. Each of the following generalizations is a consequence of one of the - 
principles of rea l  numbers. Tell  which principle. 

1. For  each x, 3x(x t 5) = ( x  t 5)(3x). 

2. For  e a c h y ,  7 +  (y  t 3) + 5 = ( y +  3) + 7  t 5. 

3. For  each r ,  (2r  t l ) ( 3 r  t 7) = 2r(3r  + 7) t l ( 3 r  + 7). 

4. For  each k, 7k t 3 - (8k Â¥{ 5) = 7k t 3 t -(8k t 5 ) .  

5 .  For  each y, 3(y + 12) 4- 3(y + 11) = 3 [ ( ~  i 12) + (y  + 11)). 

6 .  For  each m ,  (m + 4)(m t 3)(m t 1) = ( m  t 4)[(m i- 3)(m + 1)). 

7. For  each x, 3(x - 5) + 6(x t 9) t 12(x - 2) = 3(x - 5) - [6(x + 9) t 12(x - 2)). 



Hence, 1 t 3x t 5 = 3x t 6. 

2. [For each x, 2(x t 4) = 2x t 8.1 

2(x t 4) 

= 2x t 8. 

Hence, 2(x t 4) = 2x t 8. 

Hence, 3t t 9t = 12t. 

4. 3(5k) t 6(2k) 

= (3'5)k t (6*2)k 
3 - 5  = 15, 6 * 2  = 12 

= 15k t 12k l- duma 

Hence, 3(5k) t 6(2k) = 27k. 

Hence, 9 t r n  t 7 = 16 t m .  

6. False; each number other than 1 is a counter-example. 





Hence, 5 t lor = 5(1 t 2r). 

8. False; each number other than 1 is a counter-example. 

Hence, 7t t 6 t 8t = 15t t 6 .  

Hence, 2q t 9 t 7q = 9(q t 1 ) .  

Hence, 3a(7a) = 21(aa). 





Hence, 7r + 1 + 3r t 5 = lor t 6. 

Hence, n(n + 2) + 6n = nn + 8n. 

I?. 1.  cpm - 2. cpa 3. dpma 4. ps 

5. Aipma 6. apm 7. apa 











 or Exercise 33, the answer '-u + -v' i s  acceptable. However, if a 
student gives this, you should ask him to state the generalization he is 
using [ V  -x = - 1 x]. Tell him that this generalization will be proved 
later in the unit [see page 2-70.]. 



[SUPPLEMENTARY EXERCISES --Part G] 

G. Simplify. - 
1. 3 a t 5 a  

4. 8 t  i 17t 

7. 9 x t 5 x i 3 x  

9. 2 a i 3 - t  12a 

11. 6b t 4b + 115 

13. 7 r t 2 t 3 r  

15. 6 x t 3 x t 7  

17. 5 p t  0 . 5 p +  0 . 7 ~  

19. 4 r t 9 t 5 r  

21. 6 a + 2 b + 8 a t 2 c  

23. 2 x +  5 t 3 y t  7x 

25. 4t t 13s  + 7t t 5s  

27. 14s  t r t 3 r  t 9 s  

3 .  2 x + 9 x  

6. x t  3x 

8. 4y -t 7y t l l y  

10. 7a t 1 t 15a 

12. 31 i k t 7k 

14. 6 p + p t  1 2 t  3p 

16. x i  2 x i  5 t x  

18. l l w t w t 4  

20. 12 t 7d t 19 -1- 9d t 10d 

22. 4 m +  9 n t  1 5 m t  l l n  

24. l l a t  2 b +  5 t  a +  6 

26. 4 m  t 2m + 7 t lorn 

28. 9 x t  7 y +  5 +  5 x t  6y 

1 1 
30. b t i b  t 5 t - b  3 

32. M t 6M t (-5)M + ( - l ) M  

34. 7 t  t 4 t (-1O)t t -12 

36. 2 ( b t 4 ) t b  

38. lO(5a) i- 5 

40. 3x t 4(. 25x) 

42. 7x t (8x  t 54) 

44. 3x t 5(x + 2) 

46. 2(a i. 5) t 5(a  + 3) 

48. b (2a  t 1) + a ( 3 b +  5) 

51. 17m t (-7)n t 8p + ( -5)n i- 1-1O)m 
(continued on next page) 



[SUPPLEMENTARY EXERCISES - -Part  G] 

3(3n + Zy) + 5(n i- 4y)  65 .  4[r t ( - 5 ) s ]  + (-7)[r t ( - 3 ) s ]  

2 (--) ( Z ~ Z  + 15w) + - (3z  + 12w) 
3 

(-10)(5c t 6d) + 8(8c  + 9d) 68. 4 (3m + 2n) + 5(3m + 7n) 

Z(sst  + tt) + 4 ( s s  + 2tt) + ( -3 ) ( t  + s)  

Z(3aaa + ab) + ( -  l ) (5aab  + ab) t ( -6) (bb + abb) + 2(bb + aaa) 



H. Wri te  the  s i m p l e s t  f o r m u l a  you c a n  for  the perimeter of each - 
f i g u r e  p ic tu red  below. 

(continued on next  page) 







rectangle: P = 15rx 

square : P = 4x 

rhombus: P = 8x 

figure formed by four 

39rx semicircles: P = 7 

Sir 1 P = a(,- t 3,) 





[Each of the shorter sides 
could have been labeled with 
an 's '; if so,  each of the 
longer sides should be labeled 

Â ¥  * with a ZS . If this i s  done, a 
formula for the perimeter 
would be 'P = 10s'. ] 





Students should be instructed to include a labeled diagram for each of 
the exercises from Exercise 17 through Exercise 27 inclusive. Of 
course, there is  more than one way to label the parts of these figures, 
and accordingly, more than one correct formula for the perimeter. 
In Exercises 17 and 23 we indicate alternatives. In the other exer- 
cises you will doubtless want the class to consider other possibilities. 

17. Using 'a* as a pronumeral whose values are  the measures of the 
shorter sides of such parallelograms, a formula for the perimeter 
of such parallelograms is 'P = 12a t 6'. 

J 1 
5a t 3 

[Each of the longer sides could be labeled with an *a*; i f  so, each 
a -  

t 5 
. Then. the of the shorter sides should be labeled with an - 

a -  
5 

) , and the values of * a *  a re  perimeter formula is  P = 2(a t - 
greater than 3.1 

18. Using *n* as  a pronumeral whose values are  the measures of the 
shorter of the parallel sides of such trapezoids. a formula for the 

perimeter is 
1 'P = 3,n + 5'. 

For the remaining exercises, we give just a diagram and a formula. 



[SUPPLEMENTARY EXERCISES - - P a r t  1-11 

Write the s imples t  fo rmula  you can  f o r  the pe r ime te r  of each figure 

descr ibed  below. 

17. A para l le logram whose longer s ide  m e a s u r e s  3 m o r e  than 5 

t imes  the m e a s u r e  of i t s  sho r t e r  s ide .  

18.  An i sosce les  t rapezoid with i t s  non-parallel  s ides  measur ing  
2 - a s  long a s  the sho r t e r  of the para l le l  s ides ,  and with the 
3 
longer  of i t s  para l le l  s ides  measur ing  5 m o r e  than the s h o r t e r  

one. 

19. A rectangle  whose length m e a s u r e s  8 m o r e  than the sum of 4 
the m e a s u r e s  of i t s  two sho r t e r  s ides .  

20. A pentagon whose longest  and sho r t e s t  s ides  differ  in m e a s u r e  

by 12; of the th ree  remaining s ides ,  one i s  th ree  t imes  a s  long 

a s  the sho r t e s t  s ide  of the pentagon; another  i s  7 units longer  
2 than - the length of the sho r t e s t  s ide;  the l a s t  i s  1 unit longer 
3 

than 5 t imes  the length of the sho r t e s t  side. 

21. A h e x a g o n w h i c h h a s  
1 
1 f i r s t  side measur ing  1 m o r e  than - the fourth s ide;  

1 second s ide  measur ing  2 m o r e  than - the fourth side;  
3 th i rd  side measur ing  1 m o r e  than - the fourth side;  
4 

fifth s ide  measur ing  twice the four th  side,  and 
Â£ 

sixth s ide  measur ing  5 m o r e  than - the four th  side.  3 

An octagon fo rmed  by placing two 

squa re s  with equal perimeters in 

this position. The intersect ing s ides  

divide the i r  lengths i n  a 2 to  1 ra t io .  

(continued on next page) 

22 .  A hexagon made  by placing two rectangles  together l ike  this: 

The rectangles  have the s a m e  pe r ime te r ,  

and the length of each  rectangle  is one 
I 

unit m o r e  than twice i t s  width. I 
I 
I 

* I 
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24.  A nonagon made by placing a n  equ i la te ra l  

t~l&flgIC? next to a regular hexagon s o  
1 

that - the length of a s ide  of the t r iangle  
3 

over laps  a s i de  of the hexagon. A s ide  

of the t r i ang le  is twice as long a s  a s ide  

of the hexagon. 

25. A t rapezo id  the s h o r t e r  of whose para l l e l  s i de s  m e a s u r e s  3 m o r e  
z 

than - the m e a s u r e  of the longer  pa ra l l e l  s ide ,  one of whose 
3 , 

1 
non-para l l e l  s ides  i s  - as  long as the longer  pa ra l l e l  s ide ,  and 6 

1 1 
whose o ther  non-paral le l  s ide  i s  - unit m o r e  than -, the longer  2 
pa r a l l e l  s ide.  

26. A f o r m a l  f lower  ga rden  i s  la id  out 

a s  in th is  sketch.  The rec tangula r  
3 p a r t  i s  1- t imes  a s  long a s  i t  i s  
5 

wide; e ach  of the curved  edges  i s  

a s e m i c i r c l e ;  the l a r g e  diamond- 

shaped p a r t  i s  a  rhombus whose 
2 

s ide  i s  - of the width of the r e c -  3 
tangular  pa r t ;  the s m a l l  s q u a r e s  

1 

each  have a s ide  measu r ing  the width of the rec tangle .  F ind  3 
the f o rmu la s  for  the p e r i m e t e r  of e a c h  of the following: the 

rec tangle ,  the la'rge rhombus ,  e ach  square ,  and  the f igure  fo rmed  

by the four s e m i c i r c l e s .  

27, A keyhole i s  of the shape pic tured he r e .  

The  lower  p a r t  i s  t r apezo ida l  in shape,  

with a ba se  edge of the s a m e  m e a s u r e  

a s  the d i ame te r  of the c i r c u l a r  pa r t ,  

and with i t s  non-para l l e l  edges  e ach  
1 1- t imes  as long a s  the base  edge. The 
4 

t rapezoidal  p a r t  i n t e r s ec t s  the c i r c u l a r  

p a r t  in such  a way that  of the c i r c l e  6 
i s  miss ing .  Find a f o rmu la  for the p e r i m e t e r  of t he  keyhole. 





5x t 3y 

This cannot be simplified. 

2x - 20y 6. l or  t 4t 

3x 

5 
- - X t  1 8 

3j - l l m  

5p t 2r - 25s t 7 

2kk - 5km + 8 

8a + 12b 

2c - 3d 

29g t 8h + 6 
17x - 48 

15x - 12 

- 8x 

2x - 2 

x - 3  

10 + 5s 

30 - 8y 

-2Ox - 216 
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I .  Simplify. 

1. 7 x + 3 y - 2 x  

41.  5x - 3(16 - 4x) 5(x t 1) - 3x 

43. 3a t 2(3a - 3) 44. 7x - 4(3  - Zx) 

(continued on next page) 



7b - 9(3b t 24) 

3(2x - 2) t 2x 

4x - (2x t 2) 

Z ( Y  + 4) - 5~ 

5x + 3(3 - x) 

2(5 - S) + 7s  

3(x - 4) t x 
r - ( 7  - 3 r )  

7x - 9(3x + 24) 

3x + 2(19 - 3x) 

4y - 2(3y - 4) 

k - [-3k - (-2k - l )]  

2(2a t b) - 3(3a - 2b) 

4(4n - 1) - 5(n t 2) 

4 (3s  t 5) - 3(s  - 3) 

2xx - [x - (1 - 2x)] 

-(2a - 4) - 18 t a 

4(z  t 1) - 7z 

4y - ( 5 y  - 1) 

l l r  - 7(-2s - 6 r )  

21t - 8(9u - 2t) 

6(3c + 8d) - lZ(-c - d) 



7 a  - 24 64. -3x t 38 

-2y t 8 67. y 

3a  - b 70. -5a t 8b 

l l n  - 14  73. x - 39 

3 x x - 6 x t 6  76. Zxx - 3x t 1 

-a - 14  79. k t 4  

14  - 3x 82. -y t 1 

53r  t 14s  85. 27j - 12h 

33a t 19b 88. 30c t 60d 

-p + 7nq t 12 + 30n - 2q 

-31xz + 18ux 93. -21r r  t 18ss  

4d t 45e t 26 

-71 t 43v t 2 l u  

30abz 100. 8abc 

6 r r r  103. -24ABC 

4 8 r r s s t t  106. 6aaabbbccc 
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- 14g - 8(-h + 3g) - h 

17d + 19e - 13(d - 2e - 2) 

-4(8 - 2c + 7b) - 6(1 - 3c + 3b) - (-c - b - 5) 

-8(7 - v - 2u) - 5[3 - 4v - 3u - (3v - 2u)] 

-5[4(k - n) - 9(3k - 4n)] - 2[-8(-k - 4n) - (-k - n)] 

- 2a(5b)(- 3z) 100. 4a(-b)(-2c) 

1 
6r(- g- r ) ( 7 r  ) 

2 102. 7 r ( - - r ) ( -3 r )  
7 

- A -  -3B -8C 104. -X- --Ym - - 3 Z  

2 r s  -3s t  -8 t r  106. -abc -3ab -2bc - c a  

( 5 * - 4 - - t ) ( - 5 * 4 * - t )  108. 8 a b -  1 7. 5 3 a e 0 * 4 a b  

-8r(2  - 5s + 6 r )  - 3 r ( 5  - s - r) - 4 ( r r  + ss) 

-2j(3k - 5j) + 7kj(l  - 3k) - 5jk(-2 - j) 

-3w(u - 2v) - v(-w - 2u) - ( u  - v - w) 

8a[5 - 3(1 - 2a - b)] - [4a - 1 - b(5  - a + 2b)] 

9(-3x) - 2(-4x - 5) - 3x[2 - 5(- 1 - x)] 

4Y(3 - 2y) + 7(1 - YY) - y[-(3 - y)] + 8 

3(xx - 2x - 3) - 2x(-5x - 3) - 3(-x - 2) - 1 

-(x - 3)(-2x) - (-xx - x +  1)  - ( 3  - 2x - xx) 
1 2 1 -(-4x)(-8y)z - -(3y)(- 2z)(-3x) - 3.(-l 4xy)(-z) 2 9 

2. 5(3 - 1 . 2 ~ )  - 7. 8(4. 1 - 6. 3x) - 2. 9(-x - 5.8)  

2 1 5 - ( I 2  - . 6n)  - -(18 - 2.7)  - - (18 - 2.4n) 
3 9 6 

. 3(2a)(-2b)c - .2(-3c)(-8b)(-a) - . 4(-2b)(3a)(-4~) 
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Sample 

Solution. 

(continued on next page) 
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An expression such a s  822% of . . . * should be translated into . X 0.82'. [See page TC[~-591.1 

73. 347.68 74. 530 75. 0.06 

Exercise 76 can be translated into 'What number multiplied by 0.15 
i s  9?*. By the principle of quotients, one such number i s  9 + 0.15. 
And, by the division theorem, this i s  the only such number. [An 
intuitive method of handling the problem is to note that since 15% of 
the number in question is 9, 5% of it  i s  3. So, 100% of it  is 60.1 

1 Translate Exercise 79 into '140 multiplied by what number times - 
100 35 i s  35? *. This number is - X 100. 140 

79. 80. 16 

*I* 
.̂" 

82. 0.8 83. 10.85 

86. 11.0152 87. 0.0013275 

90. 0.000147 91. 65.395 







2. 7n 3. 6c 4. 6d 

6. l l rs  7. -8xyz 8. 41ab 

13. 1200d 

16. 8s, [r # O] 

19. 1, [rst # O] 

4c 
22. -g-, [cde # o] 

16e 
25. T J  [de # 01 

6xk 
27. - J  [yj # 01 YJ 

12x 
29. F, [ r s y # O ]  

-5 r  
31. 7, [jks # 01 

2 
33. Z J  [ y i ' o ]  

J 

14. - 1 1 . 1 ~  15-  4p, [ n # o ]  

17. 3a, [ad # O] 
3d 18. Ã‘ [ a c # O ]  

20. 13ee,  [f # 01 21. -21, [w # 01 

-9 23. Ã‘Ã [ X U ^ O ]  24. -1, [ n # O ]  

1 3dx 
26. -37- 8 [cuv # 01 

2aa 
28. ,.-? [bed # 01 

32. ac ,  [bcrs  # 01 

c 
34. s, [abcx # 01 
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K. Simplify. - 

abcc -sr 32. - X - -rs be 

(continued on next page) 
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x y t 1  
1 2  a t 2  
a t y [or: 9 9 
-5 t 8r. [nq# O] 

9ab t 1, [c # O] 
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90 ,  3 o r ( 3 r +  i - !jr - 3 - G) 
3r 5r 1 5  

92.  9 ( z  t 2) (5 - 

e 9 )  
94. 7e(e  - 5)(- - - 

e l  

1 
96. lZv(2v - 5)(-- 4v 2v - 5 

a a 97. - - - 
7 4 

l l r  1 r 
99. - 3 - - t  - 2 2 

3h 1 101. - 

9 5 103. - - - 
g 3g 

13 1 
105. --g - + 5  3s 

3 1 4  107. 1 - - + - - ;  

1 
109. q 1 

(5j  + 1 )  - g(j - 7) 
5 n + 1  3 n + 4  6 1 1 - 1  1 1 1 .  - -  - - - -  

3  4 5 

5 u - 2  4 u - 3  113. - -  - 
4 3 

A - 3  A - 3  3 115. - - - - -  
8 6 4 

(continued on next page) 



a t b  133 .  
- - -  
a b  






